Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/mm.h>
62#include <linux/socket.h>
63#include <linux/file.h>
64#include <linux/net.h>
65#include <linux/interrupt.h>
66#include <linux/thread_info.h>
67#include <linux/rcupdate.h>
68#include <linux/netdevice.h>
69#include <linux/proc_fs.h>
70#include <linux/seq_file.h>
71#include <linux/mutex.h>
72#include <linux/if_bridge.h>
73#include <linux/if_frad.h>
74#include <linux/if_vlan.h>
75#include <linux/ptp_classify.h>
76#include <linux/init.h>
77#include <linux/poll.h>
78#include <linux/cache.h>
79#include <linux/module.h>
80#include <linux/highmem.h>
81#include <linux/mount.h>
82#include <linux/security.h>
83#include <linux/syscalls.h>
84#include <linux/compat.h>
85#include <linux/kmod.h>
86#include <linux/audit.h>
87#include <linux/wireless.h>
88#include <linux/nsproxy.h>
89#include <linux/magic.h>
90#include <linux/slab.h>
91#include <linux/xattr.h>
92#include <linux/nospec.h>
93
94#include <linux/uaccess.h>
95#include <asm/unistd.h>
96
97#include <net/compat.h>
98#include <net/wext.h>
99#include <net/cls_cgroup.h>
100
101#include <net/sock.h>
102#include <linux/netfilter.h>
103
104#include <linux/if_tun.h>
105#include <linux/ipv6_route.h>
106#include <linux/route.h>
107#include <linux/sockios.h>
108#include <net/busy_poll.h>
109#include <linux/errqueue.h>
110
111#ifdef CONFIG_NET_RX_BUSY_POLL
112unsigned int sysctl_net_busy_read __read_mostly;
113unsigned int sysctl_net_busy_poll __read_mostly;
114#endif
115
116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120static int sock_close(struct inode *inode, struct file *file);
121static __poll_t sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124#ifdef CONFIG_COMPAT
125static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127#endif
128static int sock_fasync(int fd, struct file *filp, int on);
129static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135/*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147#ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149#endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156};
157
158/*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162static DEFINE_SPINLOCK(net_family_lock);
163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165/*
166 * Support routines.
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
169 */
170
171/**
172 * move_addr_to_kernel - copy a socket address into kernel space
173 * @uaddr: Address in user space
174 * @kaddr: Address in kernel space
175 * @ulen: Length in user space
176 *
177 * The address is copied into kernel space. If the provided address is
178 * too long an error code of -EINVAL is returned. If the copy gives
179 * invalid addresses -EFAULT is returned. On a success 0 is returned.
180 */
181
182int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183{
184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 return -EINVAL;
186 if (ulen == 0)
187 return 0;
188 if (copy_from_user(kaddr, uaddr, ulen))
189 return -EFAULT;
190 return audit_sockaddr(ulen, kaddr);
191}
192
193/**
194 * move_addr_to_user - copy an address to user space
195 * @kaddr: kernel space address
196 * @klen: length of address in kernel
197 * @uaddr: user space address
198 * @ulen: pointer to user length field
199 *
200 * The value pointed to by ulen on entry is the buffer length available.
201 * This is overwritten with the buffer space used. -EINVAL is returned
202 * if an overlong buffer is specified or a negative buffer size. -EFAULT
203 * is returned if either the buffer or the length field are not
204 * accessible.
205 * After copying the data up to the limit the user specifies, the true
206 * length of the data is written over the length limit the user
207 * specified. Zero is returned for a success.
208 */
209
210static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 void __user *uaddr, int __user *ulen)
212{
213 int err;
214 int len;
215
216 BUG_ON(klen > sizeof(struct sockaddr_storage));
217 err = get_user(len, ulen);
218 if (err)
219 return err;
220 if (len > klen)
221 len = klen;
222 if (len < 0)
223 return -EINVAL;
224 if (len) {
225 if (audit_sockaddr(klen, kaddr))
226 return -ENOMEM;
227 if (copy_to_user(uaddr, kaddr, len))
228 return -EFAULT;
229 }
230 /*
231 * "fromlen shall refer to the value before truncation.."
232 * 1003.1g
233 */
234 return __put_user(klen, ulen);
235}
236
237static struct kmem_cache *sock_inode_cachep __ro_after_init;
238
239static struct inode *sock_alloc_inode(struct super_block *sb)
240{
241 struct socket_alloc *ei;
242 struct socket_wq *wq;
243
244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 if (!ei)
246 return NULL;
247 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 if (!wq) {
249 kmem_cache_free(sock_inode_cachep, ei);
250 return NULL;
251 }
252 init_waitqueue_head(&wq->wait);
253 wq->fasync_list = NULL;
254 wq->flags = 0;
255 ei->socket.wq = wq;
256
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
262
263 return &ei->vfs_inode;
264}
265
266static void sock_destroy_inode(struct inode *inode)
267{
268 struct socket_alloc *ei;
269
270 ei = container_of(inode, struct socket_alloc, vfs_inode);
271 kfree_rcu(ei->socket.wq, rcu);
272 kmem_cache_free(sock_inode_cachep, ei);
273}
274
275static void init_once(void *foo)
276{
277 struct socket_alloc *ei = (struct socket_alloc *)foo;
278
279 inode_init_once(&ei->vfs_inode);
280}
281
282static void init_inodecache(void)
283{
284 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
285 sizeof(struct socket_alloc),
286 0,
287 (SLAB_HWCACHE_ALIGN |
288 SLAB_RECLAIM_ACCOUNT |
289 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
290 init_once);
291 BUG_ON(sock_inode_cachep == NULL);
292}
293
294static const struct super_operations sockfs_ops = {
295 .alloc_inode = sock_alloc_inode,
296 .destroy_inode = sock_destroy_inode,
297 .statfs = simple_statfs,
298};
299
300/*
301 * sockfs_dname() is called from d_path().
302 */
303static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
304{
305 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
306 d_inode(dentry)->i_ino);
307}
308
309static const struct dentry_operations sockfs_dentry_operations = {
310 .d_dname = sockfs_dname,
311};
312
313static int sockfs_xattr_get(const struct xattr_handler *handler,
314 struct dentry *dentry, struct inode *inode,
315 const char *suffix, void *value, size_t size)
316{
317 if (value) {
318 if (dentry->d_name.len + 1 > size)
319 return -ERANGE;
320 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
321 }
322 return dentry->d_name.len + 1;
323}
324
325#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
328
329static const struct xattr_handler sockfs_xattr_handler = {
330 .name = XATTR_NAME_SOCKPROTONAME,
331 .get = sockfs_xattr_get,
332};
333
334static int sockfs_security_xattr_set(const struct xattr_handler *handler,
335 struct dentry *dentry, struct inode *inode,
336 const char *suffix, const void *value,
337 size_t size, int flags)
338{
339 /* Handled by LSM. */
340 return -EAGAIN;
341}
342
343static const struct xattr_handler sockfs_security_xattr_handler = {
344 .prefix = XATTR_SECURITY_PREFIX,
345 .set = sockfs_security_xattr_set,
346};
347
348static const struct xattr_handler *sockfs_xattr_handlers[] = {
349 &sockfs_xattr_handler,
350 &sockfs_security_xattr_handler,
351 NULL
352};
353
354static struct dentry *sockfs_mount(struct file_system_type *fs_type,
355 int flags, const char *dev_name, void *data)
356{
357 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
358 sockfs_xattr_handlers,
359 &sockfs_dentry_operations, SOCKFS_MAGIC);
360}
361
362static struct vfsmount *sock_mnt __read_mostly;
363
364static struct file_system_type sock_fs_type = {
365 .name = "sockfs",
366 .mount = sockfs_mount,
367 .kill_sb = kill_anon_super,
368};
369
370/*
371 * Obtains the first available file descriptor and sets it up for use.
372 *
373 * These functions create file structures and maps them to fd space
374 * of the current process. On success it returns file descriptor
375 * and file struct implicitly stored in sock->file.
376 * Note that another thread may close file descriptor before we return
377 * from this function. We use the fact that now we do not refer
378 * to socket after mapping. If one day we will need it, this
379 * function will increment ref. count on file by 1.
380 *
381 * In any case returned fd MAY BE not valid!
382 * This race condition is unavoidable
383 * with shared fd spaces, we cannot solve it inside kernel,
384 * but we take care of internal coherence yet.
385 */
386
387struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
388{
389 struct file *file;
390
391 if (!dname)
392 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
393
394 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
395 O_RDWR | (flags & O_NONBLOCK),
396 &socket_file_ops);
397 if (IS_ERR(file)) {
398 sock_release(sock);
399 return file;
400 }
401
402 sock->file = file;
403 file->private_data = sock;
404 return file;
405}
406EXPORT_SYMBOL(sock_alloc_file);
407
408static int sock_map_fd(struct socket *sock, int flags)
409{
410 struct file *newfile;
411 int fd = get_unused_fd_flags(flags);
412 if (unlikely(fd < 0)) {
413 sock_release(sock);
414 return fd;
415 }
416
417 newfile = sock_alloc_file(sock, flags, NULL);
418 if (likely(!IS_ERR(newfile))) {
419 fd_install(fd, newfile);
420 return fd;
421 }
422
423 put_unused_fd(fd);
424 return PTR_ERR(newfile);
425}
426
427struct socket *sock_from_file(struct file *file, int *err)
428{
429 if (file->f_op == &socket_file_ops)
430 return file->private_data; /* set in sock_map_fd */
431
432 *err = -ENOTSOCK;
433 return NULL;
434}
435EXPORT_SYMBOL(sock_from_file);
436
437/**
438 * sockfd_lookup - Go from a file number to its socket slot
439 * @fd: file handle
440 * @err: pointer to an error code return
441 *
442 * The file handle passed in is locked and the socket it is bound
443 * to is returned. If an error occurs the err pointer is overwritten
444 * with a negative errno code and NULL is returned. The function checks
445 * for both invalid handles and passing a handle which is not a socket.
446 *
447 * On a success the socket object pointer is returned.
448 */
449
450struct socket *sockfd_lookup(int fd, int *err)
451{
452 struct file *file;
453 struct socket *sock;
454
455 file = fget(fd);
456 if (!file) {
457 *err = -EBADF;
458 return NULL;
459 }
460
461 sock = sock_from_file(file, err);
462 if (!sock)
463 fput(file);
464 return sock;
465}
466EXPORT_SYMBOL(sockfd_lookup);
467
468static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
469{
470 struct fd f = fdget(fd);
471 struct socket *sock;
472
473 *err = -EBADF;
474 if (f.file) {
475 sock = sock_from_file(f.file, err);
476 if (likely(sock)) {
477 *fput_needed = f.flags;
478 return sock;
479 }
480 fdput(f);
481 }
482 return NULL;
483}
484
485static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
486 size_t size)
487{
488 ssize_t len;
489 ssize_t used = 0;
490
491 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
492 if (len < 0)
493 return len;
494 used += len;
495 if (buffer) {
496 if (size < used)
497 return -ERANGE;
498 buffer += len;
499 }
500
501 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
502 used += len;
503 if (buffer) {
504 if (size < used)
505 return -ERANGE;
506 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
507 buffer += len;
508 }
509
510 return used;
511}
512
513static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
514{
515 int err = simple_setattr(dentry, iattr);
516
517 if (!err && (iattr->ia_valid & ATTR_UID)) {
518 struct socket *sock = SOCKET_I(d_inode(dentry));
519
520 if (sock->sk)
521 sock->sk->sk_uid = iattr->ia_uid;
522 else
523 err = -ENOENT;
524 }
525
526 return err;
527}
528
529static const struct inode_operations sockfs_inode_ops = {
530 .listxattr = sockfs_listxattr,
531 .setattr = sockfs_setattr,
532};
533
534/**
535 * sock_alloc - allocate a socket
536 *
537 * Allocate a new inode and socket object. The two are bound together
538 * and initialised. The socket is then returned. If we are out of inodes
539 * NULL is returned.
