Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/moduleparam.h>
35#include <linux/gfp.h>
36#include <net/sock.h>
37#include <linux/in.h>
38#include <linux/list.h>
39#include <linux/ratelimit.h>
40#include <linux/export.h>
41#include <linux/sizes.h>
42
43#include "rds.h"
44
45/* When transmitting messages in rds_send_xmit, we need to emerge from
46 * time to time and briefly release the CPU. Otherwise the softlock watchdog
47 * will kick our shin.
48 * Also, it seems fairer to not let one busy connection stall all the
49 * others.
50 *
51 * send_batch_count is the number of times we'll loop in send_xmit. Setting
52 * it to 0 will restore the old behavior (where we looped until we had
53 * drained the queue).
54 */
55static int send_batch_count = SZ_1K;
56module_param(send_batch_count, int, 0444);
57MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
58
59static void rds_send_remove_from_sock(struct list_head *messages, int status);
60
61/*
62 * Reset the send state. Callers must ensure that this doesn't race with
63 * rds_send_xmit().
64 */
65void rds_send_path_reset(struct rds_conn_path *cp)
66{
67 struct rds_message *rm, *tmp;
68 unsigned long flags;
69
70 if (cp->cp_xmit_rm) {
71 rm = cp->cp_xmit_rm;
72 cp->cp_xmit_rm = NULL;
73 /* Tell the user the RDMA op is no longer mapped by the
74 * transport. This isn't entirely true (it's flushed out
75 * independently) but as the connection is down, there's
76 * no ongoing RDMA to/from that memory */
77 rds_message_unmapped(rm);
78 rds_message_put(rm);
79 }
80
81 cp->cp_xmit_sg = 0;
82 cp->cp_xmit_hdr_off = 0;
83 cp->cp_xmit_data_off = 0;
84 cp->cp_xmit_atomic_sent = 0;
85 cp->cp_xmit_rdma_sent = 0;
86 cp->cp_xmit_data_sent = 0;
87
88 cp->cp_conn->c_map_queued = 0;
89
90 cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
91 cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
92
93 /* Mark messages as retransmissions, and move them to the send q */
94 spin_lock_irqsave(&cp->cp_lock, flags);
95 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
96 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98 }
99 list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
100 spin_unlock_irqrestore(&cp->cp_lock, flags);
101}
102EXPORT_SYMBOL_GPL(rds_send_path_reset);
103
104static int acquire_in_xmit(struct rds_conn_path *cp)
105{
106 return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
107}
108
109static void release_in_xmit(struct rds_conn_path *cp)
110{
111 clear_bit(RDS_IN_XMIT, &cp->cp_flags);
112 smp_mb__after_atomic();
113 /*
114 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
115 * hot path and finding waiters is very rare. We don't want to walk
116 * the system-wide hashed waitqueue buckets in the fast path only to
117 * almost never find waiters.
118 */
119 if (waitqueue_active(&cp->cp_waitq))
120 wake_up_all(&cp->cp_waitq);
121}
122
123/*
124 * We're making the conscious trade-off here to only send one message
125 * down the connection at a time.
126 * Pro:
127 * - tx queueing is a simple fifo list
128 * - reassembly is optional and easily done by transports per conn
129 * - no per flow rx lookup at all, straight to the socket
130 * - less per-frag memory and wire overhead
131 * Con:
132 * - queued acks can be delayed behind large messages
133 * Depends:
134 * - small message latency is higher behind queued large messages
135 * - large message latency isn't starved by intervening small sends
136 */
137int rds_send_xmit(struct rds_conn_path *cp)
138{
139 struct rds_connection *conn = cp->cp_conn;
140 struct rds_message *rm;
141 unsigned long flags;
142 unsigned int tmp;
143 struct scatterlist *sg;
144 int ret = 0;
145 LIST_HEAD(to_be_dropped);
146 int batch_count;
147 unsigned long send_gen = 0;
148
149restart:
150 batch_count = 0;
151
152 /*
153 * sendmsg calls here after having queued its message on the send
154 * queue. We only have one task feeding the connection at a time. If
155 * another thread is already feeding the queue then we back off. This
156 * avoids blocking the caller and trading per-connection data between
157 * caches per message.
158 */
159 if (!acquire_in_xmit(cp)) {
160 rds_stats_inc(s_send_lock_contention);
161 ret = -ENOMEM;
162 goto out;
163 }
164
165 if (rds_destroy_pending(cp->cp_conn)) {
166 release_in_xmit(cp);
167 ret = -ENETUNREACH; /* dont requeue send work */
168 goto out;
169 }
170
171 /*
172 * we record the send generation after doing the xmit acquire.
173 * if someone else manages to jump in and do some work, we'll use
174 * this to avoid a goto restart farther down.
175 *
176 * The acquire_in_xmit() check above ensures that only one
177 * caller can increment c_send_gen at any time.
178 */
179 send_gen = READ_ONCE(cp->cp_send_gen) + 1;
180 WRITE_ONCE(cp->cp_send_gen, send_gen);
181
182 /*
183 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
184 * we do the opposite to avoid races.
185 */
186 if (!rds_conn_path_up(cp)) {
187 release_in_xmit(cp);
188 ret = 0;
189 goto out;
190 }
191
192 if (conn->c_trans->xmit_path_prepare)
193 conn->c_trans->xmit_path_prepare(cp);
194
195 /*
196 * spin trying to push headers and data down the connection until
197 * the connection doesn't make forward progress.
198 */
199 while (1) {
200
201 rm = cp->cp_xmit_rm;
202
203 /*
204 * If between sending messages, we can send a pending congestion
205 * map update.
