at v4.19-rc7 35 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_KERNEL_H 3#define _LINUX_KERNEL_H 4 5 6#include <stdarg.h> 7#include <linux/linkage.h> 8#include <linux/stddef.h> 9#include <linux/types.h> 10#include <linux/compiler.h> 11#include <linux/bitops.h> 12#include <linux/log2.h> 13#include <linux/typecheck.h> 14#include <linux/printk.h> 15#include <linux/build_bug.h> 16#include <asm/byteorder.h> 17#include <uapi/linux/kernel.h> 18 19#define USHRT_MAX ((u16)(~0U)) 20#define SHRT_MAX ((s16)(USHRT_MAX>>1)) 21#define SHRT_MIN ((s16)(-SHRT_MAX - 1)) 22#define INT_MAX ((int)(~0U>>1)) 23#define INT_MIN (-INT_MAX - 1) 24#define UINT_MAX (~0U) 25#define LONG_MAX ((long)(~0UL>>1)) 26#define LONG_MIN (-LONG_MAX - 1) 27#define ULONG_MAX (~0UL) 28#define LLONG_MAX ((long long)(~0ULL>>1)) 29#define LLONG_MIN (-LLONG_MAX - 1) 30#define ULLONG_MAX (~0ULL) 31#define SIZE_MAX (~(size_t)0) 32#define PHYS_ADDR_MAX (~(phys_addr_t)0) 33 34#define U8_MAX ((u8)~0U) 35#define S8_MAX ((s8)(U8_MAX>>1)) 36#define S8_MIN ((s8)(-S8_MAX - 1)) 37#define U16_MAX ((u16)~0U) 38#define S16_MAX ((s16)(U16_MAX>>1)) 39#define S16_MIN ((s16)(-S16_MAX - 1)) 40#define U32_MAX ((u32)~0U) 41#define S32_MAX ((s32)(U32_MAX>>1)) 42#define S32_MIN ((s32)(-S32_MAX - 1)) 43#define U64_MAX ((u64)~0ULL) 44#define S64_MAX ((s64)(U64_MAX>>1)) 45#define S64_MIN ((s64)(-S64_MAX - 1)) 46 47#define STACK_MAGIC 0xdeadbeef 48 49/** 50 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value 51 * @x: value to repeat 52 * 53 * NOTE: @x is not checked for > 0xff; larger values produce odd results. 54 */ 55#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 56 57/* @a is a power of 2 value */ 58#define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 59#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a)) 60#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 61#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 62#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 63 64/* generic data direction definitions */ 65#define READ 0 66#define WRITE 1 67 68/** 69 * ARRAY_SIZE - get the number of elements in array @arr 70 * @arr: array to be sized 71 */ 72#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 73 74#define u64_to_user_ptr(x) ( \ 75{ \ 76 typecheck(u64, x); \ 77 (void __user *)(uintptr_t)x; \ 78} \ 79) 80 81/* 82 * This looks more complex than it should be. But we need to 83 * get the type for the ~ right in round_down (it needs to be 84 * as wide as the result!), and we want to evaluate the macro 85 * arguments just once each. 86 */ 87#define __round_mask(x, y) ((__typeof__(x))((y)-1)) 88/** 89 * round_up - round up to next specified power of 2 90 * @x: the value to round 91 * @y: multiple to round up to (must be a power of 2) 92 * 93 * Rounds @x up to next multiple of @y (which must be a power of 2). 94 * To perform arbitrary rounding up, use roundup() below. 95 */ 96#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 97/** 98 * round_down - round down to next specified power of 2 99 * @x: the value to round 100 * @y: multiple to round down to (must be a power of 2) 101 * 102 * Rounds @x down to next multiple of @y (which must be a power of 2). 103 * To perform arbitrary rounding down, use rounddown() below. 104 */ 105#define round_down(x, y) ((x) & ~__round_mask(x, y)) 106 107/** 108 * FIELD_SIZEOF - get the size of a struct's field 109 * @t: the target struct 110 * @f: the target struct's field 111 * Return: the size of @f in the struct definition without having a 112 * declared instance of @t. 113 */ 114#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 115 116#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 117 118#define DIV_ROUND_DOWN_ULL(ll, d) \ 119 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) 120 121#define DIV_ROUND_UP_ULL(ll, d) DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d)) 122 123#if BITS_PER_LONG == 32 124# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 125#else 126# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 127#endif 128 129/** 130 * roundup - round up to the next specified multiple 131 * @x: the value to up 132 * @y: multiple to round up to 133 * 134 * Rounds @x up to next multiple of @y. If @y will always be a power 135 * of 2, consider using the faster round_up(). 