Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <linux/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/sched/mm.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/skbuff.h>
97#include <linux/bpf.h>
98#include <linux/bpf_trace.h>
99#include <net/net_namespace.h>
100#include <net/sock.h>
101#include <net/busy_poll.h>
102#include <linux/rtnetlink.h>
103#include <linux/stat.h>
104#include <net/dst.h>
105#include <net/dst_metadata.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <linux/pci.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_ingress.h>
144#include <linux/crash_dump.h>
145#include <linux/sctp.h>
146#include <net/udp_tunnel.h>
147#include <linux/net_namespace.h>
148
149#include "net-sysfs.h"
150
151#define MAX_GRO_SKBS 8
152
153/* This should be increased if a protocol with a bigger head is added. */
154#define GRO_MAX_HEAD (MAX_HEADER + 128)
155
156static DEFINE_SPINLOCK(ptype_lock);
157static DEFINE_SPINLOCK(offload_lock);
158struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159struct list_head ptype_all __read_mostly; /* Taps */
160static struct list_head offload_base __read_mostly;
161
162static int netif_rx_internal(struct sk_buff *skb);
163static int call_netdevice_notifiers_info(unsigned long val,
164 struct netdev_notifier_info *info);
165static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167/*
168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169 * semaphore.
170 *
171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172 *
173 * Writers must hold the rtnl semaphore while they loop through the
174 * dev_base_head list, and hold dev_base_lock for writing when they do the
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
177 *
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
181 *
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
184 * semaphore held.
185 */
186DEFINE_RWLOCK(dev_base_lock);
187EXPORT_SYMBOL(dev_base_lock);
188
189static DEFINE_MUTEX(ifalias_mutex);
190
191/* protects napi_hash addition/deletion and napi_gen_id */
192static DEFINE_SPINLOCK(napi_hash_lock);
193
194static unsigned int napi_gen_id = NR_CPUS;
195static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197static seqcount_t devnet_rename_seq;
198
199static inline void dev_base_seq_inc(struct net *net)
200{
201 while (++net->dev_base_seq == 0)
202 ;
203}
204
205static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206{
207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210}
211
212static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213{
214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215}
216
217static inline void rps_lock(struct softnet_data *sd)
218{
219#ifdef CONFIG_RPS
220 spin_lock(&sd->input_pkt_queue.lock);
221#endif
222}
223
224static inline void rps_unlock(struct softnet_data *sd)
225{
226#ifdef CONFIG_RPS
227 spin_unlock(&sd->input_pkt_queue.lock);
228#endif
229}
230
231/* Device list insertion */
232static void list_netdevice(struct net_device *dev)
233{
234 struct net *net = dev_net(dev);
235
236 ASSERT_RTNL();
237
238 write_lock_bh(&dev_base_lock);
239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 hlist_add_head_rcu(&dev->index_hlist,
242 dev_index_hash(net, dev->ifindex));
243 write_unlock_bh(&dev_base_lock);
244
245 dev_base_seq_inc(net);
246}
247
248/* Device list removal
249 * caller must respect a RCU grace period before freeing/reusing dev
250 */
251static void unlist_netdevice(struct net_device *dev)
252{
253 ASSERT_RTNL();
254
255 /* Unlink dev from the device chain */
256 write_lock_bh(&dev_base_lock);
257 list_del_rcu(&dev->dev_list);
258 hlist_del_rcu(&dev->name_hlist);
259 hlist_del_rcu(&dev->index_hlist);
260 write_unlock_bh(&dev_base_lock);
261
262 dev_base_seq_inc(dev_net(dev));
263}
264
265/*
266 * Our notifier list
267 */
268
269static RAW_NOTIFIER_HEAD(netdev_chain);
270
271/*
272 * Device drivers call our routines to queue packets here. We empty the
273 * queue in the local softnet handler.
274 */
275
276DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279#ifdef CONFIG_LOCKDEP
280/*
281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282 * according to dev->type
283 */
284static const unsigned short netdev_lock_type[] = {
285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301static const char *const netdev_lock_name[] = {
302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322{
323 int i;
324
325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 if (netdev_lock_type[i] == dev_type)
327 return i;
328 /* the last key is used by default */
329 return ARRAY_SIZE(netdev_lock_type) - 1;
330}
331
332static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 unsigned short dev_type)
334{
335 int i;
336
337 i = netdev_lock_pos(dev_type);
338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 netdev_lock_name[i]);
340}
341
342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343{
344 int i;
345
346 i = netdev_lock_pos(dev->type);
347 lockdep_set_class_and_name(&dev->addr_list_lock,
348 &netdev_addr_lock_key[i],
349 netdev_lock_name[i]);
350}
351#else
352static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 unsigned short dev_type)
354{
355}
356static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357{
358}
359#endif
360
361/*******************************************************************************
362 *
363 * Protocol management and registration routines
364 *
365 *******************************************************************************/
366
367
368/*
369 * Add a protocol ID to the list. Now that the input handler is
370 * smarter we can dispense with all the messy stuff that used to be
371 * here.
372 *
373 * BEWARE!!! Protocol handlers, mangling input packets,
374 * MUST BE last in hash buckets and checking protocol handlers
375 * MUST start from promiscuous ptype_all chain in net_bh.
376 * It is true now, do not change it.
377 * Explanation follows: if protocol handler, mangling packet, will
378 * be the first on list, it is not able to sense, that packet
379 * is cloned and should be copied-on-write, so that it will
380 * change it and subsequent readers will get broken packet.
381 * --ANK (980803)
382 */
383
384static inline struct list_head *ptype_head(const struct packet_type *pt)
385{
386 if (pt->type == htons(ETH_P_ALL))
387 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 else
389 return pt->dev ? &pt->dev->ptype_specific :
390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391}
392
393/**
394 * dev_add_pack - add packet handler
395 * @pt: packet type declaration
396 *
397 * Add a protocol handler to the networking stack. The passed &packet_type
398 * is linked into kernel lists and may not be freed until it has been
399 * removed from the kernel lists.
400 *
401 * This call does not sleep therefore it can not
402 * guarantee all CPU's that are in middle of receiving packets
403 * will see the new packet type (until the next received packet).
404 */
405
406void dev_add_pack(struct packet_type *pt)
407{
408 struct list_head *head = ptype_head(pt);
409
410 spin_lock(&ptype_lock);
411 list_add_rcu(&pt->list, head);
412 spin_unlock(&ptype_lock);
413}
414EXPORT_SYMBOL(dev_add_pack);
415
416/**
417 * __dev_remove_pack - remove packet handler
418 * @pt: packet type declaration
419 *
420 * Remove a protocol handler that was previously added to the kernel
421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
422 * from the kernel lists and can be freed or reused once this function
423 * returns.
424 *
425 * The packet type might still be in use by receivers
426 * and must not be freed until after all the CPU's have gone
427 * through a quiescent state.
428 */
429void __dev_remove_pack(struct packet_type *pt)
430{
431 struct list_head *head = ptype_head(pt);
432 struct packet_type *pt1;
433
434 spin_lock(&ptype_lock);
435
436 list_for_each_entry(pt1, head, list) {
437 if (pt == pt1) {
438 list_del_rcu(&pt->list);
439 goto out;
440 }
441 }
442
443 pr_warn("dev_remove_pack: %p not found\n", pt);
444out:
445 spin_unlock(&ptype_lock);
446}
447EXPORT_SYMBOL(__dev_remove_pack);
448
449/**
450 * dev_remove_pack - remove packet handler
451 * @pt: packet type declaration
452 *
453 * Remove a protocol handler that was previously added to the kernel
454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
455 * from the kernel lists and can be freed or reused once this function
456 * returns.
457 *
458 * This call sleeps to guarantee that no CPU is looking at the packet
459 * type after return.
460 */
461void dev_remove_pack(struct packet_type *pt)
462{
463 __dev_remove_pack(pt);
464
465 synchronize_net();
466}
467EXPORT_SYMBOL(dev_remove_pack);
468
469
470/**
471 * dev_add_offload - register offload handlers
472 * @po: protocol offload declaration
473 *
474 * Add protocol offload handlers to the networking stack. The passed
475 * &proto_offload is linked into kernel lists and may not be freed until
476 * it has been removed from the kernel lists.
477 *
478 * This call does not sleep therefore it can not
479 * guarantee all CPU's that are in middle of receiving packets
480 * will see the new offload handlers (until the next received packet).
481 */
482void dev_add_offload(struct packet_offload *po)
483{
484 struct packet_offload *elem;
485
486 spin_lock(&offload_lock);
487 list_for_each_entry(elem, &offload_base, list) {
488 if (po->priority < elem->priority)
489 break;
490 }
491 list_add_rcu(&po->list, elem->list.prev);
492 spin_unlock(&offload_lock);
493}
494EXPORT_SYMBOL(dev_add_offload);
495
496/**
497 * __dev_remove_offload - remove offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a protocol offload handler that was previously added to the
501 * kernel offload handlers by dev_add_offload(). The passed &offload_type
502 * is removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * The packet type might still be in use by receivers
506 * and must not be freed until after all the CPU's have gone
507 * through a quiescent state.
508 */
509static void __dev_remove_offload(struct packet_offload *po)
510{
511 struct list_head *head = &offload_base;
512 struct packet_offload *po1;
513
514 spin_lock(&offload_lock);
515
516 list_for_each_entry(po1, head, list) {
517 if (po == po1) {
518 list_del_rcu(&po->list);
519 goto out;
520 }
521 }
522
523 pr_warn("dev_remove_offload: %p not found\n", po);
524out:
525 spin_unlock(&offload_lock);
526}
527
528/**
529 * dev_remove_offload - remove packet offload handler
530 * @po: packet offload declaration
531 *
532 * Remove a packet offload handler that was previously added to the kernel
533 * offload handlers by dev_add_offload(). The passed &offload_type is
534 * removed from the kernel lists and can be freed or reused once this
535 * function returns.
536 *
537 * This call sleeps to guarantee that no CPU is looking at the packet
538 * type after return.
539 */
540void dev_remove_offload(struct packet_offload *po)
541{
542 __dev_remove_offload(po);
543
544 synchronize_net();
545}
546EXPORT_SYMBOL(dev_remove_offload);
547
548/******************************************************************************
549 *
550 * Device Boot-time Settings Routines
551 *
552 ******************************************************************************/
553
554/* Boot time configuration table */
555static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557/**
558 * netdev_boot_setup_add - add new setup entry
559 * @name: name of the device
560 * @map: configured settings for the device
561 *
562 * Adds new setup entry to the dev_boot_setup list. The function
563 * returns 0 on error and 1 on success. This is a generic routine to
564 * all netdevices.
565 */
566static int netdev_boot_setup_add(char *name, struct ifmap *map)
567{
568 struct netdev_boot_setup *s;
569 int i;
570
571 s = dev_boot_setup;
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 memset(s[i].name, 0, sizeof(s[i].name));
575 strlcpy(s[i].name, name, IFNAMSIZ);
576 memcpy(&s[i].map, map, sizeof(s[i].map));
577 break;
578 }
579 }
580
581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582}
583
584/**
585 * netdev_boot_setup_check - check boot time settings
586 * @dev: the netdevice
587 *
588 * Check boot time settings for the device.
589 * The found settings are set for the device to be used
590 * later in the device probing.
591 * Returns 0 if no settings found, 1 if they are.
592 */
593int netdev_boot_setup_check(struct net_device *dev)
594{
595 struct netdev_boot_setup *s = dev_boot_setup;
596 int i;
597
598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 !strcmp(dev->name, s[i].name)) {
601 dev->irq = s[i].map.irq;
602 dev->base_addr = s[i].map.base_addr;
603 dev->mem_start = s[i].map.mem_start;
604 dev->mem_end = s[i].map.mem_end;
605 return 1;
606 }
607 }
608 return 0;
609}
610EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613/**
614 * netdev_boot_base - get address from boot time settings
615 * @prefix: prefix for network device
616 * @unit: id for network device
617 *
618 * Check boot time settings for the base address of device.
619 * The found settings are set for the device to be used
620 * later in the device probing.
621 * Returns 0 if no settings found.
622 */
623unsigned long netdev_boot_base(const char *prefix, int unit)
624{
625 const struct netdev_boot_setup *s = dev_boot_setup;
626 char name[IFNAMSIZ];
627 int i;
628
629 sprintf(name, "%s%d", prefix, unit);
630
631 /*
632 * If device already registered then return base of 1
633 * to indicate not to probe for this interface
634 */
635 if (__dev_get_by_name(&init_net, name))
636 return 1;
637
638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 if (!strcmp(name, s[i].name))
640 return s[i].map.base_addr;
641 return 0;
642}
643
644/*
645 * Saves at boot time configured settings for any netdevice.
646 */
647int __init netdev_boot_setup(char *str)
648{
649 int ints[5];
650 struct ifmap map;
651
652 str = get_options(str, ARRAY_SIZE(ints), ints);
653 if (!str || !*str)
654 return 0;
655
656 /* Save settings */
657 memset(&map, 0, sizeof(map));
658 if (ints[0] > 0)
659 map.irq = ints[1];
660 if (ints[0] > 1)
661 map.base_addr = ints[2];
662 if (ints[0] > 2)
663 map.mem_start = ints[3];
664 if (ints[0] > 3)
665 map.mem_end = ints[4];
666
667 /* Add new entry to the list */
668 return netdev_boot_setup_add(str, &map);
669}
670
671__setup("netdev=", netdev_boot_setup);
672
673/*******************************************************************************
674 *
675 * Device Interface Subroutines
676 *
677 *******************************************************************************/
678
679/**
680 * dev_get_iflink - get 'iflink' value of a interface
681 * @dev: targeted interface
682 *
683 * Indicates the ifindex the interface is linked to.
