at v4.19 1000 lines 26 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_X86_PROCESSOR_H 3#define _ASM_X86_PROCESSOR_H 4 5#include <asm/processor-flags.h> 6 7/* Forward declaration, a strange C thing */ 8struct task_struct; 9struct mm_struct; 10struct vm86; 11 12#include <asm/math_emu.h> 13#include <asm/segment.h> 14#include <asm/types.h> 15#include <uapi/asm/sigcontext.h> 16#include <asm/current.h> 17#include <asm/cpufeatures.h> 18#include <asm/page.h> 19#include <asm/pgtable_types.h> 20#include <asm/percpu.h> 21#include <asm/msr.h> 22#include <asm/desc_defs.h> 23#include <asm/nops.h> 24#include <asm/special_insns.h> 25#include <asm/fpu/types.h> 26#include <asm/unwind_hints.h> 27 28#include <linux/personality.h> 29#include <linux/cache.h> 30#include <linux/threads.h> 31#include <linux/math64.h> 32#include <linux/err.h> 33#include <linux/irqflags.h> 34#include <linux/mem_encrypt.h> 35 36/* 37 * We handle most unaligned accesses in hardware. On the other hand 38 * unaligned DMA can be quite expensive on some Nehalem processors. 39 * 40 * Based on this we disable the IP header alignment in network drivers. 41 */ 42#define NET_IP_ALIGN 0 43 44#define HBP_NUM 4 45/* 46 * Default implementation of macro that returns current 47 * instruction pointer ("program counter"). 48 */ 49static inline void *current_text_addr(void) 50{ 51 void *pc; 52 53 asm volatile("mov $1f, %0; 1:":"=r" (pc)); 54 55 return pc; 56} 57 58/* 59 * These alignment constraints are for performance in the vSMP case, 60 * but in the task_struct case we must also meet hardware imposed 61 * alignment requirements of the FPU state: 62 */ 63#ifdef CONFIG_X86_VSMP 64# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 65# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 66#else 67# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 68# define ARCH_MIN_MMSTRUCT_ALIGN 0 69#endif 70 71enum tlb_infos { 72 ENTRIES, 73 NR_INFO 74}; 75 76extern u16 __read_mostly tlb_lli_4k[NR_INFO]; 77extern u16 __read_mostly tlb_lli_2m[NR_INFO]; 78extern u16 __read_mostly tlb_lli_4m[NR_INFO]; 79extern u16 __read_mostly tlb_lld_4k[NR_INFO]; 80extern u16 __read_mostly tlb_lld_2m[NR_INFO]; 81extern u16 __read_mostly tlb_lld_4m[NR_INFO]; 82extern u16 __read_mostly tlb_lld_1g[NR_INFO]; 83 84/* 85 * CPU type and hardware bug flags. Kept separately for each CPU. 86 * Members of this structure are referenced in head_32.S, so think twice 87 * before touching them. [mj] 88 */ 89 90struct cpuinfo_x86 { 91 __u8 x86; /* CPU family */ 92 __u8 x86_vendor; /* CPU vendor */ 93 __u8 x86_model; 94 __u8 x86_stepping; 95#ifdef CONFIG_X86_64 96 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 97 int x86_tlbsize; 98#endif 99 __u8 x86_virt_bits; 100 __u8 x86_phys_bits; 101 /* CPUID returned core id bits: */ 102 __u8 x86_coreid_bits; 103 __u8 cu_id; 104 /* Max extended CPUID function supported: */ 105 __u32 extended_cpuid_level; 106 /* Maximum supported CPUID level, -1=no CPUID: */ 107 int cpuid_level; 108 __u32 x86_capability[NCAPINTS + NBUGINTS]; 109 char x86_vendor_id[16]; 110 char x86_model_id[64]; 111 /* in KB - valid for CPUS which support this call: */ 112 unsigned int x86_cache_size; 113 int x86_cache_alignment; /* In bytes */ 114 /* Cache QoS architectural values: */ 115 int x86_cache_max_rmid; /* max index */ 116 int x86_cache_occ_scale; /* scale to bytes */ 117 int x86_power; 118 unsigned long loops_per_jiffy; 119 /* cpuid returned max cores value: */ 120 u16 