at v4.19 130 kB view raw
1/* 2 * CFQ, or complete fairness queueing, disk scheduler. 3 * 4 * Based on ideas from a previously unfinished io 5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli. 6 * 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 8 */ 9#include <linux/module.h> 10#include <linux/slab.h> 11#include <linux/sched/clock.h> 12#include <linux/blkdev.h> 13#include <linux/elevator.h> 14#include <linux/ktime.h> 15#include <linux/rbtree.h> 16#include <linux/ioprio.h> 17#include <linux/blktrace_api.h> 18#include <linux/blk-cgroup.h> 19#include "blk.h" 20#include "blk-wbt.h" 21 22/* 23 * tunables 24 */ 25/* max queue in one round of service */ 26static const int cfq_quantum = 8; 27static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 }; 28/* maximum backwards seek, in KiB */ 29static const int cfq_back_max = 16 * 1024; 30/* penalty of a backwards seek */ 31static const int cfq_back_penalty = 2; 32static const u64 cfq_slice_sync = NSEC_PER_SEC / 10; 33static u64 cfq_slice_async = NSEC_PER_SEC / 25; 34static const int cfq_slice_async_rq = 2; 35static u64 cfq_slice_idle = NSEC_PER_SEC / 125; 36static u64 cfq_group_idle = NSEC_PER_SEC / 125; 37static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */ 38static const int cfq_hist_divisor = 4; 39 40/* 41 * offset from end of queue service tree for idle class 42 */ 43#define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5) 44/* offset from end of group service tree under time slice mode */ 45#define CFQ_SLICE_MODE_GROUP_DELAY (NSEC_PER_SEC / 5) 46/* offset from end of group service under IOPS mode */ 47#define CFQ_IOPS_MODE_GROUP_DELAY (HZ / 5) 48 49/* 50 * below this threshold, we consider thinktime immediate 51 */ 52#define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ) 53 54#define CFQ_SLICE_SCALE (5) 55#define CFQ_HW_QUEUE_MIN (5) 56#define CFQ_SERVICE_SHIFT 12 57 58#define CFQQ_SEEK_THR (sector_t)(8 * 100) 59#define CFQQ_CLOSE_THR (sector_t)(8 * 1024) 60#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32) 61#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8) 62 63#define RQ_CIC(rq) icq_to_cic((rq)->elv.icq) 64#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0]) 65#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1]) 66 67static struct kmem_cache *cfq_pool; 68 69#define CFQ_PRIO_LISTS IOPRIO_BE_NR 70#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE) 71#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT) 72 73#define sample_valid(samples) ((samples) > 80) 74#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node) 75 76/* blkio-related constants */ 77#define CFQ_WEIGHT_LEGACY_MIN 10 78#define CFQ_WEIGHT_LEGACY_DFL 500 79#define CFQ_WEIGHT_LEGACY_MAX 1000 80 81struct cfq_ttime { 82 u64 last_end_request; 83 84 u64 ttime_total; 85 u64 ttime_mean; 86 unsigned long ttime_samples; 87}; 88 89/* 90 * Most of our rbtree usage is for sorting with min extraction, so 91 * if we cache the leftmost node we don't have to walk down the tree 92 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should 93 * move this into the elevator for the rq sorting as well. 94 */ 95struct cfq_rb_root { 96 struct rb_root_cached rb; 97 struct rb_node *rb_rightmost; 98 unsigned count; 99 u64 min_vdisktime; 100 struct cfq_ttime ttime; 101}; 102#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT_CACHED, \ 103 .rb_rightmost = NULL, \ 104 .ttime = {.last_end_request = ktime_get_ns(),},} 105 106/* 107 * Per process-grouping structure 108 */ 109struct cfq_queue { 110 /* reference count */ 111 int ref; 112 /* various state flags, see below */ 113 unsigned int flags; 114 /* parent cfq_data */ 115 struct cfq_data *cfqd; 116 /* service_tree member */ 117 struct rb_node rb_node; 118 /* service_tree key */ 119 u64 rb_key; 120 /* prio tree member */ 121 struct rb_node p_node; 122 /* prio tree root we belong to, if any */ 123 struct rb_root *p_root; 124 /* sorted list of pending requests */ 125 struct rb_root sort_list; 126 /* if fifo isn't expired, next request to serve */ 127 struct request *next_rq; 128 /* requests queued in sort_list */ 129 int queued[2]; 130 /* currently allocated requests */ 131 int allocated[2]; 132 /* fifo list of requests in sort_list */ 133 struct list_head fifo; 134 135 /* time when queue got scheduled in to dispatch first request. */ 136 u64 dispatch_start; 137 u64 allocated_slice; 138 u64 slice_dispatch; 139 /* time when first request from queue completed and slice started. */ 140 u64 slice_start; 141 u64 slice_end; 142 s64 slice_resid; 143 144 /* pending priority requests */ 145 int prio_pending; 146 /* number of requests that are on the dispatch list or inside driver */ 147 int dispatched; 148 149 /* io prio of this group */ 150 unsigned short ioprio, org_ioprio; 151 unsigned short ioprio_class, org_ioprio_class; 152 153 pid_t pid; 154 155 u32 seek_history; 156 sector_t last_request_pos; 157 158 struct cfq_rb_root *service_tree; 159 struct cfq_queue *new_cfqq; 160 struct cfq_group *cfqg; 161 /* Number of sectors dispatched from queue in single dispatch round */ 162 unsigned long nr_sectors; 163}; 164 165/* 166 * First index in the service_trees. 167 * IDLE is handled separately, so it has negative index 168 */ 169enum wl_class_t { 170 BE_WORKLOAD = 0, 171 RT_WORKLOAD = 1, 172 IDLE_WORKLOAD = 2, 173 CFQ_PRIO_NR, 174}; 175 176/* 177 * Second index in the service_trees. 178 */ 179enum wl_type_t { 180 ASYNC_WORKLOAD = 0, 181 SYNC_NOIDLE_WORKLOAD = 1, 182 SYNC_WORKLOAD = 2 183}; 184 185struct cfqg_stats { 186#ifdef CONFIG_CFQ_GROUP_IOSCHED 187 /* number of ios merged */ 188 struct blkg_rwstat merged; 189 /* total time spent on device in ns, may not be accurate w/ queueing */ 190 struct blkg_rwstat service_time; 191 /* total time spent waiting in scheduler queue in ns */ 192 struct blkg_rwstat wait_time; 193 /* number of IOs queued up */ 194 struct blkg_rwstat queued; 195 /* total disk time and nr sectors dispatched by this group */ 196 struct blkg_stat time; 197#ifdef CONFIG_DEBUG_BLK_CGROUP 198 /* time not charged to this cgroup */ 199 struct blkg_stat unaccounted_time; 200 /* sum of number of ios queued across all samples */ 201 struct blkg_stat avg_queue_size_sum; 202 /* count of samples taken for average */ 203 struct blkg_stat avg_queue_size_samples; 204 /* how many times this group has been removed from service tree */ 205 struct blkg_stat dequeue; 206 /* total time spent waiting for it to be assigned a timeslice. */ 207 struct blkg_stat group_wait_time; 208 /* time spent idling for this blkcg_gq */ 209 struct blkg_stat idle_time; 210 /* total time with empty current active q with other requests queued */ 211 struct blkg_stat empty_time; 212 /* fields after this shouldn't be cleared on stat reset */ 213 u64 start_group_wait_time; 214 u64 start_idle_time; 215 u64 start_empty_time; 216 uint16_t flags; 217#endif /* CONFIG_DEBUG_BLK_CGROUP */ 218#endif /* CONFIG_CFQ_GROUP_IOSCHED */ 219}; 220 221/* Per-cgroup data */ 222struct cfq_group_data { 223 /* must be the first member */ 224 struct blkcg_policy_data cpd; 225 226 unsigned int weight; 227 unsigned int leaf_weight; 228}; 229 230/* This is per cgroup per device grouping structure */ 231struct cfq_group { 232 /* must be the first member */ 233 struct blkg_policy_data pd; 234 235 /* group service_tree member */ 236 struct rb_node rb_node; 237 238 /* group service_tree key */ 239 u64 vdisktime; 240 241 /* 242 * The number of active cfqgs and sum of their weights under this 243 * cfqg. This covers this cfqg's leaf_weight and all children's 244 * weights, but does not cover weights of further descendants. 245 * 246 * If a cfqg is on the service tree, it's active. An active cfqg 247 * also activates its parent and contributes to the children_weight 248 * of the parent. 249 */ 250 int nr_active; 251 unsigned int children_weight; 252 253 /* 254 * vfraction is the fraction of vdisktime that the tasks in this 255 * cfqg are entitled to. This is determined by compounding the 256 * ratios walking up from this cfqg to the root. 257 * 258 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all 259 * vfractions on a service tree is approximately 1. The sum may 260 * deviate a bit due to rounding errors and fluctuations caused by 261 * cfqgs entering and leaving the service tree. 262 */ 263 unsigned int vfraction; 264 265 /* 266 * There are two weights - (internal) weight is the weight of this 267 * cfqg against the sibling cfqgs. leaf_weight is the wight of 268 * this cfqg against the child cfqgs. For the root cfqg, both 269 * weights are kept in sync for backward compatibility. 270 */ 271 unsigned int weight; 272 unsigned int new_weight; 273 unsigned int dev_weight; 274 275 unsigned int leaf_weight; 276 unsigned int new_leaf_weight; 277 unsigned int dev_leaf_weight; 278 279 /* number of cfqq currently on this group */ 280 int nr_cfqq; 281 282 /* 283 * Per group busy queues average. Useful for workload slice calc. We 284 * create the array for each prio class but at run time it is used 285 * only for RT and BE class and slot for IDLE class remains unused. 286 * This is primarily done to avoid confusion and a gcc warning. 287 */ 288 unsigned int busy_queues_avg[CFQ_PRIO_NR]; 289 /* 290 * rr lists of queues with requests. We maintain service trees for 291 * RT and BE classes. These trees are subdivided in subclasses 292 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE 293 * class there is no subclassification and all the cfq queues go on 294 * a single tree service_tree_idle. 295 * Counts are embedded in the cfq_rb_root 296 */ 297 struct cfq_rb_root service_trees[2][3]; 298 struct cfq_rb_root service_tree_idle; 299 300 u64 saved_wl_slice; 301 enum wl_type_t saved_wl_type; 302 enum wl_class_t saved_wl_class; 303 304 /* number of requests that are on the dispatch list or inside driver */ 305 int dispatched; 306 struct cfq_ttime ttime; 307 struct cfqg_stats stats; /* stats for this cfqg */ 308 309 /* async queue for each priority case */ 310 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR]; 311 struct cfq_queue *async_idle_cfqq; 312 313}; 314 315struct cfq_io_cq { 316 struct io_cq icq; /* must be the first member */ 317 struct cfq_queue *cfqq[2]; 318 struct cfq_ttime ttime; 319 int ioprio; /* the current ioprio */ 320#ifdef CONFIG_CFQ_GROUP_IOSCHED 321 uint64_t blkcg_serial_nr; /* the current blkcg serial */ 322#endif 323}; 324 325/* 326 * Per block device queue structure 327 */ 328struct cfq_data { 329 struct request_queue *queue; 330 /* Root service tree for cfq_groups */ 331 struct cfq_rb_root grp_service_tree; 332 struct cfq_group *root_group; 333 334 /* 335 * The priority currently being served 336 */ 337 enum wl_class_t serving_wl_class; 338 enum wl_type_t serving_wl_type; 339 u64 workload_expires; 340 struct cfq_group *serving_group; 341 342 /* 343 * Each priority tree is sorted by next_request position. These 344 * trees are used when determining if two or more queues are 345 * interleaving requests (see cfq_close_cooperator). 346 */ 347 struct rb_root prio_trees[CFQ_PRIO_LISTS]; 348 349 unsigned int busy_queues; 350 unsigned int busy_sync_queues; 351 352 int rq_in_driver; 353 int rq_in_flight[2]; 354 355 /* 356 * queue-depth detection 357 */ 358 int rq_queued; 359 int hw_tag; 360 /* 361 * hw_tag can be 362 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection) 363 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth) 364 * 0 => no NCQ 365 */ 366 int hw_tag_est_depth; 367 unsigned int hw_tag_samples; 368 369 /* 370 * idle window management 371 */ 372 struct hrtimer idle_slice_timer; 373 struct work_struct unplug_work; 374 375 struct cfq_queue *active_queue; 376 struct cfq_io_cq *active_cic; 377 378 sector_t last_position; 379 380 /* 381 * tunables, see top of file 382 */ 383 unsigned int cfq_quantum; 384 unsigned int cfq_back_penalty; 385 unsigned int cfq_back_max; 386 unsigned int cfq_slice_async_rq; 387 unsigned int cfq_latency; 388 u64 cfq_fifo_expire[2]; 389 u64 cfq_slice[2]; 390 u64 cfq_slice_idle; 391 u64 cfq_group_idle; 392 u64 cfq_target_latency; 393 394 /* 395 * Fallback dummy cfqq for extreme OOM conditions 396 */ 397 struct cfq_queue oom_cfqq; 398 399 u64 last_delayed_sync; 400}; 401 402static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd); 403static void cfq_put_queue(struct cfq_queue *cfqq); 404 405static struct cfq_rb_root *st_for(struct cfq_group *cfqg, 406 enum wl_class_t class, 407 enum wl_type_t type) 408{ 409 if (!cfqg) 410 return NULL; 411 412 if (class == IDLE_WORKLOAD) 413 return &cfqg->service_tree_idle; 414 415 return &cfqg->service_trees[class][type]; 416} 417 418enum cfqq_state_flags { 419 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */ 420 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */ 421 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */ 422 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */ 423 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */ 424 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */ 425 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */ 426 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */ 427 CFQ_CFQQ_FLAG_sync, /* synchronous queue */ 428 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */ 429 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */ 430 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */ 431 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */ 432}; 433 434#define CFQ_CFQQ_FNS(name) \ 435static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \ 436{ \ 437 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \ 438} \ 439static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \ 440{ \ 441 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \ 442} \ 443static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \ 444{ \ 445 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \ 446} 447 448CFQ_CFQQ_FNS(on_rr); 449CFQ_CFQQ_FNS(wait_request); 450CFQ_CFQQ_FNS(must_dispatch); 451CFQ_CFQQ_FNS(must_alloc_slice); 452CFQ_CFQQ_FNS(fifo_expire); 453CFQ_CFQQ_FNS(idle_window); 454CFQ_CFQQ_FNS(prio_changed); 455CFQ_CFQQ_FNS(slice_new); 456CFQ_CFQQ_FNS(sync); 457CFQ_CFQQ_FNS(coop); 458CFQ_CFQQ_FNS(split_coop); 459CFQ_CFQQ_FNS(deep); 460CFQ_CFQQ_FNS(wait_busy); 461#undef CFQ_CFQQ_FNS 462 463#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP) 464 465/* cfqg stats flags */ 466enum cfqg_stats_flags { 467 CFQG_stats_waiting = 0, 468 CFQG_stats_idling, 469 CFQG_stats_empty, 470}; 471 472#define CFQG_FLAG_FNS(name) \ 473static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \ 474{ \ 475 stats->flags |= (1 << CFQG_stats_##name); \ 476} \ 477static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \ 478{ \ 479 stats->flags &= ~(1 << CFQG_stats_##name); \ 480} \ 481static inline int cfqg_stats_##name(struct cfqg_stats *stats) \ 482{ \ 483 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \ 484} \ 485 486CFQG_FLAG_FNS(waiting) 487CFQG_FLAG_FNS(idling) 488CFQG_FLAG_FNS(empty) 489#undef CFQG_FLAG_FNS 490 491/* This should be called with the queue_lock held. */ 492static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats) 493{ 494 u64 now; 495 496 if (!cfqg_stats_waiting(stats)) 497 return; 498 499 now = ktime_get_ns(); 500 if (now > stats->start_group_wait_time) 501 blkg_stat_add(&stats->group_wait_time, 502 now - stats->start_group_wait_time); 503 cfqg_stats_clear_waiting(stats); 504} 505 506/* This should be called with the queue_lock held. */ 507static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, 508 struct cfq_group *curr_cfqg) 509{ 510 struct cfqg_stats *stats = &cfqg->stats; 511 512 if (cfqg_stats_waiting(stats)) 513 return; 514 if (cfqg == curr_cfqg) 515 return; 516 stats->start_group_wait_time = ktime_get_ns(); 517 cfqg_stats_mark_waiting(stats); 518} 519 520/* This should be called with the queue_lock held. */ 521static void cfqg_stats_end_empty_time(struct cfqg_stats *stats) 522{ 523 u64 now; 524 525 if (!cfqg_stats_empty(stats)) 526 return; 527 528 now = ktime_get_ns(); 529 if (now > stats->start_empty_time) 530 blkg_stat_add(&stats->empty_time, 531 now - stats->start_empty_time); 532 cfqg_stats_clear_empty(stats); 533} 534 535static void cfqg_stats_update_dequeue(struct cfq_group *cfqg) 536{ 537 blkg_stat_add(&cfqg->stats.dequeue, 1); 538} 539 540static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) 541{ 542 struct cfqg_stats *stats = &cfqg->stats; 543 544 if (blkg_rwstat_total(&stats->queued)) 545 return; 546 547 /* 548 * group is already marked empty. This can happen if cfqq got new 549 * request in parent group and moved to this group while being added 550 * to service tree. Just ignore the event and move on. 551 */ 552 if (cfqg_stats_empty(stats)) 553 return; 554 555 stats->start_empty_time = ktime_get_ns(); 556 cfqg_stats_mark_empty(stats); 557} 558 559static void cfqg_stats_update_idle_time(struct cfq_group *cfqg) 560{ 561 struct cfqg_stats *stats = &cfqg->stats; 562 563 if (cfqg_stats_idling(stats)) { 564 u64 now = ktime_get_ns(); 565 566 if (now > stats->start_idle_time) 567 blkg_stat_add(&stats->idle_time, 568 now - stats->start_idle_time); 569 cfqg_stats_clear_idling(stats); 570 } 571} 572 573static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) 574{ 575 struct cfqg_stats *stats = &cfqg->stats; 576 577 BUG_ON(cfqg_stats_idling(stats)); 578 579 stats->start_idle_time = ktime_get_ns(); 580 cfqg_stats_mark_idling(stats); 581} 582 583static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) 584{ 585 struct cfqg_stats *stats = &cfqg->stats; 586 587 blkg_stat_add(&stats->avg_queue_size_sum, 588 blkg_rwstat_total(&stats->queued)); 589 blkg_stat_add(&stats->avg_queue_size_samples, 1); 590 cfqg_stats_update_group_wait_time(stats); 591} 592 593#else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */ 594 595static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { } 596static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { } 597static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { } 598static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { } 599static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { } 600static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { } 601static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { } 602 603#endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */ 604 605#ifdef CONFIG_CFQ_GROUP_IOSCHED 606 607static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd) 608{ 609 return pd ? container_of(pd, struct cfq_group, pd) : NULL; 610} 611 612static struct cfq_group_data 613*cpd_to_cfqgd(struct blkcg_policy_data *cpd) 614{ 615 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL; 616} 617 618static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg) 619{ 620 return pd_to_blkg(&cfqg->pd); 621} 622 623static struct blkcg_policy blkcg_policy_cfq; 624 625static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg) 626{ 627 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq)); 628} 629 630static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg) 631{ 632 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq)); 633} 634 635static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) 636{ 637 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent; 638 639 return pblkg ? blkg_to_cfqg(pblkg) : NULL; 640} 641 642static inline bool cfqg_is_descendant(struct cfq_group *cfqg, 643 struct cfq_group *ancestor) 644{ 645 return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup, 646 cfqg_to_blkg(ancestor)->blkcg->css.cgroup); 647} 648 649static inline void cfqg_get(struct cfq_group *cfqg) 650{ 651 return blkg_get(cfqg_to_blkg(cfqg)); 652} 653 654static inline void cfqg_put(struct cfq_group *cfqg) 655{ 656 return blkg_put(cfqg_to_blkg(cfqg)); 657} 658 659#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \ 660 blk_add_cgroup_trace_msg((cfqd)->queue, \ 661 cfqg_to_blkg((cfqq)->cfqg)->blkcg, \ 662 "cfq%d%c%c " fmt, (cfqq)->pid, \ 663 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \ 664 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\ 665 ##args); \ 666} while (0) 667 668#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \ 669 blk_add_cgroup_trace_msg((cfqd)->queue, \ 670 cfqg_to_blkg(cfqg)->blkcg, fmt, ##args); \ 671} while (0) 672 673static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg, 674 struct cfq_group *curr_cfqg, 675 unsigned int op) 676{ 677 blkg_rwstat_add(&cfqg->stats.queued, op, 1); 678 cfqg_stats_end_empty_time(&cfqg->stats); 679 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg); 680} 681 682static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg, 683 uint64_t time, unsigned long unaccounted_time) 684{ 685 blkg_stat_add(&cfqg->stats.time, time); 686#ifdef CONFIG_DEBUG_BLK_CGROUP 687 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time); 688#endif 689} 690 691static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, 692 unsigned int op) 693{ 694 blkg_rwstat_add(&cfqg->stats.queued, op, -1); 695} 696 697static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, 698 unsigned int op) 699{ 700 blkg_rwstat_add(&cfqg->stats.merged, op, 1); 701} 702 703static inline void cfqg_stats_update_completion(struct cfq_group *cfqg, 704 u64 start_time_ns, 705 u64 io_start_time_ns, 706 unsigned int op) 707{ 708 struct cfqg_stats *stats = &cfqg->stats; 709 u64 now = ktime_get_ns(); 710 711 if (now > io_start_time_ns) 712 blkg_rwstat_add(&stats->service_time, op, 713 now - io_start_time_ns); 714 if (io_start_time_ns > start_time_ns) 715 blkg_rwstat_add(&stats->wait_time, op, 716 io_start_time_ns - start_time_ns); 717} 718 719/* @stats = 0 */ 720static void cfqg_stats_reset(struct cfqg_stats *stats) 721{ 722 /* queued stats shouldn't be cleared */ 723 blkg_rwstat_reset(&stats->merged); 724 blkg_rwstat_reset(&stats->service_time); 725 blkg_rwstat_reset(&stats->wait_time); 726 blkg_stat_reset(&stats->time); 727#ifdef CONFIG_DEBUG_BLK_CGROUP 728 blkg_stat_reset(&stats->unaccounted_time); 729 blkg_stat_reset(&stats->avg_queue_size_sum); 730 blkg_stat_reset(&stats->avg_queue_size_samples); 731 blkg_stat_reset(&stats->dequeue); 732 blkg_stat_reset(&stats->group_wait_time); 733 blkg_stat_reset(&stats->idle_time); 734 blkg_stat_reset(&stats->empty_time); 735#endif 736} 737 738/* @to += @from */ 739static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from) 740{ 741 /* queued stats shouldn't be cleared */ 742 blkg_rwstat_add_aux(&to->merged, &from->merged); 743 blkg_rwstat_add_aux(&to->service_time, &from->service_time); 744 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time); 745 blkg_stat_add_aux(&from->time, &from->time); 746#ifdef CONFIG_DEBUG_BLK_CGROUP 747 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time); 748 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum); 749 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples); 750 blkg_stat_add_aux(&to->dequeue, &from->dequeue); 751 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time); 752 blkg_stat_add_aux(&to->idle_time, &from->idle_time); 753 blkg_stat_add_aux(&to->empty_time, &from->empty_time); 754#endif 755} 756 757/* 758 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors' 759 * recursive stats can still account for the amount used by this cfqg after 760 * it's gone. 761 */ 762static void cfqg_stats_xfer_dead(struct cfq_group *cfqg) 763{ 764 struct cfq_group *parent = cfqg_parent(cfqg); 765 766 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock); 767 768 if (unlikely(!parent)) 769 return; 770 771 cfqg_stats_add_aux(&parent->stats, &cfqg->stats); 772 cfqg_stats_reset(&cfqg->stats); 773} 774 775#else /* CONFIG_CFQ_GROUP_IOSCHED */ 776 777static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; } 778static inline bool cfqg_is_descendant(struct cfq_group *cfqg, 779 struct cfq_group *ancestor) 780{ 781 return true; 782} 783static inline void cfqg_get(struct cfq_group *cfqg) { } 784static inline void cfqg_put(struct cfq_group *cfqg) { } 785 786#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \ 787 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \ 788 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \ 789 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\ 790 ##args) 791#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0) 792 793static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg, 794 struct cfq_group *curr_cfqg, unsigned int op) { } 795static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg, 796 uint64_t time, unsigned long unaccounted_time) { } 797static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, 798 unsigned int op) { } 799static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, 800 unsigned int op) { } 801static inline void cfqg_stats_update_completion(struct cfq_group *cfqg, 802 u64 start_time_ns, 803 u64 io_start_time_ns, 804 unsigned int op) { } 805 806#endif /* CONFIG_CFQ_GROUP_IOSCHED */ 807 808#define cfq_log(cfqd, fmt, args...) \ 809 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args) 810 811/* Traverses through cfq group service trees */ 812#define for_each_cfqg_st(cfqg, i, j, st) \ 813 for (i = 0; i <= IDLE_WORKLOAD; i++) \ 814 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\ 815 : &cfqg->service_tree_idle; \ 816 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \ 817 (i == IDLE_WORKLOAD && j == 0); \ 818 j++, st = i < IDLE_WORKLOAD ? \ 819 &cfqg->service_trees[i][j]: NULL) \ 820 821static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd, 822 struct cfq_ttime *ttime, bool group_idle) 823{ 824 u64 slice; 825 if (!sample_valid(ttime->ttime_samples)) 826 return false; 827 if (group_idle) 828 slice = cfqd->cfq_group_idle; 829 else 830 slice = cfqd->cfq_slice_idle; 831 return ttime->ttime_mean > slice; 832} 833 834static inline bool iops_mode(struct cfq_data *cfqd) 835{ 836 /* 837 * If we are not idling on queues and it is a NCQ drive, parallel 838 * execution of requests is on and measuring time is not possible 839 * in most of the cases until and unless we drive shallower queue 840 * depths and that becomes a performance bottleneck. In such cases 841 * switch to start providing fairness in terms of number of IOs. 842 */ 843 if (!cfqd->cfq_slice_idle && cfqd->hw_tag) 844 return true; 845 else 846 return false; 847} 848 849static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq) 850{ 851 if (cfq_class_idle(cfqq)) 852 return IDLE_WORKLOAD; 853 if (cfq_class_rt(cfqq)) 854 return RT_WORKLOAD; 855 return BE_WORKLOAD; 856} 857 858 859static enum wl_type_t cfqq_type(struct cfq_queue *cfqq) 860{ 861 if (!cfq_cfqq_sync(cfqq)) 862 return ASYNC_WORKLOAD; 863 if (!cfq_cfqq_idle_window(cfqq)) 864 return SYNC_NOIDLE_WORKLOAD; 865 return SYNC_WORKLOAD; 866} 867 868static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class, 869 struct cfq_data *cfqd, 870 struct cfq_group *cfqg) 871{ 872 if (wl_class == IDLE_WORKLOAD) 873 return cfqg->service_tree_idle.count; 874 875 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count + 876 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count + 877 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count; 878} 879 880static inline int cfqg_busy_async_queues(struct cfq_data *cfqd, 881 struct cfq_group *cfqg) 882{ 883 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count + 884 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count; 885} 886 887static void cfq_dispatch_insert(struct request_queue *, struct request *); 888static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync, 889 struct cfq_io_cq *cic, struct bio *bio); 890 891static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq) 892{ 893 /* cic->icq is the first member, %NULL will convert to %NULL */ 894 return container_of(icq, struct cfq_io_cq, icq); 895} 896 897static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd, 898 struct io_context *ioc) 899{ 900 if (ioc) 901 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue)); 902 return NULL; 903} 904 905static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync) 906{ 907 return cic->cfqq[is_sync]; 908} 909 910static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq, 911 bool is_sync) 912{ 913 cic->cfqq[is_sync] = cfqq; 914} 915 916static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic) 917{ 918 return cic->icq.q->elevator->elevator_data; 919} 920 921/* 922 * scheduler run of queue, if there are requests pending and no one in the 923 * driver that will restart queueing 924 */ 925static inline void cfq_schedule_dispatch(struct cfq_data *cfqd) 926{ 927 if (cfqd->busy_queues) { 928 cfq_log(cfqd, "schedule dispatch"); 929 kblockd_schedule_work(&cfqd->unplug_work); 930 } 931} 932 933/* 934 * Scale schedule slice based on io priority. Use the sync time slice only 935 * if a queue is marked sync and has sync io queued. A sync queue with async 936 * io only, should not get full sync slice length. 937 */ 938static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync, 939 unsigned short prio) 940{ 941 u64 base_slice = cfqd->cfq_slice[sync]; 942 u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE); 943 944 WARN_ON(prio >= IOPRIO_BE_NR); 945 946 return base_slice + (slice * (4 - prio)); 947} 948 949static inline u64 950cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) 951{ 952 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio); 953} 954 955/** 956 * cfqg_scale_charge - scale disk time charge according to cfqg weight 957 * @charge: disk time being charged 958 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT 959 * 960 * Scale @charge according to @vfraction, which is in range (0, 1]. The 961 * scaling is inversely proportional. 962 * 963 * scaled = charge / vfraction 964 * 965 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT. 966 */ 967static inline u64 cfqg_scale_charge(u64 charge, 968 unsigned int vfraction) 969{ 970 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */ 971 972 /* charge / vfraction */ 973 c <<= CFQ_SERVICE_SHIFT; 974 return div_u64(c, vfraction); 975} 976 977static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime) 978{ 979 s64 delta = (s64)(vdisktime - min_vdisktime); 980 if (delta > 0) 981 min_vdisktime = vdisktime; 982 983 return min_vdisktime; 984} 985 986static void update_min_vdisktime(struct cfq_rb_root *st) 987{ 988 if (!RB_EMPTY_ROOT(&st->rb.rb_root)) { 989 struct cfq_group *cfqg = rb_entry_cfqg(st->rb.rb_leftmost); 990 991 st->min_vdisktime = max_vdisktime(st->min_vdisktime, 992 cfqg->vdisktime); 993 } 994} 995 996/* 997 * get averaged number of queues of RT/BE priority. 998 * average is updated, with a formula that gives more weight to higher numbers, 999 * to quickly follows sudden increases and decrease slowly 1000 */ 1001 1002static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd, 1003 struct cfq_group *cfqg, bool rt) 1004{ 1005 unsigned min_q, max_q; 1006 unsigned mult = cfq_hist_divisor - 1; 1007 unsigned round = cfq_hist_divisor / 2; 1008 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg); 1009 1010 min_q = min(cfqg->busy_queues_avg[rt], busy); 1011 max_q = max(cfqg->busy_queues_avg[rt], busy); 1012 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) / 1013 cfq_hist_divisor; 1014 return cfqg->busy_queues_avg[rt]; 1015} 1016 1017static inline u64 1018cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg) 1019{ 1020 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT; 1021} 1022 1023static inline u64 1024cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) 1025{ 1026 u64 slice = cfq_prio_to_slice(cfqd, cfqq); 1027 if (cfqd->cfq_latency) { 1028 /* 1029 * interested queues (we consider only the ones with the same 1030 * priority class in the cfq group) 1031 */ 1032 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg, 1033 cfq_class_rt(cfqq)); 1034 u64 sync_slice = cfqd->cfq_slice[1]; 1035 u64 expect_latency = sync_slice * iq; 1036 u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg); 1037 1038 if (expect_latency > group_slice) { 1039 u64 base_low_slice = 2 * cfqd->cfq_slice_idle; 1040 u64 low_slice; 1041 1042 /* scale low_slice according to IO priority 1043 * and sync vs async */ 1044 low_slice = div64_u64(base_low_slice*slice, sync_slice); 1045 low_slice = min(slice, low_slice); 1046 /* the adapted slice value is scaled to fit all iqs 1047 * into the target latency */ 1048 slice = div64_u64(slice*group_slice, expect_latency); 1049 slice = max(slice, low_slice); 1050 } 1051 } 1052 return slice; 1053} 1054 1055static inline void 1056cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) 1057{ 1058 u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq); 1059 u64 now = ktime_get_ns(); 1060 1061 cfqq->slice_start = now; 1062 cfqq->slice_end = now + slice; 1063 cfqq->allocated_slice = slice; 1064 cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now); 1065} 1066 1067/* 1068 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end 1069 * isn't valid until the first request from the dispatch is activated 1070 * and the slice time set. 1071 */ 1072static inline bool cfq_slice_used(struct cfq_queue *cfqq) 1073{ 1074 if (cfq_cfqq_slice_new(cfqq)) 1075 return false; 1076 if (ktime_get_ns() < cfqq->slice_end) 1077 return false; 1078 1079 return true; 1080} 1081 1082/* 1083 * Lifted from AS - choose which of rq1 and rq2 that is best served now. 1084 * We choose the request that is closest to the head right now. Distance 1085 * behind the head is penalized and only allowed to a certain extent. 1086 */ 1087static struct request * 1088cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last) 1089{ 1090 sector_t s1, s2, d1 = 0, d2 = 0; 1091 unsigned long back_max; 1092#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */ 1093#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */ 1094 unsigned wrap = 0; /* bit mask: requests behind the disk head? */ 1095 1096 if (rq1 == NULL || rq1 == rq2) 1097 return rq2; 1098 if (rq2 == NULL) 1099 return rq1; 1100 1101 if (rq_is_sync(rq1) != rq_is_sync(rq2)) 1102 return rq_is_sync(rq1) ? rq1 : rq2; 1103 1104 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO) 1105 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2; 1106 1107 s1 = blk_rq_pos(rq1); 1108 s2 = blk_rq_pos(rq2); 1109 1110 /* 1111 * by definition, 1KiB is 2 sectors 1112 */ 1113 back_max = cfqd->cfq_back_max * 2; 1114 1115 /* 1116 * Strict one way elevator _except_ in the case where we allow 1117 * short backward seeks which are biased as twice the cost of a 1118 * similar forward seek. 1119 */ 1120 if (s1 >= last) 1121 d1 = s1 - last; 1122 else if (s1 + back_max >= last) 1123 d1 = (last - s1) * cfqd->cfq_back_penalty; 1124 else 1125 wrap |= CFQ_RQ1_WRAP; 1126 1127 if (s2 >= last) 1128 d2 = s2 - last; 1129 else if (s2 + back_max >= last) 1130 d2 = (last - s2) * cfqd->cfq_back_penalty; 1131 else 1132 wrap |= CFQ_RQ2_WRAP; 1133 1134 /* Found required data */ 1135 1136 /* 1137 * By doing switch() on the bit mask "wrap" we avoid having to 1138 * check two variables for all permutations: --> faster! 1139 */ 1140 switch (wrap) { 1141 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ 1142 if (d1 < d2) 1143 return rq1; 1144 else if (d2 < d1) 1145 return rq2; 1146 else { 1147 if (s1 >= s2) 1148 return rq1; 1149 else 1150 return rq2; 1151 } 1152 1153 case CFQ_RQ2_WRAP: 1154 return rq1; 1155 case CFQ_RQ1_WRAP: 1156 return rq2; 1157 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */ 1158 default: 1159 /* 1160 * Since both rqs are wrapped, 1161 * start with the one that's further behind head 1162 * (--> only *one* back seek required), 1163 * since back seek takes more time than forward. 