at v4.19-rc7 41 kB view raw
1/* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 25#ifndef _HYPERV_H 26#define _HYPERV_H 27 28#include <uapi/linux/hyperv.h> 29 30#include <linux/types.h> 31#include <linux/scatterlist.h> 32#include <linux/list.h> 33#include <linux/timer.h> 34#include <linux/completion.h> 35#include <linux/device.h> 36#include <linux/mod_devicetable.h> 37#include <linux/interrupt.h> 38#include <linux/reciprocal_div.h> 39 40#define MAX_PAGE_BUFFER_COUNT 32 41#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 42 43#pragma pack(push, 1) 44 45/* Single-page buffer */ 46struct hv_page_buffer { 47 u32 len; 48 u32 offset; 49 u64 pfn; 50}; 51 52/* Multiple-page buffer */ 53struct hv_multipage_buffer { 54 /* Length and Offset determines the # of pfns in the array */ 55 u32 len; 56 u32 offset; 57 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 58}; 59 60/* 61 * Multiple-page buffer array; the pfn array is variable size: 62 * The number of entries in the PFN array is determined by 63 * "len" and "offset". 64 */ 65struct hv_mpb_array { 66 /* Length and Offset determines the # of pfns in the array */ 67 u32 len; 68 u32 offset; 69 u64 pfn_array[]; 70}; 71 72/* 0x18 includes the proprietary packet header */ 73#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 74 (sizeof(struct hv_page_buffer) * \ 75 MAX_PAGE_BUFFER_COUNT)) 76#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 77 sizeof(struct hv_multipage_buffer)) 78 79 80#pragma pack(pop) 81 82struct hv_ring_buffer { 83 /* Offset in bytes from the start of ring data below */ 84 u32 write_index; 85 86 /* Offset in bytes from the start of ring data below */ 87 u32 read_index; 88 89 u32 interrupt_mask; 90 91 /* 92 * WS2012/Win8 and later versions of Hyper-V implement interrupt 93 * driven flow management. The feature bit feat_pending_send_sz 94 * is set by the host on the host->guest ring buffer, and by the 95 * guest on the guest->host ring buffer. 96 * 97 * The meaning of the feature bit is a bit complex in that it has 98 * semantics that apply to both ring buffers. If the guest sets 99 * the feature bit in the guest->host ring buffer, the guest is 100 * telling the host that: 101 * 1) It will set the pending_send_sz field in the guest->host ring 102 * buffer when it is waiting for space to become available, and 103 * 2) It will read the pending_send_sz field in the host->guest 104 * ring buffer and interrupt the host when it frees enough space 105 * 106 * Similarly, if the host sets the feature bit in the host->guest 107 * ring buffer, the host is telling the guest that: 108 * 1) It will set the pending_send_sz field in the host->guest ring 109 * buffer when it is waiting for space to become available, and 110 * 2) It will read the pending_send_sz field in the guest->host 111 * ring buffer and interrupt the guest when it frees enough space 112 * 113 * If either the guest or host does not set the feature bit that it 114 * owns, that guest or host must do polling if it encounters a full 115 * ring buffer, and not signal the other end with an interrupt. 116 */ 117 u32 pending_send_sz; 118 u32 reserved1[12]; 119 union { 120 struct { 121 u32 feat_pending_send_sz:1; 122 }; 123 u32 value; 124 } feature_bits; 125 126 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 127 u8 reserved2[4028]; 128 129 /* 130 * Ring data starts here + RingDataStartOffset 131 * !!! DO NOT place any fields below this !!! 132 */ 133 u8 buffer[0]; 134} __packed; 135 136struct hv_ring_buffer_info { 137 struct hv_ring_buffer *ring_buffer; 138 u32 ring_size; /* Include the shared header */ 139 struct reciprocal_value ring_size_div10_reciprocal; 140 spinlock_t ring_lock; 141 142 u32 ring_datasize; /* < ring_size */ 143 u32 priv_read_index; 144}; 145 146 147static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi) 148{ 149 u32 read_loc, write_loc, dsize, read; 150 151 dsize = rbi->ring_datasize; 152 read_loc = rbi->ring_buffer->read_index; 153 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 154 155 read = write_loc >= read_loc ? (write_loc - read_loc) : 156 (dsize - read_loc) + write_loc; 157 158 return read; 159} 160 161static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi) 162{ 163 u32 read_loc, write_loc, dsize, write; 164 165 dsize = rbi->ring_datasize; 166 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 167 write_loc = rbi->ring_buffer->write_index; 168 169 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 170 read_loc - write_loc; 171 return write; 172} 173 174static inline u32 hv_get_avail_to_write_percent( 175 const struct hv_ring_buffer_info *rbi) 176{ 177 u32 avail_write = hv_get_bytes_to_write(rbi); 178 179 return reciprocal_divide( 180 (avail_write << 3) + (avail_write << 1), 181 rbi->ring_size_div10_reciprocal); 182} 183 184/* 185 * VMBUS version is 32 bit entity broken up into 186 * two 16 bit quantities: major_number. minor_number. 187 * 188 * 0 . 13 (Windows Server 2008) 189 * 1 . 1 (Windows 7) 190 * 2 . 4 (Windows 8) 191 * 3 . 0 (Windows 8 R2) 192 * 4 . 0 (Windows 10) 193 * 5 . 