206 */
207 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
208 rm = rds_cong_update_alloc(conn);
209 if (IS_ERR(rm)) {
210 ret = PTR_ERR(rm);
211 break;
212 }
213 rm->data.op_active = 1;
214 rm->m_inc.i_conn_path = cp;
215 rm->m_inc.i_conn = cp->cp_conn;
216
217 cp->cp_xmit_rm = rm;
218 }
219
220 /*
221 * If not already working on one, grab the next message.
222 *
223 * cp_xmit_rm holds a ref while we're sending this message down
224 * the connction. We can use this ref while holding the
225 * send_sem.. rds_send_reset() is serialized with it.
226 */
227 if (!rm) {
228 unsigned int len;
229
230 batch_count++;
231
232 /* we want to process as big a batch as we can, but
233 * we also want to avoid softlockups. If we've been
234 * through a lot of messages, lets back off and see
235 * if anyone else jumps in
236 */
237 if (batch_count >= send_batch_count)
238 goto over_batch;
239
240 spin_lock_irqsave(&cp->cp_lock, flags);
241
242 if (!list_empty(&cp->cp_send_queue)) {
243 rm = list_entry(cp->cp_send_queue.next,
244 struct rds_message,
245 m_conn_item);
246 rds_message_addref(rm);
247
248 /*
249 * Move the message from the send queue to the retransmit
250 * list right away.
251 */
252 list_move_tail(&rm->m_conn_item,
253 &cp->cp_retrans);
254 }
255
256 spin_unlock_irqrestore(&cp->cp_lock, flags);
257
258 if (!rm)
259 break;
260
261 /* Unfortunately, the way Infiniband deals with
262 * RDMA to a bad MR key is by moving the entire
263 * queue pair to error state. We cold possibly
264 * recover from that, but right now we drop the
265 * connection.
266 * Therefore, we never retransmit messages with RDMA ops.
267 */
268 if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) ||
269 (rm->rdma.op_active &&
270 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) {
271 spin_lock_irqsave(&cp->cp_lock, flags);
272 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
273 list_move(&rm->m_conn_item, &to_be_dropped);
274 spin_unlock_irqrestore(&cp->cp_lock, flags);
275 continue;
276 }
277
278 /* Require an ACK every once in a while */
279 len = ntohl(rm->m_inc.i_hdr.h_len);
280 if (cp->cp_unacked_packets == 0 ||
281 cp->cp_unacked_bytes < len) {
282 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
283
284 cp->cp_unacked_packets =
285 rds_sysctl_max_unacked_packets;
286 cp->cp_unacked_bytes =
287 rds_sysctl_max_unacked_bytes;
288 rds_stats_inc(s_send_ack_required);
289 } else {
290 cp->cp_unacked_bytes -= len;
291 cp->cp_unacked_packets--;
292 }
293
294 cp->cp_xmit_rm = rm;
295 }
296
297 /* The transport either sends the whole rdma or none of it */
298 if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
299 rm->m_final_op = &rm->rdma;
300 /* The transport owns the mapped memory for now.
301 * You can't unmap it while it's on the send queue
302 */
303 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
304 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
305 if (ret) {
306 clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
307 wake_up_interruptible(&rm->m_flush_wait);
308 break;
309 }
310 cp->cp_xmit_rdma_sent = 1;
311
312 }
313
314 if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
315 rm->m_final_op = &rm->atomic;
316 /* The transport owns the mapped memory for now.
317 * You can't unmap it while it's on the send queue
318 */
319 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
320 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
321 if (ret) {
322 clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
323 wake_up_interruptible(&rm->m_flush_wait);
324 break;
325 }
326 cp->cp_xmit_atomic_sent = 1;
327
328 }
329
330 /*
331 * A number of cases require an RDS header to be sent
332 * even if there is no data.
333 * We permit 0-byte sends; rds-ping depends on this.
334 * However, if there are exclusively attached silent ops,
335 * we skip the hdr/data send, to enable silent operation.
336 */
337 if (rm->data.op_nents == 0) {
338 int ops_present;
339 int all_ops_are_silent = 1;
340
341 ops_present = (rm->atomic.op_active || rm->rdma.op_active);
342 if (rm->atomic.op_active && !rm->atomic.op_silent)
343 all_ops_are_silent = 0;
344 if (rm->rdma.op_active && !rm->rdma.op_silent)
345 all_ops_are_silent = 0;
346
347 if (ops_present && all_ops_are_silent
348 && !rm->m_rdma_cookie)
349 rm->data.op_active = 0;
350 }
351
352 if (rm->data.op_active && !cp->cp_xmit_data_sent) {
353 rm->m_final_op = &rm->data;
354
355 ret = conn->c_trans->xmit(conn, rm,
356 cp->cp_xmit_hdr_off,
357 cp->cp_xmit_sg,
358 cp->cp_xmit_data_off);
359 if (ret <= 0)
360 break;
361
362 if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
363 tmp = min_t(int, ret,
364 sizeof(struct rds_header) -
365 cp->cp_xmit_hdr_off);
366 cp->cp_xmit_hdr_off += tmp;
367 ret -= tmp;
368 }
369
370 sg = &rm->data.op_sg[cp->cp_xmit_sg];
371 while (ret) {
372 tmp = min_t(int, ret, sg->length -
373 cp->cp_xmit_data_off);
374 cp->cp_xmit_data_off += tmp;
375 ret -= tmp;
376 if (cp->cp_xmit_data_off == sg->length) {
377 cp->cp_xmit_data_off = 0;
378 sg++;
379 cp->cp_xmit_sg++;
380 BUG_ON(ret != 0 && cp->cp_xmit_sg ==
381 rm->data.op_nents);
382 }
383 }
384
385 if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
386 (cp->cp_xmit_sg == rm->data.op_nents))
387 cp->cp_xmit_data_sent = 1;
388 }
389
390 /*
391 * A rm will only take multiple times through this loop
392 * if there is a data op. Thus, if the data is sent (or there was
393 * none), then we're done with the rm.