684 * Physical interfaces have the same 'ifindex' and 'iflink' values.
685 */
686
687int dev_get_iflink(const struct net_device *dev)
688{
689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 return dev->netdev_ops->ndo_get_iflink(dev);
691
692 return dev->ifindex;
693}
694EXPORT_SYMBOL(dev_get_iflink);
695
696/**
697 * dev_fill_metadata_dst - Retrieve tunnel egress information.
698 * @dev: targeted interface
699 * @skb: The packet.
700 *
701 * For better visibility of tunnel traffic OVS needs to retrieve
702 * egress tunnel information for a packet. Following API allows
703 * user to get this info.
704 */
705int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706{
707 struct ip_tunnel_info *info;
708
709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
710 return -EINVAL;
711
712 info = skb_tunnel_info_unclone(skb);
713 if (!info)
714 return -ENOMEM;
715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 return -EINVAL;
717
718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719}
720EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722/**
723 * __dev_get_by_name - find a device by its name
724 * @net: the applicable net namespace
725 * @name: name to find
726 *
727 * Find an interface by name. Must be called under RTNL semaphore
728 * or @dev_base_lock. If the name is found a pointer to the device
729 * is returned. If the name is not found then %NULL is returned. The
730 * reference counters are not incremented so the caller must be
731 * careful with locks.
732 */
733
734struct net_device *__dev_get_by_name(struct net *net, const char *name)
735{
736 struct net_device *dev;
737 struct hlist_head *head = dev_name_hash(net, name);
738
739 hlist_for_each_entry(dev, head, name_hlist)
740 if (!strncmp(dev->name, name, IFNAMSIZ))
741 return dev;
742
743 return NULL;
744}
745EXPORT_SYMBOL(__dev_get_by_name);
746
747/**
748 * dev_get_by_name_rcu - find a device by its name
749 * @net: the applicable net namespace
750 * @name: name to find
751 *
752 * Find an interface by name.
753 * If the name is found a pointer to the device is returned.
754 * If the name is not found then %NULL is returned.
755 * The reference counters are not incremented so the caller must be
756 * careful with locks. The caller must hold RCU lock.
757 */
758
759struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760{
761 struct net_device *dev;
762 struct hlist_head *head = dev_name_hash(net, name);
763
764 hlist_for_each_entry_rcu(dev, head, name_hlist)
765 if (!strncmp(dev->name, name, IFNAMSIZ))
766 return dev;
767
768 return NULL;
769}
770EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772/**
773 * dev_get_by_name - find a device by its name
774 * @net: the applicable net namespace
775 * @name: name to find
776 *
777 * Find an interface by name. This can be called from any
778 * context and does its own locking. The returned handle has
779 * the usage count incremented and the caller must use dev_put() to
780 * release it when it is no longer needed. %NULL is returned if no
781 * matching device is found.
782 */
783
784struct net_device *dev_get_by_name(struct net *net, const char *name)
785{
786 struct net_device *dev;
787
788 rcu_read_lock();
789 dev = dev_get_by_name_rcu(net, name);
790 if (dev)
791 dev_hold(dev);
792 rcu_read_unlock();
793 return dev;
794}
795EXPORT_SYMBOL(dev_get_by_name);
796
797/**
798 * __dev_get_by_index - find a device by its ifindex
799 * @net: the applicable net namespace
800 * @ifindex: index of device
801 *
802 * Search for an interface by index. Returns %NULL if the device
803 * is not found or a pointer to the device. The device has not
804 * had its reference counter increased so the caller must be careful
805 * about locking. The caller must hold either the RTNL semaphore
806 * or @dev_base_lock.
807 */
808
809struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810{
811 struct net_device *dev;
812 struct hlist_head *head = dev_index_hash(net, ifindex);
813
814 hlist_for_each_entry(dev, head, index_hlist)
815 if (dev->ifindex == ifindex)
816 return dev;
817
818 return NULL;
819}
820EXPORT_SYMBOL(__dev_get_by_index);
821
822/**
823 * dev_get_by_index_rcu - find a device by its ifindex
824 * @net: the applicable net namespace
825 * @ifindex: index of device
826 *
827 * Search for an interface by index. Returns %NULL if the device
828 * is not found or a pointer to the device. The device has not
829 * had its reference counter increased so the caller must be careful
830 * about locking. The caller must hold RCU lock.
831 */
832
833struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834{
835 struct net_device *dev;
836 struct hlist_head *head = dev_index_hash(net, ifindex);
837
838 hlist_for_each_entry_rcu(dev, head, index_hlist)
839 if (dev->ifindex == ifindex)
840 return dev;
841
842 return NULL;
843}
844EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847/**
848 * dev_get_by_index - find a device by its ifindex
849 * @net: the applicable net namespace
850 * @ifindex: index of device
851 *
852 * Search for an interface by index. Returns NULL if the device
853 * is not found or a pointer to the device. The device returned has
854 * had a reference added and the pointer is safe until the user calls
855 * dev_put to indicate they have finished with it.
856 */
857
858struct net_device *dev_get_by_index(struct net *net, int ifindex)
859{
860 struct net_device *dev;
861
862 rcu_read_lock();
863 dev = dev_get_by_index_rcu(net, ifindex);
864 if (dev)
865 dev_hold(dev);
866 rcu_read_unlock();
867 return dev;
868}
869EXPORT_SYMBOL(dev_get_by_index);
870
871/**
872 * dev_get_by_napi_id - find a device by napi_id
873 * @napi_id: ID of the NAPI struct
874 *
875 * Search for an interface by NAPI ID. Returns %NULL if the device
876 * is not found or a pointer to the device. The device has not had
877 * its reference counter increased so the caller must be careful
878 * about locking. The caller must hold RCU lock.
879 */
880
881struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882{
883 struct napi_struct *napi;
884
885 WARN_ON_ONCE(!rcu_read_lock_held());
886
887 if (napi_id < MIN_NAPI_ID)
888 return NULL;
889
890 napi = napi_by_id(napi_id);
891
892 return napi ? napi->dev : NULL;
893}
894EXPORT_SYMBOL(dev_get_by_napi_id);
895
896/**
897 * netdev_get_name - get a netdevice name, knowing its ifindex.
898 * @net: network namespace
899 * @name: a pointer to the buffer where the name will be stored.
900 * @ifindex: the ifindex of the interface to get the name from.
901 *
902 * The use of raw_seqcount_begin() and cond_resched() before
903 * retrying is required as we want to give the writers a chance
904 * to complete when CONFIG_PREEMPT is not set.
905 */
906int netdev_get_name(struct net *net, char *name, int ifindex)
907{
908 struct net_device *dev;
909 unsigned int seq;
910
911retry:
912 seq = raw_seqcount_begin(&devnet_rename_seq);
913 rcu_read_lock();
914 dev = dev_get_by_index_rcu(net, ifindex);
915 if (!dev) {
916 rcu_read_unlock();
917 return -ENODEV;
918 }
919
920 strcpy(name, dev->name);
921 rcu_read_unlock();
922 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 cond_resched();
924 goto retry;
925 }
926
927 return 0;
928}
929
930/**
931 * dev_getbyhwaddr_rcu - find a device by its hardware address
932 * @net: the applicable net namespace
933 * @type: media type of device
934 * @ha: hardware address
935 *
936 * Search for an interface by MAC address. Returns NULL if the device
937 * is not found or a pointer to the device.
938 * The caller must hold RCU or RTNL.
939 * The returned device has not had its ref count increased
940 * and the caller must therefore be careful about locking
941 *
942 */
943
944struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 const char *ha)
946{
947 struct net_device *dev;
948
949 for_each_netdev_rcu(net, dev)
950 if (dev->type == type &&
951 !memcmp(dev->dev_addr, ha, dev->addr_len))
952 return dev;
953
954 return NULL;
955}
956EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959{
960 struct net_device *dev;
961
962 ASSERT_RTNL();
963 for_each_netdev(net, dev)
964 if (dev->type == type)
965 return dev;
966
967 return NULL;
968}
969EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972{
973 struct net_device *dev, *ret = NULL;
974
975 rcu_read_lock();
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type) {
978 dev_hold(dev);
979 ret = dev;
980 break;
981 }
982 rcu_read_unlock();
983 return ret;
984}
985EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987/**
988 * __dev_get_by_flags - find any device with given flags
989 * @net: the applicable net namespace
990 * @if_flags: IFF_* values
991 * @mask: bitmask of bits in if_flags to check
992 *
993 * Search for any interface with the given flags. Returns NULL if a device
994 * is not found or a pointer to the device. Must be called inside
995 * rtnl_lock(), and result refcount is unchanged.
996 */
997
998struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 unsigned short mask)
1000{
1001 struct net_device *dev, *ret;
1002
1003 ASSERT_RTNL();
1004
1005 ret = NULL;
1006 for_each_netdev(net, dev) {
1007 if (((dev->flags ^ if_flags) & mask) == 0) {
1008 ret = dev;
1009 break;
1010 }
1011 }
1012 return ret;
1013}
1014EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016/**
1017 * dev_valid_name - check if name is okay for network device
1018 * @name: name string
1019 *
1020 * Network device names need to be valid file names to
1021 * to allow sysfs to work. We also disallow any kind of
1022 * whitespace.
1023 */
1024bool dev_valid_name(const char *name)
1025{
1026 if (*name == '\0')
1027 return false;
1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029 return false;
1030 if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 return false;
1032
1033 while (*name) {
1034 if (*name == '/' || *name == ':' || isspace(*name))
1035 return false;
1036 name++;
1037 }
1038 return true;
1039}
1040EXPORT_SYMBOL(dev_valid_name);
1041
1042/**
1043 * __dev_alloc_name - allocate a name for a device
1044 * @net: network namespace to allocate the device name in
1045 * @name: name format string
1046 * @buf: scratch buffer and result name string
1047 *
1048 * Passed a format string - eg "lt%d" it will try and find a suitable
1049 * id. It scans list of devices to build up a free map, then chooses
1050 * the first empty slot. The caller must hold the dev_base or rtnl lock
1051 * while allocating the name and adding the device in order to avoid
1052 * duplicates.
1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 * Returns the number of the unit assigned or a negative errno code.
1055 */
1056
1057static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058{
1059 int i = 0;
1060 const char *p;
1061 const int max_netdevices = 8*PAGE_SIZE;
1062 unsigned long *inuse;
1063 struct net_device *d;
1064
1065 if (!dev_valid_name(name))
1066 return -EINVAL;
1067
1068 p = strchr(name, '%');
1069 if (p) {
1070 /*
1071 * Verify the string as this thing may have come from
1072 * the user. There must be either one "%d" and no other "%"
1073 * characters.
1074 */
1075 if (p[1] != 'd' || strchr(p + 2, '%'))
1076 return -EINVAL;
1077
1078 /* Use one page as a bit array of possible slots */
1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080 if (!inuse)
1081 return -ENOMEM;
1082
1083 for_each_netdev(net, d) {
1084 if (!sscanf(d->name, name, &i))
1085 continue;
1086 if (i < 0 || i >= max_netdevices)
1087 continue;
1088
1089 /* avoid cases where sscanf is not exact inverse of printf */
1090 snprintf(buf, IFNAMSIZ, name, i);
1091 if (!strncmp(buf, d->name, IFNAMSIZ))
1092 set_bit(i, inuse);
1093 }
1094
1095 i = find_first_zero_bit(inuse, max_netdevices);
1096 free_page((unsigned long) inuse);
1097 }
1098
1099 snprintf(buf, IFNAMSIZ, name, i);
1100 if (!__dev_get_by_name(net, buf))
1101 return i;
1102
1103 /* It is possible to run out of possible slots
1104 * when the name is long and there isn't enough space left
1105 * for the digits, or if all bits are used.
1106 */
1107 return -ENFILE;
1108}
1109
1110static int dev_alloc_name_ns(struct net *net,
1111 struct net_device *dev,
1112 const char *name)
1113{
1114 char buf[IFNAMSIZ];
1115 int ret;
1116
1117 BUG_ON(!net);
1118 ret = __dev_alloc_name(net, name, buf);
1119 if (ret >= 0)
1120 strlcpy(dev->name, buf, IFNAMSIZ);
1121 return ret;
1122}
1123
1124/**
1125 * dev_alloc_name - allocate a name for a device
1126 * @dev: device
1127 * @name: name format string
1128 *
1129 * Passed a format string - eg "lt%d" it will try and find a suitable
1130 * id. It scans list of devices to build up a free map, then chooses
1131 * the first empty slot. The caller must hold the dev_base or rtnl lock
1132 * while allocating the name and adding the device in order to avoid
1133 * duplicates.
1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135 * Returns the number of the unit assigned or a negative errno code.