540 */
541
542struct socket *sock_alloc(void)
543{
544 struct inode *inode;
545 struct socket *sock;
546
547 inode = new_inode_pseudo(sock_mnt->mnt_sb);
548 if (!inode)
549 return NULL;
550
551 sock = SOCKET_I(inode);
552
553 inode->i_ino = get_next_ino();
554 inode->i_mode = S_IFSOCK | S_IRWXUGO;
555 inode->i_uid = current_fsuid();
556 inode->i_gid = current_fsgid();
557 inode->i_op = &sockfs_inode_ops;
558
559 return sock;
560}
561EXPORT_SYMBOL(sock_alloc);
562
563/**
564 * sock_release - close a socket
565 * @sock: socket to close
566 *
567 * The socket is released from the protocol stack if it has a release
568 * callback, and the inode is then released if the socket is bound to
569 * an inode not a file.
570 */
571
572static void __sock_release(struct socket *sock, struct inode *inode)
573{
574 if (sock->ops) {
575 struct module *owner = sock->ops->owner;
576
577 if (inode)
578 inode_lock(inode);
579 sock->ops->release(sock);
580 if (inode)
581 inode_unlock(inode);
582 sock->ops = NULL;
583 module_put(owner);
584 }
585
586 if (sock->wq->fasync_list)
587 pr_err("%s: fasync list not empty!\n", __func__);
588
589 if (!sock->file) {
590 iput(SOCK_INODE(sock));
591 return;
592 }
593 sock->file = NULL;
594}
595
596void sock_release(struct socket *sock)
597{
598 __sock_release(sock, NULL);
599}
600EXPORT_SYMBOL(sock_release);
601
602void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
603{
604 u8 flags = *tx_flags;
605
606 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
607 flags |= SKBTX_HW_TSTAMP;
608
609 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
610 flags |= SKBTX_SW_TSTAMP;
611
612 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
613 flags |= SKBTX_SCHED_TSTAMP;
614
615 *tx_flags = flags;
616}
617EXPORT_SYMBOL(__sock_tx_timestamp);
618
619static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
620{
621 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
622 BUG_ON(ret == -EIOCBQUEUED);
623 return ret;
624}
625
626int sock_sendmsg(struct socket *sock, struct msghdr *msg)
627{
628 int err = security_socket_sendmsg(sock, msg,
629 msg_data_left(msg));
630
631 return err ?: sock_sendmsg_nosec(sock, msg);
632}
633EXPORT_SYMBOL(sock_sendmsg);
634
635int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
636 struct kvec *vec, size_t num, size_t size)
637{
638 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
639 return sock_sendmsg(sock, msg);
640}
641EXPORT_SYMBOL(kernel_sendmsg);
642
643int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
644 struct kvec *vec, size_t num, size_t size)
645{
646 struct socket *sock = sk->sk_socket;
647
648 if (!sock->ops->sendmsg_locked)
649 return sock_no_sendmsg_locked(sk, msg, size);
650
651 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
652
653 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
654}
655EXPORT_SYMBOL(kernel_sendmsg_locked);
656
657static bool skb_is_err_queue(const struct sk_buff *skb)
658{
659 /* pkt_type of skbs enqueued on the error queue are set to
660 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
661 * in recvmsg, since skbs received on a local socket will never
662 * have a pkt_type of PACKET_OUTGOING.
663 */
664 return skb->pkt_type == PACKET_OUTGOING;
665}
666
667/* On transmit, software and hardware timestamps are returned independently.
668 * As the two skb clones share the hardware timestamp, which may be updated
669 * before the software timestamp is received, a hardware TX timestamp may be
670 * returned only if there is no software TX timestamp. Ignore false software
671 * timestamps, which may be made in the __sock_recv_timestamp() call when the
672 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
673 * hardware timestamp.
674 */
675static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
676{
677 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
678}
679
680static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
681{
682 struct scm_ts_pktinfo ts_pktinfo;
683 struct net_device *orig_dev;
684
685 if (!skb_mac_header_was_set(skb))
686 return;
687
688 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
689
690 rcu_read_lock();
691 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
692 if (orig_dev)
693 ts_pktinfo.if_index = orig_dev->ifindex;
694 rcu_read_unlock();
695
696 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
697 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
698 sizeof(ts_pktinfo), &ts_pktinfo);
699}
700
701/*
702 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
703 */
704void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
705 struct sk_buff *skb)
706{
707 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
708 struct scm_timestamping tss;
709 int empty = 1, false_tstamp = 0;
710 struct skb_shared_hwtstamps *shhwtstamps =
711 skb_hwtstamps(skb);
712
713 /* Race occurred between timestamp enabling and packet
714 receiving. Fill in the current time for now. */
715 if (need_software_tstamp && skb->tstamp == 0) {
716 __net_timestamp(skb);
717 false_tstamp = 1;
718 }
719
720 if (need_software_tstamp) {
721 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
722 struct timeval tv;
723 skb_get_timestamp(skb, &tv);
724 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
725 sizeof(tv), &tv);
726 } else {
727 struct timespec ts;
728 skb_get_timestampns(skb, &ts);
729 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
730 sizeof(ts), &ts);
731 }
732 }
733
734 memset(&tss, 0, sizeof(tss));
735 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
736 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
737 empty = 0;
738 if (shhwtstamps &&
739 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
740 !skb_is_swtx_tstamp(skb, false_tstamp) &&
741 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
742 empty = 0;
743 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
744 !skb_is_err_queue(skb))
745 put_ts_pktinfo(msg, skb);
746 }
747 if (!empty) {
748 put_cmsg(msg, SOL_SOCKET,
749 SCM_TIMESTAMPING, sizeof(tss), &tss);
750
751 if (skb_is_err_queue(skb) && skb->len &&
752 SKB_EXT_ERR(skb)->opt_stats)
753 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
754 skb->len, skb->data);
755 }
756}
757EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
758
759void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
760 struct sk_buff *skb)
761{
762 int ack;
763
764 if (!sock_flag(sk, SOCK_WIFI_STATUS))
765 return;
766 if (!skb->wifi_acked_valid)
767 return;
768
769 ack = skb->wifi_acked;
770
771 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
772}
773EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
774
775static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
776 struct sk_buff *skb)
777{
778 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
779 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
780 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
781}
782
783void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
784 struct sk_buff *skb)
785{
786 sock_recv_timestamp(msg, sk, skb);
787 sock_recv_drops(msg, sk, skb);
788}
789EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
790
791static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
792 int flags)
793{
794 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
795}
796
797int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
798{
799 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
800
801 return err ?: sock_recvmsg_nosec(sock, msg, flags);
802}
803EXPORT_SYMBOL(sock_recvmsg);
804
805/**
806 * kernel_recvmsg - Receive a message from a socket (kernel space)
807 * @sock: The socket to receive the message from
808 * @msg: Received message
809 * @vec: Input s/g array for message data
810 * @num: Size of input s/g array
811 * @size: Number of bytes to read
812 * @flags: Message flags (MSG_DONTWAIT, etc...)
813 *
814 * On return the msg structure contains the scatter/gather array passed in the
815 * vec argument. The array is modified so that it consists of the unfilled
816 * portion of the original array.
817 *
818 * The returned value is the total number of bytes received, or an error.
819 */
820int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
821 struct kvec *vec, size_t num, size_t size, int flags)
822{
823 mm_segment_t oldfs = get_fs();
824 int result;
825
826 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
827 set_fs(KERNEL_DS);
828 result = sock_recvmsg(sock, msg, flags);
829 set_fs(oldfs);
830 return result;
831}
832EXPORT_SYMBOL(kernel_recvmsg);
833
834static ssize_t sock_sendpage(struct file *file, struct page *page,
835 int offset, size_t size, loff_t *ppos, int more)
836{
837 struct socket *sock;
838 int flags;
839
840 sock = file->private_data;
841
842 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
843 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
844 flags |= more;
845
846 return kernel_sendpage(sock, page, offset, size, flags);
847}
848
849static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
850 struct pipe_inode_info *pipe, size_t len,
851 unsigned int flags)
852{
853 struct socket *sock = file->private_data;
854
855 if (unlikely(!sock->ops->splice_read))
856 return -EINVAL;
857
858 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
859}
860
861static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
862{
863 struct file *file = iocb->ki_filp;
864 struct socket *sock = file->private_data;
865 struct msghdr msg = {.msg_iter = *to,
866 .msg_iocb = iocb};
867 ssize_t res;
868
869 if (file->f_flags & O_NONBLOCK)
870 msg.msg_flags = MSG_DONTWAIT;
871
872 if (iocb->ki_pos != 0)
873 return -ESPIPE;
874
875 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
876 return 0;
877
878 res = sock_recvmsg(sock, &msg, msg.msg_flags);
879 *to = msg.msg_iter;
880 return res;
881}
882
883static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
884{
885 struct file *file = iocb->ki_filp;
886 struct socket *sock = file->private_data;
887 struct msghdr msg = {.msg_iter = *from,
888 .msg_iocb = iocb};
889 ssize_t res;
890
891 if (iocb->ki_pos != 0)
892 return -ESPIPE;
893
894 if (file->f_flags & O_NONBLOCK)
895 msg.msg_flags = MSG_DONTWAIT;
896
897 if (sock->type == SOCK_SEQPACKET)
898 msg.msg_flags |= MSG_EOR;
899
900 res = sock_sendmsg(sock, &msg);
901 *from = msg.msg_iter;
902 return res;
903}
904
905/*
906 * Atomic setting of ioctl hooks to avoid race
907 * with module unload.
908 */
909
910static DEFINE_MUTEX(br_ioctl_mutex);
911static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
912
913void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
914{
915 mutex_lock(&br_ioctl_mutex);
916 br_ioctl_hook = hook;
917 mutex_unlock(&br_ioctl_mutex);
918}
919EXPORT_SYMBOL(brioctl_set);
920
921static DEFINE_MUTEX(vlan_ioctl_mutex);
922static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
923
924void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
925{
926 mutex_lock(&vlan_ioctl_mutex);
927 vlan_ioctl_hook = hook;
928 mutex_unlock(&vlan_ioctl_mutex);
929}
930EXPORT_SYMBOL(vlan_ioctl_set);
931
932static DEFINE_MUTEX(dlci_ioctl_mutex);
933static int (*dlci_ioctl_hook) (unsigned int, void __user *);
934
935void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
936{
937 mutex_lock(&dlci_ioctl_mutex);
938 dlci_ioctl_hook = hook;
939 mutex_unlock(&dlci_ioctl_mutex);
940}
941EXPORT_SYMBOL(dlci_ioctl_set);
942
943static long sock_do_ioctl(struct net *net, struct socket *sock,
944 unsigned int cmd, unsigned long arg)
945{
946 int err;
947 void __user *argp = (void __user *)arg;
948
949 err = sock->ops->ioctl(sock, cmd, arg);
950
951 /*
952 * If this ioctl is unknown try to hand it down
953 * to the NIC driver.