x86_max_cores; 121 u16 apicid; 122 u16 initial_apicid; 123 u16 x86_clflush_size; 124 /* number of cores as seen by the OS: */ 125 u16 booted_cores; 126 /* Physical processor id: */ 127 u16 phys_proc_id; 128 /* Logical processor id: */ 129 u16 logical_proc_id; 130 /* Core id: */ 131 u16 cpu_core_id; 132 /* Index into per_cpu list: */ 133 u16 cpu_index; 134 u32 microcode; 135 /* Address space bits used by the cache internally */ 136 u8 x86_cache_bits; 137 unsigned initialized : 1; 138} __randomize_layout; 139 140struct cpuid_regs { 141 u32 eax, ebx, ecx, edx; 142}; 143 144enum cpuid_regs_idx { 145 CPUID_EAX = 0, 146 CPUID_EBX, 147 CPUID_ECX, 148 CPUID_EDX, 149}; 150 151#define X86_VENDOR_INTEL 0 152#define X86_VENDOR_CYRIX 1 153#define X86_VENDOR_AMD 2 154#define X86_VENDOR_UMC 3 155#define X86_VENDOR_CENTAUR 5 156#define X86_VENDOR_TRANSMETA 7 157#define X86_VENDOR_NSC 8 158#define X86_VENDOR_NUM 9 159 160#define X86_VENDOR_UNKNOWN 0xff 161 162/* 163 * capabilities of CPUs 164 */ 165extern struct cpuinfo_x86 boot_cpu_data; 166extern struct cpuinfo_x86 new_cpu_data; 167 168extern struct x86_hw_tss doublefault_tss; 169extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; 170extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; 171 172#ifdef CONFIG_SMP 173DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 174#define cpu_data(cpu) per_cpu(cpu_info, cpu) 175#else 176#define cpu_info boot_cpu_data 177#define cpu_data(cpu) boot_cpu_data 178#endif 179 180extern const struct seq_operations cpuinfo_op; 181 182#define cache_line_size() (boot_cpu_data.x86_cache_alignment) 183 184extern void cpu_detect(struct cpuinfo_x86 *c); 185 186static inline unsigned long long l1tf_pfn_limit(void) 187{ 188 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT); 189} 190 191extern void early_cpu_init(void); 192extern void identify_boot_cpu(void); 193extern void identify_secondary_cpu(struct cpuinfo_x86 *); 194extern void print_cpu_info(struct cpuinfo_x86 *); 195void print_cpu_msr(struct cpuinfo_x86 *); 196 197#ifdef CONFIG_X86_32 198extern int have_cpuid_p(void); 199#else 200static inline int have_cpuid_p(void) 201{ 202 return 1; 203} 204#endif 205static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, 206 unsigned int *ecx, unsigned int *edx) 207{ 208 /* ecx is often an input as well as an output. */ 209 asm volatile("cpuid" 210 : "=a" (*eax), 211 "=b" (*ebx), 212 "=c" (*ecx), 213 "=d" (*edx) 214 : "0" (*eax), "2" (*ecx) 215 : "memory"); 216} 217 218#define native_cpuid_reg(reg) \ 219static inline unsigned int native_cpuid_##reg(unsigned int op) \ 220{ \ 221 unsigned int eax = op, ebx, ecx = 0, edx; \ 222 \ 223 native_cpuid(&eax, &ebx, &ecx, &edx); \ 224 \ 225 return reg; \ 226} 227 228/* 229 * Native CPUID functions returning a single datum. 230 */ 231native_cpuid_reg(eax) 232native_cpuid_reg(ebx) 233native_cpuid_reg(ecx) 234native_cpuid_reg(edx) 235 236/* 237 * Friendlier CR3 helpers. 238 */ 239static inline unsigned long read_cr3_pa(void) 240{ 241 return __read_cr3() & CR3_ADDR_MASK; 242} 243 244static inline unsigned long native_read_cr3_pa(void) 245{ 246 return __native_read_cr3() & CR3_ADDR_MASK; 247} 248 249static inline void load_cr3(pgd_t *pgdir) 250{ 251 write_cr3(__sme_pa(pgdir)); 252} 253 254/* 255 * Note that while the legacy 'TSS' name comes from 'Task State Segment', 256 * on modern x86 CPUs the TSS also holds information important to 64-bit mode, 257 * unrelated to the task-switch mechanism: 258 */ 259#ifdef CONFIG_X86_32 260/* This is the TSS defined by the hardware. */ 261struct x86_hw_tss { 262 unsigned short back_link, __blh; 263 unsigned long sp0; 264 unsigned short ss0, __ss0h; 265 unsigned long sp1; 266 267 /* 268 * We don't use ring 1, so ss1 is a convenient scratch space in 269 * the same cacheline as sp0. We use ss1 to cache the value in 270 * MSR_IA32_SYSENTER_CS. When we context switch 271 * MSR_IA32_SYSENTER_CS, we first check if the new value being 272 * written matches ss1, and, if it's not, then we wrmsr the new 273 * value and update ss1. 274 * 275 * The only reason we context switch MSR_IA32_SYSENTER_CS is 276 * that we set it to zero in vm86 tasks to avoid corrupting the 277 * stack if we were to go through the sysenter path from vm86 278 * mode. 279 */ 280 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 281 282 unsigned short __ss1h; 283 unsigned long sp2; 284 unsigned short ss2, __ss2h; 285 unsigned long __cr3; 286 unsigned long ip; 287 unsigned long flags; 288 unsigned long ax; 289 unsigned long cx; 290 unsigned long dx; 291 unsigned long bx; 292 unsigned long sp; 293 unsigned long bp; 294 unsigned long si; 295 unsigned long di; 296 unsigned short es, __esh; 297 unsigned short cs, __csh; 298 unsigned short ss, __ssh; 299 unsigned short ds, __dsh; 300 unsigned short fs, __fsh; 301 unsigned short gs, __gsh; 302 unsigned short ldt, __ldth; 303 unsigned short trace; 304 unsigned short io_bitmap_base; 305 306} __attribute__((packed)); 307#else 308struct x86_hw_tss { 309 u32 reserved1; 310 u64 sp0; 311 312 /* 313 * We store cpu_current_top_of_stack in sp1 so it's always accessible. 314 * Linux does not use ring 1, so sp1 is not otherwise needed. 315 */ 316 u64 sp1; 317 318 u64 sp2; 319 u64 reserved2; 320 u64 ist[7]; 321 u32 reserved3; 322 u32 reserved4; 323 u16 reserved5; 324 u16 io_bitmap_base; 325 326} __attribute__((packed)); 327#endif 328 329/* 330 * IO-bitmap sizes: 331 */ 332#define IO_BITMAP_BITS 65536 333#define IO_BITMAP_BYTES (IO_BITMAP_BITS/8) 334#define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long)) 335#define IO_BITMAP_OFFSET (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss)) 336#define INVALID_IO_BITMAP_OFFSET 0x8000 337 338struct entry_stack { 339 unsigned long words[64]; 340}; 341 342struct entry_stack_page { 343 struct entry_stack stack; 344} __aligned(PAGE_SIZE); 345 346struct tss_struct { 347 /* 348 * The fixed hardware portion. This must not cross a page boundary 349 * at risk of violating the SDM's advice and potentially triggering 350 * errata. 351 */ 352 struct x86_hw_tss x86_tss; 353 354 /* 355 * The extra 1 is there because the CPU will access an 356 * additional byte beyond the end of the IO permission 357 * bitmap. The extra byte must be all 1 bits, and must 358 * be within the limit. 359 */ 360 unsigned long io_bitmap[IO_BITMAP_LONGS + 1]; 361} __aligned(PAGE_SIZE); 362 363DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); 364 365/* 366 * sizeof(unsigned long) coming from an extra "long" at the end 367 * of the iobitmap. 