0 (Newer Windows 10) 194 */ 195 196#define VERSION_WS2008 ((0 << 16) | (13)) 197#define VERSION_WIN7 ((1 << 16) | (1)) 198#define VERSION_WIN8 ((2 << 16) | (4)) 199#define VERSION_WIN8_1 ((3 << 16) | (0)) 200#define VERSION_WIN10 ((4 << 16) | (0)) 201#define VERSION_WIN10_V5 ((5 << 16) | (0)) 202 203#define VERSION_INVAL -1 204 205#define VERSION_CURRENT VERSION_WIN10_V5 206 207/* Make maximum size of pipe payload of 16K */ 208#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 209 210/* Define PipeMode values. */ 211#define VMBUS_PIPE_TYPE_BYTE 0x00000000 212#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 213 214/* The size of the user defined data buffer for non-pipe offers. */ 215#define MAX_USER_DEFINED_BYTES 120 216 217/* The size of the user defined data buffer for pipe offers. */ 218#define MAX_PIPE_USER_DEFINED_BYTES 116 219 220/* 221 * At the center of the Channel Management library is the Channel Offer. This 222 * struct contains the fundamental information about an offer. 223 */ 224struct vmbus_channel_offer { 225 uuid_le if_type; 226 uuid_le if_instance; 227 228 /* 229 * These two fields are not currently used. 230 */ 231 u64 reserved1; 232 u64 reserved2; 233 234 u16 chn_flags; 235 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 236 237 union { 238 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 239 struct { 240 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 241 } std; 242 243 /* 244 * Pipes: 245 * The following sructure is an integrated pipe protocol, which 246 * is implemented on top of standard user-defined data. Pipe 247 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 248 * use. 249 */ 250 struct { 251 u32 pipe_mode; 252 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 253 } pipe; 254 } u; 255 /* 256 * The sub_channel_index is defined in win8. 257 */ 258 u16 sub_channel_index; 259 u16 reserved3; 260} __packed; 261 262/* Server Flags */ 263#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 264#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 265#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 266#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 267#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 268#define VMBUS_CHANNEL_PARENT_OFFER 0x200 269#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 270#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 271 272struct vmpacket_descriptor { 273 u16 type; 274 u16 offset8; 275 u16 len8; 276 u16 flags; 277 u64 trans_id; 278} __packed; 279 280struct vmpacket_header { 281 u32 prev_pkt_start_offset; 282 struct vmpacket_descriptor descriptor; 283} __packed; 284 285struct vmtransfer_page_range { 286 u32 byte_count; 287 u32 byte_offset; 288} __packed; 289 290struct vmtransfer_page_packet_header { 291 struct vmpacket_descriptor d; 292 u16 xfer_pageset_id; 293 u8 sender_owns_set; 294 u8 reserved; 295 u32 range_cnt; 296 struct vmtransfer_page_range ranges[1]; 297} __packed; 298 299struct vmgpadl_packet_header { 300 struct vmpacket_descriptor d; 301 u32 gpadl; 302 u32 reserved; 303} __packed; 304 305struct vmadd_remove_transfer_page_set { 306 struct vmpacket_descriptor d; 307 u32 gpadl; 308 u16 xfer_pageset_id; 309 u16 reserved; 310} __packed; 311 312/* 313 * This structure defines a range in guest physical space that can be made to 314 * look virtually contiguous. 315 */ 316struct gpa_range { 317 u32 byte_count; 318 u32 byte_offset; 319 u64 pfn_array[0]; 320}; 321 322/* 323 * This is the format for an Establish Gpadl packet, which contains a handle by 324 * which this GPADL will be known and a set of GPA ranges associated with it. 325 * This can be converted to a MDL by the guest OS. If there are multiple GPA 326 * ranges, then the resulting MDL will be "chained," representing multiple VA 327 * ranges. 328 */ 329struct vmestablish_gpadl { 330 struct vmpacket_descriptor d; 331 u32 gpadl; 332 u32 range_cnt; 333 struct gpa_range range[1]; 334} __packed; 335 336/* 337 * This is the format for a Teardown Gpadl packet, which indicates that the 338 * GPADL handle in the Establish Gpadl packet will never be referenced again. 339 */ 340struct vmteardown_gpadl { 341 struct vmpacket_descriptor d; 342 u32 gpadl; 343 u32 reserved; /* for alignment to a 8-byte boundary */ 344} __packed; 345 346/* 347 * This is the format for a GPA-Direct packet, which contains a set of GPA 348 * ranges, in addition to commands and/or data. 349 */ 350struct vmdata_gpa_direct { 351 struct vmpacket_descriptor d; 352 u32 reserved; 353 u32 range_cnt; 354 struct gpa_range range[1]; 355} __packed; 356 357/* This is the format for a Additional Data Packet. */ 358struct vmadditional_data { 359 struct vmpacket_descriptor d; 360 u64 total_bytes; 361 u32 offset; 362 u32 byte_cnt; 363 unsigned char data[1]; 364} __packed; 365 366union vmpacket_largest_possible_header { 367 struct vmpacket_descriptor simple_hdr; 368 struct vmtransfer_page_packet_header xfer_page_hdr; 369 struct vmgpadl_packet_header gpadl_hdr; 370 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 371 struct vmestablish_gpadl establish_gpadl_hdr; 372 struct vmteardown_gpadl teardown_gpadl_hdr; 373 struct vmdata_gpa_direct data_gpa_direct_hdr; 374}; 375 376#define VMPACKET_DATA_START_ADDRESS(__packet) \ 377 (void *)(((unsigned char *)__packet) + \ 378 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 379 380#define VMPACKET_DATA_LENGTH(__packet) \ 381 ((((struct vmpacket_descriptor)__packet)->len8 - \ 382 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 383 384#define VMPACKET_TRANSFER_MODE(__packet) \ 385 (((struct IMPACT)__packet)->type) 386 387enum vmbus_packet_type { 388 VM_PKT_INVALID = 0x0, 389 VM_PKT_SYNCH = 0x1, 390 VM_PKT_ADD_XFER_PAGESET = 0x2, 391 VM_PKT_RM_XFER_PAGESET = 0x3, 392 VM_PKT_ESTABLISH_GPADL = 0x4, 393 VM_PKT_TEARDOWN_GPADL = 0x5, 394 VM_PKT_DATA_INBAND = 0x6, 395 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 396 VM_PKT_DATA_USING_GPADL = 0x8, 397 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 398 VM_PKT_CANCEL_REQUEST = 0xa, 399 VM_PKT_COMP = 0xb, 