954 */
955 if (err != -ENOIOCTLCMD)
956 return err;
957
958 if (cmd == SIOCGIFCONF) {
959 struct ifconf ifc;
960 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
961 return -EFAULT;
962 rtnl_lock();
963 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
964 rtnl_unlock();
965 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
966 err = -EFAULT;
967 } else {
968 struct ifreq ifr;
969 bool need_copyout;
970 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
971 return -EFAULT;
972 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
973 if (!err && need_copyout)
974 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
975 return -EFAULT;
976 }
977 return err;
978}
979
980/*
981 * With an ioctl, arg may well be a user mode pointer, but we don't know
982 * what to do with it - that's up to the protocol still.
983 */
984
985struct ns_common *get_net_ns(struct ns_common *ns)
986{
987 return &get_net(container_of(ns, struct net, ns))->ns;
988}
989EXPORT_SYMBOL_GPL(get_net_ns);
990
991static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
992{
993 struct socket *sock;
994 struct sock *sk;
995 void __user *argp = (void __user *)arg;
996 int pid, err;
997 struct net *net;
998
999 sock = file->private_data;
1000 sk = sock->sk;
1001 net = sock_net(sk);
1002 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1003 struct ifreq ifr;
1004 bool need_copyout;
1005 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1006 return -EFAULT;
1007 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1008 if (!err && need_copyout)
1009 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1010 return -EFAULT;
1011 } else
1012#ifdef CONFIG_WEXT_CORE
1013 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1014 err = wext_handle_ioctl(net, cmd, argp);
1015 } else
1016#endif
1017 switch (cmd) {
1018 case FIOSETOWN:
1019 case SIOCSPGRP:
1020 err = -EFAULT;
1021 if (get_user(pid, (int __user *)argp))
1022 break;
1023 err = f_setown(sock->file, pid, 1);
1024 break;
1025 case FIOGETOWN:
1026 case SIOCGPGRP:
1027 err = put_user(f_getown(sock->file),
1028 (int __user *)argp);
1029 break;
1030 case SIOCGIFBR:
1031 case SIOCSIFBR:
1032 case SIOCBRADDBR:
1033 case SIOCBRDELBR:
1034 err = -ENOPKG;
1035 if (!br_ioctl_hook)
1036 request_module("bridge");
1037
1038 mutex_lock(&br_ioctl_mutex);
1039 if (br_ioctl_hook)
1040 err = br_ioctl_hook(net, cmd, argp);
1041 mutex_unlock(&br_ioctl_mutex);
1042 break;
1043 case SIOCGIFVLAN:
1044 case SIOCSIFVLAN:
1045 err = -ENOPKG;
1046 if (!vlan_ioctl_hook)
1047 request_module("8021q");
1048
1049 mutex_lock(&vlan_ioctl_mutex);
1050 if (vlan_ioctl_hook)
1051 err = vlan_ioctl_hook(net, argp);
1052 mutex_unlock(&vlan_ioctl_mutex);
1053 break;
1054 case SIOCADDDLCI:
1055 case SIOCDELDLCI:
1056 err = -ENOPKG;
1057 if (!dlci_ioctl_hook)
1058 request_module("dlci");
1059
1060 mutex_lock(&dlci_ioctl_mutex);
1061 if (dlci_ioctl_hook)
1062 err = dlci_ioctl_hook(cmd, argp);
1063 mutex_unlock(&dlci_ioctl_mutex);
1064 break;
1065 case SIOCGSKNS:
1066 err = -EPERM;
1067 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1068 break;
1069
1070 err = open_related_ns(&net->ns, get_net_ns);
1071 break;
1072 default:
1073 err = sock_do_ioctl(net, sock, cmd, arg);
1074 break;
1075 }
1076 return err;
1077}
1078
1079int sock_create_lite(int family, int type, int protocol, struct socket **res)
1080{
1081 int err;
1082 struct socket *sock = NULL;
1083
1084 err = security_socket_create(family, type, protocol, 1);
1085 if (err)
1086 goto out;
1087
1088 sock = sock_alloc();
1089 if (!sock) {
1090 err = -ENOMEM;
1091 goto out;
1092 }
1093
1094 sock->type = type;
1095 err = security_socket_post_create(sock, family, type, protocol, 1);
1096 if (err)
1097 goto out_release;
1098
1099out:
1100 *res = sock;
1101 return err;
1102out_release:
1103 sock_release(sock);
1104 sock = NULL;
1105 goto out;
1106}
1107EXPORT_SYMBOL(sock_create_lite);
1108
1109/* No kernel lock held - perfect */
1110static __poll_t sock_poll(struct file *file, poll_table *wait)
1111{
1112 struct socket *sock = file->private_data;
1113 __poll_t events = poll_requested_events(wait), flag = 0;
1114
1115 if (!sock->ops->poll)
1116 return 0;
1117
1118 if (sk_can_busy_loop(sock->sk)) {
1119 /* poll once if requested by the syscall */
1120 if (events & POLL_BUSY_LOOP)
1121 sk_busy_loop(sock->sk, 1);
1122
1123 /* if this socket can poll_ll, tell the system call */
1124 flag = POLL_BUSY_LOOP;
1125 }
1126
1127 return sock->ops->poll(file, sock, wait) | flag;
1128}
1129
1130static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1131{
1132 struct socket *sock = file->private_data;
1133
1134 return sock->ops->mmap(file, sock, vma);
1135}
1136
1137static int sock_close(struct inode *inode, struct file *filp)
1138{
1139 __sock_release(SOCKET_I(inode), inode);
1140 return 0;
1141}
1142
1143/*
1144 * Update the socket async list
1145 *
1146 * Fasync_list locking strategy.
1147 *
1148 * 1. fasync_list is modified only under process context socket lock
1149 * i.e. under semaphore.
1150 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1151 * or under socket lock
1152 */
1153
1154static int sock_fasync(int fd, struct file *filp, int on)
1155{
1156 struct socket *sock = filp->private_data;
1157 struct sock *sk = sock->sk;
1158 struct socket_wq *wq;
1159
1160 if (sk == NULL)
1161 return -EINVAL;
1162
1163 lock_sock(sk);
1164 wq = sock->wq;
1165 fasync_helper(fd, filp, on, &wq->fasync_list);
1166
1167 if (!wq->fasync_list)
1168 sock_reset_flag(sk, SOCK_FASYNC);
1169 else
1170 sock_set_flag(sk, SOCK_FASYNC);
1171
1172 release_sock(sk);
1173 return 0;
1174}
1175
1176/* This function may be called only under rcu_lock */
1177
1178int sock_wake_async(struct socket_wq *wq, int how, int band)
1179{
1180 if (!wq || !wq->fasync_list)
1181 return -1;
1182
1183 switch (how) {
1184 case SOCK_WAKE_WAITD:
1185 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1186 break;
1187 goto call_kill;
1188 case SOCK_WAKE_SPACE:
1189 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1190 break;
1191 /* fall through */
1192 case SOCK_WAKE_IO:
1193call_kill:
1194 kill_fasync(&wq->fasync_list, SIGIO, band);
1195 break;
1196 case SOCK_WAKE_URG:
1197 kill_fasync(&wq->fasync_list, SIGURG, band);
1198 }
1199
1200 return 0;
1201}
1202EXPORT_SYMBOL(sock_wake_async);
1203
1204int __sock_create(struct net *net, int family, int type, int protocol,
1205 struct socket **res, int kern)
1206{
1207 int err;
1208 struct socket *sock;
1209 const struct net_proto_family *pf;
1210
1211 /*
1212 * Check protocol is in range
1213 */
1214 if (family < 0 || family >= NPROTO)
1215 return -EAFNOSUPPORT;
1216 if (type < 0 || type >= SOCK_MAX)
1217 return -EINVAL;
1218
1219 /* Compatibility.
1220
1221 This uglymoron is moved from INET layer to here to avoid
1222 deadlock in module load.
1223 */
1224 if (family == PF_INET && type == SOCK_PACKET) {
1225 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1226 current->comm);
1227 family = PF_PACKET;
1228 }
1229
1230 err = security_socket_create(family, type, protocol, kern);
1231 if (err)
1232 return err;
1233
1234 /*
1235 * Allocate the socket and allow the family to set things up. if
1236 * the protocol is 0, the family is instructed to select an appropriate
1237 * default.
1238 */
1239 sock = sock_alloc();
1240 if (!sock) {
1241 net_warn_ratelimited("socket: no more sockets\n");
1242 return -ENFILE; /* Not exactly a match, but its the
1243 closest posix thing */
1244 }
1245
1246 sock->type = type;
1247
1248#ifdef CONFIG_MODULES
1249 /* Attempt to load a protocol module if the find failed.
1250 *
1251 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1252 * requested real, full-featured networking support upon configuration.
1253 * Otherwise module support will break!
1254 */
1255 if (rcu_access_pointer(net_families[family]) == NULL)
1256 request_module("net-pf-%d", family);
1257#endif
1258
1259 rcu_read_lock();
1260 pf = rcu_dereference(net_families[family]);
1261 err = -EAFNOSUPPORT;
1262 if (!pf)
1263 goto out_release;
1264
1265 /*
1266 * We will call the ->create function, that possibly is in a loadable
1267 * module, so we have to bump that loadable module refcnt first.
1268 */
1269 if (!try_module_get(pf->owner))
1270 goto out_release;
1271
1272 /* Now protected by module ref count */
1273 rcu_read_unlock();
1274
1275 err = pf->create(net, sock, protocol, kern);
1276 if (err < 0)
1277 goto out_module_put;
1278
1279 /*
1280 * Now to bump the refcnt of the [loadable] module that owns this
1281 * socket at sock_release time we decrement its refcnt.
1282 */
1283 if (!try_module_get(sock->ops->owner))
1284 goto out_module_busy;
1285
1286 /*
1287 * Now that we're done with the ->create function, the [loadable]
1288 * module can have its refcnt decremented
1289 */
1290 module_put(pf->owner);
1291 err = security_socket_post_create(sock, family, type, protocol, kern);
1292 if (err)
1293 goto out_sock_release;
1294 *res = sock;
1295
1296 return 0;
1297
1298out_module_busy:
1299 err = -EAFNOSUPPORT;
1300out_module_put:
1301 sock->ops = NULL;
1302 module_put(pf->owner);
1303out_sock_release:
1304 sock_release(sock);
1305 return err;
1306
1307out_release:
1308 rcu_read_unlock();
1309 goto out_sock_release;
1310}
1311EXPORT_SYMBOL(__sock_create);
1312
1313int sock_create(int family, int type, int protocol, struct socket **res)
1314{
1315 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1316}
1317EXPORT_SYMBOL(sock_create);
1318
1319int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1320{
1321 return __sock_create(net, family, type, protocol, res, 1);
1322}
1323EXPORT_SYMBOL(sock_create_kern);
1324
1325int __sys_socket(int family, int type, int protocol)
1326{
1327 int retval;
1328 struct socket *sock;
1329 int flags;
1330
1331 /* Check the SOCK_* constants for consistency. */
1332 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1333 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1334 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1335 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1336
1337 flags = type & ~SOCK_TYPE_MASK;
1338 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1339 return -EINVAL;
1340 type &= SOCK_TYPE_MASK;
1341
1342 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1343 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1344
1345 retval = sock_create(family, type, protocol, &sock);
1346 if (retval < 0)
1347 return retval;
1348
1349 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1350}
1351
1352SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1353{
1354 return __sys_socket(family, type, protocol);
1355}
1356
1357/*
1358 * Create a pair of connected sockets.