1164 */ 1165 if (s1 <= s2) 1166 return rq1; 1167 else 1168 return rq2; 1169 } 1170} 1171 1172static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root) 1173{ 1174 /* Service tree is empty */ 1175 if (!root->count) 1176 return NULL; 1177 1178 return rb_entry(rb_first_cached(&root->rb), struct cfq_queue, rb_node); 1179} 1180 1181static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root) 1182{ 1183 return rb_entry_cfqg(rb_first_cached(&root->rb)); 1184} 1185 1186static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root) 1187{ 1188 if (root->rb_rightmost == n) 1189 root->rb_rightmost = rb_prev(n); 1190 1191 rb_erase_cached(n, &root->rb); 1192 RB_CLEAR_NODE(n); 1193 1194 --root->count; 1195} 1196 1197/* 1198 * would be nice to take fifo expire time into account as well 1199 */ 1200static struct request * 1201cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq, 1202 struct request *last) 1203{ 1204 struct rb_node *rbnext = rb_next(&last->rb_node); 1205 struct rb_node *rbprev = rb_prev(&last->rb_node); 1206 struct request *next = NULL, *prev = NULL; 1207 1208 BUG_ON(RB_EMPTY_NODE(&last->rb_node)); 1209 1210 if (rbprev) 1211 prev = rb_entry_rq(rbprev); 1212 1213 if (rbnext) 1214 next = rb_entry_rq(rbnext); 1215 else { 1216 rbnext = rb_first(&cfqq->sort_list); 1217 if (rbnext && rbnext != &last->rb_node) 1218 next = rb_entry_rq(rbnext); 1219 } 1220 1221 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last)); 1222} 1223 1224static u64 cfq_slice_offset(struct cfq_data *cfqd, 1225 struct cfq_queue *cfqq) 1226{ 1227 /* 1228 * just an approximation, should be ok. 1229 */ 1230 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) - 1231 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio)); 1232} 1233 1234static inline s64 1235cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg) 1236{ 1237 return cfqg->vdisktime - st->min_vdisktime; 1238} 1239 1240static void 1241__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg) 1242{ 1243 struct rb_node **node = &st->rb.rb_root.rb_node; 1244 struct rb_node *parent = NULL; 1245 struct cfq_group *__cfqg; 1246 s64 key = cfqg_key(st, cfqg); 1247 bool leftmost = true, rightmost = true; 1248 1249 while (*node != NULL) { 1250 parent = *node; 1251 __cfqg = rb_entry_cfqg(parent); 1252 1253 if (key < cfqg_key(st, __cfqg)) { 1254 node = &parent->rb_left; 1255 rightmost = false; 1256 } else { 1257 node = &parent->rb_right; 1258 leftmost = false; 1259 } 1260 } 1261 1262 if (rightmost) 1263 st->rb_rightmost = &cfqg->rb_node; 1264 1265 rb_link_node(&cfqg->rb_node, parent, node); 1266 rb_insert_color_cached(&cfqg->rb_node, &st->rb, leftmost); 1267} 1268 1269/* 1270 * This has to be called only on activation of cfqg 1271 */ 1272static void 1273cfq_update_group_weight(struct cfq_group *cfqg) 1274{ 1275 if (cfqg->new_weight) { 1276 cfqg->weight = cfqg->new_weight; 1277 cfqg->new_weight = 0; 1278 } 1279} 1280 1281static void 1282cfq_update_group_leaf_weight(struct cfq_group *cfqg) 1283{ 1284 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node)); 1285 1286 if (cfqg->new_leaf_weight) { 1287 cfqg->leaf_weight = cfqg->new_leaf_weight; 1288 cfqg->new_leaf_weight = 0; 1289 } 1290} 1291 1292static void 1293cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg) 1294{ 1295 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */ 1296 struct cfq_group *pos = cfqg; 1297 struct cfq_group *parent; 1298 bool propagate; 1299 1300 /* add to the service tree */ 1301 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node)); 1302 1303 /* 1304 * Update leaf_weight. We cannot update weight at this point 1305 * because cfqg might already have been activated and is 1306 * contributing its current weight to the parent's child_weight. 1307 */ 1308 cfq_update_group_leaf_weight(cfqg); 1309 __cfq_group_service_tree_add(st, cfqg); 1310 1311 /* 1312 * Activate @cfqg and calculate the portion of vfraction @cfqg is 1313 * entitled to. vfraction is calculated by walking the tree 1314 * towards the root calculating the fraction it has at each level. 1315 * The compounded ratio is how much vfraction @cfqg owns. 1316 * 1317 * Start with the proportion tasks in this cfqg has against active 1318 * children cfqgs - its leaf_weight against children_weight. 1319 */ 1320 propagate = !pos->nr_active++; 1321 pos->children_weight += pos->leaf_weight; 1322 vfr = vfr * pos->leaf_weight / pos->children_weight; 1323 1324 /* 1325 * Compound ->weight walking up the tree. Both activation and 1326 * vfraction calculation are done in the same loop. Propagation 1327 * stops once an already activated node is met. vfraction 1328 * calculation should always continue to the root. 1329 */ 1330 while ((parent = cfqg_parent(pos))) { 1331 if (propagate) { 1332 cfq_update_group_weight(pos); 1333 propagate = !parent->nr_active++; 1334 parent->children_weight += pos->weight; 1335 } 1336 vfr = vfr * pos->weight / parent->children_weight; 1337 pos = parent; 1338 } 1339 1340 cfqg->vfraction = max_t(unsigned, vfr, 1); 1341} 1342 1343static inline u64 cfq_get_cfqg_vdisktime_delay(struct cfq_data *cfqd) 1344{ 1345 if (!iops_mode(cfqd)) 1346 return CFQ_SLICE_MODE_GROUP_DELAY; 1347 else 1348 return CFQ_IOPS_MODE_GROUP_DELAY; 1349} 1350 1351static void 1352cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg) 1353{ 1354 struct cfq_rb_root *st = &cfqd->grp_service_tree; 1355 struct cfq_group *__cfqg; 1356 struct rb_node *n; 1357 1358 cfqg->nr_cfqq++; 1359 if (!RB_EMPTY_NODE(&cfqg->rb_node)) 1360 return; 1361 1362 /* 1363 * Currently put the group at the end. Later implement something 1364 * so that groups get lesser vtime based on their weights, so that 1365 * if group does not loose all if it was not continuously backlogged. 1366 */ 1367 n = st->rb_rightmost; 1368 if (n) { 1369 __cfqg = rb_entry_cfqg(n); 1370 cfqg->vdisktime = __cfqg->vdisktime + 1371 cfq_get_cfqg_vdisktime_delay(cfqd); 1372 } else 1373 cfqg->vdisktime = st->min_vdisktime; 1374 cfq_group_service_tree_add(st, cfqg); 1375} 1376 1377static void 1378cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg) 1379{ 1380 struct cfq_group *pos = cfqg; 1381 bool propagate; 1382 1383 /* 1384 * Undo activation from cfq_group_service_tree_add(). Deactivate 1385 * @cfqg and propagate deactivation upwards. 1386 */ 1387 propagate = !--pos->nr_active; 1388 pos->children_weight -= pos->leaf_weight; 1389 1390 while (propagate) { 1391 struct cfq_group *parent = cfqg_parent(pos); 1392 1393 /* @pos has 0 nr_active at this point */ 1394 WARN_ON_ONCE(pos->children_weight); 1395 pos->vfraction = 0; 1396 1397 if (!parent) 1398 break; 1399 1400 propagate = !--parent->nr_active; 1401 parent->children_weight -= pos->weight; 1402 pos = parent; 1403 } 1404 1405 /* remove from the service tree */ 1406 if (!RB_EMPTY_NODE(&cfqg->rb_node)) 1407 cfq_rb_erase(&cfqg->rb_node, st); 1408} 1409 1410static void 1411cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg) 1412{ 1413 struct cfq_rb_root *st = &cfqd->grp_service_tree; 1414 1415 BUG_ON(cfqg->nr_cfqq < 1); 1416 cfqg->nr_cfqq--; 1417 1418 /* If there are other cfq queues under this group, don't delete it */ 1419 if (cfqg->nr_cfqq) 1420 return; 1421 1422 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group"); 1423 cfq_group_service_tree_del(st, cfqg); 1424 cfqg->saved_wl_slice = 0; 1425 cfqg_stats_update_dequeue(cfqg); 1426} 1427 1428static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq, 1429 u64 *unaccounted_time) 1430{ 1431 u64 slice_used; 1432 u64 now = ktime_get_ns(); 1433 1434 /* 1435 * Queue got expired before even a single request completed or 1436 * got expired immediately after first request completion. 1437 */ 1438 if (!cfqq->slice_start || cfqq->slice_start == now) { 1439 /* 1440 * Also charge the seek time incurred to the group, otherwise 1441 * if there are mutiple queues in the group, each can dispatch 1442 * a single request on seeky media and cause lots of seek time 1443 * and group will never know it. 1444 */ 1445 slice_used = max_t(u64, (now - cfqq->dispatch_start), 1446 jiffies_to_nsecs(1)); 1447 } else { 1448 slice_used = now - cfqq->slice_start; 1449 if (slice_used > cfqq->allocated_slice) { 1450 *unaccounted_time = slice_used - cfqq->allocated_slice; 1451 slice_used = cfqq->allocated_slice; 1452 } 1453 if (cfqq->slice_start > cfqq->dispatch_start) 1454 *unaccounted_time += cfqq->slice_start - 1455 cfqq->dispatch_start; 1456 } 1457 1458 return slice_used; 1459} 1460 1461static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg, 1462 struct cfq_queue *cfqq) 1463{ 1464 struct cfq_rb_root *st = &cfqd->grp_service_tree; 1465 u64 used_sl, charge, unaccounted_sl = 0; 1466 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg) 1467 - cfqg->service_tree_idle.count; 1468 unsigned int vfr; 1469 u64 now = ktime_get_ns(); 1470 1471 BUG_ON(nr_sync < 0); 1472 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl); 1473 1474 if (iops_mode(cfqd)) 1475 charge = cfqq->slice_dispatch; 1476 else if (!cfq_cfqq_sync(cfqq) && !nr_sync) 1477 charge = cfqq->allocated_slice; 1478 1479 /* 1480 * Can't update vdisktime while on service tree and cfqg->vfraction 1481 * is valid only while on it. Cache vfr, leave the service tree, 1482 * update vdisktime and go back on. The re-addition to the tree 1483 * will also update the weights as necessary. 1484 */ 1485 vfr = cfqg->vfraction; 1486 cfq_group_service_tree_del(st, cfqg); 1487 cfqg->vdisktime += cfqg_scale_charge(charge, vfr); 1488 cfq_group_service_tree_add(st, cfqg); 1489 1490 /* This group is being expired. Save the context */ 1491 if (cfqd->workload_expires > now) { 1492 cfqg->saved_wl_slice = cfqd->workload_expires - now; 1493 cfqg->saved_wl_type = cfqd->serving_wl_type; 1494 cfqg->saved_wl_class = cfqd->serving_wl_class; 1495 } else 1496 cfqg->saved_wl_slice = 0; 1497 1498 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime, 1499 st->min_vdisktime); 1500 cfq_log_cfqq(cfqq->cfqd, cfqq, 1501 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu", 1502 used_sl, cfqq->slice_dispatch, charge, 1503 iops_mode(cfqd), cfqq->nr_sectors); 1504 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl); 1505 cfqg_stats_set_start_empty_time(cfqg); 1506} 1507 1508/** 1509 * cfq_init_cfqg_base - initialize base part of a cfq_group 1510 * @cfqg: cfq_group to initialize 1511 * 1512 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED 1513 * is enabled or not. 1514 */ 1515static void cfq_init_cfqg_base(struct cfq_group *cfqg) 1516{ 1517 struct cfq_rb_root *st; 1518 int i, j; 1519 1520 for_each_cfqg_st(cfqg, i, j, st) 1521 *st = CFQ_RB_ROOT; 1522 RB_CLEAR_NODE(&cfqg->rb_node); 1523 1524 cfqg->ttime.last_end_request = ktime_get_ns(); 1525} 1526 1527#ifdef CONFIG_CFQ_GROUP_IOSCHED 1528static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val, 1529 bool on_dfl, bool reset_dev, bool is_leaf_weight); 1530 1531static void cfqg_stats_exit(struct cfqg_stats *stats) 1532{ 1533 blkg_rwstat_exit(&stats->merged); 1534 blkg_rwstat_exit(&stats->service_time); 1535 blkg_rwstat_exit(&stats->wait_time); 1536 blkg_rwstat_exit(&stats->queued); 1537 blkg_stat_exit(&stats->time); 1538#ifdef CONFIG_DEBUG_BLK_CGROUP 1539 blkg_stat_exit(&stats->unaccounted_time); 1540 blkg_stat_exit(&stats->avg_queue_size_sum); 1541 blkg_stat_exit(&stats->avg_queue_size_samples); 1542 blkg_stat_exit(&stats->dequeue); 1543 blkg_stat_exit(&stats->group_wait_time); 1544 blkg_stat_exit(&stats->idle_time); 1545 blkg_stat_exit(&stats->empty_time); 1546#endif 1547} 1548 1549static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp) 1550{ 1551 if (blkg_rwstat_init(&stats->merged, gfp) || 1552 blkg_rwstat_init(&stats->service_time, gfp) || 1553 blkg_rwstat_init(&stats->wait_time, gfp) || 1554 blkg_rwstat_init(&stats->queued, gfp) || 1555 blkg_stat_init(&stats->time, gfp)) 1556 goto err; 1557 1558#ifdef CONFIG_DEBUG_BLK_CGROUP 1559 if (blkg_stat_init(&stats->unaccounted_time, gfp) || 1560 blkg_stat_init(&stats->avg_queue_size_sum, gfp) || 1561 blkg_stat_init(&stats->avg_queue_size_samples, gfp) || 1562 blkg_stat_init(&stats->dequeue, gfp) || 1563 blkg_stat_init(&stats->group_wait_time, gfp) || 1564 blkg_stat_init(&stats->idle_time, gfp) || 1565 blkg_stat_init(&stats->empty_time, gfp)) 1566 goto err; 1567#endif 1568 return 0; 1569err: 1570 cfqg_stats_exit(stats); 1571 return -ENOMEM; 1572} 1573 1574static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp) 1575{ 1576 struct cfq_group_data *cgd; 1577 1578 cgd = kzalloc(sizeof(*cgd), gfp); 1579 if (!cgd) 1580 return NULL; 1581 return &cgd->cpd; 1582} 1583 1584static void cfq_cpd_init(struct blkcg_policy_data *cpd) 1585{ 1586 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd); 1587 unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ? 1588 CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL; 1589 1590 if (cpd_to_blkcg(cpd) == &blkcg_root) 1591 weight *= 2; 1592 1593 cgd->weight = weight; 1594 cgd->leaf_weight = weight; 1595} 1596 1597static void cfq_cpd_free(struct blkcg_policy_data *cpd) 1598{ 1599 kfree(cpd_to_cfqgd(cpd)); 1600} 1601 1602static void cfq_cpd_bind(struct blkcg_policy_data *cpd) 1603{ 1604 struct blkcg *blkcg = cpd_to_blkcg(cpd); 1605 bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys); 1606 unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL; 1607 1608 if (blkcg == &blkcg_root) 1609 weight *= 2; 1610 1611 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false)); 1612 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true)); 1613} 1614 1615static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node) 1616{ 1617 struct cfq_group *cfqg; 1618 1619 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node); 1620 if (!cfqg) 1621 return NULL; 1622 1623 cfq_init_cfqg_base(cfqg); 1624 if (cfqg_stats_init(&cfqg->stats, gfp)) { 1625 kfree(cfqg); 1626 return NULL; 1627 } 1628 1629 return &cfqg->pd; 1630} 1631 1632static void cfq_pd_init(struct blkg_policy_data *pd) 1633{ 1634 struct cfq_group *cfqg = pd_to_cfqg(pd); 1635 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg); 1636 1637 cfqg->weight = cgd->weight; 1638 cfqg->leaf_weight = cgd->leaf_weight; 1639} 1640 1641static void cfq_pd_offline(struct blkg_policy_data *pd) 1642{ 1643 struct cfq_group *cfqg = pd_to_cfqg(pd); 1644 int i; 1645 1646 for (i = 0; i < IOPRIO_BE_NR; i++) { 1647 if (cfqg->async_cfqq[0][i]) 1648 cfq_put_queue(cfqg->async_cfqq[0][i]); 1649 if (cfqg->async_cfqq[1][i]) 1650 cfq_put_queue(cfqg->async_cfqq[1][i]); 1651 } 1652 1653 if (cfqg->async_idle_cfqq) 1654 cfq_put_queue(cfqg->async_idle_cfqq); 1655 1656 /* 1657 * @blkg is going offline and will be ignored by 1658 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so 1659 * that they don't get lost. If IOs complete after this point, the 1660 * stats for them will be lost. Oh well... 1661 */ 1662 cfqg_stats_xfer_dead(cfqg); 1663} 1664 1665static void cfq_pd_free(struct blkg_policy_data *pd) 1666{ 1667 struct cfq_group *cfqg = pd_to_cfqg(pd); 1668 1669 cfqg_stats_exit(&cfqg->stats); 1670 return kfree(cfqg); 1671} 1672 1673static void cfq_pd_reset_stats(struct blkg_policy_data *pd) 1674{ 1675 struct cfq_group *cfqg = pd_to_cfqg(pd); 1676 1677 cfqg_stats_reset(&cfqg->stats); 1678} 1679 1680static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd, 1681 struct blkcg *blkcg) 1682{ 1683 struct blkcg_gq *blkg; 1684 1685 blkg = blkg_lookup(blkcg, cfqd->queue); 1686 if (likely(blkg)) 1687 return blkg_to_cfqg(blkg); 1688 return NULL; 1689} 1690 1691static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) 1692{ 1693 cfqq->cfqg = cfqg; 1694 /* cfqq reference on cfqg */ 1695 cfqg_get(cfqg); 1696} 1697 1698static u64 cfqg_prfill_weight_device(struct seq_file *sf, 1699 struct blkg_policy_data *pd, int off) 1700{ 1701 struct cfq_group *cfqg = pd_to_cfqg(pd); 1702 1703 if (!cfqg->dev_weight) 1704 return 0; 1705 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight); 1706} 1707 1708static int cfqg_print_weight_device(struct seq_file *sf, void *v) 1709{ 1710 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1711 cfqg_prfill_weight_device, &blkcg_policy_cfq, 1712 0, false); 1713 return 0; 1714} 1715 1716static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf, 1717 struct blkg_policy_data *pd, int off) 1718{ 1719 struct cfq_group *cfqg = pd_to_cfqg(pd); 1720 1721 if (!cfqg->dev_leaf_weight) 1722 return 0; 1723 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight); 1724} 1725 1726static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v) 1727{ 1728 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1729 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq, 1730 0, false); 1731 return 0; 1732} 1733 1734static int cfq_print_weight(struct seq_file *sf, void *v) 1735{ 1736 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 1737 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg); 1738 unsigned int val = 0; 1739 1740 if (cgd) 1741 val = cgd->weight; 1742 1743 seq_printf(sf, "%u\n", val); 1744 return 0; 1745} 1746 1747static int cfq_print_leaf_weight(struct seq_file *sf, void *v) 1748{ 1749 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 1750 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg); 1751 unsigned int val = 0; 1752 1753 if (cgd) 1754 val = cgd->leaf_weight; 1755 1756 seq_printf(sf, "%u\n", val); 1757 return 0; 1758} 1759 1760static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of, 1761 char *buf, size_t nbytes, loff_t off, 1762 bool on_dfl, bool is_leaf_weight) 1763{ 1764 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN; 1765 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX; 1766 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1767 struct blkg_conf_ctx ctx; 1768 struct cfq_group *cfqg; 1769 struct cfq_group_data *cfqgd; 1770 int ret; 1771 u64 v; 1772 1773 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx); 1774 if (ret) 1775 return ret; 1776 1777 if (sscanf(ctx.body, "%llu", &v) == 1) { 1778 /* require "default" on dfl */ 1779 ret = -ERANGE; 1780 if (!v && on_dfl) 1781 goto out_finish; 1782 } else if (!strcmp(strim(ctx.body), "default")) { 1783 v = 0; 1784 } else { 1785 ret = -EINVAL; 1786 goto out_finish; 1787 } 1788 1789 cfqg = blkg_to_cfqg(ctx.blkg); 1790 cfqgd = blkcg_to_cfqgd(blkcg); 1791 1792 ret = -ERANGE; 1793 if (!v || (v >= min && v <= max)) { 1794 if (!is_leaf_weight) { 1795 cfqg->dev_weight = v; 1796 cfqg->new_weight = v ?: cfqgd->weight; 1797 } else { 1798 cfqg->dev_leaf_weight = v; 1799 cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight; 1800 } 1801 ret = 0; 1802 } 