136 * 137 * The `const' here prevents gcc-3.3 from calling __divdi3 138 */ 139#define roundup(x, y) ( \ 140{ \ 141 const typeof(y) __y = y; \ 142 (((x) + (__y - 1)) / __y) * __y; \ 143} \ 144) 145/** 146 * rounddown - round down to next specified multiple 147 * @x: the value to round 148 * @y: multiple to round down to 149 * 150 * Rounds @x down to next multiple of @y. If @y will always be a power 151 * of 2, consider using the faster round_down(). 152 */ 153#define rounddown(x, y) ( \ 154{ \ 155 typeof(x) __x = (x); \ 156 __x - (__x % (y)); \ 157} \ 158) 159 160/* 161 * Divide positive or negative dividend by positive or negative divisor 162 * and round to closest integer. Result is undefined for negative 163 * divisors if the dividend variable type is unsigned and for negative 164 * dividends if the divisor variable type is unsigned. 165 */ 166#define DIV_ROUND_CLOSEST(x, divisor)( \ 167{ \ 168 typeof(x) __x = x; \ 169 typeof(divisor) __d = divisor; \ 170 (((typeof(x))-1) > 0 || \ 171 ((typeof(divisor))-1) > 0 || \ 172 (((__x) > 0) == ((__d) > 0))) ? \ 173 (((__x) + ((__d) / 2)) / (__d)) : \ 174 (((__x) - ((__d) / 2)) / (__d)); \ 175} \ 176) 177/* 178 * Same as above but for u64 dividends. divisor must be a 32-bit 179 * number. 180 */ 181#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 182{ \ 183 typeof(divisor) __d = divisor; \ 184 unsigned long long _tmp = (x) + (__d) / 2; \ 185 do_div(_tmp, __d); \ 186 _tmp; \ 187} \ 188) 189 190/* 191 * Multiplies an integer by a fraction, while avoiding unnecessary 192 * overflow or loss of precision. 193 */ 194#define mult_frac(x, numer, denom)( \ 195{ \ 196 typeof(x) quot = (x) / (denom); \ 197 typeof(x) rem = (x) % (denom); \ 198 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 199} \ 200) 201 202 203#define _RET_IP_ (unsigned long)__builtin_return_address(0) 204#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 205 206#ifdef CONFIG_LBDAF 207# include <asm/div64.h> 208# define sector_div(a, b) do_div(a, b) 209#else 210# define sector_div(n, b)( \ 211{ \ 212 int _res; \ 213 _res = (n) % (b); \ 214 (n) /= (b); \ 215 _res; \ 216} \ 217) 218#endif 219 220/** 221 * upper_32_bits - return bits 32-63 of a number 222 * @n: the number we're accessing 223 * 224 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 225 * the "right shift count >= width of type" warning when that quantity is 226 * 32-bits. 227 */ 228#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 229 230/** 231 * lower_32_bits - return bits 0-31 of a number 232 * @n: the number we're accessing 233 */ 234#define lower_32_bits(n) ((u32)(n)) 235 236struct completion; 237struct pt_regs; 238struct user; 239 240#ifdef CONFIG_PREEMPT_VOLUNTARY 241extern int _cond_resched(void); 242# define might_resched() _cond_resched() 243#else 244# define might_resched() do { } while (0) 245#endif 246 247#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 248 void ___might_sleep(const char *file, int line, int preempt_offset); 249 void __might_sleep(const char *file, int line, int preempt_offset); 250/** 251 * might_sleep - annotation for functions that can sleep 252 * 253 * this macro will print a stack trace if it is executed in an atomic 254 * context (spinlock, irq-handler, ...). 255 * 256 * This is a useful debugging help to be able to catch problems early and not 257 * be bitten later when the calling function happens to sleep when it is not 258 * supposed to. 259 */ 260# define might_sleep() \ 261 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 262# define sched_annotate_sleep() (current->task_state_change = 0) 263#else 264 static inline void ___might_sleep(const char *file, int line, 265 int preempt_offset) { } 266 static inline void __might_sleep(const char *file, int line, 267 int preempt_offset) { } 268# define might_sleep() do { might_resched(); } while (0) 269# define sched_annotate_sleep() do { } while (0) 270#endif 271 272#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 273 274/** 275 * abs - return absolute value of an argument 276 * @x: the value. If it is unsigned type, it is converted to signed type first. 