394 */
395 if (!rm->data.op_active || cp->cp_xmit_data_sent) {
396 cp->cp_xmit_rm = NULL;
397 cp->cp_xmit_sg = 0;
398 cp->cp_xmit_hdr_off = 0;
399 cp->cp_xmit_data_off = 0;
400 cp->cp_xmit_rdma_sent = 0;
401 cp->cp_xmit_atomic_sent = 0;
402 cp->cp_xmit_data_sent = 0;
403
404 rds_message_put(rm);
405 }
406 }
407
408over_batch:
409 if (conn->c_trans->xmit_path_complete)
410 conn->c_trans->xmit_path_complete(cp);
411 release_in_xmit(cp);
412
413 /* Nuke any messages we decided not to retransmit. */
414 if (!list_empty(&to_be_dropped)) {
415 /* irqs on here, so we can put(), unlike above */
416 list_for_each_entry(rm, &to_be_dropped, m_conn_item)
417 rds_message_put(rm);
418 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
419 }
420
421 /*
422 * Other senders can queue a message after we last test the send queue
423 * but before we clear RDS_IN_XMIT. In that case they'd back off and
424 * not try and send their newly queued message. We need to check the
425 * send queue after having cleared RDS_IN_XMIT so that their message
426 * doesn't get stuck on the send queue.
427 *
428 * If the transport cannot continue (i.e ret != 0), then it must
429 * call us when more room is available, such as from the tx
430 * completion handler.
431 *
432 * We have an extra generation check here so that if someone manages
433 * to jump in after our release_in_xmit, we'll see that they have done
434 * some work and we will skip our goto
435 */
436 if (ret == 0) {
437 bool raced;
438
439 smp_mb();
440 raced = send_gen != READ_ONCE(cp->cp_send_gen);
441
442 if ((test_bit(0, &conn->c_map_queued) ||
443 !list_empty(&cp->cp_send_queue)) && !raced) {
444 if (batch_count < send_batch_count)
445 goto restart;
446 rcu_read_lock();
447 if (rds_destroy_pending(cp->cp_conn))
448 ret = -ENETUNREACH;
449 else
450 queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
451 rcu_read_unlock();
452 } else if (raced) {
453 rds_stats_inc(s_send_lock_queue_raced);
454 }
455 }
456out:
457 return ret;
458}
459EXPORT_SYMBOL_GPL(rds_send_xmit);
460
461static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
462{
463 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
464
465 assert_spin_locked(&rs->rs_lock);
466
467 BUG_ON(rs->rs_snd_bytes < len);
468 rs->rs_snd_bytes -= len;
469
470 if (rs->rs_snd_bytes == 0)
471 rds_stats_inc(s_send_queue_empty);
472}
473
474static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
475 is_acked_func is_acked)
476{
477 if (is_acked)
478 return is_acked(rm, ack);
479 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
480}
481
482/*
483 * This is pretty similar to what happens below in the ACK
484 * handling code - except that we call here as soon as we get
485 * the IB send completion on the RDMA op and the accompanying
486 * message.
487 */
488void rds_rdma_send_complete(struct rds_message *rm, int status)
489{
490 struct rds_sock *rs = NULL;
491 struct rm_rdma_op *ro;
492 struct rds_notifier *notifier;
493 unsigned long flags;
494 unsigned int notify = 0;
495
496 spin_lock_irqsave(&rm->m_rs_lock, flags);
497
498 notify = rm->rdma.op_notify | rm->data.op_notify;
499 ro = &rm->rdma;
500 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
501 ro->op_active && notify && ro->op_notifier) {
502 notifier = ro->op_notifier;
503 rs = rm->m_rs;
504 sock_hold(rds_rs_to_sk(rs));
505
506 notifier->n_status = status;
507 spin_lock(&rs->rs_lock);
508 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
509 spin_unlock(&rs->rs_lock);
510
511 ro->op_notifier = NULL;
512 }
513
514 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
515
516 if (rs) {
517 rds_wake_sk_sleep(rs);
518 sock_put(rds_rs_to_sk(rs));
519 }
520}
521EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
522
523/*
524 * Just like above, except looks at atomic op
525 */
526void rds_atomic_send_complete(struct rds_message *rm, int status)
527{
528 struct rds_sock *rs = NULL;
529 struct rm_atomic_op *ao;
530 struct rds_notifier *notifier;
531 unsigned long flags;
532
533 spin_lock_irqsave(&rm->m_rs_lock, flags);
534
535 ao = &rm->atomic;
536 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
537 && ao->op_active && ao->op_notify && ao->op_notifier) {
538 notifier = ao->op_notifier;
539 rs = rm->m_rs;
540 sock_hold(rds_rs_to_sk(rs));
541
542 notifier->n_status = status;
543 spin_lock(&rs->rs_lock);
544 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
545 spin_unlock(&rs->rs_lock);
546
547 ao->op_notifier = NULL;
548 }
549
550 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
551
552 if (rs) {
553 rds_wake_sk_sleep(rs);
554 sock_put(rds_rs_to_sk(rs));
555 }
556}
557EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
558
559/*
560 * This is the same as rds_rdma_send_complete except we
561 * don't do any locking - we have all the ingredients (message,
562 * socket, socket lock) and can just move the notifier.