1136 */
1137
1138int dev_alloc_name(struct net_device *dev, const char *name)
1139{
1140 return dev_alloc_name_ns(dev_net(dev), dev, name);
1141}
1142EXPORT_SYMBOL(dev_alloc_name);
1143
1144int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 const char *name)
1146{
1147 BUG_ON(!net);
1148
1149 if (!dev_valid_name(name))
1150 return -EINVAL;
1151
1152 if (strchr(name, '%'))
1153 return dev_alloc_name_ns(net, dev, name);
1154 else if (__dev_get_by_name(net, name))
1155 return -EEXIST;
1156 else if (dev->name != name)
1157 strlcpy(dev->name, name, IFNAMSIZ);
1158
1159 return 0;
1160}
1161EXPORT_SYMBOL(dev_get_valid_name);
1162
1163/**
1164 * dev_change_name - change name of a device
1165 * @dev: device
1166 * @newname: name (or format string) must be at least IFNAMSIZ
1167 *
1168 * Change name of a device, can pass format strings "eth%d".
1169 * for wildcarding.
1170 */
1171int dev_change_name(struct net_device *dev, const char *newname)
1172{
1173 unsigned char old_assign_type;
1174 char oldname[IFNAMSIZ];
1175 int err = 0;
1176 int ret;
1177 struct net *net;
1178
1179 ASSERT_RTNL();
1180 BUG_ON(!dev_net(dev));
1181
1182 net = dev_net(dev);
1183 if (dev->flags & IFF_UP)
1184 return -EBUSY;
1185
1186 write_seqcount_begin(&devnet_rename_seq);
1187
1188 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189 write_seqcount_end(&devnet_rename_seq);
1190 return 0;
1191 }
1192
1193 memcpy(oldname, dev->name, IFNAMSIZ);
1194
1195 err = dev_get_valid_name(net, dev, newname);
1196 if (err < 0) {
1197 write_seqcount_end(&devnet_rename_seq);
1198 return err;
1199 }
1200
1201 if (oldname[0] && !strchr(oldname, '%'))
1202 netdev_info(dev, "renamed from %s\n", oldname);
1203
1204 old_assign_type = dev->name_assign_type;
1205 dev->name_assign_type = NET_NAME_RENAMED;
1206
1207rollback:
1208 ret = device_rename(&dev->dev, dev->name);
1209 if (ret) {
1210 memcpy(dev->name, oldname, IFNAMSIZ);
1211 dev->name_assign_type = old_assign_type;
1212 write_seqcount_end(&devnet_rename_seq);
1213 return ret;
1214 }
1215
1216 write_seqcount_end(&devnet_rename_seq);
1217
1218 netdev_adjacent_rename_links(dev, oldname);
1219
1220 write_lock_bh(&dev_base_lock);
1221 hlist_del_rcu(&dev->name_hlist);
1222 write_unlock_bh(&dev_base_lock);
1223
1224 synchronize_rcu();
1225
1226 write_lock_bh(&dev_base_lock);
1227 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228 write_unlock_bh(&dev_base_lock);
1229
1230 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231 ret = notifier_to_errno(ret);
1232
1233 if (ret) {
1234 /* err >= 0 after dev_alloc_name() or stores the first errno */
1235 if (err >= 0) {
1236 err = ret;
1237 write_seqcount_begin(&devnet_rename_seq);
1238 memcpy(dev->name, oldname, IFNAMSIZ);
1239 memcpy(oldname, newname, IFNAMSIZ);
1240 dev->name_assign_type = old_assign_type;
1241 old_assign_type = NET_NAME_RENAMED;
1242 goto rollback;
1243 } else {
1244 pr_err("%s: name change rollback failed: %d\n",
1245 dev->name, ret);
1246 }
1247 }
1248
1249 return err;
1250}
1251
1252/**
1253 * dev_set_alias - change ifalias of a device
1254 * @dev: device
1255 * @alias: name up to IFALIASZ
1256 * @len: limit of bytes to copy from info
1257 *
1258 * Set ifalias for a device,
1259 */
1260int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1261{
1262 struct dev_ifalias *new_alias = NULL;
1263
1264 if (len >= IFALIASZ)
1265 return -EINVAL;
1266
1267 if (len) {
1268 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1269 if (!new_alias)
1270 return -ENOMEM;
1271
1272 memcpy(new_alias->ifalias, alias, len);
1273 new_alias->ifalias[len] = 0;
1274 }
1275
1276 mutex_lock(&ifalias_mutex);
1277 rcu_swap_protected(dev->ifalias, new_alias,
1278 mutex_is_locked(&ifalias_mutex));
1279 mutex_unlock(&ifalias_mutex);
1280
1281 if (new_alias)
1282 kfree_rcu(new_alias, rcuhead);
1283
1284 return len;
1285}
1286EXPORT_SYMBOL(dev_set_alias);
1287
1288/**
1289 * dev_get_alias - get ifalias of a device
1290 * @dev: device
1291 * @name: buffer to store name of ifalias
1292 * @len: size of buffer
1293 *
1294 * get ifalias for a device. Caller must make sure dev cannot go
1295 * away, e.g. rcu read lock or own a reference count to device.
1296 */
1297int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1298{
1299 const struct dev_ifalias *alias;
1300 int ret = 0;
1301
1302 rcu_read_lock();
1303 alias = rcu_dereference(dev->ifalias);
1304 if (alias)
1305 ret = snprintf(name, len, "%s", alias->ifalias);
1306 rcu_read_unlock();
1307
1308 return ret;
1309}
1310
1311/**
1312 * netdev_features_change - device changes features
1313 * @dev: device to cause notification
1314 *
1315 * Called to indicate a device has changed features.
1316 */
1317void netdev_features_change(struct net_device *dev)
1318{
1319 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1320}
1321EXPORT_SYMBOL(netdev_features_change);
1322
1323/**
1324 * netdev_state_change - device changes state
1325 * @dev: device to cause notification
1326 *
1327 * Called to indicate a device has changed state. This function calls
1328 * the notifier chains for netdev_chain and sends a NEWLINK message
1329 * to the routing socket.
1330 */
1331void netdev_state_change(struct net_device *dev)
1332{
1333 if (dev->flags & IFF_UP) {
1334 struct netdev_notifier_change_info change_info = {
1335 .info.dev = dev,
1336 };
1337
1338 call_netdevice_notifiers_info(NETDEV_CHANGE,
1339 &change_info.info);
1340 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1341 }
1342}
1343EXPORT_SYMBOL(netdev_state_change);
1344
1345/**
1346 * netdev_notify_peers - notify network peers about existence of @dev
1347 * @dev: network device
1348 *
1349 * Generate traffic such that interested network peers are aware of
1350 * @dev, such as by generating a gratuitous ARP. This may be used when
1351 * a device wants to inform the rest of the network about some sort of
1352 * reconfiguration such as a failover event or virtual machine
1353 * migration.
1354 */
1355void netdev_notify_peers(struct net_device *dev)
1356{
1357 rtnl_lock();
1358 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1360 rtnl_unlock();
1361}
1362EXPORT_SYMBOL(netdev_notify_peers);
1363
1364static int __dev_open(struct net_device *dev)
1365{
1366 const struct net_device_ops *ops = dev->netdev_ops;
1367 int ret;
1368
1369 ASSERT_RTNL();
1370
1371 if (!netif_device_present(dev))
1372 return -ENODEV;
1373
1374 /* Block netpoll from trying to do any rx path servicing.
1375 * If we don't do this there is a chance ndo_poll_controller
1376 * or ndo_poll may be running while we open the device
1377 */
1378 netpoll_poll_disable(dev);
1379
1380 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381 ret = notifier_to_errno(ret);
1382 if (ret)
1383 return ret;
1384
1385 set_bit(__LINK_STATE_START, &dev->state);
1386
1387 if (ops->ndo_validate_addr)
1388 ret = ops->ndo_validate_addr(dev);
1389
1390 if (!ret && ops->ndo_open)
1391 ret = ops->ndo_open(dev);
1392
1393 netpoll_poll_enable(dev);
1394
1395 if (ret)
1396 clear_bit(__LINK_STATE_START, &dev->state);
1397 else {
1398 dev->flags |= IFF_UP;
1399 dev_set_rx_mode(dev);
1400 dev_activate(dev);
1401 add_device_randomness(dev->dev_addr, dev->addr_len);
1402 }
1403
1404 return ret;
1405}
1406
1407/**
1408 * dev_open - prepare an interface for use.
1409 * @dev: device to open
1410 *
1411 * Takes a device from down to up state. The device's private open
1412 * function is invoked and then the multicast lists are loaded. Finally
1413 * the device is moved into the up state and a %NETDEV_UP message is
1414 * sent to the netdev notifier chain.
1415 *
1416 * Calling this function on an active interface is a nop. On a failure
1417 * a negative errno code is returned.
1418 */
1419int dev_open(struct net_device *dev)
1420{
1421 int ret;
1422
1423 if (dev->flags & IFF_UP)
1424 return 0;
1425
1426 ret = __dev_open(dev);
1427 if (ret < 0)
1428 return ret;
1429
1430 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1431 call_netdevice_notifiers(NETDEV_UP, dev);
1432
1433 return ret;
1434}
1435EXPORT_SYMBOL(dev_open);
1436
1437static void __dev_close_many(struct list_head *head)
1438{
1439 struct net_device *dev;
1440
1441 ASSERT_RTNL();
1442 might_sleep();
1443
1444 list_for_each_entry(dev, head, close_list) {
1445 /* Temporarily disable netpoll until the interface is down */
1446 netpoll_poll_disable(dev);
1447
1448 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1449
1450 clear_bit(__LINK_STATE_START, &dev->state);
1451
1452 /* Synchronize to scheduled poll. We cannot touch poll list, it
1453 * can be even on different cpu. So just clear netif_running().
1454 *
1455 * dev->stop() will invoke napi_disable() on all of it's
1456 * napi_struct instances on this device.
1457 */
1458 smp_mb__after_atomic(); /* Commit netif_running(). */
1459 }
1460
1461 dev_deactivate_many(head);
1462
1463 list_for_each_entry(dev, head, close_list) {
1464 const struct net_device_ops *ops = dev->netdev_ops;
1465
1466 /*
1467 * Call the device specific close. This cannot fail.
1468 * Only if device is UP
1469 *
1470 * We allow it to be called even after a DETACH hot-plug
1471 * event.
1472 */
1473 if (ops->ndo_stop)
1474 ops->ndo_stop(dev);
1475
1476 dev->flags &= ~IFF_UP;
1477 netpoll_poll_enable(dev);
1478 }
1479}
1480
1481static void __dev_close(struct net_device *dev)
1482{
1483 LIST_HEAD(single);
1484
1485 list_add(&dev->close_list, &single);
1486 __dev_close_many(&single);
1487 list_del(&single);
1488}
1489
1490void dev_close_many(struct list_head *head, bool unlink)
1491{
1492 struct net_device *dev, *tmp;
1493
1494 /* Remove the devices that don't need to be closed */
1495 list_for_each_entry_safe(dev, tmp, head, close_list)
1496 if (!(dev->flags & IFF_UP))
1497 list_del_init(&dev->close_list);
1498
1499 __dev_close_many(head);
1500
1501 list_for_each_entry_safe(dev, tmp, head, close_list) {
1502 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1503 call_netdevice_notifiers(NETDEV_DOWN, dev);
1504 if (unlink)
1505 list_del_init(&dev->close_list);
1506 }
1507}
1508EXPORT_SYMBOL(dev_close_many);
1509
1510/**
1511 * dev_close - shutdown an interface.
1512 * @dev: device to shutdown
1513 *
1514 * This function moves an active device into down state. A
1515 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1517 * chain.
1518 */
1519void dev_close(struct net_device *dev)
1520{
1521 if (dev->flags & IFF_UP) {
1522 LIST_HEAD(single);
1523
1524 list_add(&dev->close_list, &single);
1525 dev_close_many(&single, true);
1526 list_del(&single);
1527 }
1528}
1529EXPORT_SYMBOL(dev_close);
1530
1531
1532/**
1533 * dev_disable_lro - disable Large Receive Offload on a device
1534 * @dev: device
1535 *
1536 * Disable Large Receive Offload (LRO) on a net device. Must be
1537 * called under RTNL. This is needed if received packets may be
1538 * forwarded to another interface.
1539 */
1540void dev_disable_lro(struct net_device *dev)
1541{
1542 struct net_device *lower_dev;
1543 struct list_head *iter;
1544
1545 dev->wanted_features &= ~NETIF_F_LRO;
1546 netdev_update_features(dev);
1547
1548 if (unlikely(dev->features & NETIF_F_LRO))
1549 netdev_WARN(dev, "failed to disable LRO!\n");
1550
1551 netdev_for_each_lower_dev(dev, lower_dev, iter)
1552 dev_disable_lro(lower_dev);
1553}
1554EXPORT_SYMBOL(dev_disable_lro);
1555
1556/**
1557 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1558 * @dev: device
1559 *
1560 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1561 * called under RTNL. This is needed if Generic XDP is installed on
1562 * the device.
