at v4.19-rc3 811 lines 20 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * bootmem - A boot-time physical memory allocator and configurator 4 * 5 * Copyright (C) 1999 Ingo Molnar 6 * 1999 Kanoj Sarcar, SGI 7 * 2008 Johannes Weiner 8 * 9 * Access to this subsystem has to be serialized externally (which is true 10 * for the boot process anyway). 11 */ 12#include <linux/init.h> 13#include <linux/pfn.h> 14#include <linux/slab.h> 15#include <linux/export.h> 16#include <linux/kmemleak.h> 17#include <linux/range.h> 18#include <linux/bug.h> 19#include <linux/io.h> 20#include <linux/bootmem.h> 21 22#include "internal.h" 23 24/** 25 * DOC: bootmem overview 26 * 27 * Bootmem is a boot-time physical memory allocator and configurator. 28 * 29 * It is used early in the boot process before the page allocator is 30 * set up. 31 * 32 * Bootmem is based on the most basic of allocators, a First Fit 33 * allocator which uses a bitmap to represent memory. If a bit is 1, 34 * the page is allocated and 0 if unallocated. To satisfy allocations 35 * of sizes smaller than a page, the allocator records the Page Frame 36 * Number (PFN) of the last allocation and the offset the allocation 37 * ended at. Subsequent small allocations are merged together and 38 * stored on the same page. 39 * 40 * The information used by the bootmem allocator is represented by 41 * :c:type:`struct bootmem_data`. An array to hold up to %MAX_NUMNODES 42 * such structures is statically allocated and then it is discarded 43 * when the system initialization completes. Each entry in this array 44 * corresponds to a node with memory. For UMA systems only entry 0 is 45 * used. 46 * 47 * The bootmem allocator is initialized during early architecture 48 * specific setup. Each architecture is required to supply a 49 * :c:func:`setup_arch` function which, among other tasks, is 50 * responsible for acquiring the necessary parameters to initialise 51 * the boot memory allocator. These parameters define limits of usable 52 * physical memory: 53 * 54 * * @min_low_pfn - the lowest PFN that is available in the system 55 * * @max_low_pfn - the highest PFN that may be addressed by low 56 * memory (%ZONE_NORMAL) 57 * * @max_pfn - the last PFN available to the system. 58 * 59 * After those limits are determined, the :c:func:`init_bootmem` or 60 * :c:func:`init_bootmem_node` function should be called to initialize 61 * the bootmem allocator. The UMA case should use the `init_bootmem` 62 * function. It will initialize ``contig_page_data`` structure that 63 * represents the only memory node in the system. In the NUMA case the 64 * `init_bootmem_node` function should be called to initialize the 65 * bootmem allocator for each node. 66 * 67 * Once the allocator is set up, it is possible to use either single 68 * node or NUMA variant of the allocation APIs. 69 */ 70 71#ifndef CONFIG_NEED_MULTIPLE_NODES 72struct pglist_data __refdata contig_page_data = { 73 .bdata = &bootmem_node_data[0] 74}; 75EXPORT_SYMBOL(contig_page_data); 76#endif 77 78unsigned long max_low_pfn; 79unsigned long min_low_pfn; 80unsigned long max_pfn; 81unsigned long long max_possible_pfn; 82 83bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata; 84 85static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list); 86 87static int bootmem_debug; 88 89static int __init bootmem_debug_setup(char *buf) 90{ 91 bootmem_debug = 1; 92 return 0; 93} 94early_param("bootmem_debug", bootmem_debug_setup); 95 96#define bdebug(fmt, args...) ({ \ 97 if (unlikely(bootmem_debug)) \ 98 pr_info("bootmem::%s " fmt, \ 99 __func__, ## args); \ 100}) 101 102static unsigned long __init bootmap_bytes(unsigned long pages) 103{ 104 unsigned long bytes = DIV_ROUND_UP(pages, BITS_PER_BYTE); 105 106 return ALIGN(bytes, sizeof(long)); 107} 108 109/** 110 * bootmem_bootmap_pages - calculate bitmap size in pages 111 * @pages: number of pages the bitmap has to represent 112 * 113 * Return: the number of pages needed to hold the bitmap. 