400 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 401 VM_PKT_ADDITIONAL_DATA = 0xd 402}; 403 404#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 405 406 407/* Version 1 messages */ 408enum vmbus_channel_message_type { 409 CHANNELMSG_INVALID = 0, 410 CHANNELMSG_OFFERCHANNEL = 1, 411 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 412 CHANNELMSG_REQUESTOFFERS = 3, 413 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 414 CHANNELMSG_OPENCHANNEL = 5, 415 CHANNELMSG_OPENCHANNEL_RESULT = 6, 416 CHANNELMSG_CLOSECHANNEL = 7, 417 CHANNELMSG_GPADL_HEADER = 8, 418 CHANNELMSG_GPADL_BODY = 9, 419 CHANNELMSG_GPADL_CREATED = 10, 420 CHANNELMSG_GPADL_TEARDOWN = 11, 421 CHANNELMSG_GPADL_TORNDOWN = 12, 422 CHANNELMSG_RELID_RELEASED = 13, 423 CHANNELMSG_INITIATE_CONTACT = 14, 424 CHANNELMSG_VERSION_RESPONSE = 15, 425 CHANNELMSG_UNLOAD = 16, 426 CHANNELMSG_UNLOAD_RESPONSE = 17, 427 CHANNELMSG_18 = 18, 428 CHANNELMSG_19 = 19, 429 CHANNELMSG_20 = 20, 430 CHANNELMSG_TL_CONNECT_REQUEST = 21, 431 CHANNELMSG_COUNT 432}; 433 434struct vmbus_channel_message_header { 435 enum vmbus_channel_message_type msgtype; 436 u32 padding; 437} __packed; 438 439/* Query VMBus Version parameters */ 440struct vmbus_channel_query_vmbus_version { 441 struct vmbus_channel_message_header header; 442 u32 version; 443} __packed; 444 445/* VMBus Version Supported parameters */ 446struct vmbus_channel_version_supported { 447 struct vmbus_channel_message_header header; 448 u8 version_supported; 449} __packed; 450 451/* Offer Channel parameters */ 452struct vmbus_channel_offer_channel { 453 struct vmbus_channel_message_header header; 454 struct vmbus_channel_offer offer; 455 u32 child_relid; 456 u8 monitorid; 457 /* 458 * win7 and beyond splits this field into a bit field. 459 */ 460 u8 monitor_allocated:1; 461 u8 reserved:7; 462 /* 463 * These are new fields added in win7 and later. 464 * Do not access these fields without checking the 465 * negotiated protocol. 466 * 467 * If "is_dedicated_interrupt" is set, we must not set the 468 * associated bit in the channel bitmap while sending the 469 * interrupt to the host. 470 * 471 * connection_id is to be used in signaling the host. 472 */ 473 u16 is_dedicated_interrupt:1; 474 u16 reserved1:15; 475 u32 connection_id; 476} __packed; 477 478/* Rescind Offer parameters */ 479struct vmbus_channel_rescind_offer { 480 struct vmbus_channel_message_header header; 481 u32 child_relid; 482} __packed; 483 484static inline u32 485hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi) 486{ 487 return rbi->ring_buffer->pending_send_sz; 488} 489 490/* 491 * Request Offer -- no parameters, SynIC message contains the partition ID 492 * Set Snoop -- no parameters, SynIC message contains the partition ID 493 * Clear Snoop -- no parameters, SynIC message contains the partition ID 494 * All Offers Delivered -- no parameters, SynIC message contains the partition 495 * ID 496 * Flush Client -- no parameters, SynIC message contains the partition ID 497 */ 498 499/* Open Channel parameters */ 500struct vmbus_channel_open_channel { 501 struct vmbus_channel_message_header header; 502 503 /* Identifies the specific VMBus channel that is being opened. */ 504 u32 child_relid; 505 506 /* ID making a particular open request at a channel offer unique. */ 507 u32 openid; 508 509 /* GPADL for the channel's ring buffer. */ 510 u32 ringbuffer_gpadlhandle; 511 512 /* 513 * Starting with win8, this field will be used to specify 514 * the target virtual processor on which to deliver the interrupt for 515 * the host to guest communication. 516 * Prior to win8, incoming channel interrupts would only 517 * be delivered on cpu 0. Setting this value to 0 would 518 * preserve the earlier behavior. 519 */ 520 u32 target_vp; 521 522 /* 523 * The upstream ring buffer begins at offset zero in the memory 524 * described by RingBufferGpadlHandle. The downstream ring buffer 525 * follows it at this offset (in pages). 526 */ 527 u32 downstream_ringbuffer_pageoffset; 528 529 /* User-specific data to be passed along to the server endpoint. */ 530 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 531} __packed; 532 533/* Open Channel Result parameters */ 534struct vmbus_channel_open_result { 535 struct vmbus_channel_message_header header; 536 u32 child_relid; 537 u32 openid; 538 u32 status; 539} __packed; 540 541/* Close channel parameters; */ 542struct vmbus_channel_close_channel { 543 struct vmbus_channel_message_header header; 544 u32 child_relid; 545} __packed; 546 547/* Channel Message GPADL */ 548#define GPADL_TYPE_RING_BUFFER 1 549#define GPADL_TYPE_SERVER_SAVE_AREA 2 550#define GPADL_TYPE_TRANSACTION 8 551 552/* 553 * The number of PFNs in a GPADL message is defined by the number of 554 * pages that would be spanned by ByteCount and ByteOffset. If the 555 * implied number of PFNs won't fit in this packet, there will be a 556 * follow-up packet that contains more. 557 */ 558struct vmbus_channel_gpadl_header { 559 struct vmbus_channel_message_header header; 560 u32 child_relid; 561 u32 gpadl; 562 u16 range_buflen; 563 u16 rangecount; 564 struct gpa_range range[0]; 565} __packed; 566 567/* This is the followup packet that contains more PFNs. */ 568struct vmbus_channel_gpadl_body { 569 struct vmbus_channel_message_header header; 570 u32 msgnumber; 571 u32 gpadl; 572 u64 pfn[0]; 573} __packed; 574 575struct vmbus_channel_gpadl_created { 576 struct vmbus_channel_message_header header; 577 u32 child_relid; 578 u32 gpadl; 579 u32 creation_status; 580} __packed; 581 582struct