368 * 369 * -1? seg base+limit should be pointing to the address of the 370 * last valid byte 371 */ 372#define __KERNEL_TSS_LIMIT \ 373 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1) 374 375#ifdef CONFIG_X86_32 376DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); 377#else 378/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ 379#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 380#endif 381 382/* 383 * Save the original ist values for checking stack pointers during debugging 384 */ 385struct orig_ist { 386 unsigned long ist[7]; 387}; 388 389#ifdef CONFIG_X86_64 390DECLARE_PER_CPU(struct orig_ist, orig_ist); 391 392union irq_stack_union { 393 char irq_stack[IRQ_STACK_SIZE]; 394 /* 395 * GCC hardcodes the stack canary as %gs:40. Since the 396 * irq_stack is the object at %gs:0, we reserve the bottom 397 * 48 bytes of the irq stack for the canary. 398 */ 399 struct { 400 char gs_base[40]; 401 unsigned long stack_canary; 402 }; 403}; 404 405DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible; 406DECLARE_INIT_PER_CPU(irq_stack_union); 407 408static inline unsigned long cpu_kernelmode_gs_base(int cpu) 409{ 410 return (unsigned long)per_cpu(irq_stack_union.gs_base, cpu); 411} 412 413DECLARE_PER_CPU(char *, irq_stack_ptr); 414DECLARE_PER_CPU(unsigned int, irq_count); 415extern asmlinkage void ignore_sysret(void); 416 417#if IS_ENABLED(CONFIG_KVM) 418/* Save actual FS/GS selectors and bases to current->thread */ 419void save_fsgs_for_kvm(void); 420#endif 421#else /* X86_64 */ 422#ifdef CONFIG_STACKPROTECTOR 423/* 424 * Make sure stack canary segment base is cached-aligned: 425 * "For Intel Atom processors, avoid non zero segment base address 426 * that is not aligned to cache line boundary at all cost." 427 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) 428 */ 429struct stack_canary { 430 char __pad[20]; /* canary at %gs:20 */ 431 unsigned long canary; 432}; 433DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 434#endif 435/* 436 * per-CPU IRQ handling stacks 437 */ 438struct irq_stack { 439 u32 stack[THREAD_SIZE/sizeof(u32)]; 440} __aligned(THREAD_SIZE); 441 442DECLARE_PER_CPU(struct irq_stack *, hardirq_stack); 443DECLARE_PER_CPU(struct irq_stack *, softirq_stack); 444#endif /* X86_64 */ 445 446extern unsigned int fpu_kernel_xstate_size; 447extern unsigned int fpu_user_xstate_size; 448 449struct perf_event; 450 451typedef struct { 452 unsigned long seg; 453} mm_segment_t; 454 455struct thread_struct { 456 /* Cached TLS descriptors: */ 457 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 458#ifdef CONFIG_X86_32 459 unsigned long sp0; 460#endif 461 unsigned long sp; 462#ifdef CONFIG_X86_32 463 unsigned long sysenter_cs; 464#else 465 unsigned short es; 466 unsigned short ds; 467 unsigned short fsindex; 468 unsigned short gsindex; 469#endif 470 471#ifdef CONFIG_X86_64 472 unsigned long fsbase; 473 unsigned long gsbase; 474#else 475 /* 476 * XXX: this could presumably be unsigned short. Alternatively, 477 * 32-bit kernels could be taught to use fsindex instead. 478 */ 479 unsigned long fs; 480 unsigned long gs; 481#endif 482 483 /* Save middle states of ptrace breakpoints */ 484 struct perf_event *ptrace_bps[HBP_NUM]; 485 /* Debug status used for traps, single steps, etc... */ 486 unsigned long debugreg6; 487 /* Keep track of the exact dr7 value set by the user */ 488 unsigned long ptrace_dr7; 489 /* Fault info: */ 490 unsigned long cr2; 491 unsigned long trap_nr; 492 unsigned long error_code; 493#ifdef CONFIG_VM86 494 /* Virtual 86 mode info */ 495 struct vm86 *vm86; 496#endif 497 /* IO permissions: */ 498 unsigned long *io_bitmap_ptr; 499 unsigned long iopl; 500 /* Max allowed port in the bitmap, in bytes: */ 501 unsigned io_bitmap_max; 502 503 mm_segment_t addr_limit; 504 505 unsigned int sig_on_uaccess_err:1; 506 unsigned int uaccess_err:1; /* uaccess failed */ 507 508 /* Floating point and extended processor state */ 509 struct fpu fpu; 510 /* 511 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at 512 * the end. 513 */ 514}; 515 516/* Whitelist the FPU state from the task_struct for hardened usercopy. */ 517static inline void arch_thread_struct_whitelist(unsigned long *offset, 518 unsigned long *size) 519{ 520 *offset = offsetof(struct thread_struct, fpu.state); 521 *size = fpu_kernel_xstate_size; 522} 523 524/* 525 * Thread-synchronous status. 