1803out_finish: 1804 blkg_conf_finish(&ctx); 1805 return ret ?: nbytes; 1806} 1807 1808static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of, 1809 char *buf, size_t nbytes, loff_t off) 1810{ 1811 return __cfqg_set_weight_device(of, buf, nbytes, off, false, false); 1812} 1813 1814static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of, 1815 char *buf, size_t nbytes, loff_t off) 1816{ 1817 return __cfqg_set_weight_device(of, buf, nbytes, off, false, true); 1818} 1819 1820static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val, 1821 bool on_dfl, bool reset_dev, bool is_leaf_weight) 1822{ 1823 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN; 1824 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX; 1825 struct blkcg *blkcg = css_to_blkcg(css); 1826 struct blkcg_gq *blkg; 1827 struct cfq_group_data *cfqgd; 1828 int ret = 0; 1829 1830 if (val < min || val > max) 1831 return -ERANGE; 1832 1833 spin_lock_irq(&blkcg->lock); 1834 cfqgd = blkcg_to_cfqgd(blkcg); 1835 if (!cfqgd) { 1836 ret = -EINVAL; 1837 goto out; 1838 } 1839 1840 if (!is_leaf_weight) 1841 cfqgd->weight = val; 1842 else 1843 cfqgd->leaf_weight = val; 1844 1845 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 1846 struct cfq_group *cfqg = blkg_to_cfqg(blkg); 1847 1848 if (!cfqg) 1849 continue; 1850 1851 if (!is_leaf_weight) { 1852 if (reset_dev) 1853 cfqg->dev_weight = 0; 1854 if (!cfqg->dev_weight) 1855 cfqg->new_weight = cfqgd->weight; 1856 } else { 1857 if (reset_dev) 1858 cfqg->dev_leaf_weight = 0; 1859 if (!cfqg->dev_leaf_weight) 1860 cfqg->new_leaf_weight = cfqgd->leaf_weight; 1861 } 1862 } 1863 1864out: 1865 spin_unlock_irq(&blkcg->lock); 1866 return ret; 1867} 1868 1869static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft, 1870 u64 val) 1871{ 1872 return __cfq_set_weight(css, val, false, false, false); 1873} 1874 1875static int cfq_set_leaf_weight(struct cgroup_subsys_state *css, 1876 struct cftype *cft, u64 val) 1877{ 1878 return __cfq_set_weight(css, val, false, false, true); 1879} 1880 1881static int cfqg_print_stat(struct seq_file *sf, void *v) 1882{ 1883 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat, 1884 &blkcg_policy_cfq, seq_cft(sf)->private, false); 1885 return 0; 1886} 1887 1888static int cfqg_print_rwstat(struct seq_file *sf, void *v) 1889{ 1890 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat, 1891 &blkcg_policy_cfq, seq_cft(sf)->private, true); 1892 return 0; 1893} 1894 1895static u64 cfqg_prfill_stat_recursive(struct seq_file *sf, 1896 struct blkg_policy_data *pd, int off) 1897{ 1898 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd), 1899 &blkcg_policy_cfq, off); 1900 return __blkg_prfill_u64(sf, pd, sum); 1901} 1902 1903static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf, 1904 struct blkg_policy_data *pd, int off) 1905{ 1906 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd), 1907 &blkcg_policy_cfq, off); 1908 return __blkg_prfill_rwstat(sf, pd, &sum); 1909} 1910 1911static int cfqg_print_stat_recursive(struct seq_file *sf, void *v) 1912{ 1913 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1914 cfqg_prfill_stat_recursive, &blkcg_policy_cfq, 1915 seq_cft(sf)->private, false); 1916 return 0; 1917} 1918 1919static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v) 1920{ 1921 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1922 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq, 1923 seq_cft(sf)->private, true); 1924 return 0; 1925} 1926 1927static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd, 1928 int off) 1929{ 1930 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes); 1931 1932 return __blkg_prfill_u64(sf, pd, sum >> 9); 1933} 1934 1935static int cfqg_print_stat_sectors(struct seq_file *sf, void *v) 1936{ 1937 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1938 cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false); 1939 return 0; 1940} 1941 1942static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf, 1943 struct blkg_policy_data *pd, int off) 1944{ 1945 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL, 1946 offsetof(struct blkcg_gq, stat_bytes)); 1947 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) + 1948 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]); 1949 1950 return __blkg_prfill_u64(sf, pd, sum >> 9); 1951} 1952 1953static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v) 1954{ 1955 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1956 cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0, 1957 false); 1958 return 0; 1959} 1960 1961#ifdef CONFIG_DEBUG_BLK_CGROUP 1962static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf, 1963 struct blkg_policy_data *pd, int off) 1964{ 1965 struct cfq_group *cfqg = pd_to_cfqg(pd); 1966 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples); 1967 u64 v = 0; 1968 1969 if (samples) { 1970 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum); 1971 v = div64_u64(v, samples); 1972 } 1973 __blkg_prfill_u64(sf, pd, v); 1974 return 0; 1975} 1976 1977/* print avg_queue_size */ 1978static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v) 1979{ 1980 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1981 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq, 1982 0, false); 1983 return 0; 1984} 1985#endif /* CONFIG_DEBUG_BLK_CGROUP */ 1986 1987static struct cftype cfq_blkcg_legacy_files[] = { 1988 /* on root, weight is mapped to leaf_weight */ 1989 { 1990 .name = "weight_device", 1991 .flags = CFTYPE_ONLY_ON_ROOT, 1992 .seq_show = cfqg_print_leaf_weight_device, 1993 .write = cfqg_set_leaf_weight_device, 1994 }, 1995 { 1996 .name = "weight", 1997 .flags = CFTYPE_ONLY_ON_ROOT, 1998 .seq_show = cfq_print_leaf_weight, 1999 .write_u64 = cfq_set_leaf_weight, 2000 }, 2001 2002 /* no such mapping necessary for !roots */ 2003 { 2004 .name = "weight_device", 2005 .flags = CFTYPE_NOT_ON_ROOT, 2006 .seq_show = cfqg_print_weight_device, 2007 .write = cfqg_set_weight_device, 2008 }, 2009 { 2010 .name = "weight", 2011 .flags = CFTYPE_NOT_ON_ROOT, 2012 .seq_show = cfq_print_weight, 2013 .write_u64 = cfq_set_weight, 2014 }, 2015 2016 { 2017 .name = "leaf_weight_device", 2018 .seq_show = cfqg_print_leaf_weight_device, 2019 .write = cfqg_set_leaf_weight_device, 2020 }, 2021 { 2022 .name = "leaf_weight", 2023 .seq_show = cfq_print_leaf_weight, 2024 .write_u64 = cfq_set_leaf_weight, 2025 }, 2026 2027 /* statistics, covers only the tasks in the cfqg */ 2028 { 2029 .name = "time", 2030 .private = offsetof(struct cfq_group, stats.time), 2031 .seq_show = cfqg_print_stat, 2032 }, 2033 { 2034 .name = "sectors", 2035 .seq_show = cfqg_print_stat_sectors, 2036 }, 2037 { 2038 .name = "io_service_bytes", 2039 .private = (unsigned long)&blkcg_policy_cfq, 2040 .seq_show = blkg_print_stat_bytes, 2041 }, 2042 { 2043 .name = "io_serviced", 2044 .private = (unsigned long)&blkcg_policy_cfq, 2045 .seq_show = blkg_print_stat_ios, 2046 }, 2047 { 2048 .name = "io_service_time", 2049 .private = offsetof(struct cfq_group, stats.service_time), 2050 .seq_show = cfqg_print_rwstat, 2051 }, 2052 { 2053 .name = "io_wait_time", 2054 .private = offsetof(struct cfq_group, stats.wait_time), 2055 .seq_show = cfqg_print_rwstat, 2056 }, 2057 { 2058 .name = "io_merged", 2059 .private = offsetof(struct cfq_group, stats.merged), 2060 .seq_show = cfqg_print_rwstat, 2061 }, 2062 { 2063 .name = "io_queued", 2064 .private = offsetof(struct cfq_group, stats.queued), 2065 .seq_show = cfqg_print_rwstat, 2066 }, 2067 2068 /* the same statictics which cover the cfqg and its descendants */ 2069 { 2070 .name = "time_recursive", 2071 .private = offsetof(struct cfq_group, stats.time), 2072 .seq_show = cfqg_print_stat_recursive, 2073 }, 2074 { 2075 .name = "sectors_recursive", 2076 .seq_show = cfqg_print_stat_sectors_recursive, 2077 }, 2078 { 2079 .name = "io_service_bytes_recursive", 2080 .private = (unsigned long)&blkcg_policy_cfq, 2081 .seq_show = blkg_print_stat_bytes_recursive, 2082 }, 2083 { 2084 .name = "io_serviced_recursive", 2085 .private = (unsigned long)&blkcg_policy_cfq, 2086 .seq_show = blkg_print_stat_ios_recursive, 2087 }, 2088 { 2089 .name = "io_service_time_recursive", 2090 .private = offsetof(struct cfq_group, stats.service_time), 2091 .seq_show = cfqg_print_rwstat_recursive, 2092 }, 2093 { 2094 .name = "io_wait_time_recursive", 2095 .private = offsetof(struct cfq_group, stats.wait_time), 2096 .seq_show = cfqg_print_rwstat_recursive, 2097 }, 2098 { 2099 .name = "io_merged_recursive", 2100 .private = offsetof(struct cfq_group, stats.merged), 2101 .seq_show = cfqg_print_rwstat_recursive, 2102 }, 2103 { 2104 .name = "io_queued_recursive", 2105 .private = offsetof(struct cfq_group, stats.queued), 2106 .seq_show = cfqg_print_rwstat_recursive, 2107 }, 2108#ifdef CONFIG_DEBUG_BLK_CGROUP 2109 { 2110 .name = "avg_queue_size", 2111 .seq_show = cfqg_print_avg_queue_size, 2112 }, 2113 { 2114 .name = "group_wait_time", 2115 .private = offsetof(struct cfq_group, stats.group_wait_time), 2116 .seq_show = cfqg_print_stat, 2117 }, 2118 { 2119 .name = "idle_time", 2120 .private = offsetof(struct cfq_group, stats.idle_time), 2121 .seq_show = cfqg_print_stat, 2122 }, 2123 { 2124 .name = "empty_time", 2125 .private = offsetof(struct cfq_group, stats.empty_time), 2126 .seq_show = cfqg_print_stat, 2127 }, 2128 { 2129 .name = "dequeue", 2130 .private = offsetof(struct cfq_group, stats.dequeue), 2131 .seq_show = cfqg_print_stat, 2132 }, 2133 { 2134 .name = "unaccounted_time", 2135 .private = offsetof(struct cfq_group, stats.unaccounted_time), 2136 .seq_show = cfqg_print_stat, 2137 }, 2138#endif /* CONFIG_DEBUG_BLK_CGROUP */ 2139 { } /* terminate */ 2140}; 2141 2142static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v) 2143{ 2144 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 2145 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg); 2146 2147 seq_printf(sf, "default %u\n", cgd->weight); 2148 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device, 2149 &blkcg_policy_cfq, 0, false); 2150 return 0; 2151} 2152 2153static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of, 2154 char *buf, size_t nbytes, loff_t off) 2155{ 2156 char *endp; 2157 int ret; 2158 u64 v; 2159 2160 buf = strim(buf); 2161 2162 /* "WEIGHT" or "default WEIGHT" sets the default weight */ 2163 v = simple_strtoull(buf, &endp, 0); 2164 if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) { 2165 ret = __cfq_set_weight(of_css(of), v, true, false, false); 2166 return ret ?: nbytes; 2167 } 2168 2169 /* "MAJ:MIN WEIGHT" */ 2170 return __cfqg_set_weight_device(of, buf, nbytes, off, true, false); 2171} 2172 2173static struct cftype cfq_blkcg_files[] = { 2174 { 2175 .name = "weight", 2176 .flags = CFTYPE_NOT_ON_ROOT, 2177 .seq_show = cfq_print_weight_on_dfl, 2178 .write = cfq_set_weight_on_dfl, 2179 }, 2180 { } /* terminate */ 2181}; 2182 2183#else /* GROUP_IOSCHED */ 2184static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd, 2185 struct blkcg *blkcg) 2186{ 2187 return cfqd->root_group; 2188} 2189 2190static inline void 2191cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) { 2192 cfqq->cfqg = cfqg; 2193} 2194 2195#endif /* GROUP_IOSCHED */ 2196 2197/* 2198 * The cfqd->service_trees holds all pending cfq_queue's that have 2199 * requests waiting to be processed. It is sorted in the order that 2200 * we will service the queues. 2201 */ 2202static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq, 2203 bool add_front) 2204{ 2205 struct rb_node **p, *parent; 2206 struct cfq_queue *__cfqq; 2207 u64 rb_key; 2208 struct cfq_rb_root *st; 2209 bool leftmost = true; 2210 int new_cfqq = 1; 2211 u64 now = ktime_get_ns(); 2212 2213 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq)); 2214 if (cfq_class_idle(cfqq)) { 2215 rb_key = CFQ_IDLE_DELAY; 2216 parent = st->rb_rightmost; 2217 if (parent && parent != &cfqq->rb_node) { 2218 __cfqq = rb_entry(parent, struct cfq_queue, rb_node); 2219 rb_key += __cfqq->rb_key; 2220 } else 2221 rb_key += now; 2222 } else if (!add_front) { 2223 /* 2224 * Get our rb key offset. Subtract any residual slice 2225 * value carried from last service. A negative resid 2226 * count indicates slice overrun, and this should position 2227 * the next service time further away in the tree. 2228 */ 2229 rb_key = cfq_slice_offset(cfqd, cfqq) + now; 2230 rb_key -= cfqq->slice_resid; 2231 cfqq->slice_resid = 0; 2232 } else { 2233 rb_key = -NSEC_PER_SEC; 2234 __cfqq = cfq_rb_first(st); 2235 rb_key += __cfqq ? __cfqq->rb_key : now; 2236 } 2237 2238 if (!RB_EMPTY_NODE(&cfqq->rb_node)) { 2239 new_cfqq = 0; 2240 /* 2241 * same position, nothing more to do 2242 */ 2243 if (rb_key == cfqq->rb_key && cfqq->service_tree == st) 2244 return; 2245 2246 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree); 2247 cfqq->service_tree = NULL; 2248 } 2249 2250 parent = NULL; 2251 cfqq->service_tree = st; 2252 p = &st->rb.rb_root.rb_node; 2253 while (*p) { 2254 parent = *p; 2255 __cfqq = rb_entry(parent, struct cfq_queue, rb_node); 2256 2257 /* 2258 * sort by key, that represents service time. 2259 */ 2260 if (rb_key < __cfqq->rb_key) 2261 p = &parent->rb_left; 2262 else { 2263 p = &parent->rb_right; 2264 leftmost = false; 2265 } 2266 } 2267 2268 cfqq->rb_key = rb_key; 2269 rb_link_node(&cfqq->rb_node, parent, p); 2270 rb_insert_color_cached(&cfqq->rb_node, &st->rb, leftmost); 2271 st->count++; 2272 if (add_front || !new_cfqq) 2273 return; 2274 cfq_group_notify_queue_add(cfqd, cfqq->cfqg); 2275} 2276 2277static struct cfq_queue * 2278cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root, 2279 sector_t sector, struct rb_node **ret_parent, 2280 struct rb_node ***rb_link) 2281{ 2282 struct rb_node **p, *parent; 2283 struct cfq_queue *cfqq = NULL; 2284 2285 parent = NULL; 2286 p = &root->rb_node; 2287 while (*p) { 2288 struct rb_node **n; 2289 2290 parent = *p; 2291 cfqq = rb_entry(parent, struct cfq_queue, p_node); 2292 2293 /* 2294 * Sort strictly based on sector. Smallest to the left, 2295 * largest to the right. 2296 */ 2297 if (sector > blk_rq_pos(cfqq->next_rq)) 2298 n = &(*p)->rb_right; 2299 else if (sector < blk_rq_pos(cfqq->next_rq)) 2300 n = &(*p)->rb_left; 2301 else 2302 break; 2303 p = n; 2304 cfqq = NULL; 2305 } 2306 2307 *ret_parent = parent; 2308 if (rb_link) 2309 *rb_link = p; 2310 return cfqq; 2311} 2312 2313static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2314{ 2315 struct rb_node **p, *parent; 2316 struct cfq_queue *__cfqq; 2317 2318 if (cfqq->p_root) { 2319 rb_erase(&cfqq->p_node, cfqq->p_root); 2320 cfqq->p_root = NULL; 2321 } 2322 2323 if (cfq_class_idle(cfqq)) 2324 return; 2325 if (!cfqq->next_rq) 2326 return; 2327 2328 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio]; 2329 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root, 2330 blk_rq_pos(cfqq->next_rq), &parent, &p); 2331 if (!__cfqq) { 2332 rb_link_node(&cfqq->p_node, parent, p); 2333 rb_insert_color(&cfqq->p_node, cfqq->p_root); 2334 } else 2335 cfqq->p_root = NULL; 2336} 2337 2338/* 2339 * Update cfqq's position in the service tree. 2340 */ 2341static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2342{ 2343 /* 2344 * Resorting requires the cfqq to be on the RR list already. 2345 */ 2346 if (cfq_cfqq_on_rr(cfqq)) { 2347 cfq_service_tree_add(cfqd, cfqq, 0); 2348 cfq_prio_tree_add(cfqd, cfqq); 2349 } 2350} 2351 2352/* 2353 * add to busy list of queues for service, trying to be fair in ordering 2354 * the pending list according to last request service 2355 */ 2356static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2357{ 2358 cfq_log_cfqq(cfqd, cfqq, "add_to_rr"); 2359 BUG_ON(cfq_cfqq_on_rr(cfqq)); 2360 cfq_mark_cfqq_on_rr(cfqq); 2361 cfqd->busy_queues++; 2362 if (cfq_cfqq_sync(cfqq)) 2363 cfqd->busy_sync_queues++; 2364 2365 cfq_resort_rr_list(cfqd, cfqq); 2366} 2367 2368/* 2369 * Called when the cfqq no longer has requests pending, remove it from 2370 * the service tree. 2371 */ 2372static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2373{ 2374 cfq_log_cfqq(cfqd, cfqq, "del_from_rr"); 2375 BUG_ON(!cfq_cfqq_on_rr(cfqq)); 2376 cfq_clear_cfqq_on_rr(cfqq); 2377 2378 if (!RB_EMPTY_NODE(&cfqq->rb_node)) { 2379 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree); 2380 cfqq->service_tree = NULL; 2381 } 2382 if (cfqq->p_root) { 2383 rb_erase(&cfqq->p_node, cfqq->p_root); 2384 cfqq->p_root = NULL; 2385 } 2386 2387 cfq_group_notify_queue_del(cfqd, cfqq->cfqg); 2388 BUG_ON(!cfqd->busy_queues); 2389 cfqd->busy_queues--; 2390 if (cfq_cfqq_sync(cfqq)) 2391 cfqd->busy_sync_queues--; 2392} 2393 2394/* 2395 * rb tree support functions 2396 */ 2397static void cfq_del_rq_rb(struct request *rq) 2398{ 2399 struct cfq_queue *cfqq = RQ_CFQQ(rq); 2400 const int sync = rq_is_sync(rq); 2401 2402 BUG_ON(!cfqq->queued[sync]); 2403 cfqq->queued[sync]--; 2404 2405 elv_rb_del(&cfqq->sort_list, rq); 2406 2407 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) { 2408 /* 2409 * Queue will be deleted from service tree when we actually 2410 * expire it later. Right now just remove it from prio tree 2411 * as it is empty. 