1563 */
1564static void dev_disable_gro_hw(struct net_device *dev)
1565{
1566 dev->wanted_features &= ~NETIF_F_GRO_HW;
1567 netdev_update_features(dev);
1568
1569 if (unlikely(dev->features & NETIF_F_GRO_HW))
1570 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1571}
1572
1573const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1574{
1575#define N(val) \
1576 case NETDEV_##val: \
1577 return "NETDEV_" __stringify(val);
1578 switch (cmd) {
1579 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1580 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1581 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1582 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1583 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1584 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1585 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1586 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1587 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1588 }
1589#undef N
1590 return "UNKNOWN_NETDEV_EVENT";
1591}
1592EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1593
1594static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1595 struct net_device *dev)
1596{
1597 struct netdev_notifier_info info = {
1598 .dev = dev,
1599 };
1600
1601 return nb->notifier_call(nb, val, &info);
1602}
1603
1604static int dev_boot_phase = 1;
1605
1606/**
1607 * register_netdevice_notifier - register a network notifier block
1608 * @nb: notifier
1609 *
1610 * Register a notifier to be called when network device events occur.
1611 * The notifier passed is linked into the kernel structures and must
1612 * not be reused until it has been unregistered. A negative errno code
1613 * is returned on a failure.
1614 *
1615 * When registered all registration and up events are replayed
1616 * to the new notifier to allow device to have a race free
1617 * view of the network device list.
1618 */
1619
1620int register_netdevice_notifier(struct notifier_block *nb)
1621{
1622 struct net_device *dev;
1623 struct net_device *last;
1624 struct net *net;
1625 int err;
1626
1627 /* Close race with setup_net() and cleanup_net() */
1628 down_write(&pernet_ops_rwsem);
1629 rtnl_lock();
1630 err = raw_notifier_chain_register(&netdev_chain, nb);
1631 if (err)
1632 goto unlock;
1633 if (dev_boot_phase)
1634 goto unlock;
1635 for_each_net(net) {
1636 for_each_netdev(net, dev) {
1637 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638 err = notifier_to_errno(err);
1639 if (err)
1640 goto rollback;
1641
1642 if (!(dev->flags & IFF_UP))
1643 continue;
1644
1645 call_netdevice_notifier(nb, NETDEV_UP, dev);
1646 }
1647 }
1648
1649unlock:
1650 rtnl_unlock();
1651 up_write(&pernet_ops_rwsem);
1652 return err;
1653
1654rollback:
1655 last = dev;
1656 for_each_net(net) {
1657 for_each_netdev(net, dev) {
1658 if (dev == last)
1659 goto outroll;
1660
1661 if (dev->flags & IFF_UP) {
1662 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663 dev);
1664 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665 }
1666 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667 }
1668 }
1669
1670outroll:
1671 raw_notifier_chain_unregister(&netdev_chain, nb);
1672 goto unlock;
1673}
1674EXPORT_SYMBOL(register_netdevice_notifier);
1675
1676/**
1677 * unregister_netdevice_notifier - unregister a network notifier block
1678 * @nb: notifier
1679 *
1680 * Unregister a notifier previously registered by
1681 * register_netdevice_notifier(). The notifier is unlinked into the
1682 * kernel structures and may then be reused. A negative errno code
1683 * is returned on a failure.
1684 *
1685 * After unregistering unregister and down device events are synthesized
1686 * for all devices on the device list to the removed notifier to remove
1687 * the need for special case cleanup code.
1688 */
1689
1690int unregister_netdevice_notifier(struct notifier_block *nb)
1691{
1692 struct net_device *dev;
1693 struct net *net;
1694 int err;
1695
1696 /* Close race with setup_net() and cleanup_net() */
1697 down_write(&pernet_ops_rwsem);
1698 rtnl_lock();
1699 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1700 if (err)
1701 goto unlock;
1702
1703 for_each_net(net) {
1704 for_each_netdev(net, dev) {
1705 if (dev->flags & IFF_UP) {
1706 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1707 dev);
1708 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1709 }
1710 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1711 }
1712 }
1713unlock:
1714 rtnl_unlock();
1715 up_write(&pernet_ops_rwsem);
1716 return err;
1717}
1718EXPORT_SYMBOL(unregister_netdevice_notifier);
1719
1720/**
1721 * call_netdevice_notifiers_info - call all network notifier blocks
1722 * @val: value passed unmodified to notifier function
1723 * @info: notifier information data
1724 *
1725 * Call all network notifier blocks. Parameters and return value
1726 * are as for raw_notifier_call_chain().
1727 */
1728
1729static int call_netdevice_notifiers_info(unsigned long val,
1730 struct netdev_notifier_info *info)
1731{
1732 ASSERT_RTNL();
1733 return raw_notifier_call_chain(&netdev_chain, val, info);
1734}
1735
1736/**
1737 * call_netdevice_notifiers - call all network notifier blocks
1738 * @val: value passed unmodified to notifier function
1739 * @dev: net_device pointer passed unmodified to notifier function
1740 *
1741 * Call all network notifier blocks. Parameters and return value
1742 * are as for raw_notifier_call_chain().
1743 */
1744
1745int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1746{
1747 struct netdev_notifier_info info = {
1748 .dev = dev,
1749 };
1750
1751 return call_netdevice_notifiers_info(val, &info);
1752}
1753EXPORT_SYMBOL(call_netdevice_notifiers);
1754
1755#ifdef CONFIG_NET_INGRESS
1756static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1757
1758void net_inc_ingress_queue(void)
1759{
1760 static_branch_inc(&ingress_needed_key);
1761}
1762EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1763
1764void net_dec_ingress_queue(void)
1765{
1766 static_branch_dec(&ingress_needed_key);
1767}
1768EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1769#endif
1770
1771#ifdef CONFIG_NET_EGRESS
1772static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1773
1774void net_inc_egress_queue(void)
1775{
1776 static_branch_inc(&egress_needed_key);
1777}
1778EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1779
1780void net_dec_egress_queue(void)
1781{
1782 static_branch_dec(&egress_needed_key);
1783}
1784EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1785#endif
1786
1787static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1788#ifdef HAVE_JUMP_LABEL
1789static atomic_t netstamp_needed_deferred;
1790static atomic_t netstamp_wanted;
1791static void netstamp_clear(struct work_struct *work)
1792{
1793 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1794 int wanted;
1795
1796 wanted = atomic_add_return(deferred, &netstamp_wanted);
1797 if (wanted > 0)
1798 static_branch_enable(&netstamp_needed_key);
1799 else
1800 static_branch_disable(&netstamp_needed_key);
1801}
1802static DECLARE_WORK(netstamp_work, netstamp_clear);
1803#endif
1804
1805void net_enable_timestamp(void)
1806{
1807#ifdef HAVE_JUMP_LABEL
1808 int wanted;
1809
1810 while (1) {
1811 wanted = atomic_read(&netstamp_wanted);
1812 if (wanted <= 0)
1813 break;
1814 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1815 return;
1816 }
1817 atomic_inc(&netstamp_needed_deferred);
1818 schedule_work(&netstamp_work);
1819#else
1820 static_branch_inc(&netstamp_needed_key);
1821#endif
1822}
1823EXPORT_SYMBOL(net_enable_timestamp);
1824
1825void net_disable_timestamp(void)
1826{
1827#ifdef HAVE_JUMP_LABEL
1828 int wanted;
1829
1830 while (1) {
1831 wanted = atomic_read(&netstamp_wanted);
1832 if (wanted <= 1)
1833 break;
1834 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1835 return;
1836 }
1837 atomic_dec(&netstamp_needed_deferred);
1838 schedule_work(&netstamp_work);
1839#else
1840 static_branch_dec(&netstamp_needed_key);
1841#endif
1842}
1843EXPORT_SYMBOL(net_disable_timestamp);
1844
1845static inline void net_timestamp_set(struct sk_buff *skb)
1846{
1847 skb->tstamp = 0;
1848 if (static_branch_unlikely(&netstamp_needed_key))
1849 __net_timestamp(skb);
1850}
1851
1852#define net_timestamp_check(COND, SKB) \
1853 if (static_branch_unlikely(&netstamp_needed_key)) { \
1854 if ((COND) && !(SKB)->tstamp) \
1855 __net_timestamp(SKB); \
1856 } \
1857
1858bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1859{
1860 unsigned int len;
1861
1862 if (!(dev->flags & IFF_UP))
1863 return false;
1864
1865 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1866 if (skb->len <= len)
1867 return true;
1868
1869 /* if TSO is enabled, we don't care about the length as the packet
1870 * could be forwarded without being segmented before
1871 */
1872 if (skb_is_gso(skb))
1873 return true;
1874
1875 return false;
1876}
1877EXPORT_SYMBOL_GPL(is_skb_forwardable);
1878
1879int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1880{
1881 int ret = ____dev_forward_skb(dev, skb);
1882
1883 if (likely(!ret)) {
1884 skb->protocol = eth_type_trans(skb, dev);
1885 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1886 }
1887
1888 return ret;
1889}
1890EXPORT_SYMBOL_GPL(__dev_forward_skb);
1891
1892/**
1893 * dev_forward_skb - loopback an skb to another netif
1894 *
1895 * @dev: destination network device
1896 * @skb: buffer to forward
1897 *
1898 * return values:
1899 * NET_RX_SUCCESS (no congestion)
1900 * NET_RX_DROP (packet was dropped, but freed)
1901 *
1902 * dev_forward_skb can be used for injecting an skb from the
1903 * start_xmit function of one device into the receive queue
1904 * of another device.
1905 *
1906 * The receiving device may be in another namespace, so
1907 * we have to clear all information in the skb that could
1908 * impact namespace isolation.
1909 */
1910int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1911{
1912 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1913}
1914EXPORT_SYMBOL_GPL(dev_forward_skb);
1915
1916static inline int deliver_skb(struct sk_buff *skb,
1917 struct packet_type *pt_prev,
1918 struct net_device *orig_dev)
1919{
1920 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1921 return -ENOMEM;
1922 refcount_inc(&skb->users);
1923 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1924}
1925
1926static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1927 struct packet_type **pt,
1928 struct net_device *orig_dev,
1929 __be16 type,
1930 struct list_head *ptype_list)
1931{
1932 struct packet_type *ptype, *pt_prev = *pt;
1933
1934 list_for_each_entry_rcu(ptype, ptype_list, list) {
1935 if (ptype->type != type)
1936 continue;
1937 if (pt_prev)
1938 deliver_skb(skb, pt_prev, orig_dev);
1939 pt_prev = ptype;
1940 }
1941 *pt = pt_prev;
1942}
1943
1944static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1945{
1946 if (!ptype->af_packet_priv || !skb->sk)
1947 return false;
1948
1949 if (ptype->id_match)
1950 return ptype->id_match(ptype, skb->sk);
1951 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1952 return true;
1953
1954 return false;
1955}
1956
1957/*
1958 * Support routine. Sends outgoing frames to any network
1959 * taps currently in use.
1960 */
1961
1962void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1963{
1964 struct packet_type *ptype;
1965 struct sk_buff *skb2 = NULL;
1966 struct packet_type *pt_prev = NULL;
1967 struct list_head *ptype_list = &ptype_all;
1968
1969 rcu_read_lock();
1970again:
1971 list_for_each_entry_rcu(ptype, ptype_list, list) {
1972 /* Never send packets back to the socket
1973 * they originated from - MvS (miquels@drinkel.ow.org)
1974 */
1975 if (skb_loop_sk(ptype, skb))
1976 continue;
1977
1978 if (pt_prev) {
1979 deliver_skb(skb2, pt_prev, skb->dev);
1980 pt_prev = ptype;
1981 continue;
1982 }
1983
1984 /* need to clone skb, done only once */
1985 skb2 = skb_clone(skb, GFP_ATOMIC);
1986 if (!skb2)
1987 goto out_unlock;
1988
1989 net_timestamp_set(skb2);
1990
1991 /* skb->nh should be correctly
1992 * set by sender, so that the second statement is
1993 * just protection against buggy protocols.
1994 */
1995 skb_reset_mac_header(skb2);
1996
1997 if (skb_network_header(skb2) < skb2->data ||
1998 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1999 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2000 ntohs(skb2->protocol),
2001 dev->name);
2002 skb_reset_network_header(skb2);
2003 }
2004
2005 skb2->transport_header = skb2->network_header;
2006 skb2->pkt_type = PACKET_OUTGOING;
2007 pt_prev = ptype;
2008 }
2009
2010 if (ptype_list == &ptype_all) {
2011 ptype_list = &dev->ptype_all;
2012 goto again;
2013 }
2014out_unlock:
2015 if (pt_prev) {
2016 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2017 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2018 else
2019 kfree_skb(skb2);
2020 }
2021 rcu_read_unlock();
2022}
2023EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2024
2025/**
2026 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2027 * @dev: Network device
2028 * @txq: number of queues available
2029 *
2030 * If real_num_tx_queues is changed the tc mappings may no longer be
2031 * valid. To resolve this verify the tc mapping remains valid and if
2032 * not NULL the mapping. With no priorities mapping to this
2033 * offset/count pair it will no longer be used. In the worst case TC0
2034 * is invalid nothing can be done so disable priority mappings. If is
2035 * expected that drivers will fix this mapping if they can before
2036 * calling netif_set_real_num_tx_queues.