277 * char is treated as if it was signed (regardless of whether it really is) 278 * but the macro's return type is preserved as char. 279 * 280 * Return: an absolute value of x. 281 */ 282#define abs(x) __abs_choose_expr(x, long long, \ 283 __abs_choose_expr(x, long, \ 284 __abs_choose_expr(x, int, \ 285 __abs_choose_expr(x, short, \ 286 __abs_choose_expr(x, char, \ 287 __builtin_choose_expr( \ 288 __builtin_types_compatible_p(typeof(x), char), \ 289 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 290 ((void)0))))))) 291 292#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 293 __builtin_types_compatible_p(typeof(x), signed type) || \ 294 __builtin_types_compatible_p(typeof(x), unsigned type), \ 295 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 296 297/** 298 * reciprocal_scale - "scale" a value into range [0, ep_ro) 299 * @val: value 300 * @ep_ro: right open interval endpoint 301 * 302 * Perform a "reciprocal multiplication" in order to "scale" a value into 303 * range [0, @ep_ro), where the upper interval endpoint is right-open. 304 * This is useful, e.g. for accessing a index of an array containing 305 * @ep_ro elements, for example. Think of it as sort of modulus, only that 306 * the result isn't that of modulo. ;) Note that if initial input is a 307 * small value, then result will return 0. 308 * 309 * Return: a result based on @val in interval [0, @ep_ro). 310 */ 311static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 312{ 313 return (u32)(((u64) val * ep_ro) >> 32); 314} 315 316#if defined(CONFIG_MMU) && \ 317 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 318#define might_fault() __might_fault(__FILE__, __LINE__) 319void __might_fault(const char *file, int line); 320#else 321static inline void might_fault(void) { } 322#endif 323 324extern struct atomic_notifier_head panic_notifier_list; 325extern long (*panic_blink)(int state); 326__printf(1, 2) 327void panic(const char *fmt, ...) __noreturn __cold; 328void nmi_panic(struct pt_regs *regs, const char *msg); 329extern void oops_enter(void); 330extern void oops_exit(void); 331void print_oops_end_marker(void); 332extern int oops_may_print(void); 333void do_exit(long error_code) __noreturn; 334void complete_and_exit(struct completion *, long) __noreturn; 335 336#ifdef CONFIG_ARCH_HAS_REFCOUNT 337void refcount_error_report(struct pt_regs *regs, const char *err); 338#else 339static inline void refcount_error_report(struct pt_regs *regs, const char *err) 340{ } 341#endif 342 343/* Internal, do not use. */ 344int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 345int __must_check _kstrtol(const char *s, unsigned int base, long *res); 346 347int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 348int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 349 350/** 351 * kstrtoul - convert a string to an unsigned long 352 * @s: The start of the string. The string must be null-terminated, and may also 353 * include a single newline before its terminating null. The first character 354 * may also be a plus sign, but not a minus sign. 355 * @base: The number base to use. The maximum supported base is 16. If base is 356 * given as 0, then the base of the string is automatically detected with the 357 * conventional semantics - If it begins with 0x the number will be parsed as a 358 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 359 * parsed as an octal number. Otherwise it will be parsed as a decimal. 360 * @res: Where to write the result of the conversion on success. 361 * 362 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 363 * Used as a replacement for the obsolete simple_strtoull. Return code must 364 * be checked. 365*/ 366static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 367{ 368 /* 369 * We want to shortcut function call, but 370 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 371 */ 372 if (sizeof(unsigned long) == sizeof(unsigned long long) && 373 __alignof__(unsigned long) == __alignof__(unsigned long long)) 374 return kstrtoull(s, base, (unsigned long long *)res); 375 else 376 return _kstrtoul(s, base, res); 377} 378 379/** 380 * kstrtol - convert a string to a long 381 * @s: The start of the string. The string must be null-terminated, and may also 382 * include a single newline before its terminating null. The first character 383 * may also be a plus sign or a minus sign. 384 * @base: The number base to use. The maximum supported base is 16. If base is 385 * given as 0, then the base of the string is automatically detected with the 386 * conventional semantics - If it begins with 0x the number will be parsed as a 387 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 388 * parsed as an octal number. Otherwise it will be parsed as a decimal. 389 * @res: Where to write the result of the conversion on success. 