vmbus_channel_gpadl_teardown { 583 struct vmbus_channel_message_header header; 584 u32 child_relid; 585 u32 gpadl; 586} __packed; 587 588struct vmbus_channel_gpadl_torndown { 589 struct vmbus_channel_message_header header; 590 u32 gpadl; 591} __packed; 592 593struct vmbus_channel_relid_released { 594 struct vmbus_channel_message_header header; 595 u32 child_relid; 596} __packed; 597 598struct vmbus_channel_initiate_contact { 599 struct vmbus_channel_message_header header; 600 u32 vmbus_version_requested; 601 u32 target_vcpu; /* The VCPU the host should respond to */ 602 union { 603 u64 interrupt_page; 604 struct { 605 u8 msg_sint; 606 u8 padding1[3]; 607 u32 padding2; 608 }; 609 }; 610 u64 monitor_page1; 611 u64 monitor_page2; 612} __packed; 613 614/* Hyper-V socket: guest's connect()-ing to host */ 615struct vmbus_channel_tl_connect_request { 616 struct vmbus_channel_message_header header; 617 uuid_le guest_endpoint_id; 618 uuid_le host_service_id; 619} __packed; 620 621struct vmbus_channel_version_response { 622 struct vmbus_channel_message_header header; 623 u8 version_supported; 624 625 u8 connection_state; 626 u16 padding; 627 628 /* 629 * On new hosts that support VMBus protocol 5.0, we must use 630 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message, 631 * and for subsequent messages, we must use the Message Connection ID 632 * field in the host-returned Version Response Message. 633 * 634 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1). 635 */ 636 u32 msg_conn_id; 637} __packed; 638 639enum vmbus_channel_state { 640 CHANNEL_OFFER_STATE, 641 CHANNEL_OPENING_STATE, 642 CHANNEL_OPEN_STATE, 643 CHANNEL_OPENED_STATE, 644}; 645 646/* 647 * Represents each channel msg on the vmbus connection This is a 648 * variable-size data structure depending on the msg type itself 649 */ 650struct vmbus_channel_msginfo { 651 /* Bookkeeping stuff */ 652 struct list_head msglistentry; 653 654 /* So far, this is only used to handle gpadl body message */ 655 struct list_head submsglist; 656 657 /* Synchronize the request/response if needed */ 658 struct completion waitevent; 659 struct vmbus_channel *waiting_channel; 660 union { 661 struct vmbus_channel_version_supported version_supported; 662 struct vmbus_channel_open_result open_result; 663 struct vmbus_channel_gpadl_torndown gpadl_torndown; 664 struct vmbus_channel_gpadl_created gpadl_created; 665 struct vmbus_channel_version_response version_response; 666 } response; 667 668 u32 msgsize; 669 /* 670 * The channel message that goes out on the "wire". 671 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 672 */ 673 unsigned char msg[0]; 674}; 675 676struct vmbus_close_msg { 677 struct vmbus_channel_msginfo info; 678 struct vmbus_channel_close_channel msg; 679}; 680 681/* Define connection identifier type. */ 682union hv_connection_id { 683 u32 asu32; 684 struct { 685 u32 id:24; 686 u32 reserved:8; 687 } u; 688}; 689 690enum hv_numa_policy { 691 HV_BALANCED = 0, 692 HV_LOCALIZED, 693}; 694 695enum vmbus_device_type { 696 HV_IDE = 0, 697 HV_SCSI, 698 HV_FC, 699 HV_NIC, 700 HV_ND, 701 HV_PCIE, 702 HV_FB, 703 HV_KBD, 704 HV_MOUSE, 705 HV_KVP, 706 HV_TS, 707 HV_HB, 708 HV_SHUTDOWN, 709 HV_FCOPY, 710 HV_BACKUP, 711 HV_DM, 712 HV_UNKNOWN, 713}; 714 715struct vmbus_device { 716 u16 dev_type; 717 uuid_le guid; 718 bool perf_device; 719}; 720 721struct vmbus_channel { 722 struct list_head listentry; 723 724 struct hv_device *device_obj; 725 726 enum vmbus_channel_state state; 727 728 struct vmbus_channel_offer_channel offermsg; 729 /* 730 * These are based on the OfferMsg.MonitorId. 731 * Save it here for easy access. 732 */ 733 u8 monitor_grp; 734 u8 monitor_bit; 735 736 bool rescind; /* got rescind msg */ 737 struct completion rescind_event; 738 739 u32 ringbuffer_gpadlhandle; 740 741 /* Allocated memory for ring buffer */ 742 void *ringbuffer_pages; 743 u32 ringbuffer_pagecount; 744 struct hv_ring_buffer_info outbound; /* send to parent */ 745 struct hv_ring_buffer_info inbound; /* receive from parent */ 746 747 struct vmbus_close_msg close_msg; 748 749 /* Statistics */ 750 u64 interrupts; /* Host to Guest interrupts */ 751 u64 sig_events; /* Guest to Host events */ 752 753 /* Channel callback's invoked in softirq context */ 754 struct tasklet_struct callback_event; 755 void (*onchannel_callback)(void *context); 756 void *channel_callback_context; 757 758 /* 759 * A channel can be marked for one of three modes of reading: 760 * BATCHED - callback called from taslket and should read 761 * channel until empty. Interrupts from the host 762 * are masked while read is in process (default). 763 * DIRECT - callback called from tasklet (softirq). 764 * ISR - callback called in interrupt context and must 765 * invoke its own deferred processing. 766 * Host interrupts are disabled and must be re-enabled 767 * when ring is empty. 768 */ 769 enum hv_callback_mode { 770 HV_CALL_BATCHED, 771 HV_CALL_DIRECT, 772 HV_CALL_ISR 773 } callback_mode; 774 775 bool is_dedicated_interrupt; 776 u64 sig_event; 777 778 /* 779 * Starting with win8, this field will be used to specify 780 * the target virtual processor on which to deliver the interrupt for 781 * the host to guest communication. 782 * Prior to win8, incoming channel interrupts would only 783 * be delivered on cpu 0. Setting this value to 0 would 784 * preserve the earlier behavior. 785 */ 786 u32 target_vp; 787 /* The corresponding CPUID in the guest */ 788 u32 target_cpu; 789 /* 790 * State to manage the CPU affiliation of channels. 