2412 */ 2413 if (cfqq->p_root) { 2414 rb_erase(&cfqq->p_node, cfqq->p_root); 2415 cfqq->p_root = NULL; 2416 } 2417 } 2418} 2419 2420static void cfq_add_rq_rb(struct request *rq) 2421{ 2422 struct cfq_queue *cfqq = RQ_CFQQ(rq); 2423 struct cfq_data *cfqd = cfqq->cfqd; 2424 struct request *prev; 2425 2426 cfqq->queued[rq_is_sync(rq)]++; 2427 2428 elv_rb_add(&cfqq->sort_list, rq); 2429 2430 if (!cfq_cfqq_on_rr(cfqq)) 2431 cfq_add_cfqq_rr(cfqd, cfqq); 2432 2433 /* 2434 * check if this request is a better next-serve candidate 2435 */ 2436 prev = cfqq->next_rq; 2437 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position); 2438 2439 /* 2440 * adjust priority tree position, if ->next_rq changes 2441 */ 2442 if (prev != cfqq->next_rq) 2443 cfq_prio_tree_add(cfqd, cfqq); 2444 2445 BUG_ON(!cfqq->next_rq); 2446} 2447 2448static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq) 2449{ 2450 elv_rb_del(&cfqq->sort_list, rq); 2451 cfqq->queued[rq_is_sync(rq)]--; 2452 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags); 2453 cfq_add_rq_rb(rq); 2454 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group, 2455 rq->cmd_flags); 2456} 2457 2458static struct request * 2459cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio) 2460{ 2461 struct task_struct *tsk = current; 2462 struct cfq_io_cq *cic; 2463 struct cfq_queue *cfqq; 2464 2465 cic = cfq_cic_lookup(cfqd, tsk->io_context); 2466 if (!cic) 2467 return NULL; 2468 2469 cfqq = cic_to_cfqq(cic, op_is_sync(bio->bi_opf)); 2470 if (cfqq) 2471 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio)); 2472 2473 return NULL; 2474} 2475 2476static void cfq_activate_request(struct request_queue *q, struct request *rq) 2477{ 2478 struct cfq_data *cfqd = q->elevator->elevator_data; 2479 2480 cfqd->rq_in_driver++; 2481 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d", 2482 cfqd->rq_in_driver); 2483 2484 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); 2485} 2486 2487static void cfq_deactivate_request(struct request_queue *q, struct request *rq) 2488{ 2489 struct cfq_data *cfqd = q->elevator->elevator_data; 2490 2491 WARN_ON(!cfqd->rq_in_driver); 2492 cfqd->rq_in_driver--; 2493 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d", 2494 cfqd->rq_in_driver); 2495} 2496 2497static void cfq_remove_request(struct request *rq) 2498{ 2499 struct cfq_queue *cfqq = RQ_CFQQ(rq); 2500 2501 if (cfqq->next_rq == rq) 2502 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq); 2503 2504 list_del_init(&rq->queuelist); 2505 cfq_del_rq_rb(rq); 2506 2507 cfqq->cfqd->rq_queued--; 2508 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags); 2509 if (rq->cmd_flags & REQ_PRIO) { 2510 WARN_ON(!cfqq->prio_pending); 2511 cfqq->prio_pending--; 2512 } 2513} 2514 2515static enum elv_merge cfq_merge(struct request_queue *q, struct request **req, 2516 struct bio *bio) 2517{ 2518 struct cfq_data *cfqd = q->elevator->elevator_data; 2519 struct request *__rq; 2520 2521 __rq = cfq_find_rq_fmerge(cfqd, bio); 2522 if (__rq && elv_bio_merge_ok(__rq, bio)) { 2523 *req = __rq; 2524 return ELEVATOR_FRONT_MERGE; 2525 } 2526 2527 return ELEVATOR_NO_MERGE; 2528} 2529 2530static void cfq_merged_request(struct request_queue *q, struct request *req, 2531 enum elv_merge type) 2532{ 2533 if (type == ELEVATOR_FRONT_MERGE) { 2534 struct cfq_queue *cfqq = RQ_CFQQ(req); 2535 2536 cfq_reposition_rq_rb(cfqq, req); 2537 } 2538} 2539 2540static void cfq_bio_merged(struct request_queue *q, struct request *req, 2541 struct bio *bio) 2542{ 2543 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_opf); 2544} 2545 2546static void 2547cfq_merged_requests(struct request_queue *q, struct request *rq, 2548 struct request *next) 2549{ 2550 struct cfq_queue *cfqq = RQ_CFQQ(rq); 2551 struct cfq_data *cfqd = q->elevator->elevator_data; 2552 2553 /* 2554 * reposition in fifo if next is older than rq 2555 */ 2556 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && 2557 next->fifo_time < rq->fifo_time && 2558 cfqq == RQ_CFQQ(next)) { 2559 list_move(&rq->queuelist, &next->queuelist); 2560 rq->fifo_time = next->fifo_time; 2561 } 2562 2563 if (cfqq->next_rq == next) 2564 cfqq->next_rq = rq; 2565 cfq_remove_request(next); 2566 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags); 2567 2568 cfqq = RQ_CFQQ(next); 2569 /* 2570 * all requests of this queue are merged to other queues, delete it 2571 * from the service tree. If it's the active_queue, 2572 * cfq_dispatch_requests() will choose to expire it or do idle 2573 */ 2574 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) && 2575 cfqq != cfqd->active_queue) 2576 cfq_del_cfqq_rr(cfqd, cfqq); 2577} 2578 2579static int cfq_allow_bio_merge(struct request_queue *q, struct request *rq, 2580 struct bio *bio) 2581{ 2582 struct cfq_data *cfqd = q->elevator->elevator_data; 2583 bool is_sync = op_is_sync(bio->bi_opf); 2584 struct cfq_io_cq *cic; 2585 struct cfq_queue *cfqq; 2586 2587 /* 2588 * Disallow merge of a sync bio into an async request. 2589 */ 2590 if (is_sync && !rq_is_sync(rq)) 2591 return false; 2592 2593 /* 2594 * Lookup the cfqq that this bio will be queued with and allow 2595 * merge only if rq is queued there. 2596 */ 2597 cic = cfq_cic_lookup(cfqd, current->io_context); 2598 if (!cic) 2599 return false; 2600 2601 cfqq = cic_to_cfqq(cic, is_sync); 2602 return cfqq == RQ_CFQQ(rq); 2603} 2604 2605static int cfq_allow_rq_merge(struct request_queue *q, struct request *rq, 2606 struct request *next) 2607{ 2608 return RQ_CFQQ(rq) == RQ_CFQQ(next); 2609} 2610 2611static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2612{ 2613 hrtimer_try_to_cancel(&cfqd->idle_slice_timer); 2614 cfqg_stats_update_idle_time(cfqq->cfqg); 2615} 2616 2617static void __cfq_set_active_queue(struct cfq_data *cfqd, 2618 struct cfq_queue *cfqq) 2619{ 2620 if (cfqq) { 2621 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d", 2622 cfqd->serving_wl_class, cfqd->serving_wl_type); 2623 cfqg_stats_update_avg_queue_size(cfqq->cfqg); 2624 cfqq->slice_start = 0; 2625 cfqq->dispatch_start = ktime_get_ns(); 2626 cfqq->allocated_slice = 0; 2627 cfqq->slice_end = 0; 2628 cfqq->slice_dispatch = 0; 2629 cfqq->nr_sectors = 0; 2630 2631 cfq_clear_cfqq_wait_request(cfqq); 2632 cfq_clear_cfqq_must_dispatch(cfqq); 2633 cfq_clear_cfqq_must_alloc_slice(cfqq); 2634 cfq_clear_cfqq_fifo_expire(cfqq); 2635 cfq_mark_cfqq_slice_new(cfqq); 2636 2637 cfq_del_timer(cfqd, cfqq); 2638 } 2639 2640 cfqd->active_queue = cfqq; 2641} 2642 2643/* 2644 * current cfqq expired its slice (or was too idle), select new one 2645 */ 2646static void 2647__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq, 2648 bool timed_out) 2649{ 2650 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out); 2651 2652 if (cfq_cfqq_wait_request(cfqq)) 2653 cfq_del_timer(cfqd, cfqq); 2654 2655 cfq_clear_cfqq_wait_request(cfqq); 2656 cfq_clear_cfqq_wait_busy(cfqq); 2657 2658 /* 2659 * If this cfqq is shared between multiple processes, check to 2660 * make sure that those processes are still issuing I/Os within 2661 * the mean seek distance. If not, it may be time to break the 2662 * queues apart again. 2663 */ 2664 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq)) 2665 cfq_mark_cfqq_split_coop(cfqq); 2666 2667 /* 2668 * store what was left of this slice, if the queue idled/timed out 2669 */ 2670 if (timed_out) { 2671 if (cfq_cfqq_slice_new(cfqq)) 2672 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq); 2673 else 2674 cfqq->slice_resid = cfqq->slice_end - ktime_get_ns(); 2675 cfq_log_cfqq(cfqd, cfqq, "resid=%lld", cfqq->slice_resid); 2676 } 2677 2678 cfq_group_served(cfqd, cfqq->cfqg, cfqq); 2679 2680 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) 2681 cfq_del_cfqq_rr(cfqd, cfqq); 2682 2683 cfq_resort_rr_list(cfqd, cfqq); 2684 2685 if (cfqq == cfqd->active_queue) 2686 cfqd->active_queue = NULL; 2687 2688 if (cfqd->active_cic) { 2689 put_io_context(cfqd->active_cic->icq.ioc); 2690 cfqd->active_cic = NULL; 2691 } 2692} 2693 2694static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out) 2695{ 2696 struct cfq_queue *cfqq = cfqd->active_queue; 2697 2698 if (cfqq) 2699 __cfq_slice_expired(cfqd, cfqq, timed_out); 2700} 2701 2702/* 2703 * Get next queue for service. Unless we have a queue preemption, 2704 * we'll simply select the first cfqq in the service tree. 2705 */ 2706static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd) 2707{ 2708 struct cfq_rb_root *st = st_for(cfqd->serving_group, 2709 cfqd->serving_wl_class, cfqd->serving_wl_type); 2710 2711 if (!cfqd->rq_queued) 2712 return NULL; 2713 2714 /* There is nothing to dispatch */ 2715 if (!st) 2716 return NULL; 2717 if (RB_EMPTY_ROOT(&st->rb.rb_root)) 2718 return NULL; 2719 return cfq_rb_first(st); 2720} 2721 2722static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd) 2723{ 2724 struct cfq_group *cfqg; 2725 struct cfq_queue *cfqq; 2726 int i, j; 2727 struct cfq_rb_root *st; 2728 2729 if (!cfqd->rq_queued) 2730 return NULL; 2731 2732 cfqg = cfq_get_next_cfqg(cfqd); 2733 if (!cfqg) 2734 return NULL; 2735 2736 for_each_cfqg_st(cfqg, i, j, st) { 2737 cfqq = cfq_rb_first(st); 2738 if (cfqq) 2739 return cfqq; 2740 } 2741 return NULL; 2742} 2743 2744/* 2745 * Get and set a new active queue for service. 2746 */ 2747static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd, 2748 struct cfq_queue *cfqq) 2749{ 2750 if (!cfqq) 2751 cfqq = cfq_get_next_queue(cfqd); 2752 2753 __cfq_set_active_queue(cfqd, cfqq); 2754 return cfqq; 2755} 2756 2757static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd, 2758 struct request *rq) 2759{ 2760 if (blk_rq_pos(rq) >= cfqd->last_position) 2761 return blk_rq_pos(rq) - cfqd->last_position; 2762 else 2763 return cfqd->last_position - blk_rq_pos(rq); 2764} 2765 2766static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq, 2767 struct request *rq) 2768{ 2769 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR; 2770} 2771 2772static struct cfq_queue *cfqq_close(struct cfq_data *cfqd, 2773 struct cfq_queue *cur_cfqq) 2774{ 2775 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio]; 2776 struct rb_node *parent, *node; 2777 struct cfq_queue *__cfqq; 2778 sector_t sector = cfqd->last_position; 2779 2780 if (RB_EMPTY_ROOT(root)) 2781 return NULL; 2782 2783 /* 2784 * First, if we find a request starting at the end of the last 2785 * request, choose it. 2786 */ 2787 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL); 2788 if (__cfqq) 2789 return __cfqq; 2790 2791 /* 2792 * If the exact sector wasn't found, the parent of the NULL leaf 2793 * will contain the closest sector. 2794 */ 2795 __cfqq = rb_entry(parent, struct cfq_queue, p_node); 2796 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq)) 2797 return __cfqq; 2798 2799 if (blk_rq_pos(__cfqq->next_rq) < sector) 2800 node = rb_next(&__cfqq->p_node); 2801 else 2802 node = rb_prev(&__cfqq->p_node); 2803 if (!node) 2804 return NULL; 2805 2806 __cfqq = rb_entry(node, struct cfq_queue, p_node); 2807 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq)) 2808 return __cfqq; 2809 2810 return NULL; 2811} 2812 2813/* 2814 * cfqd - obvious 2815 * cur_cfqq - passed in so that we don't decide that the current queue is 2816 * closely cooperating with itself. 2817 * 2818 * So, basically we're assuming that that cur_cfqq has dispatched at least 2819 * one request, and that cfqd->last_position reflects a position on the disk 2820 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid 2821 * assumption. 2822 */ 2823static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd, 2824 struct cfq_queue *cur_cfqq) 2825{ 2826 struct cfq_queue *cfqq; 2827 2828 if (cfq_class_idle(cur_cfqq)) 2829 return NULL; 2830 if (!cfq_cfqq_sync(cur_cfqq)) 2831 return NULL; 2832 if (CFQQ_SEEKY(cur_cfqq)) 2833 return NULL; 2834 2835 /* 2836 * Don't search priority tree if it's the only queue in the group. 2837 */ 2838 if (cur_cfqq->cfqg->nr_cfqq == 1) 2839 return NULL; 2840 2841 /* 2842 * We should notice if some of the queues are cooperating, eg 2843 * working closely on the same area of the disk. In that case, 2844 * we can group them together and don't waste time idling. 2845 */ 2846 cfqq = cfqq_close(cfqd, cur_cfqq); 2847 if (!cfqq) 2848 return NULL; 2849 2850 /* If new queue belongs to different cfq_group, don't choose it */ 2851 if (cur_cfqq->cfqg != cfqq->cfqg) 2852 return NULL; 2853 2854 /* 2855 * It only makes sense to merge sync queues. 2856 */ 2857 if (!cfq_cfqq_sync(cfqq)) 2858 return NULL; 2859 if (CFQQ_SEEKY(cfqq)) 2860 return NULL; 2861 2862 /* 2863 * Do not merge queues of different priority classes 2864 */ 2865 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq)) 2866 return NULL; 2867 2868 return cfqq; 2869} 2870 2871/* 2872 * Determine whether we should enforce idle window for this queue. 2873 */ 2874 2875static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2876{ 2877 enum wl_class_t wl_class = cfqq_class(cfqq); 2878 struct cfq_rb_root *st = cfqq->service_tree; 2879 2880 BUG_ON(!st); 2881 BUG_ON(!st->count); 2882 2883 if (!cfqd->cfq_slice_idle) 2884 return false; 2885 2886 /* We never do for idle class queues. */ 2887 if (wl_class == IDLE_WORKLOAD) 2888 return false; 2889 2890 /* We do for queues that were marked with idle window flag. */ 2891 if (cfq_cfqq_idle_window(cfqq) && 2892 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)) 2893 return true; 2894 2895 /* 2896 * Otherwise, we do only if they are the last ones 2897 * in their service tree. 2898 */ 2899 if (st->count == 1 && cfq_cfqq_sync(cfqq) && 2900 !cfq_io_thinktime_big(cfqd, &st->ttime, false)) 2901 return true; 2902 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count); 2903 return false; 2904} 2905 2906static void cfq_arm_slice_timer(struct cfq_data *cfqd) 2907{ 2908 struct cfq_queue *cfqq = cfqd->active_queue; 2909 struct cfq_rb_root *st = cfqq->service_tree; 2910 struct cfq_io_cq *cic; 2911 u64 sl, group_idle = 0; 2912 u64 now = ktime_get_ns(); 2913 2914 /* 2915 * SSD device without seek penalty, disable idling. But only do so 2916 * for devices that support queuing, otherwise we still have a problem 2917 * with sync vs async workloads. 2918 */ 2919 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag && 2920 !cfqd->cfq_group_idle) 2921 return; 2922 2923 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list)); 2924 WARN_ON(cfq_cfqq_slice_new(cfqq)); 2925 2926 /* 2927 * idle is disabled, either manually or by past process history 2928 */ 2929 if (!cfq_should_idle(cfqd, cfqq)) { 2930 /* no queue idling. Check for group idling */ 2931 if (cfqd->cfq_group_idle) 2932 group_idle = cfqd->cfq_group_idle; 2933 else 2934 return; 2935 } 2936 2937 /* 2938 * still active requests from this queue, don't idle 2939 */ 2940 if (cfqq->dispatched) 2941 return; 2942 2943 /* 2944 * task has exited, don't wait 2945 */ 2946 cic = cfqd->active_cic; 2947 if (!cic || !atomic_read(&cic->icq.ioc->active_ref)) 2948 return; 2949 2950 /* 2951 * If our average think time is larger than the remaining time 2952 * slice, then don't idle. This avoids overrunning the allotted 2953 * time slice. 2954 */ 2955 if (sample_valid(cic->ttime.ttime_samples) && 2956 (cfqq->slice_end - now < cic->ttime.ttime_mean)) { 2957 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu", 2958 cic->ttime.ttime_mean); 2959 return; 2960 } 2961 2962 /* 2963 * There are other queues in the group or this is the only group and 2964 * it has too big thinktime, don't do group idle. 2965 */ 2966 if (group_idle && 2967 (cfqq->cfqg->nr_cfqq > 1 || 2968 cfq_io_thinktime_big(cfqd, &st->ttime, true))) 2969 return; 2970 2971 cfq_mark_cfqq_wait_request(cfqq); 2972 2973 if (group_idle) 2974 sl = cfqd->cfq_group_idle; 2975 else 2976 sl = cfqd->cfq_slice_idle; 2977 2978 hrtimer_start(&cfqd->idle_slice_timer, ns_to_ktime(sl), 2979 HRTIMER_MODE_REL); 2980 cfqg_stats_set_start_idle_time(cfqq->cfqg); 2981 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl, 2982 group_idle ? 1 : 0); 2983} 2984 2985/* 2986 * Move request from internal lists to the request queue dispatch list. 2987 */ 2988static void cfq_dispatch_insert(struct request_queue *q, struct request *rq) 2989{ 2990 struct cfq_data *cfqd = q->elevator->elevator_data; 2991 struct cfq_queue *cfqq = RQ_CFQQ(rq); 2992 2993 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert"); 2994 2995 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq); 2996 cfq_remove_request(rq); 2997 cfqq->dispatched++; 2998 (RQ_CFQG(rq))->dispatched++; 2999 elv_dispatch_sort(q, rq); 3000 3001 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++; 3002 cfqq->nr_sectors += blk_rq_sectors(rq); 3003} 3004 3005/* 3006 * return expired entry, or NULL to just start from scratch in rbtree 3007 */ 3008static struct request *cfq_check_fifo(struct cfq_queue *cfqq) 3009{ 3010 struct request *rq = NULL; 3011 3012 if (cfq_cfqq_fifo_expire(cfqq)) 3013 return NULL; 3014 3015 cfq_mark_cfqq_fifo_expire(cfqq); 3016 3017 if (list_empty(&cfqq->fifo)) 3018 return NULL; 3019 3020 rq = rq_entry_fifo(cfqq->fifo.next); 3021 if (ktime_get_ns() < rq->fifo_time) 3022 rq = NULL; 3023 3024 return rq; 3025} 3026 3027static inline int 3028cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq) 3029{ 3030 const int base_rq = cfqd->cfq_slice_async_rq; 3031 3032 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR); 3033 3034 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio); 3035} 3036 3037/* 3038 * Must be called with the queue_lock held. 3039 */ 3040static int cfqq_process_refs(struct cfq_queue *cfqq) 3041{ 3042 int process_refs, io_refs; 3043 3044 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE]; 3045 process_refs = cfqq->ref - io_refs; 3046 BUG_ON(process_refs < 0); 3047 return process_refs; 3048} 3049 3050static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq) 3051{ 3052 int process_refs, new_process_refs; 3053 struct cfq_queue *__cfqq; 3054 3055 /* 3056 * If there are no process references on the new_cfqq, then it is 3057 * unsafe to follow the ->new_cfqq chain as other cfqq's in the 3058 * chain may have dropped their last reference (not just their 3059 * last process reference). 3060 */ 3061 if (!cfqq_process_refs(new_cfqq)) 3062 return; 3063 3064 /* Avoid a circular list and skip interim queue merges */ 3065 while ((__cfqq = new_cfqq->new_cfqq)) { 3066 if (__cfqq == cfqq) 3067 return; 3068 new_cfqq = __cfqq; 3069 } 3070 3071 process_refs = cfqq_process_refs(cfqq); 3072 new_process_refs = cfqq_process_refs(new_cfqq); 3073 /* 3074 * If the process for the cfqq has gone away, there is no 3075 * sense in merging the queues. 