390 * 391 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 392 * Used as a replacement for the obsolete simple_strtoull. Return code must 393 * be checked. 394 */ 395static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 396{ 397 /* 398 * We want to shortcut function call, but 399 * __builtin_types_compatible_p(long, long long) = 0. 400 */ 401 if (sizeof(long) == sizeof(long long) && 402 __alignof__(long) == __alignof__(long long)) 403 return kstrtoll(s, base, (long long *)res); 404 else 405 return _kstrtol(s, base, res); 406} 407 408int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 409int __must_check kstrtoint(const char *s, unsigned int base, int *res); 410 411static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 412{ 413 return kstrtoull(s, base, res); 414} 415 416static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 417{ 418 return kstrtoll(s, base, res); 419} 420 421static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 422{ 423 return kstrtouint(s, base, res); 424} 425 426static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 427{ 428 return kstrtoint(s, base, res); 429} 430 431int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 432int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 433int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 434int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 435int __must_check kstrtobool(const char *s, bool *res); 436 437int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 438int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 439int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 440int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 441int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 442int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 443int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 444int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 445int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 446int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 447int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); 448 449static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 450{ 451 return kstrtoull_from_user(s, count, base, res); 452} 453 454static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 455{ 456 return kstrtoll_from_user(s, count, base, res); 457} 458 459static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 460{ 461 return kstrtouint_from_user(s, count, base, res); 462} 463 464static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 465{ 466 return kstrtoint_from_user(s, count, base, res); 467} 468 469/* Obsolete, do not use. Use kstrto<foo> instead */ 470 471extern unsigned long simple_strtoul(const char *,char **,unsigned int); 472extern long simple_strtol(const char *,char **,unsigned int); 473extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 474extern long long simple_strtoll(const char *,char **,unsigned int); 475 476extern int num_to_str(char *buf, int size, 477 unsigned long long num, unsigned int width); 478 479/* lib/printf utilities */ 480 481extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 482extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 483extern __printf(3, 4) 484int snprintf(char *buf, size_t size, const char *fmt, ...); 485extern __printf(3, 0) 486int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 487extern __printf(3, 4) 488int scnprintf(char *buf, size_t size, const char *fmt, ...); 489extern __printf(3, 0) 490int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 491extern __printf(2, 3) __malloc 492char *kasprintf(gfp_t gfp, const char *fmt, ...); 493extern __printf(2, 0) __malloc 494char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 495extern __printf(2, 0) 496const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); 497 498extern __scanf(2, 3) 499int sscanf(const char *, const char *, ...); 500extern __scanf(2, 0) 501int vsscanf(const char *, const char *, va_list); 502 503extern int get_option(char **str, int *pint); 504extern char *get_options(const char *str, int nints, int *ints); 505extern unsigned long long memparse(const char *ptr, char **retptr); 506extern bool parse_option_str(const char *str, const char *option); 507extern char *next_arg(char *args, char **param, char **val); 508 509extern int core_kernel_text(unsigned long addr); 510extern int init_kernel_text(unsigned long addr); 511extern int core_kernel_data(unsigned long addr); 512extern int __kernel_text_address(unsigned long addr); 513extern int kernel_text_address(unsigned long addr); 514extern int func_ptr_is_kernel_text(void *ptr); 515 516unsigned long int_sqrt(unsigned long); 517 518#if BITS_PER_LONG < 64 519u32 int_sqrt64(u64 x); 520#else 521static inline u32 int_sqrt64(u64 x) 522{ 523 return (u32)int_sqrt(x); 524} 525#endif 526 527extern void bust_spinlocks(int yes); 528extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 529extern int panic_timeout; 530extern int panic_on_oops; 531extern int panic_on_unrecovered_nmi; 532extern int panic_on_io_nmi; 533extern int panic_on_warn; 534extern int sysctl_panic_on_rcu_stall; 535extern int sysctl_panic_on_stackoverflow; 536 537extern bool crash_kexec_post_notifiers; 538 539/* 540 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It 541 * holds a CPU number which is executing panic() currently. A value of 542 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). 543 */ 544extern atomic_t panic_cpu; 545#define PANIC_CPU_INVALID -1 546 547/* 548 * Only to be used by arch init code. If the user over-wrote the default 549 * CONFIG_PANIC_TIMEOUT, honor it. 550 */ 551static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 552{ 553 if (panic_timeout == arch_default_timeout) 554 panic_timeout = timeout; 555} 556extern const char *print_tainted(void); 557enum lockdep_ok { 558 LOCKDEP_STILL_OK, 559 LOCKDEP_NOW_UNRELIABLE 560}; 561extern void add_taint(unsigned flag, enum lockdep_ok); 562extern int test_taint(unsigned flag); 563extern unsigned long get_taint(void); 564extern int root_mountflags; 565 566extern bool early_boot_irqs_disabled; 567 568/* 569 * Values used for system_state. Ordering of the states must not be changed 570 * as code checks for <, <=, >, >= STATE. 571 */ 572extern enum system_states { 573 SYSTEM_BOOTING, 574 SYSTEM_SCHEDULING, 575 SYSTEM_RUNNING, 576 SYSTEM_HALT, 577 SYSTEM_POWER_OFF, 578 SYSTEM_RESTART, 579 SYSTEM_SUSPEND, 580} system_state; 581 582/* This cannot be an enum because some may be used in assembly source. */ 583#define TAINT_PROPRIETARY_MODULE 0 584#define TAINT_FORCED_MODULE 1 585#define TAINT_CPU_OUT_OF_SPEC 2 586#define TAINT_FORCED_RMMOD 3 587#define TAINT_MACHINE_CHECK 4 588#define TAINT_BAD_PAGE 5 589#define TAINT_USER 6 590#define TAINT_DIE 7 591#define TAINT_OVERRIDDEN_ACPI_TABLE 8 592#define TAINT_WARN 9 593#define TAINT_CRAP 10 594#define TAINT_FIRMWARE_WORKAROUND 11 595#define TAINT_OOT_MODULE 12 596#define TAINT_UNSIGNED_MODULE 13 597#define TAINT_SOFTLOCKUP 14 598#define TAINT_LIVEPATCH 15 599#define TAINT_AUX 16 600#define TAINT_RANDSTRUCT 17 601#define TAINT_FLAGS_COUNT 18 602 603struct taint_flag { 604 char c_true; /* character printed when tainted */ 605 char c_false; /* character printed when not tainted */ 606 bool module; /* also show as a per-module taint flag */ 607}; 608 609extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; 610 611extern const char hex_asc[]; 612#define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 613#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 614 615static inline char *hex_byte_pack(char *buf, u8 byte) 616{ 617 *buf++ = hex_asc_hi(byte); 618 *buf++ = hex_asc_lo(byte); 619 return buf; 620} 621 622extern const char hex_asc_upper[]; 623#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 624#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 625 626static inline char *hex_byte_pack_upper(char *buf, u8 byte) 627{ 628 *buf++ = hex_asc_upper_hi(byte); 629 *buf++ = hex_asc_upper_lo(byte); 630 return buf; 631} 632 633extern int hex_to_bin(char ch); 634extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 635extern char *bin2hex(char *dst, const void *src, size_t count); 636 637bool mac_pton(const char *s, u8 *mac); 638 639/* 640 * General tracing related utility functions - trace_printk(), 641 * tracing_on/tracing_off and tracing_start()/tracing_stop 642 * 643 * Use tracing_on/tracing_off when you want to quickly turn on or off 644 * tracing. It simply enables or disables the recording of the trace events. 645 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 646 * file, which gives a means for the kernel and userspace to interact. 647 * Place a tracing_off() in the kernel where you want tracing to end. 648 * From user space, examine the trace, and then echo 1 > tracing_on 649 * to continue tracing. 