114 */ 115unsigned long __init bootmem_bootmap_pages(unsigned long pages) 116{ 117 unsigned long bytes = bootmap_bytes(pages); 118 119 return PAGE_ALIGN(bytes) >> PAGE_SHIFT; 120} 121 122/* 123 * link bdata in order 124 */ 125static void __init link_bootmem(bootmem_data_t *bdata) 126{ 127 bootmem_data_t *ent; 128 129 list_for_each_entry(ent, &bdata_list, list) { 130 if (bdata->node_min_pfn < ent->node_min_pfn) { 131 list_add_tail(&bdata->list, &ent->list); 132 return; 133 } 134 } 135 136 list_add_tail(&bdata->list, &bdata_list); 137} 138 139/* 140 * Called once to set up the allocator itself. 141 */ 142static unsigned long __init init_bootmem_core(bootmem_data_t *bdata, 143 unsigned long mapstart, unsigned long start, unsigned long end) 144{ 145 unsigned long mapsize; 146 147 mminit_validate_memmodel_limits(&start, &end); 148 bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart)); 149 bdata->node_min_pfn = start; 150 bdata->node_low_pfn = end; 151 link_bootmem(bdata); 152 153 /* 154 * Initially all pages are reserved - setup_arch() has to 155 * register free RAM areas explicitly. 156 */ 157 mapsize = bootmap_bytes(end - start); 158 memset(bdata->node_bootmem_map, 0xff, mapsize); 159 160 bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n", 161 bdata - bootmem_node_data, start, mapstart, end, mapsize); 162 163 return mapsize; 164} 165 166/** 167 * init_bootmem_node - register a node as boot memory 168 * @pgdat: node to register 169 * @freepfn: pfn where the bitmap for this node is to be placed 170 * @startpfn: first pfn on the node 171 * @endpfn: first pfn after the node 172 * 173 * Return: the number of bytes needed to hold the bitmap for this node. 174 */ 175unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn, 176 unsigned long startpfn, unsigned long endpfn) 177{ 178 return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn); 179} 180 181/** 182 * init_bootmem - register boot memory 183 * @start: pfn where the bitmap is to be placed 184 * @pages: number of available physical pages 185 * 186 * Return: the number of bytes needed to hold the bitmap. 187 */ 188unsigned long __init init_bootmem(unsigned long start, unsigned long pages) 189{ 190 max_low_pfn = pages; 191 min_low_pfn = start; 192 return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages); 193} 194 195void __init free_bootmem_late(unsigned long physaddr, unsigned long size) 196{ 197 unsigned long cursor, end; 198 199 kmemleak_free_part_phys(physaddr, size); 200 201 cursor = PFN_UP(physaddr); 202 end = PFN_DOWN(physaddr + size); 203 204 for (; cursor < end; cursor++) { 205 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0); 206 totalram_pages++; 207 } 208} 209 210static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata) 211{ 212 struct page *page; 213 unsigned long *map, start, end, pages, cur, count = 0; 214 215 if (!bdata->node_bootmem_map) 216 return 0; 217 218 map = bdata->node_bootmem_map; 219 start = bdata->node_min_pfn; 220 end = bdata->node_low_pfn; 221 222 bdebug("nid=%td start=%lx end=%lx\n", 223 bdata - bootmem_node_data, start, end); 224 225 while (start < end) { 226 unsigned long idx, vec; 227 unsigned shift; 228 229 idx = start - bdata->node_min_pfn; 230 shift = idx & (BITS_PER_LONG - 1); 231 /* 232 * vec holds at most BITS_PER_LONG map bits, 233 * bit 0 corresponds to start. 