3076 */ 3077 if (process_refs == 0 || new_process_refs == 0) 3078 return; 3079 3080 /* 3081 * Merge in the direction of the lesser amount of work. 3082 */ 3083 if (new_process_refs >= process_refs) { 3084 cfqq->new_cfqq = new_cfqq; 3085 new_cfqq->ref += process_refs; 3086 } else { 3087 new_cfqq->new_cfqq = cfqq; 3088 cfqq->ref += new_process_refs; 3089 } 3090} 3091 3092static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd, 3093 struct cfq_group *cfqg, enum wl_class_t wl_class) 3094{ 3095 struct cfq_queue *queue; 3096 int i; 3097 bool key_valid = false; 3098 u64 lowest_key = 0; 3099 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD; 3100 3101 for (i = 0; i <= SYNC_WORKLOAD; ++i) { 3102 /* select the one with lowest rb_key */ 3103 queue = cfq_rb_first(st_for(cfqg, wl_class, i)); 3104 if (queue && 3105 (!key_valid || queue->rb_key < lowest_key)) { 3106 lowest_key = queue->rb_key; 3107 cur_best = i; 3108 key_valid = true; 3109 } 3110 } 3111 3112 return cur_best; 3113} 3114 3115static void 3116choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg) 3117{ 3118 u64 slice; 3119 unsigned count; 3120 struct cfq_rb_root *st; 3121 u64 group_slice; 3122 enum wl_class_t original_class = cfqd->serving_wl_class; 3123 u64 now = ktime_get_ns(); 3124 3125 /* Choose next priority. RT > BE > IDLE */ 3126 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg)) 3127 cfqd->serving_wl_class = RT_WORKLOAD; 3128 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg)) 3129 cfqd->serving_wl_class = BE_WORKLOAD; 3130 else { 3131 cfqd->serving_wl_class = IDLE_WORKLOAD; 3132 cfqd->workload_expires = now + jiffies_to_nsecs(1); 3133 return; 3134 } 3135 3136 if (original_class != cfqd->serving_wl_class) 3137 goto new_workload; 3138 3139 /* 3140 * For RT and BE, we have to choose also the type 3141 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload 3142 * expiration time 3143 */ 3144 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type); 3145 count = st->count; 3146 3147 /* 3148 * check workload expiration, and that we still have other queues ready 3149 */ 3150 if (count && !(now > cfqd->workload_expires)) 3151 return; 3152 3153new_workload: 3154 /* otherwise select new workload type */ 3155 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg, 3156 cfqd->serving_wl_class); 3157 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type); 3158 count = st->count; 3159 3160 /* 3161 * the workload slice is computed as a fraction of target latency 3162 * proportional to the number of queues in that workload, over 3163 * all the queues in the same priority class 3164 */ 3165 group_slice = cfq_group_slice(cfqd, cfqg); 3166 3167 slice = div_u64(group_slice * count, 3168 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class], 3169 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd, 3170 cfqg))); 3171 3172 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) { 3173 u64 tmp; 3174 3175 /* 3176 * Async queues are currently system wide. Just taking 3177 * proportion of queues with-in same group will lead to higher 3178 * async ratio system wide as generally root group is going 3179 * to have higher weight. A more accurate thing would be to 3180 * calculate system wide asnc/sync ratio. 3181 */ 3182 tmp = cfqd->cfq_target_latency * 3183 cfqg_busy_async_queues(cfqd, cfqg); 3184 tmp = div_u64(tmp, cfqd->busy_queues); 3185 slice = min_t(u64, slice, tmp); 3186 3187 /* async workload slice is scaled down according to 3188 * the sync/async slice ratio. */ 3189 slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]); 3190 } else 3191 /* sync workload slice is at least 2 * cfq_slice_idle */ 3192 slice = max(slice, 2 * cfqd->cfq_slice_idle); 3193 3194 slice = max_t(u64, slice, CFQ_MIN_TT); 3195 cfq_log(cfqd, "workload slice:%llu", slice); 3196 cfqd->workload_expires = now + slice; 3197} 3198 3199static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd) 3200{ 3201 struct cfq_rb_root *st = &cfqd->grp_service_tree; 3202 struct cfq_group *cfqg; 3203 3204 if (RB_EMPTY_ROOT(&st->rb.rb_root)) 3205 return NULL; 3206 cfqg = cfq_rb_first_group(st); 3207 update_min_vdisktime(st); 3208 return cfqg; 3209} 3210 3211static void cfq_choose_cfqg(struct cfq_data *cfqd) 3212{ 3213 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd); 3214 u64 now = ktime_get_ns(); 3215 3216 cfqd->serving_group = cfqg; 3217 3218 /* Restore the workload type data */ 3219 if (cfqg->saved_wl_slice) { 3220 cfqd->workload_expires = now + cfqg->saved_wl_slice; 3221 cfqd->serving_wl_type = cfqg->saved_wl_type; 3222 cfqd->serving_wl_class = cfqg->saved_wl_class; 3223 } else 3224 cfqd->workload_expires = now - 1; 3225 3226 choose_wl_class_and_type(cfqd, cfqg); 3227} 3228 3229/* 3230 * Select a queue for service. If we have a current active queue, 3231 * check whether to continue servicing it, or retrieve and set a new one. 3232 */ 3233static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd) 3234{ 3235 struct cfq_queue *cfqq, *new_cfqq = NULL; 3236 u64 now = ktime_get_ns(); 3237 3238 cfqq = cfqd->active_queue; 3239 if (!cfqq) 3240 goto new_queue; 3241 3242 if (!cfqd->rq_queued) 3243 return NULL; 3244 3245 /* 3246 * We were waiting for group to get backlogged. Expire the queue 3247 */ 3248 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list)) 3249 goto expire; 3250 3251 /* 3252 * The active queue has run out of time, expire it and select new. 3253 */ 3254 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) { 3255 /* 3256 * If slice had not expired at the completion of last request 3257 * we might not have turned on wait_busy flag. Don't expire 3258 * the queue yet. Allow the group to get backlogged. 3259 * 3260 * The very fact that we have used the slice, that means we 3261 * have been idling all along on this queue and it should be 3262 * ok to wait for this request to complete. 3263 */ 3264 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list) 3265 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) { 3266 cfqq = NULL; 3267 goto keep_queue; 3268 } else 3269 goto check_group_idle; 3270 } 3271 3272 /* 3273 * The active queue has requests and isn't expired, allow it to 3274 * dispatch. 3275 */ 3276 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) 3277 goto keep_queue; 3278 3279 /* 3280 * If another queue has a request waiting within our mean seek 3281 * distance, let it run. The expire code will check for close 3282 * cooperators and put the close queue at the front of the service 3283 * tree. If possible, merge the expiring queue with the new cfqq. 3284 */ 3285 new_cfqq = cfq_close_cooperator(cfqd, cfqq); 3286 if (new_cfqq) { 3287 if (!cfqq->new_cfqq) 3288 cfq_setup_merge(cfqq, new_cfqq); 3289 goto expire; 3290 } 3291 3292 /* 3293 * No requests pending. If the active queue still has requests in 3294 * flight or is idling for a new request, allow either of these 3295 * conditions to happen (or time out) before selecting a new queue. 3296 */ 3297 if (hrtimer_active(&cfqd->idle_slice_timer)) { 3298 cfqq = NULL; 3299 goto keep_queue; 3300 } 3301 3302 /* 3303 * This is a deep seek queue, but the device is much faster than 3304 * the queue can deliver, don't idle 3305 **/ 3306 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) && 3307 (cfq_cfqq_slice_new(cfqq) || 3308 (cfqq->slice_end - now > now - cfqq->slice_start))) { 3309 cfq_clear_cfqq_deep(cfqq); 3310 cfq_clear_cfqq_idle_window(cfqq); 3311 } 3312 3313 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) { 3314 cfqq = NULL; 3315 goto keep_queue; 3316 } 3317 3318 /* 3319 * If group idle is enabled and there are requests dispatched from 3320 * this group, wait for requests to complete. 3321 */ 3322check_group_idle: 3323 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 && 3324 cfqq->cfqg->dispatched && 3325 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) { 3326 cfqq = NULL; 3327 goto keep_queue; 3328 } 3329 3330expire: 3331 cfq_slice_expired(cfqd, 0); 3332new_queue: 3333 /* 3334 * Current queue expired. Check if we have to switch to a new 3335 * service tree 3336 */ 3337 if (!new_cfqq) 3338 cfq_choose_cfqg(cfqd); 3339 3340 cfqq = cfq_set_active_queue(cfqd, new_cfqq); 3341keep_queue: 3342 return cfqq; 3343} 3344 3345static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq) 3346{ 3347 int dispatched = 0; 3348 3349 while (cfqq->next_rq) { 3350 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq); 3351 dispatched++; 3352 } 3353 3354 BUG_ON(!list_empty(&cfqq->fifo)); 3355 3356 /* By default cfqq is not expired if it is empty. Do it explicitly */ 3357 __cfq_slice_expired(cfqq->cfqd, cfqq, 0); 3358 return dispatched; 3359} 3360 3361/* 3362 * Drain our current requests. Used for barriers and when switching 3363 * io schedulers on-the-fly. 3364 */ 3365static int cfq_forced_dispatch(struct cfq_data *cfqd) 3366{ 3367 struct cfq_queue *cfqq; 3368 int dispatched = 0; 3369 3370 /* Expire the timeslice of the current active queue first */ 3371 cfq_slice_expired(cfqd, 0); 3372 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) { 3373 __cfq_set_active_queue(cfqd, cfqq); 3374 dispatched += __cfq_forced_dispatch_cfqq(cfqq); 3375 } 3376 3377 BUG_ON(cfqd->busy_queues); 3378 3379 cfq_log(cfqd, "forced_dispatch=%d", dispatched); 3380 return dispatched; 3381} 3382 3383static inline bool cfq_slice_used_soon(struct cfq_data *cfqd, 3384 struct cfq_queue *cfqq) 3385{ 3386 u64 now = ktime_get_ns(); 3387 3388 /* the queue hasn't finished any request, can't estimate */ 3389 if (cfq_cfqq_slice_new(cfqq)) 3390 return true; 3391 if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end) 3392 return true; 3393 3394 return false; 3395} 3396 3397static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq) 3398{ 3399 unsigned int max_dispatch; 3400 3401 if (cfq_cfqq_must_dispatch(cfqq)) 3402 return true; 3403 3404 /* 3405 * Drain async requests before we start sync IO 3406 */ 3407 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC]) 3408 return false; 3409 3410 /* 3411 * If this is an async queue and we have sync IO in flight, let it wait 3412 */ 3413 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq)) 3414 return false; 3415 3416 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1); 3417 if (cfq_class_idle(cfqq)) 3418 max_dispatch = 1; 3419 3420 /* 3421 * Does this cfqq already have too much IO in flight? 3422 */ 3423 if (cfqq->dispatched >= max_dispatch) { 3424 bool promote_sync = false; 3425 /* 3426 * idle queue must always only have a single IO in flight 3427 */ 3428 if (cfq_class_idle(cfqq)) 3429 return false; 3430 3431 /* 3432 * If there is only one sync queue 3433 * we can ignore async queue here and give the sync 3434 * queue no dispatch limit. The reason is a sync queue can 3435 * preempt async queue, limiting the sync queue doesn't make 3436 * sense. This is useful for aiostress test. 3437 */ 3438 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1) 3439 promote_sync = true; 3440 3441 /* 3442 * We have other queues, don't allow more IO from this one 3443 */ 3444 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) && 3445 !promote_sync) 3446 return false; 3447 3448 /* 3449 * Sole queue user, no limit 3450 */ 3451 if (cfqd->busy_queues == 1 || promote_sync) 3452 max_dispatch = -1; 3453 else 3454 /* 3455 * Normally we start throttling cfqq when cfq_quantum/2 3456 * requests have been dispatched. But we can drive 3457 * deeper queue depths at the beginning of slice 3458 * subjected to upper limit of cfq_quantum. 3459 * */ 3460 max_dispatch = cfqd->cfq_quantum; 3461 } 3462 3463 /* 3464 * Async queues must wait a bit before being allowed dispatch. 3465 * We also ramp up the dispatch depth gradually for async IO, 3466 * based on the last sync IO we serviced 3467 */ 3468 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) { 3469 u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync; 3470 unsigned int depth; 3471 3472 depth = div64_u64(last_sync, cfqd->cfq_slice[1]); 3473 if (!depth && !cfqq->dispatched) 3474 depth = 1; 3475 if (depth < max_dispatch) 3476 max_dispatch = depth; 3477 } 3478 3479 /* 3480 * If we're below the current max, allow a dispatch 3481 */ 3482 return cfqq->dispatched < max_dispatch; 3483} 3484 3485/* 3486 * Dispatch a request from cfqq, moving them to the request queue 3487 * dispatch list. 3488 */ 3489static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq) 3490{ 3491 struct request *rq; 3492 3493 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list)); 3494 3495 rq = cfq_check_fifo(cfqq); 3496 if (rq) 3497 cfq_mark_cfqq_must_dispatch(cfqq); 3498 3499 if (!cfq_may_dispatch(cfqd, cfqq)) 3500 return false; 3501 3502 /* 3503 * follow expired path, else get first next available 3504 */ 3505 if (!rq) 3506 rq = cfqq->next_rq; 3507 else 3508 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq); 3509 3510 /* 3511 * insert request into driver dispatch list 3512 */ 3513 cfq_dispatch_insert(cfqd->queue, rq); 3514 3515 if (!cfqd->active_cic) { 3516 struct cfq_io_cq *cic = RQ_CIC(rq); 3517 3518 atomic_long_inc(&cic->icq.ioc->refcount); 3519 cfqd->active_cic = cic; 3520 } 3521 3522 return true; 3523} 3524 3525/* 3526 * Find the cfqq that we need to service and move a request from that to the 3527 * dispatch list 3528 */ 3529static int cfq_dispatch_requests(struct request_queue *q, int force) 3530{ 3531 struct cfq_data *cfqd = q->elevator->elevator_data; 3532 struct cfq_queue *cfqq; 3533 3534 if (!cfqd->busy_queues) 3535 return 0; 3536 3537 if (unlikely(force)) 3538 return cfq_forced_dispatch(cfqd); 3539 3540 cfqq = cfq_select_queue(cfqd); 3541 if (!cfqq) 3542 return 0; 3543 3544 /* 3545 * Dispatch a request from this cfqq, if it is allowed 3546 */ 3547 if (!cfq_dispatch_request(cfqd, cfqq)) 3548 return 0; 3549 3550 cfqq->slice_dispatch++; 3551 cfq_clear_cfqq_must_dispatch(cfqq); 3552 3553 /* 3554 * expire an async queue immediately if it has used up its slice. idle 3555 * queue always expire after 1 dispatch round. 3556 */ 3557 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) && 3558 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) || 3559 cfq_class_idle(cfqq))) { 3560 cfqq->slice_end = ktime_get_ns() + 1; 3561 cfq_slice_expired(cfqd, 0); 3562 } 3563 3564 cfq_log_cfqq(cfqd, cfqq, "dispatched a request"); 3565 return 1; 3566} 3567 3568/* 3569 * task holds one reference to the queue, dropped when task exits. each rq 3570 * in-flight on this queue also holds a reference, dropped when rq is freed. 3571 * 3572 * Each cfq queue took a reference on the parent group. Drop it now. 3573 * queue lock must be held here. 3574 */ 3575static void cfq_put_queue(struct cfq_queue *cfqq) 3576{ 3577 struct cfq_data *cfqd = cfqq->cfqd; 3578 struct cfq_group *cfqg; 3579 3580 BUG_ON(cfqq->ref <= 0); 3581 3582 cfqq->ref--; 3583 if (cfqq->ref) 3584 return; 3585 3586 cfq_log_cfqq(cfqd, cfqq, "put_queue"); 3587 BUG_ON(rb_first(&cfqq->sort_list)); 3588 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]); 3589 cfqg = cfqq->cfqg; 3590 3591 if (unlikely(cfqd->active_queue == cfqq)) { 3592 __cfq_slice_expired(cfqd, cfqq, 0); 3593 cfq_schedule_dispatch(cfqd); 3594 } 3595 3596 BUG_ON(cfq_cfqq_on_rr(cfqq)); 3597 kmem_cache_free(cfq_pool, cfqq); 3598 cfqg_put(cfqg); 3599} 3600 3601static void cfq_put_cooperator(struct cfq_queue *cfqq) 3602{ 3603 struct cfq_queue *__cfqq, *next; 3604 3605 /* 3606 * If this queue was scheduled to merge with another queue, be 3607 * sure to drop the reference taken on that queue (and others in 3608 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs. 3609 */ 3610 __cfqq = cfqq->new_cfqq; 3611 while (__cfqq) { 3612 if (__cfqq == cfqq) { 3613 WARN(1, "cfqq->new_cfqq loop detected\n"); 3614 break; 3615 } 3616 next = __cfqq->new_cfqq; 3617 cfq_put_queue(__cfqq); 3618 __cfqq = next; 3619 } 3620} 3621 3622static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq) 3623{ 3624 if (unlikely(cfqq == cfqd->active_queue)) { 3625 __cfq_slice_expired(cfqd, cfqq, 0); 3626 cfq_schedule_dispatch(cfqd); 3627 } 3628 3629 cfq_put_cooperator(cfqq); 3630 3631 cfq_put_queue(cfqq); 3632} 3633 3634static void cfq_init_icq(struct io_cq *icq) 3635{ 3636 struct cfq_io_cq *cic = icq_to_cic(icq); 3637 3638 cic->ttime.last_end_request = ktime_get_ns(); 3639} 3640 3641static void cfq_exit_icq(struct io_cq *icq) 3642{ 3643 struct cfq_io_cq *cic = icq_to_cic(icq); 3644 struct cfq_data *cfqd = cic_to_cfqd(cic); 3645 3646 if (cic_to_cfqq(cic, false)) { 3647 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false)); 3648 cic_set_cfqq(cic, NULL, false); 3649 } 3650 3651 if (cic_to_cfqq(cic, true)) { 3652 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true)); 3653 cic_set_cfqq(cic, NULL, true); 3654 } 3655} 3656 3657static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic) 3658{ 3659 struct task_struct *tsk = current; 3660 int ioprio_class; 3661 3662 if (!cfq_cfqq_prio_changed(cfqq)) 3663 return; 3664 3665 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio); 3666 switch (ioprio_class) { 3667 default: 3668 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class); 3669 /* fall through */ 3670 case IOPRIO_CLASS_NONE: 3671 /* 3672 * no prio set, inherit CPU scheduling settings 3673 */ 3674 cfqq->ioprio = task_nice_ioprio(tsk); 3675 cfqq->ioprio_class = task_nice_ioclass(tsk); 3676 break; 3677 case IOPRIO_CLASS_RT: 3678 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio); 3679 cfqq->ioprio_class = IOPRIO_CLASS_RT; 3680 break; 3681 case IOPRIO_CLASS_BE: 3682 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio); 3683 cfqq->ioprio_class = IOPRIO_CLASS_BE; 3684 break; 3685 case IOPRIO_CLASS_IDLE: 3686 cfqq->ioprio_class = IOPRIO_CLASS_IDLE; 3687 cfqq->ioprio = 7; 3688 cfq_clear_cfqq_idle_window(cfqq); 3689 break; 3690 } 3691 3692 /* 3693 * keep track of original prio settings in case we have to temporarily 3694 * elevate the priority of this queue 3695 */ 3696 cfqq->org_ioprio = cfqq->ioprio; 3697 cfqq->org_ioprio_class = cfqq->ioprio_class; 3698 cfq_clear_cfqq_prio_changed(cfqq); 3699} 3700 3701static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio) 3702{ 3703 int ioprio = cic->icq.ioc->ioprio; 3704 struct cfq_data *cfqd = cic_to_cfqd(cic); 3705 struct cfq_queue *cfqq; 3706 3707 /* 3708 * Check whether ioprio has changed. The condition may trigger 3709 * spuriously on a newly created cic but there's no harm. 3710 */ 3711 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio)) 3712 return; 3713 3714 cfqq = cic_to_cfqq(cic, false); 3715 if (cfqq) { 3716 cfq_put_queue(cfqq); 3717 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio); 3718 cic_set_cfqq(cic, cfqq, false); 3719 } 3720 3721 cfqq = cic_to_cfqq(cic, true); 3722 if (cfqq) 3723 cfq_mark_cfqq_prio_changed(cfqq); 3724 3725 cic->ioprio = ioprio; 3726} 3727 3728static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq, 3729 pid_t pid, bool is_sync) 3730{ 3731 RB_CLEAR_NODE(&cfqq->rb_node); 3732 RB_CLEAR_NODE(&cfqq->p_node); 3733 INIT_LIST_HEAD(&cfqq->fifo); 3734 3735 cfqq->ref = 0; 3736 cfqq->cfqd = cfqd; 3737 3738 cfq_mark_cfqq_prio_changed(cfqq); 3739 3740 if (is_sync) { 3741 if (!cfq_class_idle(cfqq)) 3742 cfq_mark_cfqq_idle_window(cfqq); 3743 cfq_mark_cfqq_sync(cfqq); 3744 } 3745 cfqq->pid = pid; 3746} 3747 3748#ifdef CONFIG_CFQ_GROUP_IOSCHED 3749static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) 3750{ 3751 struct cfq_data *cfqd = cic_to_cfqd(cic); 3752 struct cfq_queue *cfqq; 3753 uint64_t serial_nr; 3754 3755 rcu_read_lock(); 3756 serial_nr = bio_blkcg(bio)->css.serial_nr; 3757 rcu_read_unlock(); 3758 3759 /* 3760 * Check whether blkcg has changed. The condition may trigger 3761 * spuriously on a newly created cic but there's no harm. 3762 */ 3763 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr)) 3764 return; 3765 3766 /* 3767 * Drop reference to queues. New queues will be assigned in new 3768 * group upon arrival of fresh requests. 