650 * 651 * tracing_stop/tracing_start has slightly more overhead. It is used 652 * by things like suspend to ram where disabling the recording of the 653 * trace is not enough, but tracing must actually stop because things 654 * like calling smp_processor_id() may crash the system. 655 * 656 * Most likely, you want to use tracing_on/tracing_off. 657 */ 658 659enum ftrace_dump_mode { 660 DUMP_NONE, 661 DUMP_ALL, 662 DUMP_ORIG, 663}; 664 665#ifdef CONFIG_TRACING 666void tracing_on(void); 667void tracing_off(void); 668int tracing_is_on(void); 669void tracing_snapshot(void); 670void tracing_snapshot_alloc(void); 671 672extern void tracing_start(void); 673extern void tracing_stop(void); 674 675static inline __printf(1, 2) 676void ____trace_printk_check_format(const char *fmt, ...) 677{ 678} 679#define __trace_printk_check_format(fmt, args...) \ 680do { \ 681 if (0) \ 682 ____trace_printk_check_format(fmt, ##args); \ 683} while (0) 684 685/** 686 * trace_printk - printf formatting in the ftrace buffer 687 * @fmt: the printf format for printing 688 * 689 * Note: __trace_printk is an internal function for trace_printk() and 690 * the @ip is passed in via the trace_printk() macro. 691 * 692 * This function allows a kernel developer to debug fast path sections 693 * that printk is not appropriate for. By scattering in various 694 * printk like tracing in the code, a developer can quickly see 695 * where problems are occurring. 696 * 697 * This is intended as a debugging tool for the developer only. 698 * Please refrain from leaving trace_printks scattered around in 699 * your code. (Extra memory is used for special buffers that are 700 * allocated when trace_printk() is used.) 701 * 702 * A little optimization trick is done here. If there's only one 703 * argument, there's no need to scan the string for printf formats. 704 * The trace_puts() will suffice. But how can we take advantage of 705 * using trace_puts() when trace_printk() has only one argument? 706 * By stringifying the args and checking the size we can tell 707 * whether or not there are args. __stringify((__VA_ARGS__)) will 708 * turn into "()\0" with a size of 3 when there are no args, anything 709 * else will be bigger. All we need to do is define a string to this, 710 * and then take its size and compare to 3. If it's bigger, use 711 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 712 * let gcc optimize the rest. 713 */ 714 715#define trace_printk(fmt, ...) \ 716do { \ 717 char _______STR[] = __stringify((__VA_ARGS__)); \ 718 if (sizeof(_______STR) > 3) \ 719 do_trace_printk(fmt, ##__VA_ARGS__); \ 720 else \ 721 trace_puts(fmt); \ 722} while (0) 723 724#define do_trace_printk(fmt, args...) \ 725do { \ 726 static const char *trace_printk_fmt __used \ 727 __attribute__((section("__trace_printk_fmt"))) = \ 728 __builtin_constant_p(fmt) ? fmt : NULL; \ 729 \ 730 __trace_printk_check_format(fmt, ##args); \ 731 \ 732 if (__builtin_constant_p(fmt)) \ 733 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 734 else \ 735 __trace_printk(_THIS_IP_, fmt, ##args); \ 736} while (0) 737 738extern __printf(2, 3) 739int __trace_bprintk(unsigned long ip, const char *fmt, ...); 740 741extern __printf(2, 3) 742int __trace_printk(unsigned long ip, const char *fmt, ...); 743 744/** 745 * trace_puts - write a string into the ftrace buffer 746 * @str: the string to record 747 * 748 * Note: __trace_bputs is an internal function for trace_puts and 749 * the @ip is passed in via the trace_puts macro. 750 * 751 * This is similar to trace_printk() but is made for those really fast 752 * paths that a developer wants the least amount of "Heisenbug" effects, 753 * where the processing of the print format is still too much. 754 * 755 * This function allows a kernel developer to debug fast path sections 756 * that printk is not appropriate for. By scattering in various 757 * printk like tracing in the code, a developer can quickly see 758 * where problems are occurring. 