1359 */
1360
1361int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1362{
1363 struct socket *sock1, *sock2;
1364 int fd1, fd2, err;
1365 struct file *newfile1, *newfile2;
1366 int flags;
1367
1368 flags = type & ~SOCK_TYPE_MASK;
1369 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1370 return -EINVAL;
1371 type &= SOCK_TYPE_MASK;
1372
1373 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1374 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1375
1376 /*
1377 * reserve descriptors and make sure we won't fail
1378 * to return them to userland.
1379 */
1380 fd1 = get_unused_fd_flags(flags);
1381 if (unlikely(fd1 < 0))
1382 return fd1;
1383
1384 fd2 = get_unused_fd_flags(flags);
1385 if (unlikely(fd2 < 0)) {
1386 put_unused_fd(fd1);
1387 return fd2;
1388 }
1389
1390 err = put_user(fd1, &usockvec[0]);
1391 if (err)
1392 goto out;
1393
1394 err = put_user(fd2, &usockvec[1]);
1395 if (err)
1396 goto out;
1397
1398 /*
1399 * Obtain the first socket and check if the underlying protocol
1400 * supports the socketpair call.
1401 */
1402
1403 err = sock_create(family, type, protocol, &sock1);
1404 if (unlikely(err < 0))
1405 goto out;
1406
1407 err = sock_create(family, type, protocol, &sock2);
1408 if (unlikely(err < 0)) {
1409 sock_release(sock1);
1410 goto out;
1411 }
1412
1413 err = security_socket_socketpair(sock1, sock2);
1414 if (unlikely(err)) {
1415 sock_release(sock2);
1416 sock_release(sock1);
1417 goto out;
1418 }
1419
1420 err = sock1->ops->socketpair(sock1, sock2);
1421 if (unlikely(err < 0)) {
1422 sock_release(sock2);
1423 sock_release(sock1);
1424 goto out;
1425 }
1426
1427 newfile1 = sock_alloc_file(sock1, flags, NULL);
1428 if (IS_ERR(newfile1)) {
1429 err = PTR_ERR(newfile1);
1430 sock_release(sock2);
1431 goto out;
1432 }
1433
1434 newfile2 = sock_alloc_file(sock2, flags, NULL);
1435 if (IS_ERR(newfile2)) {
1436 err = PTR_ERR(newfile2);
1437 fput(newfile1);
1438 goto out;
1439 }
1440
1441 audit_fd_pair(fd1, fd2);
1442
1443 fd_install(fd1, newfile1);
1444 fd_install(fd2, newfile2);
1445 return 0;
1446
1447out:
1448 put_unused_fd(fd2);
1449 put_unused_fd(fd1);
1450 return err;
1451}
1452
1453SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1454 int __user *, usockvec)
1455{
1456 return __sys_socketpair(family, type, protocol, usockvec);
1457}
1458
1459/*
1460 * Bind a name to a socket. Nothing much to do here since it's
1461 * the protocol's responsibility to handle the local address.
1462 *
1463 * We move the socket address to kernel space before we call
1464 * the protocol layer (having also checked the address is ok).
1465 */
1466
1467int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1468{
1469 struct socket *sock;
1470 struct sockaddr_storage address;
1471 int err, fput_needed;
1472
1473 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1474 if (sock) {
1475 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1476 if (err >= 0) {
1477 err = security_socket_bind(sock,
1478 (struct sockaddr *)&address,
1479 addrlen);
1480 if (!err)
1481 err = sock->ops->bind(sock,
1482 (struct sockaddr *)
1483 &address, addrlen);
1484 }
1485 fput_light(sock->file, fput_needed);
1486 }
1487 return err;
1488}
1489
1490SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1491{
1492 return __sys_bind(fd, umyaddr, addrlen);
1493}
1494
1495/*
1496 * Perform a listen. Basically, we allow the protocol to do anything
1497 * necessary for a listen, and if that works, we mark the socket as
1498 * ready for listening.
1499 */
1500
1501int __sys_listen(int fd, int backlog)
1502{
1503 struct socket *sock;
1504 int err, fput_needed;
1505 int somaxconn;
1506
1507 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1508 if (sock) {
1509 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1510 if ((unsigned int)backlog > somaxconn)
1511 backlog = somaxconn;
1512
1513 err = security_socket_listen(sock, backlog);
1514 if (!err)
1515 err = sock->ops->listen(sock, backlog);
1516
1517 fput_light(sock->file, fput_needed);
1518 }
1519 return err;
1520}
1521
1522SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1523{
1524 return __sys_listen(fd, backlog);
1525}
1526
1527/*
1528 * For accept, we attempt to create a new socket, set up the link
1529 * with the client, wake up the client, then return the new
1530 * connected fd. We collect the address of the connector in kernel
1531 * space and move it to user at the very end. This is unclean because
1532 * we open the socket then return an error.
1533 *
1534 * 1003.1g adds the ability to recvmsg() to query connection pending
1535 * status to recvmsg. We need to add that support in a way thats
1536 * clean when we restructure accept also.
1537 */
1538
1539int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1540 int __user *upeer_addrlen, int flags)
1541{
1542 struct socket *sock, *newsock;
1543 struct file *newfile;
1544 int err, len, newfd, fput_needed;
1545 struct sockaddr_storage address;
1546
1547 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1548 return -EINVAL;
1549
1550 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1551 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1552
1553 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1554 if (!sock)
1555 goto out;
1556
1557 err = -ENFILE;
1558 newsock = sock_alloc();
1559 if (!newsock)
1560 goto out_put;
1561
1562 newsock->type = sock->type;
1563 newsock->ops = sock->ops;
1564
1565 /*
1566 * We don't need try_module_get here, as the listening socket (sock)
1567 * has the protocol module (sock->ops->owner) held.
1568 */
1569 __module_get(newsock->ops->owner);
1570
1571 newfd = get_unused_fd_flags(flags);
1572 if (unlikely(newfd < 0)) {
1573 err = newfd;
1574 sock_release(newsock);
1575 goto out_put;
1576 }
1577 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1578 if (IS_ERR(newfile)) {
1579 err = PTR_ERR(newfile);
1580 put_unused_fd(newfd);
1581 goto out_put;
1582 }
1583
1584 err = security_socket_accept(sock, newsock);
1585 if (err)
1586 goto out_fd;
1587
1588 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1589 if (err < 0)
1590 goto out_fd;
1591
1592 if (upeer_sockaddr) {
1593 len = newsock->ops->getname(newsock,
1594 (struct sockaddr *)&address, 2);
1595 if (len < 0) {
1596 err = -ECONNABORTED;
1597 goto out_fd;
1598 }
1599 err = move_addr_to_user(&address,
1600 len, upeer_sockaddr, upeer_addrlen);
1601 if (err < 0)
1602 goto out_fd;
1603 }
1604
1605 /* File flags are not inherited via accept() unlike another OSes. */
1606
1607 fd_install(newfd, newfile);
1608 err = newfd;
1609
1610out_put:
1611 fput_light(sock->file, fput_needed);
1612out:
1613 return err;
1614out_fd:
1615 fput(newfile);
1616 put_unused_fd(newfd);
1617 goto out_put;
1618}
1619
1620SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1621 int __user *, upeer_addrlen, int, flags)
1622{
1623 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1624}
1625
1626SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1627 int __user *, upeer_addrlen)
1628{
1629 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1630}
1631
1632/*
1633 * Attempt to connect to a socket with the server address. The address
1634 * is in user space so we verify it is OK and move it to kernel space.
1635 *
1636 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1637 * break bindings
1638 *
1639 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1640 * other SEQPACKET protocols that take time to connect() as it doesn't
1641 * include the -EINPROGRESS status for such sockets.
1642 */
1643
1644int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1645{
1646 struct socket *sock;
1647 struct sockaddr_storage address;
1648 int err, fput_needed;
1649
1650 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1651 if (!sock)
1652 goto out;
1653 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1654 if (err < 0)
1655 goto out_put;
1656
1657 err =
1658 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1659 if (err)
1660 goto out_put;
1661
1662 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1663 sock->file->f_flags);
1664out_put:
1665 fput_light(sock->file, fput_needed);
1666out:
1667 return err;
1668}
1669
1670SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1671 int, addrlen)
1672{
1673 return __sys_connect(fd, uservaddr, addrlen);
1674}
1675
1676/*
1677 * Get the local address ('name') of a socket object. Move the obtained
1678 * name to user space.
1679 */
1680
1681int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1682 int __user *usockaddr_len)
1683{
1684 struct socket *sock;
1685 struct sockaddr_storage address;
1686 int err, fput_needed;
1687
1688 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1689 if (!sock)
1690 goto out;
1691
1692 err = security_socket_getsockname(sock);
1693 if (err)
1694 goto out_put;
1695
1696 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1697 if (err < 0)
1698 goto out_put;
1699 /* "err" is actually length in this case */
1700 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1701
1702out_put:
1703 fput_light(sock->file, fput_needed);
1704out:
1705 return err;
1706}
1707
1708SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1709 int __user *, usockaddr_len)
1710{
1711 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1712}
1713
1714/*
1715 * Get the remote address ('name') of a socket object. Move the obtained
1716 * name to user space.
1717 */
1718
1719int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1720 int __user *usockaddr_len)
1721{
1722 struct socket *sock;
1723 struct sockaddr_storage address;
1724 int err, fput_needed;
1725
1726 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1727 if (sock != NULL) {
1728 err = security_socket_getpeername(sock);
1729 if (err) {
1730 fput_light(sock->file, fput_needed);
1731 return err;
1732 }
1733
1734 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1735 if (err >= 0)
1736 /* "err" is actually length in this case */
1737 err = move_addr_to_user(&address, err, usockaddr,
1738 usockaddr_len);
1739 fput_light(sock->file, fput_needed);
1740 }
1741 return err;
1742}
1743
1744SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1745 int __user *, usockaddr_len)
1746{
1747 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1748}
1749
1750/*
1751 * Send a datagram to a given address. We move the address into kernel
1752 * space and check the user space data area is readable before invoking
1753 * the protocol.
1754 */
1755int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1756 struct sockaddr __user *addr, int addr_len)
1757{
1758 struct socket *sock;
1759 struct sockaddr_storage address;
1760 int err;
1761 struct msghdr msg;
1762 struct iovec iov;
1763 int fput_needed;
1764
1765 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1766 if (unlikely(err))
1767 return err;
1768 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1769 if (!sock)
1770 goto out;
1771
1772 msg.msg_name = NULL;
1773 msg.msg_control = NULL;
1774 msg.msg_controllen = 0;
1775 msg.msg_namelen = 0;
1776 if (addr) {
1777 err = move_addr_to_kernel(addr, addr_len, &address);
1778 if (err < 0)
1779 goto out_put;
1780 msg.msg_name = (struct sockaddr *)&address;
1781 msg.msg_namelen = addr_len;
1782 }
1783 if (sock->file->f_flags & O_NONBLOCK)
1784 flags |= MSG_DONTWAIT;
1785 msg.msg_flags = flags;
1786 err = sock_sendmsg(sock, &msg);
1787
1788out_put:
1789 fput_light(sock->file, fput_needed);
1790out:
1791 return err;
1792}
1793
1794SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1795 unsigned int, flags, struct sockaddr __user *, addr,
1796 int, addr_len)
1797{
1798 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1799}
1800
1801/*
1802 * Send a datagram down a socket.