234 */ 235 vec = ~map[idx / BITS_PER_LONG]; 236 237 if (shift) { 238 vec >>= shift; 239 if (end - start >= BITS_PER_LONG) 240 vec |= ~map[idx / BITS_PER_LONG + 1] << 241 (BITS_PER_LONG - shift); 242 } 243 /* 244 * If we have a properly aligned and fully unreserved 245 * BITS_PER_LONG block of pages in front of us, free 246 * it in one go. 247 */ 248 if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) { 249 int order = ilog2(BITS_PER_LONG); 250 251 __free_pages_bootmem(pfn_to_page(start), start, order); 252 count += BITS_PER_LONG; 253 start += BITS_PER_LONG; 254 } else { 255 cur = start; 256 257 start = ALIGN(start + 1, BITS_PER_LONG); 258 while (vec && cur != start) { 259 if (vec & 1) { 260 page = pfn_to_page(cur); 261 __free_pages_bootmem(page, cur, 0); 262 count++; 263 } 264 vec >>= 1; 265 ++cur; 266 } 267 } 268 } 269 270 cur = bdata->node_min_pfn; 271 page = virt_to_page(bdata->node_bootmem_map); 272 pages = bdata->node_low_pfn - bdata->node_min_pfn; 273 pages = bootmem_bootmap_pages(pages); 274 count += pages; 275 while (pages--) 276 __free_pages_bootmem(page++, cur++, 0); 277 bdata->node_bootmem_map = NULL; 278 279 bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count); 280 281 return count; 282} 283 284static int reset_managed_pages_done __initdata; 285 286void reset_node_managed_pages(pg_data_t *pgdat) 287{ 288 struct zone *z; 289 290 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 291 z->managed_pages = 0; 292} 293 294void __init reset_all_zones_managed_pages(void) 295{ 296 struct pglist_data *pgdat; 297 298 if (reset_managed_pages_done) 299 return; 300 301 for_each_online_pgdat(pgdat) 302 reset_node_managed_pages(pgdat); 303 304 reset_managed_pages_done = 1; 305} 306 307unsigned long __init free_all_bootmem(void) 308{ 309 unsigned long total_pages = 0; 310 bootmem_data_t *bdata; 311 312 reset_all_zones_managed_pages(); 313 314 list_for_each_entry(bdata, &bdata_list, list) 315 total_pages += free_all_bootmem_core(bdata); 316 317 totalram_pages += total_pages; 318 319 return total_pages; 320} 321 322static void __init __free(bootmem_data_t *bdata, 323 unsigned long sidx, unsigned long eidx) 324{ 325 unsigned long idx; 326 327 bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data, 328 sidx + bdata->node_min_pfn, 329 eidx + bdata->node_min_pfn); 330 331 if (WARN_ON(bdata->node_bootmem_map == NULL)) 332 return; 333 334 if (bdata->hint_idx > sidx) 335 bdata->hint_idx = sidx; 336 337 for (idx = sidx; idx < eidx; idx++) 338 if (!test_and_clear_bit(idx, bdata->node_bootmem_map)) 339 BUG(); 340} 341 342static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx, 343 unsigned long eidx, int flags) 344{ 345 unsigned long idx; 346 int exclusive = flags & BOOTMEM_EXCLUSIVE; 347 348 bdebug("nid=%td start=%lx end=%lx flags=%x\n", 349 bdata - bootmem_node_data, 350 sidx + bdata->node_min_pfn, 351 eidx + bdata->node_min_pfn, 352 flags); 353 354 if (WARN_ON(bdata->node_bootmem_map == NULL)) 355 return 0; 356 357 for (idx = sidx; idx < eidx; idx++) 358 if (test_and_set_bit(idx, bdata->node_bootmem_map)) { 359 if (exclusive) { 360 __free(bdata, sidx, idx); 361 return -EBUSY; 362 } 363 bdebug("silent double reserve of PFN %lx\n", 364 idx + bdata->node_min_pfn); 365 } 366 return 0; 367} 368 369static int __init mark_bootmem_node(bootmem_data_t *bdata, 370 unsigned long start, unsigned long end, 371 int reserve, int flags) 372{ 373 unsigned long sidx, eidx; 374 375 bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n", 376 bdata - bootmem_node_data, start, end, reserve, flags); 377 378 BUG_ON(start < bdata->node_min_pfn); 379 