791 */ 792 struct cpumask alloced_cpus_in_node; 793 int numa_node; 794 /* 795 * Support for sub-channels. For high performance devices, 796 * it will be useful to have multiple sub-channels to support 797 * a scalable communication infrastructure with the host. 798 * The support for sub-channels is implemented as an extention 799 * to the current infrastructure. 800 * The initial offer is considered the primary channel and this 801 * offer message will indicate if the host supports sub-channels. 802 * The guest is free to ask for sub-channels to be offerred and can 803 * open these sub-channels as a normal "primary" channel. However, 804 * all sub-channels will have the same type and instance guids as the 805 * primary channel. Requests sent on a given channel will result in a 806 * response on the same channel. 807 */ 808 809 /* 810 * Sub-channel creation callback. This callback will be called in 811 * process context when a sub-channel offer is received from the host. 812 * The guest can open the sub-channel in the context of this callback. 813 */ 814 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 815 816 /* 817 * Channel rescind callback. Some channels (the hvsock ones), need to 818 * register a callback which is invoked in vmbus_onoffer_rescind(). 819 */ 820 void (*chn_rescind_callback)(struct vmbus_channel *channel); 821 822 /* 823 * The spinlock to protect the structure. It is being used to protect 824 * test-and-set access to various attributes of the structure as well 825 * as all sc_list operations. 826 */ 827 spinlock_t lock; 828 /* 829 * All Sub-channels of a primary channel are linked here. 830 */ 831 struct list_head sc_list; 832 /* 833 * Current number of sub-channels. 834 */ 835 int num_sc; 836 /* 837 * Number of a sub-channel (position within sc_list) which is supposed 838 * to be used as the next outgoing channel. 839 */ 840 int next_oc; 841 /* 842 * The primary channel this sub-channel belongs to. 843 * This will be NULL for the primary channel. 844 */ 845 struct vmbus_channel *primary_channel; 846 /* 847 * Support per-channel state for use by vmbus drivers. 848 */ 849 void *per_channel_state; 850 /* 851 * To support per-cpu lookup mapping of relid to channel, 852 * link up channels based on their CPU affinity. 853 */ 854 struct list_head percpu_list; 855 856 /* 857 * Defer freeing channel until after all cpu's have 858 * gone through grace period. 859 */ 860 struct rcu_head rcu; 861 862 /* 863 * For sysfs per-channel properties. 864 */ 865 struct kobject kobj; 866 867 /* 868 * For performance critical channels (storage, networking 869 * etc,), Hyper-V has a mechanism to enhance the throughput 870 * at the expense of latency: 871 * When the host is to be signaled, we just set a bit in a shared page 872 * and this bit will be inspected by the hypervisor within a certain 873 * window and if the bit is set, the host will be signaled. The window 874 * of time is the monitor latency - currently around 100 usecs. This 875 * mechanism improves throughput by: 876 * 877 * A) Making the host more efficient - each time it wakes up, 878 * potentially it will process morev number of packets. The 879 * monitor latency allows a batch to build up. 880 * B) By deferring the hypercall to signal, we will also minimize 881 * the interrupts. 882 * 883 * Clearly, these optimizations improve throughput at the expense of 884 * latency. Furthermore, since the channel is shared for both 885 * control and data messages, control messages currently suffer 886 * unnecessary latency adversley impacting performance and boot 887 * time. To fix this issue, permit tagging the channel as being 888 * in "low latency" mode. In this mode, we will bypass the monitor 889 * mechanism. 890 */ 891 bool low_latency; 892 893 /* 894 * NUMA distribution policy: 895 * We support two policies: 896 * 1) Balanced: Here all performance critical channels are 897 * distributed evenly amongst all the NUMA nodes. 898 * This policy will be the default policy. 899 * 2) Localized: All channels of a given instance of a 900 * performance critical service will be assigned CPUs 901 * within a selected NUMA node. 902 */ 903 enum hv_numa_policy affinity_policy; 904 905 bool probe_done; 906 907}; 908 909static inline bool is_hvsock_channel(const struct vmbus_channel *c) 910{ 911 return !!(c->offermsg.offer.chn_flags & 912 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 913} 914 915static inline void set_channel_affinity_state(struct vmbus_channel *c, 916 enum hv_numa_policy policy) 917{ 918 c->affinity_policy = policy; 919} 920 921static inline void set_channel_read_mode(struct vmbus_channel *c, 922 enum hv_callback_mode mode) 923{ 924 c->callback_mode = mode; 925} 926 927static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 928{ 929 c->per_channel_state = s; 930} 931 932static inline void *get_per_channel_state(struct vmbus_channel *c) 933{ 934 return c->per_channel_state; 935} 936 937static inline void set_channel_pending_send_size(struct vmbus_channel *c, 938 u32 size) 939{ 940 c->outbound.ring_buffer->pending_send_sz = size; 941} 942 943static inline void set_low_latency_mode(struct vmbus_channel *c) 944{ 945 c->low_latency = true; 946} 947 948static inline void clear_low_latency_mode(struct vmbus_channel *c) 949{ 950 c->low_latency = false; 951} 952 953void vmbus_onmessage(void *context); 954 955int vmbus_request_offers(void); 956 957/* 958 * APIs for managing sub-channels. 