3769 */ 3770 cfqq = cic_to_cfqq(cic, false); 3771 if (cfqq) { 3772 cfq_log_cfqq(cfqd, cfqq, "changed cgroup"); 3773 cic_set_cfqq(cic, NULL, false); 3774 cfq_put_queue(cfqq); 3775 } 3776 3777 cfqq = cic_to_cfqq(cic, true); 3778 if (cfqq) { 3779 cfq_log_cfqq(cfqd, cfqq, "changed cgroup"); 3780 cic_set_cfqq(cic, NULL, true); 3781 cfq_put_queue(cfqq); 3782 } 3783 3784 cic->blkcg_serial_nr = serial_nr; 3785} 3786#else 3787static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) 3788{ 3789} 3790#endif /* CONFIG_CFQ_GROUP_IOSCHED */ 3791 3792static struct cfq_queue ** 3793cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio) 3794{ 3795 switch (ioprio_class) { 3796 case IOPRIO_CLASS_RT: 3797 return &cfqg->async_cfqq[0][ioprio]; 3798 case IOPRIO_CLASS_NONE: 3799 ioprio = IOPRIO_NORM; 3800 /* fall through */ 3801 case IOPRIO_CLASS_BE: 3802 return &cfqg->async_cfqq[1][ioprio]; 3803 case IOPRIO_CLASS_IDLE: 3804 return &cfqg->async_idle_cfqq; 3805 default: 3806 BUG(); 3807 } 3808} 3809 3810static struct cfq_queue * 3811cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic, 3812 struct bio *bio) 3813{ 3814 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio); 3815 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio); 3816 struct cfq_queue **async_cfqq = NULL; 3817 struct cfq_queue *cfqq; 3818 struct cfq_group *cfqg; 3819 3820 rcu_read_lock(); 3821 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio)); 3822 if (!cfqg) { 3823 cfqq = &cfqd->oom_cfqq; 3824 goto out; 3825 } 3826 3827 if (!is_sync) { 3828 if (!ioprio_valid(cic->ioprio)) { 3829 struct task_struct *tsk = current; 3830 ioprio = task_nice_ioprio(tsk); 3831 ioprio_class = task_nice_ioclass(tsk); 3832 } 3833 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio); 3834 cfqq = *async_cfqq; 3835 if (cfqq) 3836 goto out; 3837 } 3838 3839 cfqq = kmem_cache_alloc_node(cfq_pool, 3840 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN, 3841 cfqd->queue->node); 3842 if (!cfqq) { 3843 cfqq = &cfqd->oom_cfqq; 3844 goto out; 3845 } 3846 3847 /* cfq_init_cfqq() assumes cfqq->ioprio_class is initialized. */ 3848 cfqq->ioprio_class = IOPRIO_CLASS_NONE; 3849 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync); 3850 cfq_init_prio_data(cfqq, cic); 3851 cfq_link_cfqq_cfqg(cfqq, cfqg); 3852 cfq_log_cfqq(cfqd, cfqq, "alloced"); 3853 3854 if (async_cfqq) { 3855 /* a new async queue is created, pin and remember */ 3856 cfqq->ref++; 3857 *async_cfqq = cfqq; 3858 } 3859out: 3860 cfqq->ref++; 3861 rcu_read_unlock(); 3862 return cfqq; 3863} 3864 3865static void 3866__cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle) 3867{ 3868 u64 elapsed = ktime_get_ns() - ttime->last_end_request; 3869 elapsed = min(elapsed, 2UL * slice_idle); 3870 3871 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8; 3872 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8); 3873 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128, 3874 ttime->ttime_samples); 3875} 3876 3877static void 3878cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq, 3879 struct cfq_io_cq *cic) 3880{ 3881 if (cfq_cfqq_sync(cfqq)) { 3882 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle); 3883 __cfq_update_io_thinktime(&cfqq->service_tree->ttime, 3884 cfqd->cfq_slice_idle); 3885 } 3886#ifdef CONFIG_CFQ_GROUP_IOSCHED 3887 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle); 3888#endif 3889} 3890 3891static void 3892cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq, 3893 struct request *rq) 3894{ 3895 sector_t sdist = 0; 3896 sector_t n_sec = blk_rq_sectors(rq); 3897 if (cfqq->last_request_pos) { 3898 if (cfqq->last_request_pos < blk_rq_pos(rq)) 3899 sdist = blk_rq_pos(rq) - cfqq->last_request_pos; 3900 else 3901 sdist = cfqq->last_request_pos - blk_rq_pos(rq); 3902 } 3903 3904 cfqq->seek_history <<= 1; 3905 if (blk_queue_nonrot(cfqd->queue)) 3906 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT); 3907 else 3908 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR); 3909} 3910 3911static inline bool req_noidle(struct request *req) 3912{ 3913 return req_op(req) == REQ_OP_WRITE && 3914 (req->cmd_flags & (REQ_SYNC | REQ_IDLE)) == REQ_SYNC; 3915} 3916 3917/* 3918 * Disable idle window if the process thinks too long or seeks so much that 3919 * it doesn't matter 3920 */ 3921static void 3922cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq, 3923 struct cfq_io_cq *cic) 3924{ 3925 int old_idle, enable_idle; 3926 3927 /* 3928 * Don't idle for async or idle io prio class 3929 */ 3930 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq)) 3931 return; 3932 3933 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq); 3934 3935 if (cfqq->queued[0] + cfqq->queued[1] >= 4) 3936 cfq_mark_cfqq_deep(cfqq); 3937 3938 if (cfqq->next_rq && req_noidle(cfqq->next_rq)) 3939 enable_idle = 0; 3940 else if (!atomic_read(&cic->icq.ioc->active_ref) || 3941 !cfqd->cfq_slice_idle || 3942 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq))) 3943 enable_idle = 0; 3944 else if (sample_valid(cic->ttime.ttime_samples)) { 3945 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle) 3946 enable_idle = 0; 3947 else 3948 enable_idle = 1; 3949 } 3950 3951 if (old_idle != enable_idle) { 3952 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle); 3953 if (enable_idle) 3954 cfq_mark_cfqq_idle_window(cfqq); 3955 else 3956 cfq_clear_cfqq_idle_window(cfqq); 3957 } 3958} 3959 3960/* 3961 * Check if new_cfqq should preempt the currently active queue. Return 0 for 3962 * no or if we aren't sure, a 1 will cause a preempt. 3963 */ 3964static bool 3965cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq, 3966 struct request *rq) 3967{ 3968 struct cfq_queue *cfqq; 3969 3970 cfqq = cfqd->active_queue; 3971 if (!cfqq) 3972 return false; 3973 3974 if (cfq_class_idle(new_cfqq)) 3975 return false; 3976 3977 if (cfq_class_idle(cfqq)) 3978 return true; 3979 3980 /* 3981 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice. 3982 */ 3983 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq)) 3984 return false; 3985 3986 /* 3987 * if the new request is sync, but the currently running queue is 3988 * not, let the sync request have priority. 3989 */ 3990 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) 3991 return true; 3992 3993 /* 3994 * Treat ancestors of current cgroup the same way as current cgroup. 3995 * For anybody else we disallow preemption to guarantee service 3996 * fairness among cgroups. 3997 */ 3998 if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg)) 3999 return false; 4000 4001 if (cfq_slice_used(cfqq)) 4002 return true; 4003 4004 /* 4005 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice. 4006 */ 4007 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq)) 4008 return true; 4009 4010 WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class); 4011 /* Allow preemption only if we are idling on sync-noidle tree */ 4012 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD && 4013 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD && 4014 RB_EMPTY_ROOT(&cfqq->sort_list)) 4015 return true; 4016 4017 /* 4018 * So both queues are sync. Let the new request get disk time if 4019 * it's a metadata request and the current queue is doing regular IO. 4020 */ 4021 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending) 4022 return true; 4023 4024 /* An idle queue should not be idle now for some reason */ 4025 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq)) 4026 return true; 4027 4028 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq)) 4029 return false; 4030 4031 /* 4032 * if this request is as-good as one we would expect from the 4033 * current cfqq, let it preempt 4034 */ 4035 if (cfq_rq_close(cfqd, cfqq, rq)) 4036 return true; 4037 4038 return false; 4039} 4040 4041/* 4042 * cfqq preempts the active queue. if we allowed preempt with no slice left, 4043 * let it have half of its nominal slice. 4044 */ 4045static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq) 4046{ 4047 enum wl_type_t old_type = cfqq_type(cfqd->active_queue); 4048 4049 cfq_log_cfqq(cfqd, cfqq, "preempt"); 4050 cfq_slice_expired(cfqd, 1); 4051 4052 /* 4053 * workload type is changed, don't save slice, otherwise preempt 4054 * doesn't happen 4055 */ 4056 if (old_type != cfqq_type(cfqq)) 4057 cfqq->cfqg->saved_wl_slice = 0; 4058 4059 /* 4060 * Put the new queue at the front of the of the current list, 4061 * so we know that it will be selected next. 4062 */ 4063 BUG_ON(!cfq_cfqq_on_rr(cfqq)); 4064 4065 cfq_service_tree_add(cfqd, cfqq, 1); 4066 4067 cfqq->slice_end = 0; 4068 cfq_mark_cfqq_slice_new(cfqq); 4069} 4070 4071/* 4072 * Called when a new fs request (rq) is added (to cfqq). Check if there's 4073 * something we should do about it 4074 */ 4075static void 4076cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq, 4077 struct request *rq) 4078{ 4079 struct cfq_io_cq *cic = RQ_CIC(rq); 4080 4081 cfqd->rq_queued++; 4082 if (rq->cmd_flags & REQ_PRIO) 4083 cfqq->prio_pending++; 4084 4085 cfq_update_io_thinktime(cfqd, cfqq, cic); 4086 cfq_update_io_seektime(cfqd, cfqq, rq); 4087 cfq_update_idle_window(cfqd, cfqq, cic); 4088 4089 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); 4090 4091 if (cfqq == cfqd->active_queue) { 4092 /* 4093 * Remember that we saw a request from this process, but 4094 * don't start queuing just yet. Otherwise we risk seeing lots 4095 * of tiny requests, because we disrupt the normal plugging 4096 * and merging. If the request is already larger than a single 4097 * page, let it rip immediately. For that case we assume that 4098 * merging is already done. Ditto for a busy system that 4099 * has other work pending, don't risk delaying until the 4100 * idle timer unplug to continue working. 4101 */ 4102 if (cfq_cfqq_wait_request(cfqq)) { 4103 if (blk_rq_bytes(rq) > PAGE_SIZE || 4104 cfqd->busy_queues > 1) { 4105 cfq_del_timer(cfqd, cfqq); 4106 cfq_clear_cfqq_wait_request(cfqq); 4107 __blk_run_queue(cfqd->queue); 4108 } else { 4109 cfqg_stats_update_idle_time(cfqq->cfqg); 4110 cfq_mark_cfqq_must_dispatch(cfqq); 4111 } 4112 } 4113 } else if (cfq_should_preempt(cfqd, cfqq, rq)) { 4114 /* 4115 * not the active queue - expire current slice if it is 4116 * idle and has expired it's mean thinktime or this new queue 4117 * has some old slice time left and is of higher priority or 4118 * this new queue is RT and the current one is BE 4119 */ 4120 cfq_preempt_queue(cfqd, cfqq); 4121 __blk_run_queue(cfqd->queue); 4122 } 4123} 4124 4125static void cfq_insert_request(struct request_queue *q, struct request *rq) 4126{ 4127 struct cfq_data *cfqd = q->elevator->elevator_data; 4128 struct cfq_queue *cfqq = RQ_CFQQ(rq); 4129 4130 cfq_log_cfqq(cfqd, cfqq, "insert_request"); 4131 cfq_init_prio_data(cfqq, RQ_CIC(rq)); 4132 4133 rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)]; 4134 list_add_tail(&rq->queuelist, &cfqq->fifo); 4135 cfq_add_rq_rb(rq); 4136 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group, 4137 rq->cmd_flags); 4138 cfq_rq_enqueued(cfqd, cfqq, rq); 4139} 4140 4141/* 4142 * Update hw_tag based on peak queue depth over 50 samples under 4143 * sufficient load. 4144 */ 4145static void cfq_update_hw_tag(struct cfq_data *cfqd) 4146{ 4147 struct cfq_queue *cfqq = cfqd->active_queue; 4148 4149 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth) 4150 cfqd->hw_tag_est_depth = cfqd->rq_in_driver; 4151 4152 if (cfqd->hw_tag == 1) 4153 return; 4154 4155 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN && 4156 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN) 4157 return; 4158 4159 /* 4160 * If active queue hasn't enough requests and can idle, cfq might not 4161 * dispatch sufficient requests to hardware. Don't zero hw_tag in this 4162 * case 4163 */ 4164 if (cfqq && cfq_cfqq_idle_window(cfqq) && 4165 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] < 4166 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN) 4167 return; 4168 4169 if (cfqd->hw_tag_samples++ < 50) 4170 return; 4171 4172 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN) 4173 cfqd->hw_tag = 1; 4174 else 4175 cfqd->hw_tag = 0; 4176} 4177 4178static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq) 4179{ 4180 struct cfq_io_cq *cic = cfqd->active_cic; 4181 u64 now = ktime_get_ns(); 4182 4183 /* If the queue already has requests, don't wait */ 4184 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) 4185 return false; 4186 4187 /* If there are other queues in the group, don't wait */ 4188 if (cfqq->cfqg->nr_cfqq > 1) 4189 return false; 4190 4191 /* the only queue in the group, but think time is big */ 4192 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) 4193 return false; 4194 4195 if (cfq_slice_used(cfqq)) 4196 return true; 4197 4198 /* if slice left is less than think time, wait busy */ 4199 if (cic && sample_valid(cic->ttime.ttime_samples) 4200 && (cfqq->slice_end - now < cic->ttime.ttime_mean)) 4201 return true; 4202 4203 /* 4204 * If think times is less than a jiffy than ttime_mean=0 and above 4205 * will not be true. It might happen that slice has not expired yet 4206 * but will expire soon (4-5 ns) during select_queue(). To cover the 4207 * case where think time is less than a jiffy, mark the queue wait 4208 * busy if only 1 jiffy is left in the slice. 4209 */ 4210 if (cfqq->slice_end - now <= jiffies_to_nsecs(1)) 4211 return true; 4212 4213 return false; 4214} 4215 4216static void cfq_completed_request(struct request_queue *q, struct request *rq) 4217{ 4218 struct cfq_queue *cfqq = RQ_CFQQ(rq); 4219 struct cfq_data *cfqd = cfqq->cfqd; 4220 const int sync = rq_is_sync(rq); 4221 u64 now = ktime_get_ns(); 4222 4223 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", req_noidle(rq)); 4224 4225 cfq_update_hw_tag(cfqd); 4226 4227 WARN_ON(!cfqd->rq_in_driver); 4228 WARN_ON(!cfqq->dispatched); 4229 cfqd->rq_in_driver--; 4230 cfqq->dispatched--; 4231 (RQ_CFQG(rq))->dispatched--; 4232 cfqg_stats_update_completion(cfqq->cfqg, rq->start_time_ns, 4233 rq->io_start_time_ns, rq->cmd_flags); 4234 4235 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--; 4236 4237 if (sync) { 4238 struct cfq_rb_root *st; 4239 4240 RQ_CIC(rq)->ttime.last_end_request = now; 4241 4242 if (cfq_cfqq_on_rr(cfqq)) 4243 st = cfqq->service_tree; 4244 else 4245 st = st_for(cfqq->cfqg, cfqq_class(cfqq), 4246 cfqq_type(cfqq)); 4247 4248 st->ttime.last_end_request = now; 4249 if (rq->start_time_ns + cfqd->cfq_fifo_expire[1] <= now) 4250 cfqd->last_delayed_sync = now; 4251 } 4252 4253#ifdef CONFIG_CFQ_GROUP_IOSCHED 4254 cfqq->cfqg->ttime.last_end_request = now; 4255#endif 4256 4257 /* 4258 * If this is the active queue, check if it needs to be expired, 4259 * or if we want to idle in case it has no pending requests. 4260 */ 4261 if (cfqd->active_queue == cfqq) { 4262 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list); 4263 4264 if (cfq_cfqq_slice_new(cfqq)) { 4265 cfq_set_prio_slice(cfqd, cfqq); 4266 cfq_clear_cfqq_slice_new(cfqq); 4267 } 4268 4269 /* 4270 * Should we wait for next request to come in before we expire 4271 * the queue. 4272 */ 4273 if (cfq_should_wait_busy(cfqd, cfqq)) { 4274 u64 extend_sl = cfqd->cfq_slice_idle; 4275 if (!cfqd->cfq_slice_idle) 4276 extend_sl = cfqd->cfq_group_idle; 4277 cfqq->slice_end = now + extend_sl; 4278 cfq_mark_cfqq_wait_busy(cfqq); 4279 cfq_log_cfqq(cfqd, cfqq, "will busy wait"); 4280 } 4281 4282 /* 4283 * Idling is not enabled on: 4284 * - expired queues 4285 * - idle-priority queues 4286 * - async queues 4287 * - queues with still some requests queued 4288 * - when there is a close cooperator 4289 */ 4290 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq)) 4291 cfq_slice_expired(cfqd, 1); 4292 else if (sync && cfqq_empty && 4293 !cfq_close_cooperator(cfqd, cfqq)) { 4294 cfq_arm_slice_timer(cfqd); 4295 } 4296 } 4297 4298 if (!cfqd->rq_in_driver) 4299 cfq_schedule_dispatch(cfqd); 4300} 4301 4302static void cfqq_boost_on_prio(struct cfq_queue *cfqq, unsigned int op) 4303{ 4304 /* 4305 * If REQ_PRIO is set, boost class and prio level, if it's below 4306 * BE/NORM. If prio is not set, restore the potentially boosted 4307 * class/prio level. 4308 */ 4309 if (!