563 */
564static inline void
565__rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
566{
567 struct rm_rdma_op *ro;
568 struct rm_atomic_op *ao;
569
570 ro = &rm->rdma;
571 if (ro->op_active && ro->op_notify && ro->op_notifier) {
572 ro->op_notifier->n_status = status;
573 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
574 ro->op_notifier = NULL;
575 }
576
577 ao = &rm->atomic;
578 if (ao->op_active && ao->op_notify && ao->op_notifier) {
579 ao->op_notifier->n_status = status;
580 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
581 ao->op_notifier = NULL;
582 }
583
584 /* No need to wake the app - caller does this */
585}
586
587/*
588 * This removes messages from the socket's list if they're on it. The list
589 * argument must be private to the caller, we must be able to modify it
590 * without locks. The messages must have a reference held for their
591 * position on the list. This function will drop that reference after
592 * removing the messages from the 'messages' list regardless of if it found
593 * the messages on the socket list or not.
594 */
595static void rds_send_remove_from_sock(struct list_head *messages, int status)
596{
597 unsigned long flags;
598 struct rds_sock *rs = NULL;
599 struct rds_message *rm;
600
601 while (!list_empty(messages)) {
602 int was_on_sock = 0;
603
604 rm = list_entry(messages->next, struct rds_message,
605 m_conn_item);
606 list_del_init(&rm->m_conn_item);
607
608 /*
609 * If we see this flag cleared then we're *sure* that someone
610 * else beat us to removing it from the sock. If we race
611 * with their flag update we'll get the lock and then really
612 * see that the flag has been cleared.
613 *
614 * The message spinlock makes sure nobody clears rm->m_rs
615 * while we're messing with it. It does not prevent the
616 * message from being removed from the socket, though.
617 */
618 spin_lock_irqsave(&rm->m_rs_lock, flags);
619 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
620 goto unlock_and_drop;
621
622 if (rs != rm->m_rs) {
623 if (rs) {
624 rds_wake_sk_sleep(rs);
625 sock_put(rds_rs_to_sk(rs));
626 }
627 rs = rm->m_rs;
628 if (rs)
629 sock_hold(rds_rs_to_sk(rs));
630 }
631 if (!rs)
632 goto unlock_and_drop;
633 spin_lock(&rs->rs_lock);
634
635 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
636 struct rm_rdma_op *ro = &rm->rdma;
637 struct rds_notifier *notifier;
638
639 list_del_init(&rm->m_sock_item);
640 rds_send_sndbuf_remove(rs, rm);
641
642 if (ro->op_active && ro->op_notifier &&
643 (ro->op_notify || (ro->op_recverr && status))) {
644 notifier = ro->op_notifier;
645 list_add_tail(¬ifier->n_list,
646 &rs->rs_notify_queue);
647 if (!notifier->n_status)
648 notifier->n_status = status;
649 rm->rdma.op_notifier = NULL;
650 }
651 was_on_sock = 1;
652 }
653 spin_unlock(&rs->rs_lock);
654
655unlock_and_drop:
656 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
657 rds_message_put(rm);
658 if (was_on_sock)
659 rds_message_put(rm);
660 }
661
662 if (rs) {
663 rds_wake_sk_sleep(rs);
664 sock_put(rds_rs_to_sk(rs));
665 }
666}
667
668/*
669 * Transports call here when they've determined that the receiver queued
670 * messages up to, and including, the given sequence number. Messages are
671 * moved to the retrans queue when rds_send_xmit picks them off the send
672 * queue. This means that in the TCP case, the message may not have been
673 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
674 * checks the RDS_MSG_HAS_ACK_SEQ bit.
675 */
676void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
677 is_acked_func is_acked)
678{
679 struct rds_message *rm, *tmp;
680 unsigned long flags;
681 LIST_HEAD(list);
682
683 spin_lock_irqsave(&cp->cp_lock, flags);
684
685 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
686 if (!rds_send_is_acked(rm, ack, is_acked))
687 break;
688
689 list_move(&rm->m_conn_item, &list);
690 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
691 }
692
693 /* order flag updates with spin locks */
694 if (!list_empty(&list))
695 smp_mb__after_atomic();
696
697 spin_unlock_irqrestore(&cp->cp_lock, flags);
698
699 /* now remove the messages from the sock list as needed */
700 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
701}
702EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
703
704void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
705 is_acked_func is_acked)
706{
707 WARN_ON(conn->c_trans->t_mp_capable);
708 rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
709}
710EXPORT_SYMBOL_GPL(rds_send_drop_acked);
711
712void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest)
713{
714 struct rds_message *rm, *tmp;
715 struct rds_connection *conn;
716 struct rds_conn_path *cp;
717 unsigned long flags;
718 LIST_HEAD(list);
719
720 /* get all the messages we're dropping under the rs lock */
721 spin_lock_irqsave(&rs->rs_lock, flags);
722
723 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
724 if (dest &&
725 (!ipv6_addr_equal(&dest->sin6_addr, &rm->m_daddr) ||
726 dest->sin6_port != rm->m_inc.i_hdr.h_dport))
727 continue;
728
729 list_move(&rm->m_sock_item, &list);
730 rds_send_sndbuf_remove(rs, rm);
731 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
732 }
733
734 /* order flag updates with the rs lock */
735 smp_mb__after_atomic();
736
737 spin_unlock_irqrestore(&rs->rs_lock, flags);
738
739 if (list_empty(&list))
740 return;
741
742 /* Remove the messages from the conn */
743 list_for_each_entry(rm, &list, m_sock_item) {
744
745 conn = rm->m_inc.i_conn;
746 if (conn->c_trans->t_mp_capable)
747 cp = rm->m_inc.i_conn_path;
748 else
749 cp = &conn->c_path[0];
750
751 spin_lock_irqsave(&cp->cp_lock, flags);
752 /*
753 * Maybe someone else beat us to removing rm from the conn.