2037 */
2038static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2039{
2040 int i;
2041 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2042
2043 /* If TC0 is invalidated disable TC mapping */
2044 if (tc->offset + tc->count > txq) {
2045 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2046 dev->num_tc = 0;
2047 return;
2048 }
2049
2050 /* Invalidated prio to tc mappings set to TC0 */
2051 for (i = 1; i < TC_BITMASK + 1; i++) {
2052 int q = netdev_get_prio_tc_map(dev, i);
2053
2054 tc = &dev->tc_to_txq[q];
2055 if (tc->offset + tc->count > txq) {
2056 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2057 i, q);
2058 netdev_set_prio_tc_map(dev, i, 0);
2059 }
2060 }
2061}
2062
2063int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2064{
2065 if (dev->num_tc) {
2066 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2067 int i;
2068
2069 /* walk through the TCs and see if it falls into any of them */
2070 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2071 if ((txq - tc->offset) < tc->count)
2072 return i;
2073 }
2074
2075 /* didn't find it, just return -1 to indicate no match */
2076 return -1;
2077 }
2078
2079 return 0;
2080}
2081EXPORT_SYMBOL(netdev_txq_to_tc);
2082
2083#ifdef CONFIG_XPS
2084struct static_key xps_needed __read_mostly;
2085EXPORT_SYMBOL(xps_needed);
2086struct static_key xps_rxqs_needed __read_mostly;
2087EXPORT_SYMBOL(xps_rxqs_needed);
2088static DEFINE_MUTEX(xps_map_mutex);
2089#define xmap_dereference(P) \
2090 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2091
2092static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2093 int tci, u16 index)
2094{
2095 struct xps_map *map = NULL;
2096 int pos;
2097
2098 if (dev_maps)
2099 map = xmap_dereference(dev_maps->attr_map[tci]);
2100 if (!map)
2101 return false;
2102
2103 for (pos = map->len; pos--;) {
2104 if (map->queues[pos] != index)
2105 continue;
2106
2107 if (map->len > 1) {
2108 map->queues[pos] = map->queues[--map->len];
2109 break;
2110 }
2111
2112 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2113 kfree_rcu(map, rcu);
2114 return false;
2115 }
2116
2117 return true;
2118}
2119
2120static bool remove_xps_queue_cpu(struct net_device *dev,
2121 struct xps_dev_maps *dev_maps,
2122 int cpu, u16 offset, u16 count)
2123{
2124 int num_tc = dev->num_tc ? : 1;
2125 bool active = false;
2126 int tci;
2127
2128 for (tci = cpu * num_tc; num_tc--; tci++) {
2129 int i, j;
2130
2131 for (i = count, j = offset; i--; j++) {
2132 if (!remove_xps_queue(dev_maps, tci, j))
2133 break;
2134 }
2135
2136 active |= i < 0;
2137 }
2138
2139 return active;
2140}
2141
2142static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2143 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2144 u16 offset, u16 count, bool is_rxqs_map)
2145{
2146 bool active = false;
2147 int i, j;
2148
2149 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2150 j < nr_ids;)
2151 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2152 count);
2153 if (!active) {
2154 if (is_rxqs_map) {
2155 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2156 } else {
2157 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2158
2159 for (i = offset + (count - 1); count--; i--)
2160 netdev_queue_numa_node_write(
2161 netdev_get_tx_queue(dev, i),
2162 NUMA_NO_NODE);
2163 }
2164 kfree_rcu(dev_maps, rcu);
2165 }
2166}
2167
2168static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2169 u16 count)
2170{
2171 const unsigned long *possible_mask = NULL;
2172 struct xps_dev_maps *dev_maps;
2173 unsigned int nr_ids;
2174
2175 if (!static_key_false(&xps_needed))
2176 return;
2177
2178 cpus_read_lock();
2179 mutex_lock(&xps_map_mutex);
2180
2181 if (static_key_false(&xps_rxqs_needed)) {
2182 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2183 if (dev_maps) {
2184 nr_ids = dev->num_rx_queues;
2185 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2186 offset, count, true);
2187 }
2188 }
2189
2190 dev_maps = xmap_dereference(dev->xps_cpus_map);
2191 if (!dev_maps)
2192 goto out_no_maps;
2193
2194 if (num_possible_cpus() > 1)
2195 possible_mask = cpumask_bits(cpu_possible_mask);
2196 nr_ids = nr_cpu_ids;
2197 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2198 false);
2199
2200out_no_maps:
2201 if (static_key_enabled(&xps_rxqs_needed))
2202 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2203
2204 static_key_slow_dec_cpuslocked(&xps_needed);
2205 mutex_unlock(&xps_map_mutex);
2206 cpus_read_unlock();
2207}
2208
2209static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2210{
2211 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2212}
2213
2214static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2215 u16 index, bool is_rxqs_map)
2216{
2217 struct xps_map *new_map;
2218 int alloc_len = XPS_MIN_MAP_ALLOC;
2219 int i, pos;
2220
2221 for (pos = 0; map && pos < map->len; pos++) {
2222 if (map->queues[pos] != index)
2223 continue;
2224 return map;
2225 }
2226
2227 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2228 if (map) {
2229 if (pos < map->alloc_len)
2230 return map;
2231
2232 alloc_len = map->alloc_len * 2;
2233 }
2234
2235 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2236 * map
2237 */
2238 if (is_rxqs_map)
2239 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2240 else
2241 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2242 cpu_to_node(attr_index));
2243 if (!new_map)
2244 return NULL;
2245
2246 for (i = 0; i < pos; i++)
2247 new_map->queues[i] = map->queues[i];
2248 new_map->alloc_len = alloc_len;
2249 new_map->len = pos;
2250
2251 return new_map;
2252}
2253
2254/* Must be called under cpus_read_lock */
2255int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2256 u16 index, bool is_rxqs_map)
2257{
2258 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2259 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2260 int i, j, tci, numa_node_id = -2;
2261 int maps_sz, num_tc = 1, tc = 0;
2262 struct xps_map *map, *new_map;
2263 bool active = false;
2264 unsigned int nr_ids;
2265
2266 if (dev->num_tc) {
2267 /* Do not allow XPS on subordinate device directly */
2268 num_tc = dev->num_tc;
2269 if (num_tc < 0)
2270 return -EINVAL;
2271
2272 /* If queue belongs to subordinate dev use its map */
2273 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2274
2275 tc = netdev_txq_to_tc(dev, index);
2276 if (tc < 0)
2277 return -EINVAL;
2278 }
2279
2280 mutex_lock(&xps_map_mutex);
2281 if (is_rxqs_map) {
2282 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2283 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2284 nr_ids = dev->num_rx_queues;
2285 } else {
2286 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2287 if (num_possible_cpus() > 1) {
2288 online_mask = cpumask_bits(cpu_online_mask);
2289 possible_mask = cpumask_bits(cpu_possible_mask);
2290 }
2291 dev_maps = xmap_dereference(dev->xps_cpus_map);
2292 nr_ids = nr_cpu_ids;
2293 }
2294
2295 if (maps_sz < L1_CACHE_BYTES)
2296 maps_sz = L1_CACHE_BYTES;
2297
2298 /* allocate memory for queue storage */
2299 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2300 j < nr_ids;) {
2301 if (!new_dev_maps)
2302 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2303 if (!new_dev_maps) {
2304 mutex_unlock(&xps_map_mutex);
2305 return -ENOMEM;
2306 }
2307
2308 tci = j * num_tc + tc;
2309 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2310 NULL;
2311
2312 map = expand_xps_map(map, j, index, is_rxqs_map);
2313 if (!map)
2314 goto error;
2315
2316 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2317 }
2318
2319 if (!new_dev_maps)
2320 goto out_no_new_maps;
2321
2322 static_key_slow_inc_cpuslocked(&xps_needed);
2323 if (is_rxqs_map)
2324 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2325
2326 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2327 j < nr_ids;) {
2328 /* copy maps belonging to foreign traffic classes */
2329 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2330 /* fill in the new device map from the old device map */
2331 map = xmap_dereference(dev_maps->attr_map[tci]);
2332 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2333 }
2334
2335 /* We need to explicitly update tci as prevous loop
2336 * could break out early if dev_maps is NULL.
2337 */
2338 tci = j * num_tc + tc;
2339
2340 if (netif_attr_test_mask(j, mask, nr_ids) &&
2341 netif_attr_test_online(j, online_mask, nr_ids)) {
2342 /* add tx-queue to CPU/rx-queue maps */
2343 int pos = 0;
2344
2345 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2346 while ((pos < map->len) && (map->queues[pos] != index))
2347 pos++;
2348
2349 if (pos == map->len)
2350 map->queues[map->len++] = index;
2351#ifdef CONFIG_NUMA
2352 if (!is_rxqs_map) {
2353 if (numa_node_id == -2)
2354 numa_node_id = cpu_to_node(j);
2355 else if (numa_node_id != cpu_to_node(j))
2356 numa_node_id = -1;
2357 }
2358#endif
2359 } else if (dev_maps) {
2360 /* fill in the new device map from the old device map */
2361 map = xmap_dereference(dev_maps->attr_map[tci]);
2362 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2363 }
2364
2365 /* copy maps belonging to foreign traffic classes */
2366 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2367 /* fill in the new device map from the old device map */
2368 map = xmap_dereference(dev_maps->attr_map[tci]);
2369 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2370 }
2371 }
2372
2373 if (is_rxqs_map)
2374 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2375 else
2376 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2377
2378 /* Cleanup old maps */
2379 if (!dev_maps)
2380 goto out_no_old_maps;
2381
2382 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2383 j < nr_ids;) {
2384 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2385 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2386 map = xmap_dereference(dev_maps->attr_map[tci]);
2387 if (map && map != new_map)
2388 kfree_rcu(map, rcu);
2389 }
2390 }
2391
2392 kfree_rcu(dev_maps, rcu);
2393
2394out_no_old_maps:
2395 dev_maps = new_dev_maps;
2396 active = true;
2397
2398out_no_new_maps:
2399 if (!is_rxqs_map) {
2400 /* update Tx queue numa node */
2401 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2402 (numa_node_id >= 0) ?
2403 numa_node_id : NUMA_NO_NODE);
2404 }
2405
2406 if (!dev_maps)
2407 goto out_no_maps;
2408
2409 /* removes tx-queue from unused CPUs/rx-queues */
2410 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2411 j < nr_ids;) {
2412 for (i = tc, tci = j * num_tc; i--; tci++)
2413 active |= remove_xps_queue(dev_maps, tci, index);
2414 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2415 !netif_attr_test_online(j, online_mask, nr_ids))
2416 active |= remove_xps_queue(dev_maps, tci, index);
2417 for (i = num_tc - tc, tci++; --i; tci++)
2418 active |= remove_xps_queue(dev_maps, tci, index);
2419 }
2420
2421 /* free map if not active */
2422 if (!active) {
2423 if (is_rxqs_map)
2424 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2425 else
2426 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2427 kfree_rcu(dev_maps, rcu);
2428 }
2429
2430out_no_maps:
2431 mutex_unlock(&xps_map_mutex);
2432
2433 return 0;
2434error:
2435 /* remove any maps that we added */
2436 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2437 j < nr_ids;) {
2438 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2439 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2440 map = dev_maps ?
2441 xmap_dereference(dev_maps->attr_map[tci]) :
2442 NULL;
2443 if (new_map && new_map != map)
2444 kfree(new_map);
2445 }
2446 }
2447
2448 mutex_unlock(&xps_map_mutex);
2449
2450 kfree(new_dev_maps);
2451 return -ENOMEM;
2452}
2453EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2454
2455int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2456 u16 index)
2457{
2458 int ret;
2459
2460 cpus_read_lock();
2461 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2462 cpus_read_unlock();
2463
2464 return ret;
2465}
2466EXPORT_SYMBOL(netif_set_xps_queue);
2467
2468#endif
2469static void netdev_unbind_all_sb_channels(struct net_device *dev)
2470{
2471 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2472
2473 /* Unbind any subordinate channels */
2474 while (txq-- != &dev->_tx[0]) {
2475 if (txq->sb_dev)
2476 netdev_unbind_sb_channel(dev, txq->sb_dev);
2477 }
2478}
2479
2480void netdev_reset_tc(struct net_device *dev)
2481{
2482#ifdef CONFIG_XPS
2483 netif_reset_xps_queues_gt(dev, 0);
2484#endif
2485 netdev_unbind_all_sb_channels(dev);
2486
2487 /* Reset TC configuration of device */
2488 dev->num_tc = 0;
2489 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2490 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2491}
2492EXPORT_SYMBOL(netdev_reset_tc);
2493
2494int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2495{
2496 if (tc >= dev->num_tc)
2497 return -EINVAL;
2498
2499#ifdef CONFIG_XPS
2500 netif_reset_xps_queues(dev, offset, count);
2501#endif
2502 dev->tc_to_txq[tc].count = count;
2503 dev->tc_to_txq[tc].offset = offset;
2504 return 0;
2505}
2506EXPORT_SYMBOL(netdev_set_tc_queue);
2507
2508int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2509{
2510 if (num_tc > TC_MAX_QUEUE)
2511 return -EINVAL;
2512
2513#ifdef CONFIG_XPS
2514 netif_reset_xps_queues_gt(dev, 0);
2515#endif
2516 netdev_unbind_all_sb_channels(dev);
2517
2518 dev->num_tc = num_tc;
2519 return 0;
2520}
2521EXPORT_SYMBOL(netdev_set_num_tc);
2522
2523void netdev_unbind_sb_channel(struct net_device *dev,
2524 struct net_device *sb_dev)
2525{
2526 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2527
2528#ifdef CONFIG_XPS
2529 netif_reset_xps_queues_gt(sb_dev, 0);
2530#endif
2531 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2532 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2533
2534 while (txq-- != &dev->_tx[0]) {
2535 if (txq->sb_dev == sb_dev)
2536 txq->sb_dev = NULL;
2537 }
2538}
2539EXPORT_SYMBOL(netdev_unbind_sb_channel);
2540
2541int netdev_bind_sb_channel_queue(struct net_device *dev,
2542 struct net_device *sb_dev,
2543 u8 tc, u16 count, u16 offset)
2544{
2545 /* Make certain the sb_dev and dev are already configured */
2546 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2547 return -EINVAL;
2548
2549 /* We cannot hand out queues we don't have */
2550 if ((offset + count) > dev->real_num_tx_queues)
2551 return -EINVAL;
2552
2553 /* Record the mapping */
2554 sb_dev->tc_to_txq[tc].count = count;
2555 sb_dev->tc_to_txq[tc].offset = offset;
2556
2557 /* Provide a way for Tx queue to find the tc_to_txq map or
2558 * XPS map for itself.