526 * 527 * This is different from the flags in that nobody else 528 * ever touches our thread-synchronous status, so we don't 529 * have to worry about atomic accesses. 530 */ 531#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ 532 533/* 534 * Set IOPL bits in EFLAGS from given mask 535 */ 536static inline void native_set_iopl_mask(unsigned mask) 537{ 538#ifdef CONFIG_X86_32 539 unsigned int reg; 540 541 asm volatile ("pushfl;" 542 "popl %0;" 543 "andl %1, %0;" 544 "orl %2, %0;" 545 "pushl %0;" 546 "popfl" 547 : "=&r" (reg) 548 : "i" (~X86_EFLAGS_IOPL), "r" (mask)); 549#endif 550} 551 552static inline void 553native_load_sp0(unsigned long sp0) 554{ 555 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 556} 557 558static inline void native_swapgs(void) 559{ 560#ifdef CONFIG_X86_64 561 asm volatile("swapgs" ::: "memory"); 562#endif 563} 564 565static inline unsigned long current_top_of_stack(void) 566{ 567 /* 568 * We can't read directly from tss.sp0: sp0 on x86_32 is special in 569 * and around vm86 mode and sp0 on x86_64 is special because of the 570 * entry trampoline. 571 */ 572 return this_cpu_read_stable(cpu_current_top_of_stack); 573} 574 575static inline bool on_thread_stack(void) 576{ 577 return (unsigned long)(current_top_of_stack() - 578 current_stack_pointer) < THREAD_SIZE; 579} 580 581#ifdef CONFIG_PARAVIRT 582#include <asm/paravirt.h> 583#else 584#define __cpuid native_cpuid 585 586static inline void load_sp0(unsigned long sp0) 587{ 588 native_load_sp0(sp0); 589} 590 591#define set_iopl_mask native_set_iopl_mask 592#endif /* CONFIG_PARAVIRT */ 593 594/* Free all resources held by a thread. */ 595extern void release_thread(struct task_struct *); 596 597unsigned long get_wchan(struct task_struct *p); 598 599/* 600 * Generic CPUID function 601 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx 602 * resulting in stale register contents being returned. 603 */ 604static inline void cpuid(unsigned int op, 605 unsigned int *eax, unsigned int *ebx, 606 unsigned int *ecx, unsigned int *edx) 607{ 608 *eax = op; 609 *ecx = 0; 610 __cpuid(eax, ebx, ecx, edx); 611} 612 613/* Some CPUID calls want 'count' to be placed in ecx */ 614static inline void cpuid_count(unsigned int op, int count, 615 unsigned int *eax, unsigned int *ebx, 616 unsigned int *ecx, unsigned int *edx) 617{ 618 *eax = op; 619 *ecx = count; 620 __cpuid(eax, ebx, ecx, edx); 621} 622 623/* 624 * CPUID functions returning a single datum 625 */ 626static inline unsigned int cpuid_eax(unsigned int op) 627{ 628 unsigned int eax, ebx, ecx, edx; 629 630 cpuid(op, &eax, &ebx, &ecx, &edx); 631 632 return eax; 633} 634 635static inline unsigned int cpuid_ebx(unsigned int op) 636{ 637 unsigned int eax, ebx, ecx, edx; 638 639 cpuid(op, &eax, &ebx, &ecx, &edx); 640 641 return ebx; 642} 643 644static inline unsigned int cpuid_ecx(unsigned int op) 645{ 646 unsigned int eax, ebx, ecx, edx; 647 648 cpuid(op, &eax, &ebx, &ecx, &edx); 649 650 