959 */ 960 961void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 962 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 963 964void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 965 void (*chn_rescind_cb)(struct vmbus_channel *)); 966 967/* 968 * Retrieve the (sub) channel on which to send an outgoing request. 969 * When a primary channel has multiple sub-channels, we choose a 970 * channel whose VCPU binding is closest to the VCPU on which 971 * this call is being made. 972 */ 973struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary); 974 975/* 976 * Check if sub-channels have already been offerred. This API will be useful 977 * when the driver is unloaded after establishing sub-channels. In this case, 978 * when the driver is re-loaded, the driver would have to check if the 979 * subchannels have already been established before attempting to request 980 * the creation of sub-channels. 981 * This function returns TRUE to indicate that subchannels have already been 982 * created. 983 * This function should be invoked after setting the callback function for 984 * sub-channel creation. 985 */ 986bool vmbus_are_subchannels_present(struct vmbus_channel *primary); 987 988/* The format must be the same as struct vmdata_gpa_direct */ 989struct vmbus_channel_packet_page_buffer { 990 u16 type; 991 u16 dataoffset8; 992 u16 length8; 993 u16 flags; 994 u64 transactionid; 995 u32 reserved; 996 u32 rangecount; 997 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 998} __packed; 999 1000/* The format must be the same as struct vmdata_gpa_direct */ 1001struct vmbus_channel_packet_multipage_buffer { 1002 u16 type; 1003 u16 dataoffset8; 1004 u16 length8; 1005 u16 flags; 1006 u64 transactionid; 1007 u32 reserved; 1008 u32 rangecount; /* Always 1 in this case */ 1009 struct hv_multipage_buffer range; 1010} __packed; 1011 1012/* The format must be the same as struct vmdata_gpa_direct */ 1013struct vmbus_packet_mpb_array { 1014 u16 type; 1015 u16 dataoffset8; 1016 u16 length8; 1017 u16 flags; 1018 u64 transactionid; 1019 u32 reserved; 1020 u32 rangecount; /* Always 1 in this case */ 1021 struct hv_mpb_array range; 1022} __packed; 1023 1024 1025extern int vmbus_open(struct vmbus_channel *channel, 1026 u32 send_ringbuffersize, 1027 u32 recv_ringbuffersize, 1028 void *userdata, 1029 u32 userdatalen, 1030 void (*onchannel_callback)(void *context), 1031 void *context); 1032 1033extern void vmbus_close(struct vmbus_channel *channel); 1034 1035extern int vmbus_sendpacket(struct vmbus_channel *channel, 1036 void *buffer, 1037 u32 bufferLen, 1038 u64 requestid, 1039 enum vmbus_packet_type type, 1040 u32 flags); 1041 1042extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1043 struct hv_page_buffer pagebuffers[], 1044 u32 pagecount, 1045 void *buffer, 1046 u32 bufferlen, 1047 u64 requestid); 1048 1049extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1050 struct vmbus_packet_mpb_array *mpb, 1051 u32 desc_size, 1052 void *buffer, 1053 u32 bufferlen, 1054 u64 requestid); 1055 1056extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1057 void *kbuffer, 1058 u32 size, 1059 u32 *gpadl_handle); 1060 1061extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1062 u32 gpadl_handle); 1063 1064void vmbus_reset_channel_cb(struct vmbus_channel *channel); 1065 1066extern int vmbus_recvpacket(struct vmbus_channel *channel, 1067 void *buffer, 1068 u32 bufferlen, 1069 u32 *buffer_actual_len, 1070 u64 *requestid); 1071 1072extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1073 void *buffer, 1074 u32 bufferlen, 1075 u32 *buffer_actual_len, 1076 u64 *requestid); 1077 1078 1079extern void vmbus_ontimer(unsigned long data); 1080 1081/* Base driver object */ 1082struct hv_driver { 1083 const char *name; 1084 1085 /* 1086 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1087 * channel flag, actually doesn't mean a synthetic device because the 1088 * offer's if_type/if_instance can change for every new hvsock 1089 * connection. 1090 * 1091 * However, to facilitate the notification of new-offer/rescind-offer 1092 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1093 * a special vmbus device, and hence we need the below flag to 1094 * indicate if the driver is the hvsock driver or not: we need to 1095 * specially treat the hvosck offer & driver in vmbus_match(). 1096 */ 1097 bool hvsock; 1098 1099 /* the device type supported by this driver */ 1100 uuid_le dev_type; 1101 const struct hv_vmbus_device_id *id_table; 1102 1103 struct device_driver driver; 1104 1105 /* dynamic device GUID's */ 1106 struct { 1107 spinlock_t lock; 1108 struct list_head list; 1109 } dynids; 1110 1111 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1112 int (*remove)(struct hv_device *); 1113 void (*shutdown)(struct hv_device *); 1114 1115}; 1116 1117/* Base device object */ 1118struct hv_device { 1119 /* the device type id of this device */ 1120 uuid_le dev_type; 1121 1122 /* the device instance id of this device */ 1123 uuid_le dev_instance; 1124 u16 vendor_id; 1125 u16 device_id; 1126 1127 struct device device; 1128 1129 struct vmbus_channel *channel; 1130 struct kset *channels_kset; 1131}; 1132 1133 1134static inline struct hv_device *device_to_hv_device(struct device *d) 1135{ 1136 return container_of(d, struct hv_device, device); 1137} 1138 1139static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1140{ 1141 return container_of(d, struct hv_driver, driver); 1142} 1143 1144static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1145{ 1146 dev_set_drvdata(&dev->device, data); 1147} 1148 1149static inline void *hv_get_drvdata(struct hv_device *dev) 1150{ 1151 return