754 * If we race with their flag update we'll get the lock and
755 * then really see that the flag has been cleared.
756 */
757 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
758 spin_unlock_irqrestore(&cp->cp_lock, flags);
759 continue;
760 }
761 list_del_init(&rm->m_conn_item);
762 spin_unlock_irqrestore(&cp->cp_lock, flags);
763
764 /*
765 * Couldn't grab m_rs_lock in top loop (lock ordering),
766 * but we can now.
767 */
768 spin_lock_irqsave(&rm->m_rs_lock, flags);
769
770 spin_lock(&rs->rs_lock);
771 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
772 spin_unlock(&rs->rs_lock);
773
774 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
775
776 rds_message_put(rm);
777 }
778
779 rds_wake_sk_sleep(rs);
780
781 while (!list_empty(&list)) {
782 rm = list_entry(list.next, struct rds_message, m_sock_item);
783 list_del_init(&rm->m_sock_item);
784 rds_message_wait(rm);
785
786 /* just in case the code above skipped this message
787 * because RDS_MSG_ON_CONN wasn't set, run it again here
788 * taking m_rs_lock is the only thing that keeps us
789 * from racing with ack processing.
790 */
791 spin_lock_irqsave(&rm->m_rs_lock, flags);
792
793 spin_lock(&rs->rs_lock);
794 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
795 spin_unlock(&rs->rs_lock);
796
797 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
798
799 rds_message_put(rm);
800 }
801}
802
803/*
804 * we only want this to fire once so we use the callers 'queued'. It's
805 * possible that another thread can race with us and remove the
806 * message from the flow with RDS_CANCEL_SENT_TO.
807 */
808static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
809 struct rds_conn_path *cp,
810 struct rds_message *rm, __be16 sport,
811 __be16 dport, int *queued)
812{
813 unsigned long flags;
814 u32 len;
815
816 if (*queued)
817 goto out;
818
819 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
820
821 /* this is the only place which holds both the socket's rs_lock
822 * and the connection's c_lock */
823 spin_lock_irqsave(&rs->rs_lock, flags);
824
825 /*
826 * If there is a little space in sndbuf, we don't queue anything,
827 * and userspace gets -EAGAIN. But poll() indicates there's send
828 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
829 * freed up by incoming acks. So we check the *old* value of
830 * rs_snd_bytes here to allow the last msg to exceed the buffer,
831 * and poll() now knows no more data can be sent.
832 */
833 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
834 rs->rs_snd_bytes += len;
835
836 /* let recv side know we are close to send space exhaustion.
837 * This is probably not the optimal way to do it, as this
838 * means we set the flag on *all* messages as soon as our
839 * throughput hits a certain threshold.
840 */
841 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
842 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
843
844 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
845 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
846 rds_message_addref(rm);
847 sock_hold(rds_rs_to_sk(rs));
848 rm->m_rs = rs;
849
850 /* The code ordering is a little weird, but we're
851 trying to minimize the time we hold c_lock */
852 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
853 rm->m_inc.i_conn = conn;
854 rm->m_inc.i_conn_path = cp;
855 rds_message_addref(rm);
856
857 spin_lock(&cp->cp_lock);
858 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
859 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
860 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
861 spin_unlock(&cp->cp_lock);
862
863 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
864 rm, len, rs, rs->rs_snd_bytes,
865 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
866
867 *queued = 1;
868 }
869
870 spin_unlock_irqrestore(&rs->rs_lock, flags);
871out:
872 return *queued;
873}
874
875/*
876 * rds_message is getting to be quite complicated, and we'd like to allocate
877 * it all in one go. This figures out how big it needs to be up front.
878 */
879static int rds_rm_size(struct msghdr *msg, int num_sgs)
880{
881 struct cmsghdr *cmsg;
882 int size = 0;
883 int cmsg_groups = 0;
884 int retval;
885 bool zcopy_cookie = false;
886
887 for_each_cmsghdr(cmsg, msg) {
888 if (!CMSG_OK(msg, cmsg))
889 return -EINVAL;
890
891 if (cmsg->cmsg_level != SOL_RDS)
892 continue;
893
894 switch (cmsg->cmsg_type) {
895 case RDS_CMSG_RDMA_ARGS:
896 cmsg_groups |= 1;
897 retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
898 if (retval < 0)
899 return retval;
900 size += retval;
901
902 break;
903
904 case RDS_CMSG_ZCOPY_COOKIE:
905 zcopy_cookie = true;
906 /* fall through */
907
908 case RDS_CMSG_RDMA_DEST:
909 case RDS_CMSG_RDMA_MAP:
910 cmsg_groups |= 2;
911 /* these are valid but do no add any size */
912 break;
913
914 case RDS_CMSG_ATOMIC_CSWP:
915 case RDS_CMSG_ATOMIC_FADD:
916 case RDS_CMSG_MASKED_ATOMIC_CSWP:
917 case RDS_CMSG_MASKED_ATOMIC_FADD:
918 cmsg_groups |= 1;
919 size += sizeof(struct scatterlist);
920 break;
921
922 default:
923 return -EINVAL;
924 }
925
926 }
927
928 if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie)
929 return -EINVAL;
930
931 size += num_sgs * sizeof(struct scatterlist);
932
933 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
934 if (cmsg_groups == 3)
935 return -EINVAL;
936
937 return size;
938}
939
940static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm,
941 struct cmsghdr *cmsg)
942{
943 u32 *cookie;
944
945 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) ||
946 !rm->data.op_mmp_znotifier)
947 return -EINVAL;
948 cookie = CMSG_DATA(cmsg);
949 rm->data.op_mmp_znotifier->z_cookie = *cookie;
950 return 0;
951}
952
953static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
954 struct msghdr *msg, int *allocated_mr)
955{
956 struct cmsghdr *cmsg;
957 int ret = 0;
958
959 for_each_cmsghdr(cmsg, msg) {
960 if (!CMSG_OK(msg, cmsg))
961 return -EINVAL;
962
963 if (cmsg->cmsg_level != SOL_RDS)
964 continue;
965
966 /* As a side effect, RDMA_DEST and RDMA_MAP will set
967 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
968 */
969 switch (cmsg->cmsg_type) {
970 case RDS_CMSG_RDMA_ARGS:
971 ret = rds_cmsg_rdma_args(rs, rm, cmsg);
972 break;
973
974 case RDS_CMSG_RDMA_DEST:
975 ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
976 break;
977
978 case RDS_CMSG_RDMA_MAP:
979 ret = rds_cmsg_rdma_map(rs, rm, cmsg);
980 if (!ret)
981 *allocated_mr = 1;
982 else if (ret == -ENODEV)
983 /* Accommodate the get_mr() case which can fail
984 * if connection isn't established yet.