2559 */
2560 while (count--)
2561 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2562
2563 return 0;
2564}
2565EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2566
2567int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2568{
2569 /* Do not use a multiqueue device to represent a subordinate channel */
2570 if (netif_is_multiqueue(dev))
2571 return -ENODEV;
2572
2573 /* We allow channels 1 - 32767 to be used for subordinate channels.
2574 * Channel 0 is meant to be "native" mode and used only to represent
2575 * the main root device. We allow writing 0 to reset the device back
2576 * to normal mode after being used as a subordinate channel.
2577 */
2578 if (channel > S16_MAX)
2579 return -EINVAL;
2580
2581 dev->num_tc = -channel;
2582
2583 return 0;
2584}
2585EXPORT_SYMBOL(netdev_set_sb_channel);
2586
2587/*
2588 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2589 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2590 */
2591int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2592{
2593 bool disabling;
2594 int rc;
2595
2596 disabling = txq < dev->real_num_tx_queues;
2597
2598 if (txq < 1 || txq > dev->num_tx_queues)
2599 return -EINVAL;
2600
2601 if (dev->reg_state == NETREG_REGISTERED ||
2602 dev->reg_state == NETREG_UNREGISTERING) {
2603 ASSERT_RTNL();
2604
2605 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2606 txq);
2607 if (rc)
2608 return rc;
2609
2610 if (dev->num_tc)
2611 netif_setup_tc(dev, txq);
2612
2613 dev->real_num_tx_queues = txq;
2614
2615 if (disabling) {
2616 synchronize_net();
2617 qdisc_reset_all_tx_gt(dev, txq);
2618#ifdef CONFIG_XPS
2619 netif_reset_xps_queues_gt(dev, txq);
2620#endif
2621 }
2622 } else {
2623 dev->real_num_tx_queues = txq;
2624 }
2625
2626 return 0;
2627}
2628EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2629
2630#ifdef CONFIG_SYSFS
2631/**
2632 * netif_set_real_num_rx_queues - set actual number of RX queues used
2633 * @dev: Network device
2634 * @rxq: Actual number of RX queues
2635 *
2636 * This must be called either with the rtnl_lock held or before
2637 * registration of the net device. Returns 0 on success, or a
2638 * negative error code. If called before registration, it always
2639 * succeeds.
2640 */
2641int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2642{
2643 int rc;
2644
2645 if (rxq < 1 || rxq > dev->num_rx_queues)
2646 return -EINVAL;
2647
2648 if (dev->reg_state == NETREG_REGISTERED) {
2649 ASSERT_RTNL();
2650
2651 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2652 rxq);
2653 if (rc)
2654 return rc;
2655 }
2656
2657 dev->real_num_rx_queues = rxq;
2658 return 0;
2659}
2660EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2661#endif
2662
2663/**
2664 * netif_get_num_default_rss_queues - default number of RSS queues
2665 *
2666 * This routine should set an upper limit on the number of RSS queues
2667 * used by default by multiqueue devices.
2668 */
2669int netif_get_num_default_rss_queues(void)
2670{
2671 return is_kdump_kernel() ?
2672 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2673}
2674EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2675
2676static void __netif_reschedule(struct Qdisc *q)
2677{
2678 struct softnet_data *sd;
2679 unsigned long flags;
2680
2681 local_irq_save(flags);
2682 sd = this_cpu_ptr(&softnet_data);
2683 q->next_sched = NULL;
2684 *sd->output_queue_tailp = q;
2685 sd->output_queue_tailp = &q->next_sched;
2686 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2687 local_irq_restore(flags);
2688}
2689
2690void __netif_schedule(struct Qdisc *q)
2691{
2692 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2693 __netif_reschedule(q);
2694}
2695EXPORT_SYMBOL(__netif_schedule);
2696
2697struct dev_kfree_skb_cb {
2698 enum skb_free_reason reason;
2699};
2700
2701static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2702{
2703 return (struct dev_kfree_skb_cb *)skb->cb;
2704}
2705
2706void netif_schedule_queue(struct netdev_queue *txq)
2707{
2708 rcu_read_lock();
2709 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2710 struct Qdisc *q = rcu_dereference(txq->qdisc);
2711
2712 __netif_schedule(q);
2713 }
2714 rcu_read_unlock();
2715}
2716EXPORT_SYMBOL(netif_schedule_queue);
2717
2718void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2719{
2720 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2721 struct Qdisc *q;
2722
2723 rcu_read_lock();
2724 q = rcu_dereference(dev_queue->qdisc);
2725 __netif_schedule(q);
2726 rcu_read_unlock();
2727 }
2728}
2729EXPORT_SYMBOL(netif_tx_wake_queue);
2730
2731void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2732{
2733 unsigned long flags;
2734
2735 if (unlikely(!skb))
2736 return;
2737
2738 if (likely(refcount_read(&skb->users) == 1)) {
2739 smp_rmb();
2740 refcount_set(&skb->users, 0);
2741 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2742 return;
2743 }
2744 get_kfree_skb_cb(skb)->reason = reason;
2745 local_irq_save(flags);
2746 skb->next = __this_cpu_read(softnet_data.completion_queue);
2747 __this_cpu_write(softnet_data.completion_queue, skb);
2748 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2749 local_irq_restore(flags);
2750}
2751EXPORT_SYMBOL(__dev_kfree_skb_irq);
2752
2753void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2754{
2755 if (in_irq() || irqs_disabled())
2756 __dev_kfree_skb_irq(skb, reason);
2757 else
2758 dev_kfree_skb(skb);
2759}
2760EXPORT_SYMBOL(__dev_kfree_skb_any);
2761
2762
2763/**
2764 * netif_device_detach - mark device as removed
2765 * @dev: network device
2766 *
2767 * Mark device as removed from system and therefore no longer available.
2768 */
2769void netif_device_detach(struct net_device *dev)
2770{
2771 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2772 netif_running(dev)) {
2773 netif_tx_stop_all_queues(dev);
2774 }
2775}
2776EXPORT_SYMBOL(netif_device_detach);
2777
2778/**
2779 * netif_device_attach - mark device as attached
2780 * @dev: network device
2781 *
2782 * Mark device as attached from system and restart if needed.
2783 */
2784void netif_device_attach(struct net_device *dev)
2785{
2786 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2787 netif_running(dev)) {
2788 netif_tx_wake_all_queues(dev);
2789 __netdev_watchdog_up(dev);
2790 }
2791}
2792EXPORT_SYMBOL(netif_device_attach);
2793
2794/*
2795 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2796 * to be used as a distribution range.
2797 */
2798static u16 skb_tx_hash(const struct net_device *dev,
2799 const struct net_device *sb_dev,
2800 struct sk_buff *skb)
2801{
2802 u32 hash;
2803 u16 qoffset = 0;
2804 u16 qcount = dev->real_num_tx_queues;
2805
2806 if (dev->num_tc) {
2807 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2808
2809 qoffset = sb_dev->tc_to_txq[tc].offset;
2810 qcount = sb_dev->tc_to_txq[tc].count;
2811 }
2812
2813 if (skb_rx_queue_recorded(skb)) {
2814 hash = skb_get_rx_queue(skb);
2815 while (unlikely(hash >= qcount))
2816 hash -= qcount;
2817 return hash + qoffset;
2818 }
2819
2820 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2821}
2822
2823static void skb_warn_bad_offload(const struct sk_buff *skb)
2824{
2825 static const netdev_features_t null_features;
2826 struct net_device *dev = skb->dev;
2827 const char *name = "";
2828
2829 if (!net_ratelimit())
2830 return;
2831
2832 if (dev) {
2833 if (dev->dev.parent)
2834 name = dev_driver_string(dev->dev.parent);
2835 else
2836 name = netdev_name(dev);
2837 }
2838 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2839 "gso_type=%d ip_summed=%d\n",
2840 name, dev ? &dev->features : &null_features,
2841 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2842 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2843 skb_shinfo(skb)->gso_type, skb->ip_summed);
2844}
2845
2846/*
2847 * Invalidate hardware checksum when packet is to be mangled, and
2848 * complete checksum manually on outgoing path.
2849 */
2850int skb_checksum_help(struct sk_buff *skb)
2851{
2852 __wsum csum;
2853 int ret = 0, offset;
2854
2855 if (skb->ip_summed == CHECKSUM_COMPLETE)
2856 goto out_set_summed;
2857
2858 if (unlikely(skb_shinfo(skb)->gso_size)) {
2859 skb_warn_bad_offload(skb);
2860 return -EINVAL;
2861 }
2862
2863 /* Before computing a checksum, we should make sure no frag could
2864 * be modified by an external entity : checksum could be wrong.
2865 */
2866 if (skb_has_shared_frag(skb)) {
2867 ret = __skb_linearize(skb);
2868 if (ret)
2869 goto out;
2870 }
2871
2872 offset = skb_checksum_start_offset(skb);
2873 BUG_ON(offset >= skb_headlen(skb));
2874 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2875
2876 offset += skb->csum_offset;
2877 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2878
2879 if (skb_cloned(skb) &&
2880 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2881 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2882 if (ret)
2883 goto out;
2884 }
2885
2886 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2887out_set_summed:
2888 skb->ip_summed = CHECKSUM_NONE;
2889out:
2890 return ret;
2891}
2892EXPORT_SYMBOL(skb_checksum_help);
2893
2894int skb_crc32c_csum_help(struct sk_buff *skb)
2895{
2896 __le32 crc32c_csum;
2897 int ret = 0, offset, start;
2898
2899 if (skb->ip_summed != CHECKSUM_PARTIAL)
2900 goto out;
2901
2902 if (unlikely(skb_is_gso(skb)))
2903 goto out;
2904
2905 /* Before computing a checksum, we should make sure no frag could
2906 * be modified by an external entity : checksum could be wrong.
2907 */
2908 if (unlikely(skb_has_shared_frag(skb))) {
2909 ret = __skb_linearize(skb);
2910 if (ret)
2911 goto out;
2912 }
2913 start = skb_checksum_start_offset(skb);
2914 offset = start + offsetof(struct sctphdr, checksum);
2915 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2916 ret = -EINVAL;
2917 goto out;
2918 }
2919 if (skb_cloned(skb) &&
2920 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2921 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2922 if (ret)
2923 goto out;
2924 }
2925 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2926 skb->len - start, ~(__u32)0,
2927 crc32c_csum_stub));
2928 *(__le32 *)(skb->data + offset) = crc32c_csum;
2929 skb->ip_summed = CHECKSUM_NONE;
2930 skb->csum_not_inet = 0;
2931out:
2932 return ret;
2933}
2934
2935__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2936{
2937 __be16 type = skb->protocol;
2938
2939 /* Tunnel gso handlers can set protocol to ethernet. */
2940 if (type == htons(ETH_P_TEB)) {
2941 struct ethhdr *eth;
2942
2943 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2944 return 0;
2945
2946 eth = (struct ethhdr *)skb->data;
2947 type = eth->h_proto;
2948 }
2949
2950 return __vlan_get_protocol(skb, type, depth);
2951}
2952
2953/**
2954 * skb_mac_gso_segment - mac layer segmentation handler.
2955 * @skb: buffer to segment
2956 * @features: features for the output path (see dev->features)
2957 */
2958struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2959 netdev_features_t features)
2960{
2961 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2962 struct packet_offload *ptype;
2963 int vlan_depth = skb->mac_len;
2964 __be16 type = skb_network_protocol(skb, &vlan_depth);
2965
2966 if (unlikely(!type))
2967 return ERR_PTR(-EINVAL);
2968
2969 __skb_pull(skb, vlan_depth);
2970
2971 rcu_read_lock();
2972 list_for_each_entry_rcu(ptype, &offload_base, list) {
2973 if (ptype->type == type && ptype->callbacks.gso_segment) {
2974 segs = ptype->callbacks.gso_segment(skb, features);
2975 break;
2976 }
2977 }
2978 rcu_read_unlock();
2979
2980 __skb_push(skb, skb->data - skb_mac_header(skb));
2981
2982 return segs;
2983}
2984EXPORT_SYMBOL(skb_mac_gso_segment);
2985
2986
2987/* openvswitch calls this on rx path, so we need a different check.