dev_get_drvdata(&dev->device); 1152} 1153 1154struct hv_ring_buffer_debug_info { 1155 u32 current_interrupt_mask; 1156 u32 current_read_index; 1157 u32 current_write_index; 1158 u32 bytes_avail_toread; 1159 u32 bytes_avail_towrite; 1160}; 1161 1162void hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info, 1163 struct hv_ring_buffer_debug_info *debug_info); 1164 1165/* Vmbus interface */ 1166#define vmbus_driver_register(driver) \ 1167 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1168int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1169 struct module *owner, 1170 const char *mod_name); 1171void vmbus_driver_unregister(struct hv_driver *hv_driver); 1172 1173void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1174 1175int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1176 resource_size_t min, resource_size_t max, 1177 resource_size_t size, resource_size_t align, 1178 bool fb_overlap_ok); 1179void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1180 1181/* 1182 * GUID definitions of various offer types - services offered to the guest. 1183 */ 1184 1185/* 1186 * Network GUID 1187 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1188 */ 1189#define HV_NIC_GUID \ 1190 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1191 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1192 1193/* 1194 * IDE GUID 1195 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1196 */ 1197#define HV_IDE_GUID \ 1198 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1199 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1200 1201/* 1202 * SCSI GUID 1203 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1204 */ 1205#define HV_SCSI_GUID \ 1206 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1207 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1208 1209/* 1210 * Shutdown GUID 1211 * {0e0b6031-5213-4934-818b-38d90ced39db} 1212 */ 1213#define HV_SHUTDOWN_GUID \ 1214 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1215 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1216 1217/* 1218 * Time Synch GUID 1219 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1220 */ 1221#define HV_TS_GUID \ 1222 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1223 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1224 1225/* 1226 * Heartbeat GUID 1227 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1228 */ 1229#define HV_HEART_BEAT_GUID \ 1230 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1231 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1232 1233/* 1234 * KVP GUID 1235 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1236 */ 1237#define HV_KVP_GUID \ 1238 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1239 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1240 1241/* 1242 * Dynamic memory GUID 1243 * {525074dc-8985-46e2-8057-a307dc18a502} 1244 */ 1245#define HV_DM_GUID \ 1246 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1247 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1248 1249/* 1250 * Mouse GUID 1251 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1252 */ 1253#define HV_MOUSE_GUID \ 1254 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1255 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1256 1257/* 1258 * Keyboard GUID 1259 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1260 */ 1261#define HV_KBD_GUID \ 1262 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1263 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1264 1265/* 1266 * VSS (Backup/Restore) GUID 1267 */ 1268#define HV_VSS_GUID \ 1269 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1270 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1271/* 1272 * Synthetic Video GUID 1273 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1274 */ 1275#define HV_SYNTHVID_GUID \ 1276 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1277 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1278 1279/* 1280 * Synthetic FC GUID 1281 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1282 */ 1283#define HV_SYNTHFC_GUID \ 1284 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1285 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1286 1287/* 1288 * Guest File Copy Service 1289 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1290 */ 1291 1292#define HV_FCOPY_GUID \ 1293 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1294 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1295 1296/* 1297 * NetworkDirect. This is the guest RDMA service. 1298 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1299 */ 1300#define HV_ND_GUID \ 1301 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1302 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1303 1304/* 1305 * PCI Express Pass Through 1306 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1307 */ 1308 1309#define HV_PCIE_GUID \ 1310 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1311 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1312 1313/* 1314 * Linux doesn't support the 3 devices: the first two are for 1315 * Automatic Virtual Machine Activation, and the third is for 1316 * Remote Desktop Virtualization. 