985 */
986 ret = -EAGAIN;
987 break;
988 case RDS_CMSG_ATOMIC_CSWP:
989 case RDS_CMSG_ATOMIC_FADD:
990 case RDS_CMSG_MASKED_ATOMIC_CSWP:
991 case RDS_CMSG_MASKED_ATOMIC_FADD:
992 ret = rds_cmsg_atomic(rs, rm, cmsg);
993 break;
994
995 case RDS_CMSG_ZCOPY_COOKIE:
996 ret = rds_cmsg_zcopy(rs, rm, cmsg);
997 break;
998
999 default:
1000 return -EINVAL;
1001 }
1002
1003 if (ret)
1004 break;
1005 }
1006
1007 return ret;
1008}
1009
1010static int rds_send_mprds_hash(struct rds_sock *rs, struct rds_connection *conn)
1011{
1012 int hash;
1013
1014 if (conn->c_npaths == 0)
1015 hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
1016 else
1017 hash = RDS_MPATH_HASH(rs, conn->c_npaths);
1018 if (conn->c_npaths == 0 && hash != 0) {
1019 rds_send_ping(conn, 0);
1020
1021 /* The underlying connection is not up yet. Need to wait
1022 * until it is up to be sure that the non-zero c_path can be
1023 * used. But if we are interrupted, we have to use the zero
1024 * c_path in case the connection ends up being non-MP capable.
1025 */
1026 if (conn->c_npaths == 0)
1027 if (wait_event_interruptible(conn->c_hs_waitq,
1028 conn->c_npaths != 0))
1029 hash = 0;
1030 if (conn->c_npaths == 1)
1031 hash = 0;
1032 }
1033 return hash;
1034}
1035
1036static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes)
1037{
1038 struct rds_rdma_args *args;
1039 struct cmsghdr *cmsg;
1040
1041 for_each_cmsghdr(cmsg, msg) {
1042 if (!CMSG_OK(msg, cmsg))
1043 return -EINVAL;
1044
1045 if (cmsg->cmsg_level != SOL_RDS)
1046 continue;
1047
1048 if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) {
1049 if (cmsg->cmsg_len <
1050 CMSG_LEN(sizeof(struct rds_rdma_args)))
1051 return -EINVAL;
1052 args = CMSG_DATA(cmsg);
1053 *rdma_bytes += args->remote_vec.bytes;
1054 }
1055 }
1056 return 0;
1057}
1058
1059int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
1060{
1061 struct sock *sk = sock->sk;
1062 struct rds_sock *rs = rds_sk_to_rs(sk);
1063 DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name);
1064 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1065 __be16 dport;
1066 struct rds_message *rm = NULL;
1067 struct rds_connection *conn;
1068 int ret = 0;
1069 int queued = 0, allocated_mr = 0;
1070 int nonblock = msg->msg_flags & MSG_DONTWAIT;
1071 long timeo = sock_sndtimeo(sk, nonblock);
1072 struct rds_conn_path *cpath;
1073 struct in6_addr daddr;
1074 __u32 scope_id = 0;
1075 size_t total_payload_len = payload_len, rdma_payload_len = 0;
1076 bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) &&
1077 sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY));
1078 int num_sgs = ceil(payload_len, PAGE_SIZE);
1079 int namelen;
1080
1081 /* Mirror Linux UDP mirror of BSD error message compatibility */
1082 /* XXX: Perhaps MSG_MORE someday */
1083 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) {
1084 ret = -EOPNOTSUPP;
1085 goto out;
1086 }
1087
1088 namelen = msg->msg_namelen;
1089 if (namelen != 0) {
1090 if (namelen < sizeof(*usin)) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094 switch (usin->sin_family) {
1095 case AF_INET:
1096 if (usin->sin_addr.s_addr == htonl(INADDR_ANY) ||
1097 usin->sin_addr.s_addr == htonl(INADDR_BROADCAST) ||
1098 IN_MULTICAST(ntohl(usin->sin_addr.s_addr))) {
1099 ret = -EINVAL;
1100 goto out;
1101 }
1102 ipv6_addr_set_v4mapped(usin->sin_addr.s_addr, &daddr);
1103 dport = usin->sin_port;
1104 break;
1105
1106#if IS_ENABLED(CONFIG_IPV6)
1107 case AF_INET6: {
1108 int addr_type;
1109
1110 if (namelen < sizeof(*sin6)) {
1111 ret = -EINVAL;
1112 goto out;
1113 }
1114 addr_type = ipv6_addr_type(&sin6->sin6_addr);
1115 if (!(addr_type & IPV6_ADDR_UNICAST)) {
1116 __be32 addr4;
1117
1118 if (!(addr_type & IPV6_ADDR_MAPPED)) {
1119 ret = -EINVAL;
1120 goto out;
1121 }
1122
1123 /* It is a mapped address. Need to do some
1124 * sanity checks.