1803 */
1804
1805SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1806 unsigned int, flags)
1807{
1808 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1809}
1810
1811/*
1812 * Receive a frame from the socket and optionally record the address of the
1813 * sender. We verify the buffers are writable and if needed move the
1814 * sender address from kernel to user space.
1815 */
1816int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1817 struct sockaddr __user *addr, int __user *addr_len)
1818{
1819 struct socket *sock;
1820 struct iovec iov;
1821 struct msghdr msg;
1822 struct sockaddr_storage address;
1823 int err, err2;
1824 int fput_needed;
1825
1826 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1827 if (unlikely(err))
1828 return err;
1829 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1830 if (!sock)
1831 goto out;
1832
1833 msg.msg_control = NULL;
1834 msg.msg_controllen = 0;
1835 /* Save some cycles and don't copy the address if not needed */
1836 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1837 /* We assume all kernel code knows the size of sockaddr_storage */
1838 msg.msg_namelen = 0;
1839 msg.msg_iocb = NULL;
1840 msg.msg_flags = 0;
1841 if (sock->file->f_flags & O_NONBLOCK)
1842 flags |= MSG_DONTWAIT;
1843 err = sock_recvmsg(sock, &msg, flags);
1844
1845 if (err >= 0 && addr != NULL) {
1846 err2 = move_addr_to_user(&address,
1847 msg.msg_namelen, addr, addr_len);
1848 if (err2 < 0)
1849 err = err2;
1850 }
1851
1852 fput_light(sock->file, fput_needed);
1853out:
1854 return err;
1855}
1856
1857SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1858 unsigned int, flags, struct sockaddr __user *, addr,
1859 int __user *, addr_len)
1860{
1861 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1862}
1863
1864/*
1865 * Receive a datagram from a socket.
1866 */
1867
1868SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1869 unsigned int, flags)
1870{
1871 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1872}
1873
1874/*
1875 * Set a socket option. Because we don't know the option lengths we have
1876 * to pass the user mode parameter for the protocols to sort out.
1877 */
1878
1879static int __sys_setsockopt(int fd, int level, int optname,
1880 char __user *optval, int optlen)
1881{
1882 int err, fput_needed;
1883 struct socket *sock;
1884
1885 if (optlen < 0)
1886 return -EINVAL;
1887
1888 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1889 if (sock != NULL) {
1890 err = security_socket_setsockopt(sock, level, optname);
1891 if (err)
1892 goto out_put;
1893
1894 if (level == SOL_SOCKET)
1895 err =
1896 sock_setsockopt(sock, level, optname, optval,
1897 optlen);
1898 else
1899 err =
1900 sock->ops->setsockopt(sock, level, optname, optval,
1901 optlen);
1902out_put:
1903 fput_light(sock->file, fput_needed);
1904 }
1905 return err;
1906}
1907
1908SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1909 char __user *, optval, int, optlen)
1910{
1911 return __sys_setsockopt(fd, level, optname, optval, optlen);
1912}
1913
1914/*
1915 * Get a socket option. Because we don't know the option lengths we have
1916 * to pass a user mode parameter for the protocols to sort out.
1917 */
1918
1919static int __sys_getsockopt(int fd, int level, int optname,
1920 char __user *optval, int __user *optlen)
1921{
1922 int err, fput_needed;
1923 struct socket *sock;
1924
1925 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1926 if (sock != NULL) {
1927 err = security_socket_getsockopt(sock, level, optname);
1928 if (err)
1929 goto out_put;
1930
1931 if (level == SOL_SOCKET)
1932 err =
1933 sock_getsockopt(sock, level, optname, optval,
1934 optlen);
1935 else
1936 err =
1937 sock->ops->getsockopt(sock, level, optname, optval,
1938 optlen);
1939out_put:
1940 fput_light(sock->file, fput_needed);
1941 }
1942 return err;
1943}
1944
1945SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1946 char __user *, optval, int __user *, optlen)
1947{
1948 return __sys_getsockopt(fd, level, optname, optval, optlen);
1949}
1950
1951/*
1952 * Shutdown a socket.
1953 */
1954
1955int __sys_shutdown(int fd, int how)
1956{
1957 int err, fput_needed;
1958 struct socket *sock;
1959
1960 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1961 if (sock != NULL) {
1962 err = security_socket_shutdown(sock, how);
1963 if (!err)
1964 err = sock->ops->shutdown(sock, how);
1965 fput_light(sock->file, fput_needed);
1966 }
1967 return err;
1968}
1969
1970SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1971{
1972 return __sys_shutdown(fd, how);
1973}
1974
1975/* A couple of helpful macros for getting the address of the 32/64 bit
1976 * fields which are the same type (int / unsigned) on our platforms.
1977 */
1978#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1979#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1980#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1981
1982struct used_address {
1983 struct sockaddr_storage name;
1984 unsigned int name_len;
1985};
1986
1987static int copy_msghdr_from_user(struct msghdr *kmsg,
1988 struct user_msghdr __user *umsg,
1989 struct sockaddr __user **save_addr,
1990 struct iovec **iov)
1991{
1992 struct user_msghdr msg;
1993 ssize_t err;
1994
1995 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1996 return -EFAULT;
1997
1998 kmsg->msg_control = (void __force *)msg.msg_control;
1999 kmsg->msg_controllen = msg.msg_controllen;
2000 kmsg->msg_flags = msg.msg_flags;
2001
2002 kmsg->msg_namelen = msg.msg_namelen;
2003 if (!msg.msg_name)
2004 kmsg->msg_namelen = 0;
2005
2006 if (kmsg->msg_namelen < 0)
2007 return -EINVAL;
2008
2009 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2010 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2011
2012 if (save_addr)
2013 *save_addr = msg.msg_name;
2014
2015 if (msg.msg_name && kmsg->msg_namelen) {
2016 if (!save_addr) {
2017 err = move_addr_to_kernel(msg.msg_name,
2018 kmsg->msg_namelen,
2019 kmsg->msg_name);
2020 if (err < 0)
2021 return err;
2022 }
2023 } else {
2024 kmsg->msg_name = NULL;
2025 kmsg->msg_namelen = 0;
2026 }
2027
2028 if (msg.msg_iovlen > UIO_MAXIOV)
2029 return -EMSGSIZE;
2030
2031 kmsg->msg_iocb = NULL;
2032
2033 return import_iovec(save_addr ? READ : WRITE,
2034 msg.msg_iov, msg.msg_iovlen,
2035 UIO_FASTIOV, iov, &kmsg->msg_iter);
2036}
2037
2038static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2039 struct msghdr *msg_sys, unsigned int flags,
2040 struct used_address *used_address,
2041 unsigned int allowed_msghdr_flags)
2042{
2043 struct compat_msghdr __user *msg_compat =
2044 (struct compat_msghdr __user *)msg;
2045 struct sockaddr_storage address;
2046 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2047 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2048 __aligned(sizeof(__kernel_size_t));
2049 /* 20 is size of ipv6_pktinfo */
2050 unsigned char *ctl_buf = ctl;
2051 int ctl_len;
2052 ssize_t err;
2053
2054 msg_sys->msg_name = &address;
2055
2056 if (MSG_CMSG_COMPAT & flags)
2057 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2058 else
2059 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2060 if (err < 0)
2061 return err;
2062
2063 err = -ENOBUFS;
2064
2065 if (msg_sys->msg_controllen > INT_MAX)
2066 goto out_freeiov;
2067 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2068 ctl_len = msg_sys->msg_controllen;
2069 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2070 err =
2071 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2072 sizeof(ctl));
2073 if (err)
2074 goto out_freeiov;
2075 ctl_buf = msg_sys->msg_control;
2076 ctl_len = msg_sys->msg_controllen;
2077 } else if (ctl_len) {
2078 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2079 CMSG_ALIGN(sizeof(struct cmsghdr)));
2080 if (ctl_len > sizeof(ctl)) {
2081 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2082 if (ctl_buf == NULL)
2083 goto out_freeiov;
2084 }
2085 err = -EFAULT;
2086 /*
2087 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2088 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2089 * checking falls down on this.
2090 */
2091 if (copy_from_user(ctl_buf,
2092 (void __user __force *)msg_sys->msg_control,
2093 ctl_len))
2094 goto out_freectl;
2095 msg_sys->msg_control = ctl_buf;
2096 }
2097 msg_sys->msg_flags = flags;
2098
2099 if (sock->file->f_flags & O_NONBLOCK)
2100 msg_sys->msg_flags |= MSG_DONTWAIT;
2101 /*
2102 * If this is sendmmsg() and current destination address is same as
2103 * previously succeeded address, omit asking LSM's decision.
2104 * used_address->name_len is initialized to UINT_MAX so that the first
2105 * destination address never matches.
2106 */
2107 if (used_address && msg_sys->msg_name &&
2108 used_address->name_len == msg_sys->msg_namelen &&
2109 !memcmp(&used_address->name, msg_sys->msg_name,
2110 used_address->name_len)) {
2111 err = sock_sendmsg_nosec(sock, msg_sys);
2112 goto out_freectl;
2113 }
2114 err = sock_sendmsg(sock, msg_sys);
2115 /*
2116 * If this is sendmmsg() and sending to current destination address was
2117 * successful, remember it.