759 * 760 * This is intended as a debugging tool for the developer only. 761 * Please refrain from leaving trace_puts scattered around in 762 * your code. (Extra memory is used for special buffers that are 763 * allocated when trace_puts() is used.) 764 * 765 * Returns: 0 if nothing was written, positive # if string was. 766 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 767 */ 768 769#define trace_puts(str) ({ \ 770 static const char *trace_printk_fmt __used \ 771 __attribute__((section("__trace_printk_fmt"))) = \ 772 __builtin_constant_p(str) ? str : NULL; \ 773 \ 774 if (__builtin_constant_p(str)) \ 775 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 776 else \ 777 __trace_puts(_THIS_IP_, str, strlen(str)); \ 778}) 779extern int __trace_bputs(unsigned long ip, const char *str); 780extern int __trace_puts(unsigned long ip, const char *str, int size); 781 782extern void trace_dump_stack(int skip); 783 784/* 785 * The double __builtin_constant_p is because gcc will give us an error 786 * if we try to allocate the static variable to fmt if it is not a 787 * constant. Even with the outer if statement. 788 */ 789#define ftrace_vprintk(fmt, vargs) \ 790do { \ 791 if (__builtin_constant_p(fmt)) { \ 792 static const char *trace_printk_fmt __used \ 793 __attribute__((section("__trace_printk_fmt"))) = \ 794 __builtin_constant_p(fmt) ? fmt : NULL; \ 795 \ 796 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 797 } else \ 798 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 799} while (0) 800 801extern __printf(2, 0) int 802__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 803 804extern __printf(2, 0) int 805__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 806 807extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 808#else 809static inline void tracing_start(void) { } 810static inline void tracing_stop(void) { } 811static inline void trace_dump_stack(int skip) { } 812 813static inline void tracing_on(void) { } 814static inline void tracing_off(void) { } 815static inline int tracing_is_on(void) { return 0; } 816static inline void tracing_snapshot(void) { } 817static inline void tracing_snapshot_alloc(void) { } 818 819static inline __printf(1, 2) 820int trace_printk(const char *fmt, ...) 821{ 822 return 0; 823} 824static __printf(1, 0) inline int 825ftrace_vprintk(const char *fmt, va_list ap) 826{ 827 return 0; 828} 829static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 830#endif /* CONFIG_TRACING */ 831 832/* 833 * min()/max()/clamp() macros must accomplish three things: 834 * 835 * - avoid multiple evaluations of the arguments (so side-effects like 836 * "x++" happen only once) when non-constant. 837 * - perform strict type-checking (to generate warnings instead of 838 * nasty runtime surprises). See the "unnecessary" pointer comparison 839 * in __typecheck(). 840 * - retain result as a constant expressions when called with only 841 * constant expressions (to avoid tripping VLA warnings in stack 842 * allocation usage). 843 */ 844#define __typecheck(x, y) \ 845 (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1))) 846 847/* 848 * This returns a constant expression while determining if an argument is 849 * a constant expression, most importantly without evaluating the argument. 850 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de> 851 */ 852#define __is_constexpr(x) \ 853 (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) 854 855#define __no_side_effects(x, y) \ 856 (__is_constexpr(x) && __is_constexpr(y)) 857 858#define __safe_cmp(x, y) \ 859 (__typecheck(x, y) && __no_side_effects(x, y)) 860 861#define __cmp(x, y, op) ((x) op (y) ? (x) : (y)) 862 863#define __cmp_once(x, y, unique_x, unique_y, op) ({ \ 864 typeof(x) unique_x = (x); \ 865 typeof(y) unique_y = (y); \ 866 __cmp(unique_x, unique_y, op); }) 867 868#define __careful_cmp(x, y, op) \ 869 __builtin_choose_expr(__safe_cmp(x, y), \ 870 __cmp(x, y, op), \ 871 __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op)) 872 873/** 874 * min - return minimum of two values of the same or compatible types 875 * @x: first value 876 * @y: second value 877 */ 878#define min(x, y) __careful_cmp(x, y, <) 879 880/** 881 * max - return maximum of two values of the same or compatible types 882 * @x: first value 883 * @y: second value 884 */ 885#define max(x, y) __careful_cmp(x, y, >) 886 887/** 888 * min3 - return minimum of three values 889 * @x: first value 890 * @y: second value 891 * @z: third value 892 */ 893#define min3(x, y, z) min((typeof(x))min(x, y), z) 894 895/** 896 * max3 - return maximum of three values 897 * @x: first value 898 * @y: second value 899 * @z: third value 900 */ 901#define max3(x, y, z) max((typeof(x))max(x, y), z) 902 903/** 904 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 905 * @x: value1 906 * @y: value2 907 */ 908#define min_not_zero(x, y) ({ \ 909 typeof(x) __x = (x); \ 910 typeof(y) __y = (y); \ 911 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 912 913/** 914 * clamp - return a value clamped to a given range with strict typechecking 915 * @val: current value 916 * @lo: lowest allowable value 917 * @hi: highest allowable value 918 * 919 * This macro does strict typechecking of @lo/@hi to make sure they are of the 920 * same type as @val. See the unnecessary pointer comparisons. 