1125 */
1126 addr4 = sin6->sin6_addr.s6_addr32[3];
1127 if (addr4 == htonl(INADDR_ANY) ||
1128 addr4 == htonl(INADDR_BROADCAST) ||
1129 IN_MULTICAST(ntohl(addr4))) {
1130 ret = -EINVAL;
1131 goto out;
1132 }
1133 }
1134 if (addr_type & IPV6_ADDR_LINKLOCAL) {
1135 if (sin6->sin6_scope_id == 0) {
1136 ret = -EINVAL;
1137 goto out;
1138 }
1139 scope_id = sin6->sin6_scope_id;
1140 }
1141
1142 daddr = sin6->sin6_addr;
1143 dport = sin6->sin6_port;
1144 break;
1145 }
1146#endif
1147
1148 default:
1149 ret = -EINVAL;
1150 goto out;
1151 }
1152 } else {
1153 /* We only care about consistency with ->connect() */
1154 lock_sock(sk);
1155 daddr = rs->rs_conn_addr;
1156 dport = rs->rs_conn_port;
1157 scope_id = rs->rs_bound_scope_id;
1158 release_sock(sk);
1159 }
1160
1161 lock_sock(sk);
1162 if (ipv6_addr_any(&rs->rs_bound_addr) || ipv6_addr_any(&daddr)) {
1163 release_sock(sk);
1164 ret = -ENOTCONN;
1165 goto out;
1166 } else if (namelen != 0) {
1167 /* Cannot send to an IPv4 address using an IPv6 source
1168 * address and cannot send to an IPv6 address using an
1169 * IPv4 source address.
1170 */
1171 if (ipv6_addr_v4mapped(&daddr) ^
1172 ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
1173 release_sock(sk);
1174 ret = -EOPNOTSUPP;
1175 goto out;
1176 }
1177 /* If the socket is already bound to a link local address,
1178 * it can only send to peers on the same link. But allow
1179 * communicating beween link local and non-link local address.
1180 */
1181 if (scope_id != rs->rs_bound_scope_id) {
1182 if (!scope_id) {
1183 scope_id = rs->rs_bound_scope_id;
1184 } else if (rs->rs_bound_scope_id) {
1185 release_sock(sk);
1186 ret = -EINVAL;
1187 goto out;
1188 }
1189 }
1190 }
1191 release_sock(sk);
1192
1193 ret = rds_rdma_bytes(msg, &rdma_payload_len);
1194 if (ret)
1195 goto out;
1196
1197 total_payload_len += rdma_payload_len;
1198 if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) {
1199 ret = -EMSGSIZE;
1200 goto out;
1201 }
1202
1203 if (payload_len > rds_sk_sndbuf(rs)) {
1204 ret = -EMSGSIZE;
1205 goto out;
1206 }
1207
1208 if (zcopy) {
1209 if (rs->rs_transport->t_type != RDS_TRANS_TCP) {
1210 ret = -EOPNOTSUPP;
1211 goto out;
1212 }
1213 num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX);
1214 }
1215 /* size of rm including all sgs */
1216 ret = rds_rm_size(msg, num_sgs);
1217 if (ret < 0)
1218 goto out;
1219
1220 rm = rds_message_alloc(ret, GFP_KERNEL);
1221 if (!rm) {
1222 ret = -ENOMEM;
1223 goto out;
1224 }
1225
1226 /* Attach data to the rm */
1227 if (payload_len) {
1228 rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs);
1229 if (!rm->data.op_sg) {
1230 ret = -ENOMEM;
1231 goto out;
1232 }
1233 ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy);
1234 if (ret)
1235 goto out;
1236 }
1237 rm->data.op_active = 1;
1238
1239 rm->m_daddr = daddr;
1240
1241 /* rds_conn_create has a spinlock that runs with IRQ off.