2118 */
2119 if (used_address && err >= 0) {
2120 used_address->name_len = msg_sys->msg_namelen;
2121 if (msg_sys->msg_name)
2122 memcpy(&used_address->name, msg_sys->msg_name,
2123 used_address->name_len);
2124 }
2125
2126out_freectl:
2127 if (ctl_buf != ctl)
2128 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2129out_freeiov:
2130 kfree(iov);
2131 return err;
2132}
2133
2134/*
2135 * BSD sendmsg interface
2136 */
2137
2138long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2139 bool forbid_cmsg_compat)
2140{
2141 int fput_needed, err;
2142 struct msghdr msg_sys;
2143 struct socket *sock;
2144
2145 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2146 return -EINVAL;
2147
2148 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2149 if (!sock)
2150 goto out;
2151
2152 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2153
2154 fput_light(sock->file, fput_needed);
2155out:
2156 return err;
2157}
2158
2159SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2160{
2161 return __sys_sendmsg(fd, msg, flags, true);
2162}
2163
2164/*
2165 * Linux sendmmsg interface
2166 */
2167
2168int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2169 unsigned int flags, bool forbid_cmsg_compat)
2170{
2171 int fput_needed, err, datagrams;
2172 struct socket *sock;
2173 struct mmsghdr __user *entry;
2174 struct compat_mmsghdr __user *compat_entry;
2175 struct msghdr msg_sys;
2176 struct used_address used_address;
2177 unsigned int oflags = flags;
2178
2179 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2180 return -EINVAL;
2181
2182 if (vlen > UIO_MAXIOV)
2183 vlen = UIO_MAXIOV;
2184
2185 datagrams = 0;
2186
2187 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2188 if (!sock)
2189 return err;
2190
2191 used_address.name_len = UINT_MAX;
2192 entry = mmsg;
2193 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2194 err = 0;
2195 flags |= MSG_BATCH;
2196
2197 while (datagrams < vlen) {
2198 if (datagrams == vlen - 1)
2199 flags = oflags;
2200
2201 if (MSG_CMSG_COMPAT & flags) {
2202 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2203 &msg_sys, flags, &used_address, MSG_EOR);
2204 if (err < 0)
2205 break;
2206 err = __put_user(err, &compat_entry->msg_len);
2207 ++compat_entry;
2208 } else {
2209 err = ___sys_sendmsg(sock,
2210 (struct user_msghdr __user *)entry,
2211 &msg_sys, flags, &used_address, MSG_EOR);
2212 if (err < 0)
2213 break;
2214 err = put_user(err, &entry->msg_len);
2215 ++entry;
2216 }
2217
2218 if (err)
2219 break;
2220 ++datagrams;
2221 if (msg_data_left(&msg_sys))
2222 break;
2223 cond_resched();
2224 }
2225
2226 fput_light(sock->file, fput_needed);
2227
2228 /* We only return an error if no datagrams were able to be sent */
2229 if (datagrams != 0)
2230 return datagrams;
2231
2232 return err;
2233}
2234
2235SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2236 unsigned int, vlen, unsigned int, flags)
2237{
2238 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2239}
2240
2241static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2242 struct msghdr *msg_sys, unsigned int flags, int nosec)
2243{
2244 struct compat_msghdr __user *msg_compat =
2245 (struct compat_msghdr __user *)msg;
2246 struct iovec iovstack[UIO_FASTIOV];
2247 struct iovec *iov = iovstack;
2248 unsigned long cmsg_ptr;
2249 int len;
2250 ssize_t err;
2251
2252 /* kernel mode address */
2253 struct sockaddr_storage addr;
2254
2255 /* user mode address pointers */
2256 struct sockaddr __user *uaddr;
2257 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2258
2259 msg_sys->msg_name = &addr;
2260
2261 if (MSG_CMSG_COMPAT & flags)
2262 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2263 else
2264 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2265 if (err < 0)
2266 return err;
2267
2268 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2269 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2270
2271 /* We assume all kernel code knows the size of sockaddr_storage */
2272 msg_sys->msg_namelen = 0;
2273
2274 if (sock->file->f_flags & O_NONBLOCK)
2275 flags |= MSG_DONTWAIT;
2276 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2277 if (err < 0)
2278 goto out_freeiov;
2279 len = err;
2280
2281 if (uaddr != NULL) {
2282 err = move_addr_to_user(&addr,
2283 msg_sys->msg_namelen, uaddr,
2284 uaddr_len);
2285 if (err < 0)
2286 goto out_freeiov;
2287 }
2288 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2289 COMPAT_FLAGS(msg));
2290 if (err)
2291 goto out_freeiov;
2292 if (MSG_CMSG_COMPAT & flags)
2293 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2294 &msg_compat->msg_controllen);
2295 else
2296 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2297 &msg->msg_controllen);
2298 if (err)
2299 goto out_freeiov;
2300 err = len;
2301
2302out_freeiov:
2303 kfree(iov);
2304 return err;
2305}
2306
2307/*
2308 * BSD recvmsg interface
2309 */
2310
2311long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2312 bool forbid_cmsg_compat)
2313{
2314 int fput_needed, err;
2315 struct msghdr msg_sys;
2316 struct socket *sock;
2317
2318 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2319 return -EINVAL;
2320
2321 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2322 if (!sock)
2323 goto out;
2324
2325 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2326
2327 fput_light(sock->file, fput_needed);
2328out:
2329 return err;
2330}
2331
2332SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2333 unsigned int, flags)
2334{
2335 return __sys_recvmsg(fd, msg, flags, true);
2336}
2337
2338/*
2339 * Linux recvmmsg interface
2340 */
2341
2342int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2343 unsigned int flags, struct timespec *timeout)
2344{
2345 int fput_needed, err, datagrams;
2346 struct socket *sock;
2347 struct mmsghdr __user *entry;
2348 struct compat_mmsghdr __user *compat_entry;
2349 struct msghdr msg_sys;
2350 struct timespec64 end_time;
2351 struct timespec64 timeout64;
2352
2353 if (timeout &&
2354 poll_select_set_timeout(&end_time, timeout->tv_sec,
2355 timeout->tv_nsec))
2356 return -EINVAL;
2357
2358 datagrams = 0;
2359
2360 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2361 if (!sock)
2362 return err;
2363
2364 if (likely(!(flags & MSG_ERRQUEUE))) {
2365 err = sock_error(sock->sk);
2366 if (err) {
2367 datagrams = err;
2368 goto out_put;
2369 }
2370 }
2371
2372 entry = mmsg;
2373 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2374
2375 while (datagrams < vlen) {
2376 /*
2377 * No need to ask LSM for more than the first datagram.
2378 */
2379 if (MSG_CMSG_COMPAT & flags) {
2380 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2381 &msg_sys, flags & ~MSG_WAITFORONE,
2382 datagrams);
2383 if (err < 0)
2384 break;
2385 err = __put_user(err, &compat_entry->msg_len);
2386 ++compat_entry;
2387 } else {
2388 err = ___sys_recvmsg(sock,
2389 (struct user_msghdr __user *)entry,
2390 &msg_sys, flags & ~MSG_WAITFORONE,
2391 datagrams);
2392 if (err < 0)
2393 break;
2394 err = put_user(err, &entry->msg_len);
2395 ++entry;
2396 }
2397
2398 if (err)
2399 break;
2400 ++datagrams;
2401
2402 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2403 if (flags & MSG_WAITFORONE)
2404 flags |= MSG_DONTWAIT;
2405
2406 if (timeout) {
2407 ktime_get_ts64(&timeout64);
2408 *timeout = timespec64_to_timespec(
2409 timespec64_sub(end_time, timeout64));
2410 if (timeout->tv_sec < 0) {
2411 timeout->tv_sec = timeout->tv_nsec = 0;
2412 break;
2413 }
2414
2415 /* Timeout, return less than vlen datagrams */
2416 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2417 break;
2418 }
2419
2420 /* Out of band data, return right away */
2421 if (msg_sys.msg_flags & MSG_OOB)
2422 break;
2423 cond_resched();
2424 }
2425
2426 if (err == 0)
2427 goto out_put;
2428
2429 if (datagrams == 0) {
2430 datagrams = err;
2431 goto out_put;
2432 }
2433
2434 /*
2435 * We may return less entries than requested (vlen) if the
2436 * sock is non block and there aren't enough datagrams...
2437 */
2438 if (err != -EAGAIN) {
2439 /*
2440 * ... or if recvmsg returns an error after we
2441 * received some datagrams, where we record the
2442 * error to return on the next call or if the
2443 * app asks about it using getsockopt(SO_ERROR).
2444 */
2445 sock->sk->sk_err = -err;
2446 }
2447out_put:
2448 fput_light(sock->file, fput_needed);
2449
2450 return datagrams;
2451}
2452
2453static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2454 unsigned int vlen, unsigned int flags,
2455 struct timespec __user *timeout)
2456{
2457 int datagrams;
2458 struct timespec timeout_sys;
2459
2460 if (flags & MSG_CMSG_COMPAT)
2461 return -EINVAL;
2462
2463 if (!timeout)
2464 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2465
2466 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2467 return -EFAULT;
2468
2469 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2470
2471 if (datagrams > 0 &&
2472 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2473 datagrams = -EFAULT;
2474
2475 return datagrams;
2476}
2477
2478SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2479 unsigned int, vlen, unsigned int, flags,
2480 struct timespec __user *, timeout)
2481{
2482 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2483}
2484
2485#ifdef __ARCH_WANT_SYS_SOCKETCALL
2486/* Argument list sizes for sys_socketcall */
2487#define AL(x) ((x) * sizeof(unsigned long))
2488static const unsigned char nargs[21] = {
2489 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2490 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2491 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2492 AL(4), AL(5), AL(4)
2493};
2494
2495#undef AL
2496
2497/*
2498 * System call vectors.
2499 *
2500 * Argument checking cleaned up. Saved 20% in size.
2501 * This function doesn't need to set the kernel lock because
2502 * it is set by the callees.
2503 */
2504
2505SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2506{
2507 unsigned long a[AUDITSC_ARGS];
2508 unsigned long a0, a1;
2509 int err;
2510 unsigned int len;
2511
2512 if (call < 1 || call > SYS_SENDMMSG)
2513 return -EINVAL;
2514 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2515
2516 len = nargs[call];
2517 if (len > sizeof(a))
2518 return -EINVAL;
2519
2520 /* copy_from_user should be SMP safe. */
2521 if (copy_from_user(a, args, len))
2522 return -EFAULT;
2523
2524 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2525 if (err)
2526 return err;
2527
2528 a0 = a[0];
2529 a1 = a[1];
2530
2531 switch (call) {
2532 case SYS_SOCKET:
2533 err = __sys_socket(a0, a1, a[2]);
2534 break;
2535 case SYS_BIND:
2536 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2537 break;
2538 case SYS_CONNECT:
2539 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2540 break;
2541 case SYS_LISTEN:
2542 err = __sys_listen(a0, a1);
2543 break;
2544 case SYS_ACCEPT:
2545 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2546 (int __user *)a[2], 0);
2547 break;
2548 case SYS_GETSOCKNAME:
2549 err =
2550 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2551 (int __user *)a[2]);
2552 break;
2553 case SYS_GETPEERNAME:
2554 err =
2555 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2556 (int __user *)a[2]);
2557 break;
2558 case SYS_SOCKETPAIR:
2559 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2560 break;
2561 case SYS_SEND:
2562 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2563 NULL, 0);
2564 break;
2565 case SYS_SENDTO:
2566 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2567 (struct sockaddr __user *)a[4], a[5]);
2568 break;
2569 case SYS_RECV:
2570 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2571 NULL, NULL);
2572 break;
2573 case SYS_RECVFROM:
2574 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2575 (struct sockaddr __user *)a[4],
2576 (int __user *)a[5]);
2577 break;
2578 case SYS_SHUTDOWN:
2579 err = __sys_shutdown(a0, a1);
2580 break;
2581 case SYS_SETSOCKOPT:
2582 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2583 a[4]);
2584 break;
2585 case SYS_GETSOCKOPT:
2586 err =
2587 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2588 (int __user *)a[4]);
2589 break;
2590 case SYS_SENDMSG:
2591 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2592 a[2], true);
2593 break;
2594 case SYS_SENDMMSG:
2595 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2596 a[3], true);
2597 break;
2598 case SYS_RECVMSG:
2599 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2600 a[2], true);
2601 break;
2602 case SYS_RECVMMSG:
2603 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2604 a[3], (struct timespec __user *)a[4]);
2605 break;
2606 case SYS_ACCEPT4:
2607 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2608 (int __user *)a[2], a[3]);
2609 break;
2610 default:
2611 err = -EINVAL;
2612 break;
2613 }
2614 return err;
2615}
2616
2617#endif /* __ARCH_WANT_SYS_SOCKETCALL */
2618
2619/**
2620 * sock_register - add a socket protocol handler
2621 * @ops: description of protocol
2622 *
2623 * This function is called by a protocol handler that wants to
2624 * advertise its address family, and have it linked into the
2625 * socket interface. The value ops->family corresponds to the
2626 * socket system call protocol family.