return ecx; 651} 652 653static inline unsigned int cpuid_edx(unsigned int op) 654{ 655 unsigned int eax, ebx, ecx, edx; 656 657 cpuid(op, &eax, &ebx, &ecx, &edx); 658 659 return edx; 660} 661 662/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ 663static __always_inline void rep_nop(void) 664{ 665 asm volatile("rep; nop" ::: "memory"); 666} 667 668static __always_inline void cpu_relax(void) 669{ 670 rep_nop(); 671} 672 673/* 674 * This function forces the icache and prefetched instruction stream to 675 * catch up with reality in two very specific cases: 676 * 677 * a) Text was modified using one virtual address and is about to be executed 678 * from the same physical page at a different virtual address. 679 * 680 * b) Text was modified on a different CPU, may subsequently be 681 * executed on this CPU, and you want to make sure the new version 682 * gets executed. This generally means you're calling this in a IPI. 683 * 684 * If you're calling this for a different reason, you're probably doing 685 * it wrong. 686 */ 687static inline void sync_core(void) 688{ 689 /* 690 * There are quite a few ways to do this. IRET-to-self is nice 691 * because it works on every CPU, at any CPL (so it's compatible 692 * with paravirtualization), and it never exits to a hypervisor. 693 * The only down sides are that it's a bit slow (it seems to be 694 * a bit more than 2x slower than the fastest options) and that 695 * it unmasks NMIs. The "push %cs" is needed because, in 696 * paravirtual environments, __KERNEL_CS may not be a valid CS 697 * value when we do IRET directly. 698 * 699 * In case NMI unmasking or performance ever becomes a problem, 700 * the next best option appears to be MOV-to-CR2 and an 701 * unconditional jump. That sequence also works on all CPUs, 702 * but it will fault at CPL3 (i.e. Xen PV). 703 * 704 * CPUID is the conventional way, but it's nasty: it doesn't 705 * exist on some 486-like CPUs, and it usually exits to a 706 * hypervisor. 707 * 708 * Like all of Linux's memory ordering operations, this is a 709 * compiler barrier as well. 710 */ 711#ifdef CONFIG_X86_32 712 asm volatile ( 713 "pushfl\n\t" 714 "pushl %%cs\n\t" 715 "pushl $1f\n\t" 716 "iret\n\t" 717 "1:" 718 : ASM_CALL_CONSTRAINT : : "memory"); 719#else 720 unsigned int tmp; 721 722 asm volatile ( 723 UNWIND_HINT_SAVE 724 "mov %%ss, %0\n\t" 725 "pushq %q0\n\t" 726 "pushq %%rsp\n\t" 727 "addq $8, (%%rsp)\n\t" 728 "pushfq\n\t" 729 "mov %%cs, %0\n\t" 730 "pushq %q0\n\t" 731 "pushq $1f\n\t" 732 "iretq\n\t" 733 UNWIND_HINT_RESTORE 734 "1:" 735 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory"); 736#endif 737} 738 739extern void select_idle_routine(const struct cpuinfo_x86 *c); 740extern void amd_e400_c1e_apic_setup(void); 741 742extern unsigned long boot_option_idle_override; 743 744enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 745 IDLE_POLL}; 746 747extern void enable_sep_cpu(void); 748extern int sysenter_setup(void); 749 750void early_trap_pf_init(void); 751 752/* Defined in head.S */ 753extern struct desc_ptr early_gdt_descr; 754 755extern void switch_to_new_gdt(int); 756extern void load_direct_gdt(int); 757extern void load_fixmap_gdt(int); 758extern void load_percpu_segment(int); 759extern void cpu_init(void); 760 761static inline unsigned long get_debugctlmsr(void) 762{ 763 unsigned long debugctlmsr = 0; 764 765#ifndef CONFIG_X86_DEBUGCTLMSR 766 if (boot_cpu_data.x86 < 6) 767 return 0; 768#endif 769 