2988 */
2989static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2990{
2991 if (tx_path)
2992 return skb->ip_summed != CHECKSUM_PARTIAL &&
2993 skb->ip_summed != CHECKSUM_UNNECESSARY;
2994
2995 return skb->ip_summed == CHECKSUM_NONE;
2996}
2997
2998/**
2999 * __skb_gso_segment - Perform segmentation on skb.
3000 * @skb: buffer to segment
3001 * @features: features for the output path (see dev->features)
3002 * @tx_path: whether it is called in TX path
3003 *
3004 * This function segments the given skb and returns a list of segments.
3005 *
3006 * It may return NULL if the skb requires no segmentation. This is
3007 * only possible when GSO is used for verifying header integrity.
3008 *
3009 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3010 */
3011struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3012 netdev_features_t features, bool tx_path)
3013{
3014 struct sk_buff *segs;
3015
3016 if (unlikely(skb_needs_check(skb, tx_path))) {
3017 int err;
3018
3019 /* We're going to init ->check field in TCP or UDP header */
3020 err = skb_cow_head(skb, 0);
3021 if (err < 0)
3022 return ERR_PTR(err);
3023 }
3024
3025 /* Only report GSO partial support if it will enable us to
3026 * support segmentation on this frame without needing additional
3027 * work.
3028 */
3029 if (features & NETIF_F_GSO_PARTIAL) {
3030 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3031 struct net_device *dev = skb->dev;
3032
3033 partial_features |= dev->features & dev->gso_partial_features;
3034 if (!skb_gso_ok(skb, features | partial_features))
3035 features &= ~NETIF_F_GSO_PARTIAL;
3036 }
3037
3038 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3039 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3040
3041 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3042 SKB_GSO_CB(skb)->encap_level = 0;
3043
3044 skb_reset_mac_header(skb);
3045 skb_reset_mac_len(skb);
3046
3047 segs = skb_mac_gso_segment(skb, features);
3048
3049 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3050 skb_warn_bad_offload(skb);
3051
3052 return segs;
3053}
3054EXPORT_SYMBOL(__skb_gso_segment);
3055
3056/* Take action when hardware reception checksum errors are detected. */
3057#ifdef CONFIG_BUG
3058void netdev_rx_csum_fault(struct net_device *dev)
3059{
3060 if (net_ratelimit()) {
3061 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3062 dump_stack();
3063 }
3064}
3065EXPORT_SYMBOL(netdev_rx_csum_fault);
3066#endif
3067
3068/* XXX: check that highmem exists at all on the given machine. */
3069static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3070{
3071#ifdef CONFIG_HIGHMEM
3072 int i;
3073
3074 if (!(dev->features & NETIF_F_HIGHDMA)) {
3075 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3076 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3077
3078 if (PageHighMem(skb_frag_page(frag)))
3079 return 1;
3080 }
3081 }
3082#endif
3083 return 0;
3084}
3085
3086/* If MPLS offload request, verify we are testing hardware MPLS features
3087 * instead of standard features for the netdev.
3088 */
3089#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3090static netdev_features_t net_mpls_features(struct sk_buff *skb,
3091 netdev_features_t features,
3092 __be16 type)
3093{
3094 if (eth_p_mpls(type))
3095 features &= skb->dev->mpls_features;
3096
3097 return features;
3098}
3099#else
3100static netdev_features_t net_mpls_features(struct sk_buff *skb,
3101 netdev_features_t features,
3102 __be16 type)
3103{
3104 return features;
3105}
3106#endif
3107
3108static netdev_features_t harmonize_features(struct sk_buff *skb,
3109 netdev_features_t features)
3110{
3111 int tmp;
3112 __be16 type;
3113
3114 type = skb_network_protocol(skb, &tmp);
3115 features = net_mpls_features(skb, features, type);
3116
3117 if (skb->ip_summed != CHECKSUM_NONE &&
3118 !can_checksum_protocol(features, type)) {
3119 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3120 }
3121 if (illegal_highdma(skb->dev, skb))
3122 features &= ~NETIF_F_SG;
3123
3124 return features;
3125}
3126
3127netdev_features_t passthru_features_check(struct sk_buff *skb,
3128 struct net_device *dev,
3129 netdev_features_t features)
3130{
3131 return features;
3132}
3133EXPORT_SYMBOL(passthru_features_check);
3134
3135static netdev_features_t dflt_features_check(struct sk_buff *skb,
3136 struct net_device *dev,
3137 netdev_features_t features)
3138{
3139 return vlan_features_check(skb, features);
3140}
3141
3142static netdev_features_t gso_features_check(const struct sk_buff *skb,
3143 struct net_device *dev,
3144 netdev_features_t features)
3145{
3146 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3147
3148 if (gso_segs > dev->gso_max_segs)
3149 return features & ~NETIF_F_GSO_MASK;
3150
3151 /* Support for GSO partial features requires software
3152 * intervention before we can actually process the packets
3153 * so we need to strip support for any partial features now
3154 * and we can pull them back in after we have partially
3155 * segmented the frame.
3156 */
3157 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3158 features &= ~dev->gso_partial_features;
3159
3160 /* Make sure to clear the IPv4 ID mangling feature if the
3161 * IPv4 header has the potential to be fragmented.
3162 */
3163 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3164 struct iphdr *iph = skb->encapsulation ?
3165 inner_ip_hdr(skb) : ip_hdr(skb);
3166
3167 if (!(iph->frag_off & htons(IP_DF)))
3168 features &= ~NETIF_F_TSO_MANGLEID;
3169 }
3170
3171 return features;
3172}
3173
3174netdev_features_t netif_skb_features(struct sk_buff *skb)
3175{
3176 struct net_device *dev = skb->dev;
3177 netdev_features_t features = dev->features;
3178
3179 if (skb_is_gso(skb))
3180 features = gso_features_check(skb, dev, features);
3181
3182 /* If encapsulation offload request, verify we are testing
3183 * hardware encapsulation features instead of standard
3184 * features for the netdev
3185 */
3186 if (skb->encapsulation)
3187 features &= dev->hw_enc_features;
3188
3189 if (skb_vlan_tagged(skb))
3190 features = netdev_intersect_features(features,
3191 dev->vlan_features |
3192 NETIF_F_HW_VLAN_CTAG_TX |
3193 NETIF_F_HW_VLAN_STAG_TX);
3194
3195 if (dev->netdev_ops->ndo_features_check)
3196 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3197 features);
3198 else
3199 features &= dflt_features_check(skb, dev, features);
3200
3201 return harmonize_features(skb, features);
3202}
3203EXPORT_SYMBOL(netif_skb_features);
3204
3205static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3206 struct netdev_queue *txq, bool more)
3207{
3208 unsigned int len;
3209 int rc;
3210
3211 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3212 dev_queue_xmit_nit(skb, dev);
3213
3214 len = skb->len;
3215 trace_net_dev_start_xmit(skb, dev);
3216 rc = netdev_start_xmit(skb, dev, txq, more);
3217 trace_net_dev_xmit(skb, rc, dev, len);
3218
3219 return rc;
3220}
3221
3222struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3223 struct netdev_queue *txq, int *ret)
3224{
3225 struct sk_buff *skb = first;
3226 int rc = NETDEV_TX_OK;
3227
3228 while (skb) {
3229 struct sk_buff *next = skb->next;
3230
3231 skb->next = NULL;
3232 rc = xmit_one(skb, dev, txq, next != NULL);
3233 if (unlikely(!dev_xmit_complete(rc))) {
3234 skb->next = next;
3235 goto out;
3236 }
3237
3238 skb = next;
3239 if (netif_xmit_stopped(txq) && skb) {
3240 rc = NETDEV_TX_BUSY;
3241 break;
3242 }
3243 }
3244
3245out:
3246 *ret = rc;
3247 return skb;
3248}
3249
3250static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3251 netdev_features_t features)
3252{
3253 if (skb_vlan_tag_present(skb) &&
3254 !vlan_hw_offload_capable(features, skb->vlan_proto))
3255 skb = __vlan_hwaccel_push_inside(skb);
3256 return skb;
3257}
3258
3259int skb_csum_hwoffload_help(struct sk_buff *skb,
3260 const netdev_features_t features)
3261{
3262 if (unlikely(skb->csum_not_inet))
3263 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3264 skb_crc32c_csum_help(skb);
3265
3266 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3267}
3268EXPORT_SYMBOL(skb_csum_hwoffload_help);
3269
3270static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3271{
3272 netdev_features_t features;
3273
3274 features = netif_skb_features(skb);
3275 skb = validate_xmit_vlan(skb, features);
3276 if (unlikely(!skb))
3277 goto out_null;
3278
3279 skb = sk_validate_xmit_skb(skb, dev);
3280 if (unlikely(!skb))
3281 goto out_null;
3282
3283 if (netif_needs_gso(skb, features)) {
3284 struct sk_buff *segs;
3285
3286 segs = skb_gso_segment(skb, features);
3287 if (IS_ERR(segs)) {
3288 goto out_kfree_skb;
3289 } else if (segs) {
3290 consume_skb(skb);
3291 skb = segs;
3292 }
3293 } else {
3294 if (skb_needs_linearize(skb, features) &&
3295 __skb_linearize(skb))
3296 goto out_kfree_skb;
3297
3298 /* If packet is not checksummed and device does not
3299 * support checksumming for this protocol, complete
3300 * checksumming here.
3301 */
3302 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3303 if (skb->encapsulation)
3304 skb_set_inner_transport_header(skb,
3305 skb_checksum_start_offset(skb));
3306 else
3307 skb_set_transport_header(skb,
3308 skb_checksum_start_offset(skb));
3309 if (skb_csum_hwoffload_help(skb, features))
3310 goto out_kfree_skb;
3311 }
3312 }
3313
3314 skb = validate_xmit_xfrm(skb, features, again);
3315
3316 return skb;
3317
3318out_kfree_skb:
3319 kfree_skb(skb);
3320out_null:
3321 atomic_long_inc(&dev->tx_dropped);
3322 return NULL;
3323}
3324
3325struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3326{
3327 struct sk_buff *next, *head = NULL, *tail;
3328
3329 for (; skb != NULL; skb = next) {
3330 next = skb->next;
3331 skb->next = NULL;
3332
3333 /* in case skb wont be segmented, point to itself */
3334 skb->prev = skb;
3335
3336 skb = validate_xmit_skb(skb, dev, again);
3337 if (!skb)
3338 continue;
3339
3340 if (!head)
3341 head = skb;
3342 else
3343 tail->next = skb;
3344 /* If skb was segmented, skb->prev points to
3345 * the last segment. If not, it still contains skb.
3346 */
3347 tail = skb->prev;
3348 }
3349 return head;
3350}
3351EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3352
3353static void qdisc_pkt_len_init(struct sk_buff *skb)
3354{
3355 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3356
3357 qdisc_skb_cb(skb)->pkt_len = skb->len;
3358
3359 /* To get more precise estimation of bytes sent on wire,
3360 * we add to pkt_len the headers size of all segments
3361 */
3362 if (shinfo->gso_size) {
3363 unsigned int hdr_len;
3364 u16 gso_segs = shinfo->gso_segs;
3365
3366 /* mac layer + network layer */
3367 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3368
3369 /* + transport layer */
3370 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3371 const struct tcphdr *th;
3372 struct tcphdr _tcphdr;
3373
3374 th = skb_header_pointer(skb, skb_transport_offset(skb),
3375 sizeof(_tcphdr), &_tcphdr);
3376 if (likely(th))
3377 hdr_len += __tcp_hdrlen(th);
3378 } else {
3379 struct udphdr _udphdr;
3380
3381 if (skb_header_pointer(skb, skb_transport_offset(skb),
3382 sizeof(_udphdr), &_udphdr))
3383 hdr_len += sizeof(struct udphdr);
3384 }
3385
3386 if (shinfo->gso_type & SKB_GSO_DODGY)
3387 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3388 shinfo->gso_size);
3389
3390 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3391 }
3392}
3393
3394static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3395 struct net_device *dev,
3396 struct netdev_queue *txq)
3397{
3398 spinlock_t *root_lock = qdisc_lock(q);
3399 struct sk_buff *to_free = NULL;
3400 bool contended;
3401 int rc;
3402
3403 qdisc_calculate_pkt_len(skb, q);
3404
3405 if (q->flags & TCQ_F_NOLOCK) {
3406 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3407 __qdisc_drop(skb, &to_free);
3408 rc = NET_XMIT_DROP;
3409 } else {
3410 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3411 qdisc_run(q);
3412 }
3413
3414 if (unlikely(to_free))
3415 kfree_skb_list(to_free);
3416 return rc;
3417 }
3418
3419 /*
3420 * Heuristic to force contended enqueues to serialize on a
3421 * separate lock before trying to get qdisc main lock.
3422 * This permits qdisc->running owner to get the lock more
3423 * often and dequeue packets faster.