2627 */
2628int sock_register(const struct net_proto_family *ops)
2629{
2630 int err;
2631
2632 if (ops->family >= NPROTO) {
2633 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2634 return -ENOBUFS;
2635 }
2636
2637 spin_lock(&net_family_lock);
2638 if (rcu_dereference_protected(net_families[ops->family],
2639 lockdep_is_held(&net_family_lock)))
2640 err = -EEXIST;
2641 else {
2642 rcu_assign_pointer(net_families[ops->family], ops);
2643 err = 0;
2644 }
2645 spin_unlock(&net_family_lock);
2646
2647 pr_info("NET: Registered protocol family %d\n", ops->family);
2648 return err;
2649}
2650EXPORT_SYMBOL(sock_register);
2651
2652/**
2653 * sock_unregister - remove a protocol handler
2654 * @family: protocol family to remove
2655 *
2656 * This function is called by a protocol handler that wants to
2657 * remove its address family, and have it unlinked from the
2658 * new socket creation.
2659 *
2660 * If protocol handler is a module, then it can use module reference
2661 * counts to protect against new references. If protocol handler is not
2662 * a module then it needs to provide its own protection in
2663 * the ops->create routine.
2664 */
2665void sock_unregister(int family)
2666{
2667 BUG_ON(family < 0 || family >= NPROTO);
2668
2669 spin_lock(&net_family_lock);
2670 RCU_INIT_POINTER(net_families[family], NULL);
2671 spin_unlock(&net_family_lock);
2672
2673 synchronize_rcu();
2674
2675 pr_info("NET: Unregistered protocol family %d\n", family);
2676}
2677EXPORT_SYMBOL(sock_unregister);
2678
2679bool sock_is_registered(int family)
2680{
2681 return family < NPROTO && rcu_access_pointer(net_families[family]);
2682}
2683
2684static int __init sock_init(void)
2685{
2686 int err;
2687 /*
2688 * Initialize the network sysctl infrastructure.
2689 */
2690 err = net_sysctl_init();
2691 if (err)
2692 goto out;
2693
2694 /*
2695 * Initialize skbuff SLAB cache
2696 */
2697 skb_init();
2698
2699 /*
2700 * Initialize the protocols module.
2701 */
2702
2703 init_inodecache();
2704
2705 err = register_filesystem(&sock_fs_type);
2706 if (err)
2707 goto out_fs;
2708 sock_mnt = kern_mount(&sock_fs_type);
2709 if (IS_ERR(sock_mnt)) {
2710 err = PTR_ERR(sock_mnt);
2711 goto out_mount;
2712 }
2713
2714 /* The real protocol initialization is performed in later initcalls.
2715 */
2716
2717#ifdef CONFIG_NETFILTER
2718 err = netfilter_init();
2719 if (err)
2720 goto out;
2721#endif
2722
2723 ptp_classifier_init();
2724
2725out:
2726 return err;
2727
2728out_mount:
2729 unregister_filesystem(&sock_fs_type);
2730out_fs:
2731 goto out;
2732}
2733
2734core_initcall(sock_init); /* early initcall */
2735
2736#ifdef CONFIG_PROC_FS
2737void socket_seq_show(struct seq_file *seq)
2738{
2739 seq_printf(seq, "sockets: used %d\n",
2740 sock_inuse_get(seq->private));
2741}
2742#endif /* CONFIG_PROC_FS */
2743
2744#ifdef CONFIG_COMPAT
2745static int do_siocgstamp(struct net *net, struct socket *sock,
2746 unsigned int cmd, void __user *up)
2747{
2748 mm_segment_t old_fs = get_fs();
2749 struct timeval ktv;
2750 int err;
2751
2752 set_fs(KERNEL_DS);
2753 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2754 set_fs(old_fs);
2755 if (!err)
2756 err = compat_put_timeval(&ktv, up);
2757
2758 return err;
2759}
2760
2761static int do_siocgstampns(struct net *net, struct socket *sock,
2762 unsigned int cmd, void __user *up)
2763{
2764 mm_segment_t old_fs = get_fs();
2765 struct timespec kts;
2766 int err;
2767
2768 set_fs(KERNEL_DS);
2769 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2770 set_fs(old_fs);
2771 if (!err)
2772 err = compat_put_timespec(&kts, up);
2773
2774 return err;
2775}
2776
2777static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2778{
2779 struct compat_ifconf ifc32;
2780 struct ifconf ifc;
2781 int err;
2782
2783 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2784 return -EFAULT;
2785
2786 ifc.ifc_len = ifc32.ifc_len;
2787 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2788
2789 rtnl_lock();
2790 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2791 rtnl_unlock();
2792 if (err)
2793 return err;
2794
2795 ifc32.ifc_len = ifc.ifc_len;
2796 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2797 return -EFAULT;
2798
2799 return 0;
2800}
2801
2802static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2803{
2804 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2805 bool convert_in = false, convert_out = false;
2806 size_t buf_size = 0;
2807 struct ethtool_rxnfc __user *rxnfc = NULL;
2808 struct ifreq ifr;
2809 u32 rule_cnt = 0, actual_rule_cnt;
2810 u32 ethcmd;
2811 u32 data;
2812 int ret;
2813
2814 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2815 return -EFAULT;
2816
2817 compat_rxnfc = compat_ptr(data);
2818
2819 if (get_user(ethcmd, &compat_rxnfc->cmd))
2820 return -EFAULT;
2821
2822 /* Most ethtool structures are defined without padding.
2823 * Unfortunately struct ethtool_rxnfc is an exception.
2824 */
2825 switch (ethcmd) {
2826 default:
2827 break;
2828 case ETHTOOL_GRXCLSRLALL:
2829 /* Buffer size is variable */
2830 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2831 return -EFAULT;
2832 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2833 return -ENOMEM;
2834 buf_size += rule_cnt * sizeof(u32);
2835 /* fall through */
2836 case ETHTOOL_GRXRINGS:
2837 case ETHTOOL_GRXCLSRLCNT:
2838 case ETHTOOL_GRXCLSRULE:
2839 case ETHTOOL_SRXCLSRLINS:
2840 convert_out = true;
2841 /* fall through */
2842 case ETHTOOL_SRXCLSRLDEL:
2843 buf_size += sizeof(struct ethtool_rxnfc);
2844 convert_in = true;
2845 rxnfc = compat_alloc_user_space(buf_size);
2846 break;
2847 }
2848
2849 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2850 return -EFAULT;
2851
2852 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2853
2854 if (convert_in) {
2855 /* We expect there to be holes between fs.m_ext and
2856 * fs.ring_cookie and at the end of fs, but nowhere else.
2857 */
2858 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2859 sizeof(compat_rxnfc->fs.m_ext) !=
2860 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2861 sizeof(rxnfc->fs.m_ext));
2862 BUILD_BUG_ON(
2863 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2864 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2865 offsetof(struct ethtool_rxnfc, fs.location) -
2866 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2867
2868 if (copy_in_user(rxnfc, compat_rxnfc,
2869 (void __user *)(&rxnfc->fs.m_ext + 1) -
2870 (void __user *)rxnfc) ||
2871 copy_in_user(&rxnfc->fs.ring_cookie,
2872 &compat_rxnfc->fs.ring_cookie,
2873 (void __user *)(&rxnfc->fs.location + 1) -
2874 (void __user *)&rxnfc->fs.ring_cookie) ||
2875 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2876 sizeof(rxnfc->rule_cnt)))
2877 return -EFAULT;
2878 }
2879
2880 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2881 if (ret)
2882 return ret;
2883
2884 if (convert_out) {
2885 if (copy_in_user(compat_rxnfc, rxnfc,
2886 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2887 (const void __user *)rxnfc) ||
2888 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2889 &rxnfc->fs.ring_cookie,
2890 (const void __user *)(&rxnfc->fs.location + 1) -
2891 (const void __user *)&rxnfc->fs.ring_cookie) ||
2892 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2893 sizeof(rxnfc->rule_cnt)))
2894 return -EFAULT;
2895
2896 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2897 /* As an optimisation, we only copy the actual
2898 * number of rules that the underlying
2899 * function returned. Since Mallory might
2900 * change the rule count in user memory, we
2901 * check that it is less than the rule count
2902 * originally given (as the user buffer size),
2903 * which has been range-checked.