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 770 771 return debugctlmsr; 772} 773 774static inline void update_debugctlmsr(unsigned long debugctlmsr) 775{ 776#ifndef CONFIG_X86_DEBUGCTLMSR 777 if (boot_cpu_data.x86 < 6) 778 return; 779#endif 780 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 781} 782 783extern void set_task_blockstep(struct task_struct *task, bool on); 784 785/* Boot loader type from the setup header: */ 786extern int bootloader_type; 787extern int bootloader_version; 788 789extern char ignore_fpu_irq; 790 791#define HAVE_ARCH_PICK_MMAP_LAYOUT 1 792#define ARCH_HAS_PREFETCHW 793#define ARCH_HAS_SPINLOCK_PREFETCH 794 795#ifdef CONFIG_X86_32 796# define BASE_PREFETCH "" 797# define ARCH_HAS_PREFETCH 798#else 799# define BASE_PREFETCH "prefetcht0 %P1" 800#endif 801 802/* 803 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 804 * 805 * It's not worth to care about 3dnow prefetches for the K6 806 * because they are microcoded there and very slow. 807 */ 808static inline void prefetch(const void *x) 809{ 810 alternative_input(BASE_PREFETCH, "prefetchnta %P1", 811 X86_FEATURE_XMM, 812 "m" (*(const char *)x)); 813} 814 815/* 816 * 3dnow prefetch to get an exclusive cache line. 817 * Useful for spinlocks to avoid one state transition in the 818 * cache coherency protocol: 819 */ 820static inline void prefetchw(const void *x) 821{ 822 alternative_input(BASE_PREFETCH, "prefetchw %P1", 823 X86_FEATURE_3DNOWPREFETCH, 824 "m" (*(const char *)x)); 825} 826 827static inline void spin_lock_prefetch(const void *x) 828{ 829 prefetchw(x); 830} 831 832#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 833 TOP_OF_KERNEL_STACK_PADDING) 834 835#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) 836 837#define task_pt_regs(task) \ 838({ \ 839 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 840 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 841 ((struct pt_regs *)__ptr) - 1; \ 842}) 843 844#ifdef CONFIG_X86_32 845/* 846 * User space process size: 3GB (default). 847 */ 848#define IA32_PAGE_OFFSET PAGE_OFFSET 849#define TASK_SIZE PAGE_OFFSET 850#define TASK_SIZE_LOW TASK_SIZE 851#define TASK_SIZE_MAX TASK_SIZE 852#define DEFAULT_MAP_WINDOW TASK_SIZE 853#define STACK_TOP TASK_SIZE 854#define STACK_TOP_MAX STACK_TOP 855 856#define INIT_THREAD { \ 857 .sp0 = TOP_OF_INIT_STACK, \ 858 .sysenter_cs = __KERNEL_CS, \ 859 .io_bitmap_ptr = NULL, \ 860 .addr_limit = KERNEL_DS, \ 861} 862 863#define KSTK_ESP(task) (task_pt_regs(task)->sp) 864 865#else 866/* 867 * User space process size. This is the first address outside the user range. 868 * There are a few constraints that determine this: 869 * 870 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical 871 * address, then that syscall will enter the kernel with a 872 * non-canonical return address, and SYSRET will explode dangerously. 873 * We avoid this particular problem by preventing anything executable 874 * from being mapped at the maximum canonical address. 875 * 876 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the 877 * CPUs malfunction if they execute code from the highest canonical page. 878 * They'll speculate right off the end of the canonical space, and 879 * bad things happen. This is worked around in the same way as the 880 * Intel problem. 