1242 * Caching the conn in the socket helps a lot. */
1243 if (rs->rs_conn && ipv6_addr_equal(&rs->rs_conn->c_faddr, &daddr))
1244 conn = rs->rs_conn;
1245 else {
1246 conn = rds_conn_create_outgoing(sock_net(sock->sk),
1247 &rs->rs_bound_addr, &daddr,
1248 rs->rs_transport,
1249 sock->sk->sk_allocation,
1250 scope_id);
1251 if (IS_ERR(conn)) {
1252 ret = PTR_ERR(conn);
1253 goto out;
1254 }
1255 rs->rs_conn = conn;
1256 }
1257
1258 if (conn->c_trans->t_mp_capable)
1259 cpath = &conn->c_path[rds_send_mprds_hash(rs, conn)];
1260 else
1261 cpath = &conn->c_path[0];
1262
1263 rm->m_conn_path = cpath;
1264
1265 /* Parse any control messages the user may have included. */
1266 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1267 if (ret) {
1268 /* Trigger connection so that its ready for the next retry */
1269 if (ret == -EAGAIN)
1270 rds_conn_connect_if_down(conn);
1271 goto out;
1272 }
1273
1274 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1275 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1276 &rm->rdma, conn->c_trans->xmit_rdma);
1277 ret = -EOPNOTSUPP;
1278 goto out;
1279 }
1280
1281 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1282 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1283 &rm->atomic, conn->c_trans->xmit_atomic);
1284 ret = -EOPNOTSUPP;
1285 goto out;
1286 }
1287
1288 if (rds_destroy_pending(conn)) {
1289 ret = -EAGAIN;
1290 goto out;
1291 }
1292
1293 rds_conn_path_connect_if_down(cpath);
1294
1295 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1296 if (ret) {
1297 rs->rs_seen_congestion = 1;
1298 goto out;
1299 }
1300 while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
1301 dport, &queued)) {
1302 rds_stats_inc(s_send_queue_full);
1303
1304 if (nonblock) {
1305 ret = -EAGAIN;
1306 goto out;
1307 }
1308
1309 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1310 rds_send_queue_rm(rs, conn, cpath, rm,
1311 rs->rs_bound_port,
1312 dport,
1313 &queued),
1314 timeo);
1315 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1316 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1317 continue;
1318
1319 ret = timeo;
1320 if (ret == 0)
1321 ret = -ETIMEDOUT;
1322 goto out;
1323 }
1324
1325 /*
1326 * By now we've committed to the send. We reuse rds_send_worker()
1327 * to retry sends in the rds thread if the transport asks us to.
1328 */
1329 rds_stats_inc(s_send_queued);
1330
1331 ret = rds_send_xmit(cpath);
1332 if (ret == -ENOMEM || ret == -EAGAIN) {
1333 ret = 0;
1334 rcu_read_lock();
1335 if (rds_destroy_pending(cpath->cp_conn))
1336 ret = -ENETUNREACH;
1337 else
1338 queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
1339 rcu_read_unlock();
1340 }
1341 if (ret)
1342 goto out;
1343 rds_message_put(rm);
1344 return payload_len;
1345
1346out:
1347 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1348 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1349 * or in any other way, we need to destroy the MR again */
1350 if (allocated_mr)
1351 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1352
1353 if (rm)
1354 rds_message_put(rm);
1355 return ret;
1356}
1357
1358/*
1359 * send out a probe. Can be shared by rds_send_ping,
1360 * rds_send_pong, rds_send_hb.
1361 * rds_send_hb should use h_flags
1362 * RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
1363 * or
1364 * RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
1365 */
1366static int
1367rds_send_probe(struct rds_conn_path *cp, __be16 sport,
1368 __be16 dport, u8 h_flags)
1369{
1370 struct rds_message *rm;
1371 unsigned long flags;
1372 int ret = 0;
1373
1374 rm = rds_message_alloc(0, GFP_ATOMIC);
1375 if (!rm) {
1376 ret = -ENOMEM;
1377 goto out;
1378 }
1379
1380 rm->m_daddr = cp->cp_conn->c_faddr;
1381 rm->data.op_active = 1;
1382
1383 rds_conn_path_connect_if_down(cp);
1384
1385 ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
1386 if (ret)
1387 goto out;
1388
1389 spin_lock_irqsave(&cp->cp_lock, flags);
1390 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
1391 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1392 rds_message_addref(rm);
1393 rm->m_inc.i_conn = cp->cp_conn;
1394 rm->m_inc.i_conn_path = cp;
1395
1396 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
1397 cp->cp_next_tx_seq);
1398 rm->m_inc.i_hdr.h_flags |= h_flags;
1399 cp->cp_next_tx_seq++;
1400
1401 if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) &&
1402 cp->cp_conn->c_trans->t_mp_capable) {
1403 u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS);
1404 u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num);
1405
1406 rds_message_add_extension(&rm->m_inc.i_hdr,
1407 RDS_EXTHDR_NPATHS, &npaths,
1408 sizeof(npaths));
1409 rds_message_add_extension(&rm->m_inc.i_hdr,
1410 RDS_EXTHDR_GEN_NUM,
1411 &my_gen_num,
1412 sizeof(u32));
1413 }
1414 spin_unlock_irqrestore(&cp->cp_lock, flags);
1415
1416 rds_stats_inc(s_send_queued);
1417 rds_stats_inc(s_send_pong);
1418
1419 /* schedule the send work on rds_wq */
1420 rcu_read_lock();
1421 if (!rds_destroy_pending(cp->cp_conn))
1422 queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
1423 rcu_read_unlock();
1424
1425 rds_message_put(rm);
1426 return 0;
1427
1428out:
1429 if (rm)
1430 rds_message_put(rm);
1431 return ret;
1432}
1433
1434int
1435rds_send_pong(struct rds_conn_path *cp, __be16 dport)
1436{
1437 return rds_send_probe(cp, 0, dport, 0);
1438}
1439
1440void
1441rds_send_ping(struct rds_connection *conn, int cp_index)
1442{
1443 unsigned long flags;
1444 struct rds_conn_path *cp = &conn->c_path[cp_index];
1445
1446 spin_lock_irqsave(&cp->cp_lock, flags);
1447 if (conn->c_ping_triggered) {
1448 spin_unlock_irqrestore(&cp->cp_lock, flags);
1449 return;
1450 }
1451 conn->c_ping_triggered = 1;
1452 spin_unlock_irqrestore(&cp->cp_lock, flags);
1453 rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0);
1454}
1455EXPORT_SYMBOL_GPL(rds_send_ping);