2904 */
2905 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2906 return -EFAULT;
2907 if (actual_rule_cnt < rule_cnt)
2908 rule_cnt = actual_rule_cnt;
2909 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2910 &rxnfc->rule_locs[0],
2911 rule_cnt * sizeof(u32)))
2912 return -EFAULT;
2913 }
2914 }
2915
2916 return 0;
2917}
2918
2919static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2920{
2921 compat_uptr_t uptr32;
2922 struct ifreq ifr;
2923 void __user *saved;
2924 int err;
2925
2926 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2927 return -EFAULT;
2928
2929 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2930 return -EFAULT;
2931
2932 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2933 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2934
2935 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2936 if (!err) {
2937 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2938 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2939 err = -EFAULT;
2940 }
2941 return err;
2942}
2943
2944/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2945static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2946 struct compat_ifreq __user *u_ifreq32)
2947{
2948 struct ifreq ifreq;
2949 u32 data32;
2950
2951 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2952 return -EFAULT;
2953 if (get_user(data32, &u_ifreq32->ifr_data))
2954 return -EFAULT;
2955 ifreq.ifr_data = compat_ptr(data32);
2956
2957 return dev_ioctl(net, cmd, &ifreq, NULL);
2958}
2959
2960static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2961 struct compat_ifreq __user *uifr32)
2962{
2963 struct ifreq ifr;
2964 struct compat_ifmap __user *uifmap32;
2965 int err;
2966
2967 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2968 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2969 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2970 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2971 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2972 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2973 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2974 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2975 if (err)
2976 return -EFAULT;
2977
2978 err = dev_ioctl(net, cmd, &ifr, NULL);
2979
2980 if (cmd == SIOCGIFMAP && !err) {
2981 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2982 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2983 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2984 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2985 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2986 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2987 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2988 if (err)
2989 err = -EFAULT;
2990 }
2991 return err;
2992}
2993
2994struct rtentry32 {
2995 u32 rt_pad1;
2996 struct sockaddr rt_dst; /* target address */
2997 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2998 struct sockaddr rt_genmask; /* target network mask (IP) */
2999 unsigned short rt_flags;
3000 short rt_pad2;
3001 u32 rt_pad3;
3002 unsigned char rt_tos;
3003 unsigned char rt_class;
3004 short rt_pad4;
3005 short rt_metric; /* +1 for binary compatibility! */
3006 /* char * */ u32 rt_dev; /* forcing the device at add */
3007 u32 rt_mtu; /* per route MTU/Window */
3008 u32 rt_window; /* Window clamping */
3009 unsigned short rt_irtt; /* Initial RTT */
3010};
3011
3012struct in6_rtmsg32 {
3013 struct in6_addr rtmsg_dst;
3014 struct in6_addr rtmsg_src;
3015 struct in6_addr rtmsg_gateway;
3016 u32 rtmsg_type;
3017 u16 rtmsg_dst_len;
3018 u16 rtmsg_src_len;
3019 u32 rtmsg_metric;
3020 u32 rtmsg_info;
3021 u32 rtmsg_flags;
3022 s32 rtmsg_ifindex;
3023};
3024
3025static int routing_ioctl(struct net *net, struct socket *sock,
3026 unsigned int cmd, void __user *argp)
3027{
3028 int ret;
3029 void *r = NULL;
3030 struct in6_rtmsg r6;
3031 struct rtentry r4;
3032 char devname[16];
3033 u32 rtdev;
3034 mm_segment_t old_fs = get_fs();
3035
3036 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3037 struct in6_rtmsg32 __user *ur6 = argp;
3038 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3039 3 * sizeof(struct in6_addr));
3040 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3041 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3042 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3043 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3044 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3045 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3046 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3047
3048 r = (void *) &r6;
3049 } else { /* ipv4 */
3050 struct rtentry32 __user *ur4 = argp;
3051 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3052 3 * sizeof(struct sockaddr));
3053 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3054 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3055 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3056 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3057 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3058 ret |= get_user(rtdev, &(ur4->rt_dev));
3059 if (rtdev) {
3060 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3061 r4.rt_dev = (char __user __force *)devname;
3062 devname[15] = 0;
3063 } else
3064 r4.rt_dev = NULL;
3065
3066 r = (void *) &r4;
3067 }
3068
3069 if (ret) {
3070 ret = -EFAULT;
3071 goto out;
3072 }
3073
3074 set_fs(KERNEL_DS);
3075 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3076 set_fs(old_fs);
3077
3078out:
3079 return ret;
3080}
3081
3082/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3083 * for some operations; this forces use of the newer bridge-utils that
3084 * use compatible ioctls
3085 */
3086static int old_bridge_ioctl(compat_ulong_t __user *argp)
3087{
3088 compat_ulong_t tmp;
3089
3090 if (get_user(tmp, argp))
3091 return -EFAULT;
3092 if (tmp == BRCTL_GET_VERSION)
3093 return BRCTL_VERSION + 1;
3094 return -EINVAL;
3095}
3096
3097static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3098 unsigned int cmd, unsigned long arg)
3099{
3100 void __user *argp = compat_ptr(arg);
3101 struct sock *sk = sock->sk;
3102 struct net *net = sock_net(sk);
3103
3104 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3105 return compat_ifr_data_ioctl(net, cmd, argp);
3106
3107 switch (cmd) {
3108 case SIOCSIFBR:
3109 case SIOCGIFBR:
3110 return old_bridge_ioctl(argp);
3111 case SIOCGIFCONF:
3112 return compat_dev_ifconf(net, argp);
3113 case SIOCETHTOOL:
3114 return ethtool_ioctl(net, argp);
3115 case SIOCWANDEV:
3116 return compat_siocwandev(net, argp);
3117 case SIOCGIFMAP:
3118 case SIOCSIFMAP:
3119 return compat_sioc_ifmap(net, cmd, argp);
3120 case SIOCADDRT:
3121 case SIOCDELRT:
3122 return routing_ioctl(net, sock, cmd, argp);
3123 case SIOCGSTAMP:
3124 return do_siocgstamp(net, sock, cmd, argp);
3125 case SIOCGSTAMPNS:
3126 return do_siocgstampns(net, sock, cmd, argp);
3127 case SIOCBONDSLAVEINFOQUERY:
3128 case SIOCBONDINFOQUERY:
3129 case SIOCSHWTSTAMP:
3130 case SIOCGHWTSTAMP:
3131 return compat_ifr_data_ioctl(net, cmd, argp);
3132
3133 case FIOSETOWN:
3134 case SIOCSPGRP:
3135 case FIOGETOWN:
3136 case SIOCGPGRP:
3137 case SIOCBRADDBR:
3138 case SIOCBRDELBR:
3139 case SIOCGIFVLAN:
3140 case SIOCSIFVLAN:
3141 case SIOCADDDLCI:
3142 case SIOCDELDLCI:
3143 case SIOCGSKNS:
3144 return sock_ioctl(file, cmd, arg);
3145
3146 case SIOCGIFFLAGS:
3147 case SIOCSIFFLAGS:
3148 case SIOCGIFMETRIC:
3149 case SIOCSIFMETRIC:
3150 case SIOCGIFMTU:
3151 case SIOCSIFMTU:
3152 case SIOCGIFMEM:
3153 case SIOCSIFMEM:
3154 case SIOCGIFHWADDR:
3155 case SIOCSIFHWADDR:
3156 case SIOCADDMULTI:
3157 case SIOCDELMULTI:
3158 case SIOCGIFINDEX:
3159 case SIOCGIFADDR:
3160 case SIOCSIFADDR:
3161 case SIOCSIFHWBROADCAST:
3162 case SIOCDIFADDR:
3163 case SIOCGIFBRDADDR:
3164 case SIOCSIFBRDADDR:
3165 case SIOCGIFDSTADDR:
3166 case SIOCSIFDSTADDR:
3167 case SIOCGIFNETMASK:
3168 case SIOCSIFNETMASK:
3169 case SIOCSIFPFLAGS:
3170 case SIOCGIFPFLAGS:
3171 case SIOCGIFTXQLEN:
3172 case SIOCSIFTXQLEN:
3173 case SIOCBRADDIF:
3174 case SIOCBRDELIF:
3175 case SIOCSIFNAME:
3176 case SIOCGMIIPHY:
3177 case SIOCGMIIREG:
3178 case SIOCSMIIREG:
3179 case SIOCSARP:
3180 case SIOCGARP:
3181 case SIOCDARP:
3182 case SIOCATMARK:
3183 case SIOCBONDENSLAVE:
3184 case SIOCBONDRELEASE:
3185 case SIOCBONDSETHWADDR:
3186 case SIOCBONDCHANGEACTIVE:
3187 case SIOCGIFNAME:
3188 return sock_do_ioctl(net, sock, cmd, arg);
3189 }
3190
3191 return -ENOIOCTLCMD;
3192}
3193
3194static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3195 unsigned long arg)
3196{
3197 struct socket *sock = file->private_data;
3198 int ret = -ENOIOCTLCMD;
3199 struct sock *sk;
3200 struct net *net;
3201
3202 sk = sock->sk;
3203 net = sock_net(sk);
3204
3205 if (sock->ops->compat_ioctl)
3206 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3207
3208 if (ret == -ENOIOCTLCMD &&
3209 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3210 ret = compat_wext_handle_ioctl(net, cmd, arg);
3211
3212 if (ret == -ENOIOCTLCMD)
3213 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3214
3215 return ret;
3216}
3217#endif
3218
3219int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3220{
3221 return sock->ops->bind(sock, addr, addrlen);
3222}
3223EXPORT_SYMBOL(kernel_bind);
3224
3225int kernel_listen(struct socket *sock, int backlog)
3226{
3227 return sock->ops->listen(sock, backlog);
3228}
3229EXPORT_SYMBOL(kernel_listen);
3230
3231int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3232{
3233 struct sock *sk = sock->sk;
3234 int err;
3235
3236 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3237 newsock);
3238 if (err < 0)
3239 goto done;
3240
3241 err = sock->ops->accept(sock, *newsock, flags, true);
3242 if (err < 0) {
3243 sock_release(*newsock);
3244 *newsock = NULL;
3245 goto done;
3246 }
3247
3248 (*newsock)->ops = sock->ops;
3249 __module_get((*newsock)->ops->owner);
3250
3251done:
3252 return err;
3253}
3254EXPORT_SYMBOL(kernel_accept);
3255
3256int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3257 int flags)
3258{
3259 return sock->ops->connect(sock, addr, addrlen, flags);
3260}
3261EXPORT_SYMBOL(kernel_connect);
3262
3263int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3264{
3265 return sock->ops->getname(sock, addr, 0);
3266}
3267EXPORT_SYMBOL(kernel_getsockname);
3268
3269int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3270{
3271 return sock->ops->getname(sock, addr, 1);
3272}
3273EXPORT_SYMBOL(kernel_getpeername);
3274
3275int kernel_getsockopt(struct socket *sock, int level, int optname,
3276 char *optval, int *optlen)
3277{
3278 mm_segment_t oldfs = get_fs();
3279 char __user *uoptval;
3280 int __user *uoptlen;
3281 int err;
3282
3283 uoptval = (char __user __force *) optval;
3284 uoptlen = (int __user __force *) optlen;
3285
3286 set_fs(KERNEL_DS);
3287 if (level == SOL_SOCKET)
3288 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3289 else
3290 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3291 uoptlen);
3292 set_fs(oldfs);
3293 return err;
3294}
3295EXPORT_SYMBOL(kernel_getsockopt);
3296
3297int kernel_setsockopt(struct socket *sock, int level, int optname,
3298 char *optval, unsigned int optlen)
3299{
3300 mm_segment_t oldfs = get_fs();
3301 char __user *uoptval;
3302 int err;
3303
3304 uoptval = (char __user __force *) optval;
3305
3306 set_fs(KERNEL_DS);
3307 if (level == SOL_SOCKET)
3308 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3309 else
3310 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3311 optlen);
3312 set_fs(oldfs);
3313 return err;
3314}
3315EXPORT_SYMBOL(kernel_setsockopt);
3316
3317int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3318 size_t size, int flags)
3319{
3320 if (sock->ops->sendpage)
3321 return sock->ops->sendpage(sock, page, offset, size, flags);
3322
3323 return sock_no_sendpage(sock, page, offset, size, flags);
3324}
3325EXPORT_SYMBOL(kernel_sendpage);
3326
3327int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3328 size_t size, int flags)
3329{
3330 struct socket *sock = sk->sk_socket;
3331
3332 if (sock->ops->sendpage_locked)
3333 return sock->ops->sendpage_locked(sk, page, offset, size,
3334 flags);
3335
3336 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3337}
3338EXPORT_SYMBOL(kernel_sendpage_locked);
3339
3340int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3341{
3342 return sock->ops->shutdown(sock, how);
3343}
3344EXPORT_SYMBOL(kernel_sock_shutdown);
3345
3346/* This routine returns the IP overhead imposed by a socket i.e.
3347 * the length of the underlying IP header, depending on whether
3348 * this is an IPv4 or IPv6 socket and the length from IP options turned
3349 * on at the socket. Assumes that the caller has a lock on the socket.
3350 */
3351u32 kernel_sock_ip_overhead(struct sock *sk)
3352{
3353 struct inet_sock *inet;
3354 struct ip_options_rcu *opt;
3355 u32 overhead = 0;
3356#if IS_ENABLED(CONFIG_IPV6)
3357 struct ipv6_pinfo *np;
3358 struct ipv6_txoptions *optv6 = NULL;
3359#endif /* IS_ENABLED(CONFIG_IPV6) */
3360
3361 if (!sk)
3362 return overhead;
3363
3364 switch (sk->sk_family) {
3365 case AF_INET:
3366 inet = inet_sk(sk);
3367 overhead += sizeof(struct iphdr);
3368 opt = rcu_dereference_protected(inet->inet_opt,
3369 sock_owned_by_user(sk));
3370 if (opt)
3371 overhead += opt->opt.optlen;
3372 return overhead;
3373#if IS_ENABLED(CONFIG_IPV6)
3374 case AF_INET6:
3375 np = inet6_sk(sk);
3376 overhead += sizeof(struct ipv6hdr);
3377 if (np)
3378 optv6 = rcu_dereference_protected(np->opt,
3379 sock_owned_by_user(sk));
3380 if (optv6)
3381 overhead += (optv6->opt_flen + optv6->opt_nflen);
3382 return overhead;
3383#endif /* IS_ENABLED(CONFIG_IPV6) */
3384 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3385 return overhead;
3386 }
3387}
3388EXPORT_SYMBOL(kernel_sock_ip_overhead);