BUG_ON(end > bdata->node_low_pfn); 380 381 sidx = start - bdata->node_min_pfn; 382 eidx = end - bdata->node_min_pfn; 383 384 if (reserve) 385 return __reserve(bdata, sidx, eidx, flags); 386 else 387 __free(bdata, sidx, eidx); 388 return 0; 389} 390 391static int __init mark_bootmem(unsigned long start, unsigned long end, 392 int reserve, int flags) 393{ 394 unsigned long pos; 395 bootmem_data_t *bdata; 396 397 pos = start; 398 list_for_each_entry(bdata, &bdata_list, list) { 399 int err; 400 unsigned long max; 401 402 if (pos < bdata->node_min_pfn || 403 pos >= bdata->node_low_pfn) { 404 BUG_ON(pos != start); 405 continue; 406 } 407 408 max = min(bdata->node_low_pfn, end); 409 410 err = mark_bootmem_node(bdata, pos, max, reserve, flags); 411 if (reserve && err) { 412 mark_bootmem(start, pos, 0, 0); 413 return err; 414 } 415 416 if (max == end) 417 return 0; 418 pos = bdata->node_low_pfn; 419 } 420 BUG(); 421} 422 423void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, 424 unsigned long size) 425{ 426 unsigned long start, end; 427 428 kmemleak_free_part_phys(physaddr, size); 429 430 start = PFN_UP(physaddr); 431 end = PFN_DOWN(physaddr + size); 432 433 mark_bootmem_node(pgdat->bdata, start, end, 0, 0); 434} 435 436void __init free_bootmem(unsigned long physaddr, unsigned long size) 437{ 438 unsigned long start, end; 439 440 kmemleak_free_part_phys(physaddr, size); 441 442 start = PFN_UP(physaddr); 443 end = PFN_DOWN(physaddr + size); 444 445 mark_bootmem(start, end, 0, 0); 446} 447 448/** 449 * reserve_bootmem_node - mark a page range as reserved 450 * @pgdat: node the range resides on 451 * @physaddr: starting address of the range 452 * @size: size of the range in bytes 453 * @flags: reservation flags (see linux/bootmem.h) 454 * 455 * Partial pages will be reserved. 456 * 457 * The range must reside completely on the specified node. 458 * 459 * Return: 0 on success, -errno on failure. 460 */ 461int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, 462 unsigned long size, int flags) 463{ 464 unsigned long start, end; 465 466 start = PFN_DOWN(physaddr); 467 end = PFN_UP(physaddr + size); 468 469 return mark_bootmem_node(pgdat->bdata, start, end, 1, flags); 470} 471 472/** 473 * reserve_bootmem - mark a page range as reserved 474 * @addr: starting address of the range 475 * @size: size of the range in bytes 476 * @flags: reservation flags (see linux/bootmem.h) 477 * 478 * Partial pages will be reserved. 479 * 480 * The range must be contiguous but may span node boundaries. 481 * 482 * Return: 0 on success, -errno on failure. 483 */ 484int __init reserve_bootmem(unsigned long addr, unsigned long size, 485 int flags) 486{ 487 unsigned long start, end; 488 489 start = PFN_DOWN(addr); 490 end = PFN_UP(addr + size); 491 492 return mark_bootmem(start, end, 1, flags); 493} 494 495static unsigned long __init align_idx(struct bootmem_data *bdata, 496 unsigned long idx, unsigned long step) 497{ 498 unsigned long base = bdata->node_min_pfn; 499 500 /* 501 * Align the index with respect to the node start so that the 502 * combination of both satisfies the requested alignment. 