1317 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1318 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1319 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1320 */ 1321 1322#define HV_AVMA1_GUID \ 1323 .guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1324 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1325 1326#define HV_AVMA2_GUID \ 1327 .guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1328 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1329 1330#define HV_RDV_GUID \ 1331 .guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1332 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1333 1334/* 1335 * Common header for Hyper-V ICs 1336 */ 1337 1338#define ICMSGTYPE_NEGOTIATE 0 1339#define ICMSGTYPE_HEARTBEAT 1 1340#define ICMSGTYPE_KVPEXCHANGE 2 1341#define ICMSGTYPE_SHUTDOWN 3 1342#define ICMSGTYPE_TIMESYNC 4 1343#define ICMSGTYPE_VSS 5 1344 1345#define ICMSGHDRFLAG_TRANSACTION 1 1346#define ICMSGHDRFLAG_REQUEST 2 1347#define ICMSGHDRFLAG_RESPONSE 4 1348 1349 1350/* 1351 * While we want to handle util services as regular devices, 1352 * there is only one instance of each of these services; so 1353 * we statically allocate the service specific state. 1354 */ 1355 1356struct hv_util_service { 1357 u8 *recv_buffer; 1358 void *channel; 1359 void (*util_cb)(void *); 1360 int (*util_init)(struct hv_util_service *); 1361 void (*util_deinit)(void); 1362}; 1363 1364struct vmbuspipe_hdr { 1365 u32 flags; 1366 u32 msgsize; 1367} __packed; 1368 1369struct ic_version { 1370 u16 major; 1371 u16 minor; 1372} __packed; 1373 1374struct icmsg_hdr { 1375 struct ic_version icverframe; 1376 u16 icmsgtype; 1377 struct ic_version icvermsg; 1378 u16 icmsgsize; 1379 u32 status; 1380 u8 ictransaction_id; 1381 u8 icflags; 1382 u8 reserved[2]; 1383} __packed; 1384 1385struct icmsg_negotiate { 1386 u16 icframe_vercnt; 1387 u16 icmsg_vercnt; 1388 u32 reserved; 1389 struct ic_version icversion_data[1]; /* any size array */ 1390} __packed; 1391 1392struct shutdown_msg_data { 1393 u32 reason_code; 1394 u32 timeout_seconds; 1395 u32 flags; 1396 u8 display_message[2048]; 1397} __packed; 1398 1399struct heartbeat_msg_data { 1400 u64 seq_num; 1401 u32 reserved[8]; 1402} __packed; 1403 1404/* Time Sync IC defs */ 1405#define ICTIMESYNCFLAG_PROBE 0 1406#define ICTIMESYNCFLAG_SYNC 1 1407#define ICTIMESYNCFLAG_SAMPLE 2 1408 1409#ifdef __x86_64__ 1410#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1411#else 1412#define WLTIMEDELTA 116444736000000000LL 1413#endif 1414 1415struct ictimesync_data { 1416 u64 parenttime; 1417 u64 childtime; 1418 u64 roundtriptime; 1419 u8 flags; 1420} __packed; 1421 1422struct ictimesync_ref_data { 1423 u64 parenttime; 1424 u64 vmreferencetime; 1425 u8 flags; 1426 char leapflags; 1427 char stratum; 1428 u8 reserved[3]; 1429} __packed; 1430 1431struct hyperv_service_callback { 1432 u8 msg_type; 1433 char *log_msg; 1434 uuid_le data; 1435 struct vmbus_channel *channel; 1436 void (*callback)(void *context); 1437}; 1438 1439#define MAX_SRV_VER 0x7ffffff 1440extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, 1441 const int *fw_version, int fw_vercnt, 1442 const int *srv_version, int srv_vercnt, 1443 int *nego_fw_version, int *nego_srv_version); 1444 1445void hv_process_channel_removal(u32 relid); 1446 1447void vmbus_setevent(struct vmbus_channel *channel); 1448/* 1449 * Negotiated version with the Host. 1450 */ 1451 1452extern __u32 vmbus_proto_version; 1453 1454int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id, 1455 const uuid_le *shv_host_servie_id); 1456void vmbus_set_event(struct vmbus_channel *channel); 1457 1458/* Get the start of the ring buffer. */ 1459static inline void * 1460hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info) 1461{ 1462 return ring_info->ring_buffer->buffer; 1463} 1464 1465/* 1466 * Mask off host interrupt callback notifications 1467 */ 1468static inline void hv_begin_read(struct hv_ring_buffer_info *rbi) 1469{ 1470 rbi->ring_buffer->interrupt_mask = 1; 1471 1472 /* make sure mask update is not reordered */ 1473 virt_mb(); 1474} 1475 1476/* 1477 * Re-enable host callback and return number of outstanding bytes 1478 */ 1479static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi) 1480{ 1481 1482 rbi->ring_buffer->interrupt_mask = 0; 1483 1484 /* make sure mask update is not reordered */ 1485 virt_mb(); 1486 1487 /* 1488 * Now check to see if the ring buffer is still empty. 1489 * If it is not, we raced and we need to process new 1490 * incoming messages. 1491 */ 1492 return hv_get_bytes_to_read(rbi); 1493} 1494 1495/* 1496 * An API to support in-place processing of incoming VMBUS packets. 1497 */ 1498 1499/* Get data payload associated with descriptor */ 1500static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc) 1501{ 1502 return (void *)((unsigned long)desc + (desc->offset8 << 3)); 1503} 1504 1505/* Get data size associated with descriptor */ 1506static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc) 1507{ 1508 return (desc->len8 << 3) - (desc->offset8 << 3); 1509} 1510 1511 1512struct vmpacket_descriptor * 1513hv_pkt_iter_first(struct vmbus_channel *channel); 1514 1515struct vmpacket_descriptor * 1516__hv_pkt_iter_next(struct vmbus_channel *channel, 1517 const struct vmpacket_descriptor *pkt); 1518 1519void hv_pkt_iter_close(struct vmbus_channel *channel); 1520 1521/* 1522 * Get next packet descriptor from iterator 1523 * If at end of list, return NULL and update host. 1524 */ 1525static inline struct vmpacket_descriptor * 1526hv_pkt_iter_next(struct vmbus_channel *channel, 1527 const struct vmpacket_descriptor *pkt) 1528{ 1529 struct vmpacket_descriptor *nxt; 1530 1531 nxt = __hv_pkt_iter_next(channel, pkt); 1532 if (!nxt) 1533 hv_pkt_iter_close(channel); 1534 1535 return nxt; 1536} 1537 1538#define foreach_vmbus_pkt(pkt, channel) \ 1539 for (pkt = hv_pkt_iter_first(channel); pkt; \ 1540 pkt = hv_pkt_iter_next(channel, pkt)) 1541 1542#endif /* _HYPERV_H */