881 * 882 * With page table isolation enabled, we map the LDT in ... [stay tuned] 883 */ 884#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE) 885 886#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE) 887 888/* This decides where the kernel will search for a free chunk of vm 889 * space during mmap's. 890 */ 891#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \ 892 0xc0000000 : 0xFFFFe000) 893 894#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \ 895 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW) 896#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \ 897 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 898#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ 899 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 900 901#define STACK_TOP TASK_SIZE_LOW 902#define STACK_TOP_MAX TASK_SIZE_MAX 903 904#define INIT_THREAD { \ 905 .addr_limit = KERNEL_DS, \ 906} 907 908extern unsigned long KSTK_ESP(struct task_struct *task); 909 910#endif /* CONFIG_X86_64 */ 911 912extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 913 unsigned long new_sp); 914 915/* 916 * This decides where the kernel will search for a free chunk of vm 917 * space during mmap's. 918 */ 919#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) 920#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) 921 922#define KSTK_EIP(task) (task_pt_regs(task)->ip) 923 924/* Get/set a process' ability to use the timestamp counter instruction */ 925#define GET_TSC_CTL(adr) get_tsc_mode((adr)) 926#define SET_TSC_CTL(val) set_tsc_mode((val)) 927 928extern int get_tsc_mode(unsigned long adr); 929extern int set_tsc_mode(unsigned int val); 930 931DECLARE_PER_CPU(u64, msr_misc_features_shadow); 932 933/* Register/unregister a process' MPX related resource */ 934#define MPX_ENABLE_MANAGEMENT() mpx_enable_management() 935#define MPX_DISABLE_MANAGEMENT() mpx_disable_management() 936 937#ifdef CONFIG_X86_INTEL_MPX 938extern int mpx_enable_management(void); 939extern int mpx_disable_management(void); 940#else 941static inline int mpx_enable_management(void) 942{ 943 return -EINVAL; 944} 945static inline int mpx_disable_management(void) 946{ 947 return -EINVAL; 948} 949#endif /* CONFIG_X86_INTEL_MPX */ 950 951#ifdef CONFIG_CPU_SUP_AMD 952extern u16 amd_get_nb_id(int cpu); 953extern u32 amd_get_nodes_per_socket(void); 954#else 955static inline u16 amd_get_nb_id(int cpu) { return 0; } 956static inline u32 amd_get_nodes_per_socket(void) { return 0; } 957#endif 958 959static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) 960{ 961 uint32_t base, eax, signature[3]; 962 963 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 964 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); 965 966 if (!memcmp(sig, signature, 12) && 967 (leaves == 0 || ((eax - base) >= leaves))) 968 return base; 969 } 970 971 return 0; 972} 973 974extern unsigned long arch_align_stack(unsigned long sp); 975extern void free_init_pages(char *what, unsigned long begin, unsigned long end); 976extern void free_kernel_image_pages(void *begin, void *end); 977 978void default_idle(void); 979#ifdef CONFIG_XEN 980bool xen_set_default_idle(void); 981#else 982#define xen_set_default_idle 0 983#endif 984 985void stop_this_cpu(void *dummy); 986void df_debug(struct pt_regs *regs, long error_code); 987void microcode_check(void); 988 989enum l1tf_mitigations { 990 L1TF_MITIGATION_OFF, 991 L1TF_MITIGATION_FLUSH_NOWARN, 992 L1TF_MITIGATION_FLUSH, 993 L1TF_MITIGATION_FLUSH_NOSMT, 994 L1TF_MITIGATION_FULL, 995 L1TF_MITIGATION_FULL_FORCE 996}; 997 998extern enum l1tf_mitigations l1tf_mitigation; 999 1000#endif /* _ASM_X86_PROCESSOR_H */