921 */ 922#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 923 924/* 925 * ..and if you can't take the strict 926 * types, you can specify one yourself. 927 * 928 * Or not use min/max/clamp at all, of course. 929 */ 930 931/** 932 * min_t - return minimum of two values, using the specified type 933 * @type: data type to use 934 * @x: first value 935 * @y: second value 936 */ 937#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <) 938 939/** 940 * max_t - return maximum of two values, using the specified type 941 * @type: data type to use 942 * @x: first value 943 * @y: second value 944 */ 945#define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >) 946 947/** 948 * clamp_t - return a value clamped to a given range using a given type 949 * @type: the type of variable to use 950 * @val: current value 951 * @lo: minimum allowable value 952 * @hi: maximum allowable value 953 * 954 * This macro does no typechecking and uses temporary variables of type 955 * @type to make all the comparisons. 956 */ 957#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) 958 959/** 960 * clamp_val - return a value clamped to a given range using val's type 961 * @val: current value 962 * @lo: minimum allowable value 963 * @hi: maximum allowable value 964 * 965 * This macro does no typechecking and uses temporary variables of whatever 966 * type the input argument @val is. This is useful when @val is an unsigned 967 * type and @lo and @hi are literals that will otherwise be assigned a signed 968 * integer type. 969 */ 970#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) 971 972 973/** 974 * swap - swap values of @a and @b 975 * @a: first value 976 * @b: second value 977 */ 978#define swap(a, b) \ 979 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 980 981/* This counts to 12. Any more, it will return 13th argument. */ 982#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n 983#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 984 985#define __CONCAT(a, b) a ## b 986#define CONCATENATE(a, b) __CONCAT(a, b) 987 988/** 989 * container_of - cast a member of a structure out to the containing structure 990 * @ptr: the pointer to the member. 991 * @type: the type of the container struct this is embedded in. 992 * @member: the name of the member within the struct. 993 * 994 */ 995#define container_of(ptr, type, member) ({ \ 996 void *__mptr = (void *)(ptr); \ 997 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 998 !__same_type(*(ptr), void), \ 999 "pointer type mismatch in container_of()"); \ 1000 ((type *)(__mptr - offsetof(type, member))); }) 1001 1002/** 1003 * container_of_safe - cast a member of a structure out to the containing structure 1004 * @ptr: the pointer to the member. 1005 * @type: the type of the container struct this is embedded in. 1006 * @member: the name of the member within the struct. 1007 * 1008 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged. 1009 */ 1010#define container_of_safe(ptr, type, member) ({ \ 1011 void *__mptr = (void *)(ptr); \ 1012 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 1013 !__same_type(*(ptr), void), \ 1014 "pointer type mismatch in container_of()"); \ 1015 IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \ 1016 ((type *)(__mptr - offsetof(type, member))); }) 1017 1018/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 1019#ifdef CONFIG_FTRACE_MCOUNT_RECORD 1020# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 1021#endif 1022 1023/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ 1024#define VERIFY_OCTAL_PERMISSIONS(perms) \ 1025 (BUILD_BUG_ON_ZERO((perms) < 0) + \ 1026 BUILD_BUG_ON_ZERO((perms) > 0777) + \ 1027 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ 1028 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ 1029 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ 1030 /* USER_WRITABLE >= GROUP_WRITABLE */ \ 1031 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ 1032 /* OTHER_WRITABLE? Generally considered a bad idea. */ \ 1033 BUILD_BUG_ON_ZERO((perms) & 2) + \ 1034 (perms)) 1035#endif