503 */ 504 505 return ALIGN(base + idx, step) - base; 506} 507 508static unsigned long __init align_off(struct bootmem_data *bdata, 509 unsigned long off, unsigned long align) 510{ 511 unsigned long base = PFN_PHYS(bdata->node_min_pfn); 512 513 /* Same as align_idx for byte offsets */ 514 515 return ALIGN(base + off, align) - base; 516} 517 518static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata, 519 unsigned long size, unsigned long align, 520 unsigned long goal, unsigned long limit) 521{ 522 unsigned long fallback = 0; 523 unsigned long min, max, start, sidx, midx, step; 524 525 bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n", 526 bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT, 527 align, goal, limit); 528 529 BUG_ON(!size); 530 BUG_ON(align & (align - 1)); 531 BUG_ON(limit && goal + size > limit); 532 533 if (!bdata->node_bootmem_map) 534 return NULL; 535 536 min = bdata->node_min_pfn; 537 max = bdata->node_low_pfn; 538 539 goal >>= PAGE_SHIFT; 540 limit >>= PAGE_SHIFT; 541 542 if (limit && max > limit) 543 max = limit; 544 if (max <= min) 545 return NULL; 546 547 step = max(align >> PAGE_SHIFT, 1UL); 548 549 if (goal && min < goal && goal < max) 550 start = ALIGN(goal, step); 551 else 552 start = ALIGN(min, step); 553 554 sidx = start - bdata->node_min_pfn; 555 midx = max - bdata->node_min_pfn; 556 557 if (bdata->hint_idx > sidx) { 558 /* 559 * Handle the valid case of sidx being zero and still 560 * catch the fallback below. 561 */ 562 fallback = sidx + 1; 563 sidx = align_idx(bdata, bdata->hint_idx, step); 564 } 565 566 while (1) { 567 int merge; 568 void *region; 569 unsigned long eidx, i, start_off, end_off; 570find_block: 571 sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx); 572 sidx = align_idx(bdata, sidx, step); 573 eidx = sidx + PFN_UP(size); 574 575 if (sidx >= midx || eidx > midx) 576 break; 577 578 for (i = sidx; i < eidx; i++) 579 if (test_bit(i, bdata->node_bootmem_map)) { 580 sidx = align_idx(bdata, i, step); 581 if (sidx == i) 582 sidx += step; 583 goto find_block; 584 } 585 586 if (bdata->last_end_off & (PAGE_SIZE - 1) && 587 PFN_DOWN(bdata->last_end_off) + 1 == sidx) 588 start_off = align_off(bdata, bdata->last_end_off, align); 589 else 590 start_off = PFN_PHYS(sidx); 591 592 merge = PFN_DOWN(start_off) < sidx; 593 end_off = start_off + size; 594 595 bdata->last_end_off = end_off; 596 bdata->hint_idx = PFN_UP(end_off); 597 598 /* 599 * Reserve the area now: 600 */ 601 if (__reserve(bdata, PFN_DOWN(start_off) + merge, 602 PFN_UP(end_off), BOOTMEM_EXCLUSIVE)) 603 BUG(); 604 605 region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) + 606 start_off); 607 memset(region, 0, size); 608 /* 609 * The min_count is set to 0 so that bootmem allocated blocks 610 * are never reported as leaks. 611 */ 612 kmemleak_alloc(region, size, 0, 0); 613 return region; 614 } 615 616 if (fallback) { 617 sidx = align_idx(bdata, fallback - 1, step); 618 fallback = 0; 619 goto find_block; 620 } 621 622 return NULL; 623} 624 625static void * __init alloc_bootmem_core(unsigned long size, 626 unsigned long align, 627 unsigned long goal, 628 unsigned long limit) 629{ 630 bootmem_data_t *bdata; 631 void *region; 632 633 if (WARN_ON_ONCE(slab_is_available())) 634 return kzalloc(size, GFP_NOWAIT); 635 636 list_for_each_entry(bdata, &bdata_list, list) { 637 if (goal && bdata->node_low_pfn <= PFN_DOWN(goal)) 638 continue; 639 if (limit && bdata->node_min_pfn >= PFN_DOWN(limit)) 640 break; 641 642 region = alloc_bootmem_bdata(bdata, size, align, goal, limit); 643 if (region) 644 return region; 645 } 646 647 return NULL; 648} 649 650static void * __init ___alloc_bootmem_nopanic(unsigned long size, 651 unsigned long align, 652 unsigned long goal, 653 unsigned long limit) 654{ 655 void *ptr; 656 657restart: 658 ptr = alloc_bootmem_core(size, align, goal, limit); 659 if (ptr) 660 return ptr; 661 if (goal) { 662 goal = 0; 663 goto restart; 664 } 665 666 return NULL; 667} 668 669void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align, 670 unsigned long goal) 671{ 672 unsigned long limit = 0; 673 674 return ___alloc_bootmem_nopanic(size, align, goal, limit); 675} 676 677static void * __init ___alloc_bootmem(unsigned long size, unsigned long align, 678 unsigned long goal, unsigned long limit) 679{ 680 void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit); 681 682 if (mem) 683 return mem; 684 /* 685 * Whoops, we cannot satisfy the allocation request. 