(op & REQ_PRIO)) { 4310 cfqq->ioprio_class = cfqq->org_ioprio_class; 4311 cfqq->ioprio = cfqq->org_ioprio; 4312 } else { 4313 if (cfq_class_idle(cfqq)) 4314 cfqq->ioprio_class = IOPRIO_CLASS_BE; 4315 if (cfqq->ioprio > IOPRIO_NORM) 4316 cfqq->ioprio = IOPRIO_NORM; 4317 } 4318} 4319 4320static inline int __cfq_may_queue(struct cfq_queue *cfqq) 4321{ 4322 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) { 4323 cfq_mark_cfqq_must_alloc_slice(cfqq); 4324 return ELV_MQUEUE_MUST; 4325 } 4326 4327 return ELV_MQUEUE_MAY; 4328} 4329 4330static int cfq_may_queue(struct request_queue *q, unsigned int op) 4331{ 4332 struct cfq_data *cfqd = q->elevator->elevator_data; 4333 struct task_struct *tsk = current; 4334 struct cfq_io_cq *cic; 4335 struct cfq_queue *cfqq; 4336 4337 /* 4338 * don't force setup of a queue from here, as a call to may_queue 4339 * does not necessarily imply that a request actually will be queued. 4340 * so just lookup a possibly existing queue, or return 'may queue' 4341 * if that fails 4342 */ 4343 cic = cfq_cic_lookup(cfqd, tsk->io_context); 4344 if (!cic) 4345 return ELV_MQUEUE_MAY; 4346 4347 cfqq = cic_to_cfqq(cic, op_is_sync(op)); 4348 if (cfqq) { 4349 cfq_init_prio_data(cfqq, cic); 4350 cfqq_boost_on_prio(cfqq, op); 4351 4352 return __cfq_may_queue(cfqq); 4353 } 4354 4355 return ELV_MQUEUE_MAY; 4356} 4357 4358/* 4359 * queue lock held here 4360 */ 4361static void cfq_put_request(struct request *rq) 4362{ 4363 struct cfq_queue *cfqq = RQ_CFQQ(rq); 4364 4365 if (cfqq) { 4366 const int rw = rq_data_dir(rq); 4367 4368 BUG_ON(!cfqq->allocated[rw]); 4369 cfqq->allocated[rw]--; 4370 4371 /* Put down rq reference on cfqg */ 4372 cfqg_put(RQ_CFQG(rq)); 4373 rq->elv.priv[0] = NULL; 4374 rq->elv.priv[1] = NULL; 4375 4376 cfq_put_queue(cfqq); 4377 } 4378} 4379 4380static struct cfq_queue * 4381cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic, 4382 struct cfq_queue *cfqq) 4383{ 4384 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq); 4385 cic_set_cfqq(cic, cfqq->new_cfqq, 1); 4386 cfq_mark_cfqq_coop(cfqq->new_cfqq); 4387 cfq_put_queue(cfqq); 4388 return cic_to_cfqq(cic, 1); 4389} 4390 4391/* 4392 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this 4393 * was the last process referring to said cfqq. 4394 */ 4395static struct cfq_queue * 4396split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq) 4397{ 4398 if (cfqq_process_refs(cfqq) == 1) { 4399 cfqq->pid = current->pid; 4400 cfq_clear_cfqq_coop(cfqq); 4401 cfq_clear_cfqq_split_coop(cfqq); 4402 return cfqq; 4403 } 4404 4405 cic_set_cfqq(cic, NULL, 1); 4406 4407 cfq_put_cooperator(cfqq); 4408 4409 cfq_put_queue(cfqq); 4410 return NULL; 4411} 4412/* 4413 * Allocate cfq data structures associated with this request. 4414 */ 4415static int 4416cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio, 4417 gfp_t gfp_mask) 4418{ 4419 struct cfq_data *cfqd = q->elevator->elevator_data; 4420 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq); 4421 const int rw = rq_data_dir(rq); 4422 const bool is_sync = rq_is_sync(rq); 4423 struct cfq_queue *cfqq; 4424 4425 spin_lock_irq(q->queue_lock); 4426 4427 check_ioprio_changed(cic, bio); 4428 check_blkcg_changed(cic, bio); 4429new_queue: 4430 cfqq = cic_to_cfqq(cic, is_sync); 4431 if (!cfqq || cfqq == &cfqd->oom_cfqq) { 4432 if (cfqq) 4433 cfq_put_queue(cfqq); 4434 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio); 4435 cic_set_cfqq(cic, cfqq, is_sync); 4436 } else { 4437 /* 4438 * If the queue was seeky for too long, break it apart. 4439 */ 4440 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) { 4441 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq"); 4442 cfqq = split_cfqq(cic, cfqq); 4443 if (!cfqq) 4444 goto new_queue; 4445 } 4446 4447 /* 4448 * Check to see if this queue is scheduled to merge with 4449 * another, closely cooperating queue. The merging of 4450 * queues happens here as it must be done in process context. 4451 * The reference on new_cfqq was taken in merge_cfqqs. 4452 */ 4453 if (cfqq->new_cfqq) 4454 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq); 4455 } 4456 4457 cfqq->allocated[rw]++; 4458 4459 cfqq->ref++; 4460 cfqg_get(cfqq->cfqg); 4461 rq->elv.priv[0] = cfqq; 4462 rq->elv.priv[1] = cfqq->cfqg; 4463 spin_unlock_irq(q->queue_lock); 4464 4465 return 0; 4466} 4467 4468static void cfq_kick_queue(struct work_struct *work) 4469{ 4470 struct cfq_data *cfqd = 4471 container_of(work, struct cfq_data, unplug_work); 4472 struct request_queue *q = cfqd->queue; 4473 4474 spin_lock_irq(q->queue_lock); 4475 __blk_run_queue(cfqd->queue); 4476 spin_unlock_irq(q->queue_lock); 4477} 4478 4479/* 4480 * Timer running if the active_queue is currently idling inside its time slice 4481 */ 4482static enum hrtimer_restart cfq_idle_slice_timer(struct hrtimer *timer) 4483{ 4484 struct cfq_data *cfqd = container_of(timer, struct cfq_data, 4485 idle_slice_timer); 4486 struct cfq_queue *cfqq; 4487 unsigned long flags; 4488 int timed_out = 1; 4489 4490 cfq_log(cfqd, "idle timer fired"); 4491 4492 spin_lock_irqsave(cfqd->queue->queue_lock, flags); 4493 4494 cfqq = cfqd->active_queue; 4495 if (cfqq) { 4496 timed_out = 0; 4497 4498 /* 4499 * We saw a request before the queue expired, let it through 4500 */ 4501 if (cfq_cfqq_must_dispatch(cfqq)) 4502 goto out_kick; 4503 4504 /* 4505 * expired 4506 */ 4507 if (cfq_slice_used(cfqq)) 4508 goto expire; 4509 4510 /* 4511 * only expire and reinvoke request handler, if there are 4512 * other queues with pending requests 4513 */ 4514 if (!cfqd->busy_queues) 4515 goto out_cont; 4516 4517 /* 4518 * not expired and it has a request pending, let it dispatch 4519 */ 4520 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) 4521 goto out_kick; 4522 4523 /* 4524 * Queue depth flag is reset only when the idle didn't succeed 4525 */ 4526 cfq_clear_cfqq_deep(cfqq); 4527 } 4528expire: 4529 cfq_slice_expired(cfqd, timed_out); 4530out_kick: 4531 cfq_schedule_dispatch(cfqd); 4532out_cont: 4533 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags); 4534 return HRTIMER_NORESTART; 4535} 4536 4537static void cfq_shutdown_timer_wq(struct cfq_data *cfqd) 4538{ 4539 hrtimer_cancel(&cfqd->idle_slice_timer); 4540 cancel_work_sync(&cfqd->unplug_work); 4541} 4542 4543static void cfq_exit_queue(struct elevator_queue *e) 4544{ 4545 struct cfq_data *cfqd = e->elevator_data; 4546 struct request_queue *q = cfqd->queue; 4547 4548 cfq_shutdown_timer_wq(cfqd); 4549 4550 spin_lock_irq(q->queue_lock); 4551 4552 if (cfqd->active_queue) 4553 __cfq_slice_expired(cfqd, cfqd->active_queue, 0); 4554 4555 spin_unlock_irq(q->queue_lock); 4556 4557 cfq_shutdown_timer_wq(cfqd); 4558 4559#ifdef CONFIG_CFQ_GROUP_IOSCHED 4560 blkcg_deactivate_policy(q, &blkcg_policy_cfq); 4561#else 4562 kfree(cfqd->root_group); 4563#endif 4564 kfree(cfqd); 4565} 4566 4567static int cfq_init_queue(struct request_queue *q, struct elevator_type *e) 4568{ 4569 struct cfq_data *cfqd; 4570 struct blkcg_gq *blkg __maybe_unused; 4571 int i, ret; 4572 struct elevator_queue *eq; 4573 4574 eq = elevator_alloc(q, e); 4575 if (!eq) 4576 return -ENOMEM; 4577 4578 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node); 4579 if (!cfqd) { 4580 kobject_put(&eq->kobj); 4581 return -ENOMEM; 4582 } 4583 eq->elevator_data = cfqd; 4584 4585 cfqd->queue = q; 4586 spin_lock_irq(q->queue_lock); 4587 q->elevator = eq; 4588 spin_unlock_irq(q->queue_lock); 4589 4590 /* Init root service tree */ 4591 cfqd->grp_service_tree = CFQ_RB_ROOT; 4592 4593 /* Init root group and prefer root group over other groups by default */ 4594#ifdef CONFIG_CFQ_GROUP_IOSCHED 4595 ret = blkcg_activate_policy(q, &blkcg_policy_cfq); 4596 if (ret) 4597 goto out_free; 4598 4599 cfqd->root_group = blkg_to_cfqg(q->root_blkg); 4600#else 4601 ret = -ENOMEM; 4602 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group), 4603 GFP_KERNEL, cfqd->queue->node); 4604 if (!cfqd->root_group) 4605 goto out_free; 4606 4607 cfq_init_cfqg_base(cfqd->root_group); 4608 cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL; 4609 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL; 4610#endif 4611 4612 /* 4613 * Not strictly needed (since RB_ROOT just clears the node and we 4614 * zeroed cfqd on alloc), but better be safe in case someone decides 4615 * to add magic to the rb code 4616 */ 4617 for (i = 0; i < CFQ_PRIO_LISTS; i++) 4618 cfqd->prio_trees[i] = RB_ROOT; 4619 4620 /* 4621 * Our fallback cfqq if cfq_get_queue() runs into OOM issues. 4622 * Grab a permanent reference to it, so that the normal code flow 4623 * will not attempt to free it. oom_cfqq is linked to root_group 4624 * but shouldn't hold a reference as it'll never be unlinked. Lose 4625 * the reference from linking right away. 4626 */ 4627 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0); 4628 cfqd->oom_cfqq.ref++; 4629 4630 spin_lock_irq(q->queue_lock); 4631 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group); 4632 cfqg_put(cfqd->root_group); 4633 spin_unlock_irq(q->queue_lock); 4634 4635 hrtimer_init(&cfqd->idle_slice_timer, CLOCK_MONOTONIC, 4636 HRTIMER_MODE_REL); 4637 cfqd->idle_slice_timer.function = cfq_idle_slice_timer; 4638 4639 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue); 4640 4641 cfqd->cfq_quantum = cfq_quantum; 4642 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0]; 4643 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1]; 4644 cfqd->cfq_back_max = cfq_back_max; 4645 cfqd->cfq_back_penalty = cfq_back_penalty; 4646 cfqd->cfq_slice[0] = cfq_slice_async; 4647 cfqd->cfq_slice[1] = cfq_slice_sync; 4648 cfqd->cfq_target_latency = cfq_target_latency; 4649 cfqd->cfq_slice_async_rq = cfq_slice_async_rq; 4650 cfqd->cfq_slice_idle = cfq_slice_idle; 4651 cfqd->cfq_group_idle = cfq_group_idle; 4652 cfqd->cfq_latency = 1; 4653 cfqd->hw_tag = -1; 4654 /* 4655 * we optimistically start assuming sync ops weren't delayed in last 4656 * second, in order to have larger depth for async operations. 4657 */ 4658 cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC; 4659 return 0; 4660 4661out_free: 4662 kfree(cfqd); 4663 kobject_put(&eq->kobj); 4664 return ret; 4665} 4666 4667static void cfq_registered_queue(struct request_queue *q) 4668{ 4669 struct elevator_queue *e = q->elevator; 4670 struct cfq_data *cfqd = e->elevator_data; 4671 4672 /* 4673 * Default to IOPS mode with no idling for SSDs 4674 */ 4675 if (blk_queue_nonrot(q)) 4676 cfqd->cfq_slice_idle = 0; 4677 wbt_disable_default(q); 4678} 4679 4680/* 4681 * sysfs parts below --> 4682 */ 4683static ssize_t 4684cfq_var_show(unsigned int var, char *page) 4685{ 4686 return sprintf(page, "%u\n", var); 4687} 4688 4689static void 4690cfq_var_store(unsigned int *var, const char *page) 4691{ 4692 char *p = (char *) page; 4693 4694 *var = simple_strtoul(p, &p, 10); 4695} 4696 4697#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ 4698static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 4699{ \ 4700 struct cfq_data *cfqd = e->elevator_data; \ 4701 u64 __data = __VAR; \ 4702 if (__CONV) \ 4703 __data = div_u64(__data, NSEC_PER_MSEC); \ 4704 return cfq_var_show(__data, (page)); \ 4705} 4706SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0); 4707SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1); 4708SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1); 4709SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0); 4710SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0); 4711SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1); 4712SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1); 4713SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1); 4714SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1); 4715SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0); 4716SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0); 4717SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1); 4718#undef SHOW_FUNCTION 4719 4720#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \ 4721static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 4722{ \ 4723 struct cfq_data *cfqd = e->elevator_data; \ 4724 u64 __data = __VAR; \ 4725 __data = div_u64(__data, NSEC_PER_USEC); \ 4726 return cfq_var_show(__data, (page)); \ 4727} 4728USEC_SHOW_FUNCTION(cfq_slice_idle_us_show, cfqd->cfq_slice_idle); 4729USEC_SHOW_FUNCTION(cfq_group_idle_us_show, cfqd->cfq_group_idle); 4730USEC_SHOW_FUNCTION(cfq_slice_sync_us_show, cfqd->cfq_slice[1]); 4731USEC_SHOW_FUNCTION(cfq_slice_async_us_show, cfqd->cfq_slice[0]); 4732USEC_SHOW_FUNCTION(cfq_target_latency_us_show, cfqd->cfq_target_latency); 4733#undef USEC_SHOW_FUNCTION 4734 4735#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ 4736static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \ 4737{ \ 4738 struct cfq_data *cfqd = e->elevator_data; \ 4739 unsigned int __data, __min = (MIN), __max = (MAX); \ 4740 \ 4741 cfq_var_store(&__data, (page)); \ 4742 if (__data < __min) \ 4743 __data = __min; \ 4744 else if (__data > __max) \ 4745 __data = __max; \ 4746 if (__CONV) \ 4747 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \ 4748 else \ 4749 *(__PTR) = __data; \ 4750 return count; \ 4751} 4752STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0); 4753STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, 4754 UINT_MAX, 1); 4755STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, 4756 UINT_MAX, 1); 4757STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0); 4758STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, 4759 UINT_MAX, 0); 4760STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1); 4761STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1); 4762STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1); 4763STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1); 4764STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, 4765 UINT_MAX, 0); 4766STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0); 4767STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1); 4768#undef STORE_FUNCTION 4769 4770#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ 4771static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \ 4772{ \ 4773 struct cfq_data *cfqd = e->elevator_data; \ 4774 unsigned int __data, __min = (MIN), __max = (MAX); \ 4775 \ 4776 cfq_var_store(&__data, (page)); \ 4777 if (__data < __min) \ 4778 __data = __min; \ 4779 else if (__data > __max) \ 4780 __data = __max; \ 4781 *(__PTR) = (u64)__data * NSEC_PER_USEC; \ 4782 return count; \ 4783} 4784USEC_STORE_FUNCTION(cfq_slice_idle_us_store, &cfqd->cfq_slice_idle, 0, UINT_MAX); 4785USEC_STORE_FUNCTION(cfq_group_idle_us_store, &cfqd->cfq_group_idle, 0, UINT_MAX); 4786USEC_STORE_FUNCTION(cfq_slice_sync_us_store, &cfqd->cfq_slice[1], 1, UINT_MAX); 4787USEC_STORE_FUNCTION(cfq_slice_async_us_store, &cfqd->cfq_slice[0], 1, UINT_MAX); 4788USEC_STORE_FUNCTION(cfq_target_latency_us_store, &cfqd->cfq_target_latency, 1, UINT_MAX); 4789#undef USEC_STORE_FUNCTION 4790 4791#define CFQ_ATTR(name) \ 4792 __ATTR(name, 0644, cfq_##name##_show, cfq_##name##_store) 4793 4794static struct elv_fs_entry cfq_attrs[] = { 4795 CFQ_ATTR(quantum), 4796 CFQ_ATTR(fifo_expire_sync), 4797 CFQ_ATTR(fifo_expire_async), 4798 CFQ_ATTR(back_seek_max), 4799 CFQ_ATTR(back_seek_penalty), 4800 CFQ_ATTR(slice_sync), 4801 CFQ_ATTR(slice_sync_us), 4802 CFQ_ATTR(slice_async), 4803 CFQ_ATTR(slice_async_us), 4804 CFQ_ATTR(slice_async_rq), 4805 CFQ_ATTR(slice_idle), 4806 CFQ_ATTR(slice_idle_us), 4807 CFQ_ATTR(group_idle), 4808 CFQ_ATTR(group_idle_us), 4809 CFQ_ATTR(low_latency), 4810 CFQ_ATTR(target_latency), 4811 CFQ_ATTR(target_latency_us), 4812 __ATTR_NULL 4813}; 4814 4815static struct elevator_type iosched_cfq = { 4816 .ops.sq = { 4817 .elevator_merge_fn = cfq_merge, 4818 .elevator_merged_fn = cfq_merged_request, 4819 .elevator_merge_req_fn = cfq_merged_requests, 4820 .elevator_allow_bio_merge_fn = cfq_allow_bio_merge, 4821 .elevator_allow_rq_merge_fn = cfq_allow_rq_merge, 4822 .elevator_bio_merged_fn = cfq_bio_merged, 4823 .elevator_dispatch_fn = cfq_dispatch_requests, 4824 .elevator_add_req_fn = cfq_insert_request, 4825 .elevator_activate_req_fn = cfq_activate_request, 4826 .elevator_deactivate_req_fn = cfq_deactivate_request, 4827 .elevator_completed_req_fn = cfq_completed_request, 4828 .elevator_former_req_fn = elv_rb_former_request, 4829 .elevator_latter_req_fn = elv_rb_latter_request, 4830 .elevator_init_icq_fn = cfq_init_icq, 4831 .elevator_exit_icq_fn = cfq_exit_icq, 4832 .elevator_set_req_fn = cfq_set_request, 4833 .elevator_put_req_fn = cfq_put_request, 4834 .elevator_may_queue_fn = cfq_may_queue, 4835 .elevator_init_fn = cfq_init_queue, 4836 .elevator_exit_fn = cfq_exit_queue, 4837 .elevator_registered_fn = cfq_registered_queue, 4838 }, 4839 .icq_size = sizeof(struct cfq_io_cq), 4840 .icq_align = __alignof__(struct cfq_io_cq), 4841 .elevator_attrs = cfq_attrs, 4842 .elevator_name = "cfq", 4843 .elevator_owner = THIS_MODULE, 4844}; 4845 4846#ifdef CONFIG_CFQ_GROUP_IOSCHED 4847static struct blkcg_policy blkcg_policy_cfq = { 4848 .dfl_cftypes = cfq_blkcg_files, 4849 .legacy_cftypes = cfq_blkcg_legacy_files, 4850 4851 .cpd_alloc_fn = cfq_cpd_alloc, 4852 .cpd_init_fn = cfq_cpd_init, 4853 .cpd_free_fn = cfq_cpd_free, 4854 .cpd_bind_fn = cfq_cpd_bind, 4855 4856 .pd_alloc_fn = cfq_pd_alloc, 4857 .pd_init_fn = cfq_pd_init, 4858 .pd_offline_fn = cfq_pd_offline, 4859 .pd_free_fn = cfq_pd_free, 4860 .pd_reset_stats_fn = cfq_pd_reset_stats, 4861}; 4862#endif 4863 4864static int __init cfq_init(void) 4865{ 4866 int ret; 4867 4868#ifdef CONFIG_CFQ_GROUP_IOSCHED 4869 ret = blkcg_policy_register(&blkcg_policy_cfq); 4870 if (ret) 4871 return ret; 4872#else 4873 cfq_group_idle = 0; 4874#endif 4875 4876 ret = -ENOMEM; 4877 cfq_pool = KMEM_CACHE(cfq_queue, 0); 4878 if (!cfq_pool) 4879 goto err_pol_unreg; 4880 4881 ret = elv_register(&iosched_cfq); 4882 if (ret) 4883 goto err_free_pool; 4884 4885 return 0; 4886 4887err_free_pool: 4888 kmem_cache_destroy(cfq_pool); 4889err_pol_unreg: 4890#ifdef CONFIG_CFQ_GROUP_IOSCHED 4891 blkcg_policy_unregister(&blkcg_policy_cfq); 4892#endif 4893 return ret; 4894} 4895 4896static void __exit cfq_exit(void) 4897{ 4898#ifdef CONFIG_CFQ_GROUP_IOSCHED 4899 blkcg_policy_unregister(&blkcg_policy_cfq); 4900#endif 4901 elv_unregister(&iosched_cfq); 4902 kmem_cache_destroy(cfq_pool); 4903} 4904 4905module_init(cfq_init); 4906module_exit(cfq_exit); 4907 4908MODULE_AUTHOR("Jens Axboe"); 4909MODULE_LICENSE("GPL"); 4910MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");