686 */ 687 pr_alert("bootmem alloc of %lu bytes failed!\n", size); 688 panic("Out of memory"); 689 return NULL; 690} 691 692void * __init __alloc_bootmem(unsigned long size, unsigned long align, 693 unsigned long goal) 694{ 695 unsigned long limit = 0; 696 697 return ___alloc_bootmem(size, align, goal, limit); 698} 699 700void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat, 701 unsigned long size, unsigned long align, 702 unsigned long goal, unsigned long limit) 703{ 704 void *ptr; 705 706 if (WARN_ON_ONCE(slab_is_available())) 707 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id); 708again: 709 710 /* do not panic in alloc_bootmem_bdata() */ 711 if (limit && goal + size > limit) 712 limit = 0; 713 714 ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit); 715 if (ptr) 716 return ptr; 717 718 ptr = alloc_bootmem_core(size, align, goal, limit); 719 if (ptr) 720 return ptr; 721 722 if (goal) { 723 goal = 0; 724 goto again; 725 } 726 727 return NULL; 728} 729 730void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size, 731 unsigned long align, unsigned long goal) 732{ 733 return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0); 734} 735 736void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size, 737 unsigned long align, unsigned long goal, 738 unsigned long limit) 739{ 740 void *ptr; 741 742 ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0); 743 if (ptr) 744 return ptr; 745 746 pr_alert("bootmem alloc of %lu bytes failed!\n", size); 747 panic("Out of memory"); 748 return NULL; 749} 750 751void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size, 752 unsigned long align, unsigned long goal) 753{ 754 if (WARN_ON_ONCE(slab_is_available())) 755 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id); 756 757 return ___alloc_bootmem_node(pgdat, size, align, goal, 0); 758} 759 760void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size, 761 unsigned long align, unsigned long goal) 762{ 763#ifdef MAX_DMA32_PFN 764 unsigned long end_pfn; 765 766 if (WARN_ON_ONCE(slab_is_available())) 767 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id); 768 769 /* update goal according ...MAX_DMA32_PFN */ 770 end_pfn = pgdat_end_pfn(pgdat); 771 772 if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) && 773 (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) { 774 void *ptr; 775 unsigned long new_goal; 776 777 new_goal = MAX_DMA32_PFN << PAGE_SHIFT; 778 ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, 779 new_goal, 0); 780 if (ptr) 781 return ptr; 782 } 783#endif 784 785 return __alloc_bootmem_node(pgdat, size, align, goal); 786 787} 788 789void * __init __alloc_bootmem_low(unsigned long size, unsigned long align, 790 unsigned long goal) 791{ 792 return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT); 793} 794 795void * __init __alloc_bootmem_low_nopanic(unsigned long size, 796 unsigned long align, 797 unsigned long goal) 798{ 799 return ___alloc_bootmem_nopanic(size, align, goal, 800 ARCH_LOW_ADDRESS_LIMIT); 801} 802 803void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size, 804 unsigned long align, unsigned long goal) 805{ 806 if (WARN_ON_ONCE(slab_is_available())) 807 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id); 808 809 return ___alloc_bootmem_node(pgdat, size, align, 810 goal, ARCH_LOW_ADDRESS_LIMIT); 811}