3424 */
3425 contended = qdisc_is_running(q);
3426 if (unlikely(contended))
3427 spin_lock(&q->busylock);
3428
3429 spin_lock(root_lock);
3430 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3431 __qdisc_drop(skb, &to_free);
3432 rc = NET_XMIT_DROP;
3433 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3434 qdisc_run_begin(q)) {
3435 /*
3436 * This is a work-conserving queue; there are no old skbs
3437 * waiting to be sent out; and the qdisc is not running -
3438 * xmit the skb directly.
3439 */
3440
3441 qdisc_bstats_update(q, skb);
3442
3443 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3444 if (unlikely(contended)) {
3445 spin_unlock(&q->busylock);
3446 contended = false;
3447 }
3448 __qdisc_run(q);
3449 }
3450
3451 qdisc_run_end(q);
3452 rc = NET_XMIT_SUCCESS;
3453 } else {
3454 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3455 if (qdisc_run_begin(q)) {
3456 if (unlikely(contended)) {
3457 spin_unlock(&q->busylock);
3458 contended = false;
3459 }
3460 __qdisc_run(q);
3461 qdisc_run_end(q);
3462 }
3463 }
3464 spin_unlock(root_lock);
3465 if (unlikely(to_free))
3466 kfree_skb_list(to_free);
3467 if (unlikely(contended))
3468 spin_unlock(&q->busylock);
3469 return rc;
3470}
3471
3472#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3473static void skb_update_prio(struct sk_buff *skb)
3474{
3475 const struct netprio_map *map;
3476 const struct sock *sk;
3477 unsigned int prioidx;
3478
3479 if (skb->priority)
3480 return;
3481 map = rcu_dereference_bh(skb->dev->priomap);
3482 if (!map)
3483 return;
3484 sk = skb_to_full_sk(skb);
3485 if (!sk)
3486 return;
3487
3488 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3489
3490 if (prioidx < map->priomap_len)
3491 skb->priority = map->priomap[prioidx];
3492}
3493#else
3494#define skb_update_prio(skb)
3495#endif
3496
3497DEFINE_PER_CPU(int, xmit_recursion);
3498EXPORT_SYMBOL(xmit_recursion);
3499
3500/**
3501 * dev_loopback_xmit - loop back @skb
3502 * @net: network namespace this loopback is happening in
3503 * @sk: sk needed to be a netfilter okfn
3504 * @skb: buffer to transmit
3505 */
3506int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3507{
3508 skb_reset_mac_header(skb);
3509 __skb_pull(skb, skb_network_offset(skb));
3510 skb->pkt_type = PACKET_LOOPBACK;
3511 skb->ip_summed = CHECKSUM_UNNECESSARY;
3512 WARN_ON(!skb_dst(skb));
3513 skb_dst_force(skb);
3514 netif_rx_ni(skb);
3515 return 0;
3516}
3517EXPORT_SYMBOL(dev_loopback_xmit);
3518
3519#ifdef CONFIG_NET_EGRESS
3520static struct sk_buff *
3521sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3522{
3523 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3524 struct tcf_result cl_res;
3525
3526 if (!miniq)
3527 return skb;
3528
3529 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3530 mini_qdisc_bstats_cpu_update(miniq, skb);
3531
3532 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3533 case TC_ACT_OK:
3534 case TC_ACT_RECLASSIFY:
3535 skb->tc_index = TC_H_MIN(cl_res.classid);
3536 break;
3537 case TC_ACT_SHOT:
3538 mini_qdisc_qstats_cpu_drop(miniq);
3539 *ret = NET_XMIT_DROP;
3540 kfree_skb(skb);
3541 return NULL;
3542 case TC_ACT_STOLEN:
3543 case TC_ACT_QUEUED:
3544 case TC_ACT_TRAP:
3545 *ret = NET_XMIT_SUCCESS;
3546 consume_skb(skb);
3547 return NULL;
3548 case TC_ACT_REDIRECT:
3549 /* No need to push/pop skb's mac_header here on egress! */
3550 skb_do_redirect(skb);
3551 *ret = NET_XMIT_SUCCESS;
3552 return NULL;
3553 default:
3554 break;
3555 }
3556
3557 return skb;
3558}
3559#endif /* CONFIG_NET_EGRESS */
3560
3561#ifdef CONFIG_XPS
3562static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3563 struct xps_dev_maps *dev_maps, unsigned int tci)
3564{
3565 struct xps_map *map;
3566 int queue_index = -1;
3567
3568 if (dev->num_tc) {
3569 tci *= dev->num_tc;
3570 tci += netdev_get_prio_tc_map(dev, skb->priority);
3571 }
3572
3573 map = rcu_dereference(dev_maps->attr_map[tci]);
3574 if (map) {
3575 if (map->len == 1)
3576 queue_index = map->queues[0];
3577 else
3578 queue_index = map->queues[reciprocal_scale(
3579 skb_get_hash(skb), map->len)];
3580 if (unlikely(queue_index >= dev->real_num_tx_queues))
3581 queue_index = -1;
3582 }
3583 return queue_index;
3584}
3585#endif
3586
3587static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3588 struct sk_buff *skb)
3589{
3590#ifdef CONFIG_XPS
3591 struct xps_dev_maps *dev_maps;
3592 struct sock *sk = skb->sk;
3593 int queue_index = -1;
3594
3595 if (!static_key_false(&xps_needed))
3596 return -1;
3597
3598 rcu_read_lock();
3599 if (!static_key_false(&xps_rxqs_needed))
3600 goto get_cpus_map;
3601
3602 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3603 if (dev_maps) {
3604 int tci = sk_rx_queue_get(sk);
3605
3606 if (tci >= 0 && tci < dev->num_rx_queues)
3607 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3608 tci);
3609 }
3610
3611get_cpus_map:
3612 if (queue_index < 0) {
3613 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3614 if (dev_maps) {
3615 unsigned int tci = skb->sender_cpu - 1;
3616
3617 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3618 tci);
3619 }
3620 }
3621 rcu_read_unlock();
3622
3623 return queue_index;
3624#else
3625 return -1;
3626#endif
3627}
3628
3629u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3630 struct net_device *sb_dev,
3631 select_queue_fallback_t fallback)
3632{
3633 return 0;
3634}
3635EXPORT_SYMBOL(dev_pick_tx_zero);
3636
3637u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3638 struct net_device *sb_dev,
3639 select_queue_fallback_t fallback)
3640{
3641 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3642}
3643EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3644
3645static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3646 struct net_device *sb_dev)
3647{
3648 struct sock *sk = skb->sk;
3649 int queue_index = sk_tx_queue_get(sk);
3650
3651 sb_dev = sb_dev ? : dev;
3652
3653 if (queue_index < 0 || skb->ooo_okay ||
3654 queue_index >= dev->real_num_tx_queues) {
3655 int new_index = get_xps_queue(dev, sb_dev, skb);
3656
3657 if (new_index < 0)
3658 new_index = skb_tx_hash(dev, sb_dev, skb);
3659
3660 if (queue_index != new_index && sk &&
3661 sk_fullsock(sk) &&
3662 rcu_access_pointer(sk->sk_dst_cache))
3663 sk_tx_queue_set(sk, new_index);
3664
3665 queue_index = new_index;
3666 }
3667
3668 return queue_index;
3669}
3670
3671struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3672 struct sk_buff *skb,
3673 struct net_device *sb_dev)
3674{
3675 int queue_index = 0;
3676
3677#ifdef CONFIG_XPS
3678 u32 sender_cpu = skb->sender_cpu - 1;
3679
3680 if (sender_cpu >= (u32)NR_CPUS)
3681 skb->sender_cpu = raw_smp_processor_id() + 1;
3682#endif
3683
3684 if (dev->real_num_tx_queues != 1) {
3685 const struct net_device_ops *ops = dev->netdev_ops;
3686
3687 if (ops->ndo_select_queue)
3688 queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3689 __netdev_pick_tx);
3690 else
3691 queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3692
3693 queue_index = netdev_cap_txqueue(dev, queue_index);
3694 }
3695
3696 skb_set_queue_mapping(skb, queue_index);
3697 return netdev_get_tx_queue(dev, queue_index);
3698}
3699
3700/**
3701 * __dev_queue_xmit - transmit a buffer
3702 * @skb: buffer to transmit
3703 * @sb_dev: suboordinate device used for L2 forwarding offload
3704 *
3705 * Queue a buffer for transmission to a network device. The caller must
3706 * have set the device and priority and built the buffer before calling
3707 * this function. The function can be called from an interrupt.
3708 *
3709 * A negative errno code is returned on a failure. A success does not
3710 * guarantee the frame will be transmitted as it may be dropped due
3711 * to congestion or traffic shaping.
3712 *
3713 * -----------------------------------------------------------------------------------
3714 * I notice this method can also return errors from the queue disciplines,
3715 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3716 * be positive.
3717 *
3718 * Regardless of the return value, the skb is consumed, so it is currently
3719 * difficult to retry a send to this method. (You can bump the ref count
3720 * before sending to hold a reference for retry if you are careful.)
3721 *
3722 * When calling this method, interrupts MUST be enabled. This is because
3723 * the BH enable code must have IRQs enabled so that it will not deadlock.
3724 * --BLG
3725 */
3726static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3727{
3728 struct net_device *dev = skb->dev;
3729 struct netdev_queue *txq;
3730 struct Qdisc *q;
3731 int rc = -ENOMEM;
3732 bool again = false;
3733
3734 skb_reset_mac_header(skb);
3735
3736 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3737 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3738
3739 /* Disable soft irqs for various locks below. Also
3740 * stops preemption for RCU.
3741 */
3742 rcu_read_lock_bh();
3743
3744 skb_update_prio(skb);
3745
3746 qdisc_pkt_len_init(skb);
3747#ifdef CONFIG_NET_CLS_ACT
3748 skb->tc_at_ingress = 0;
3749# ifdef CONFIG_NET_EGRESS
3750 if (static_branch_unlikely(&egress_needed_key)) {
3751 skb = sch_handle_egress(skb, &rc, dev);
3752 if (!skb)
3753 goto out;
3754 }
3755# endif
3756#endif
3757 /* If device/qdisc don't need skb->dst, release it right now while
3758 * its hot in this cpu cache.
3759 */
3760 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3761 skb_dst_drop(skb);
3762 else
3763 skb_dst_force(skb);
3764
3765 txq = netdev_pick_tx(dev, skb, sb_dev);
3766 q = rcu_dereference_bh(txq->qdisc);
3767
3768 trace_net_dev_queue(skb);
3769 if (q->enqueue) {
3770 rc = __dev_xmit_skb(skb, q, dev, txq);
3771 goto out;
3772 }
3773
3774 /* The device has no queue. Common case for software devices:
3775 * loopback, all the sorts of tunnels...
3776
3777 * Really, it is unlikely that netif_tx_lock protection is necessary
3778 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3779 * counters.)
3780 * However, it is possible, that they rely on protection
3781 * made by us here.
3782
3783 * Check this and shot the lock. It is not prone from deadlocks.
3784 *Either shot noqueue qdisc, it is even simpler 8)
3785 */
3786 if (dev->flags & IFF_UP) {
3787 int cpu = smp_processor_id(); /* ok because BHs are off */
3788
3789 if (txq->xmit_lock_owner != cpu) {
3790 if (unlikely(__this_cpu_read(xmit_recursion) >
3791 XMIT_RECURSION_LIMIT))
3792 goto recursion_alert;
3793
3794 skb = validate_xmit_skb(skb, dev, &again);
3795 if (!skb)
3796 goto out;
3797
3798 HARD_TX_LOCK(dev, txq, cpu);
3799
3800 if (!netif_xmit_stopped(txq)) {
3801 __this_cpu_inc(xmit_recursion);
3802 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3803 __this_cpu_dec(xmit_recursion);
3804 if (dev_xmit_complete(rc)) {
3805 HARD_TX_UNLOCK(dev, txq);
3806 goto out;
3807 }
3808 }
3809 HARD_TX_UNLOCK(dev, txq);
3810 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3811 dev->name);
3812 } else {
3813 /* Recursion is detected! It is possible,
3814 * unfortunately
3815 */
3816recursion_alert:
3817 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3818 dev->name);
3819 }
3820 }
3821
3822 rc = -ENETDOWN;
3823 rcu_read_unlock_bh();
3824
3825 atomic_long_inc(&dev->tx_dropped);
3826 kfree_skb_list(skb);
3827 return rc;
3828out:
3829 rcu_read_unlock_bh();
3830 return rc;
3831}
3832
3833int dev_queue_xmit(struct sk_buff *skb)
3834{
3835 return __dev_queue_xmit(skb, NULL);
3836}
3837EXPORT_SYMBOL(dev_queue_xmit);
3838
3839int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3840{
3841 return __dev_queue_xmit(skb, sb_dev);
3842}
3843EXPORT_SYMBOL(dev_queue_xmit_accel);
3844
3845int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3846{
3847 struct net_device *dev = skb->dev;
3848 struct sk_buff *orig_skb = skb;
3849 struct netdev_queue *txq;
3850 int ret = NETDEV_TX_BUSY;
3851 bool again = false;
3852
3853 if (unlikely(!netif_running(dev) ||
3854 !netif_carrier_ok(dev)))
3855 goto drop;
3856
3857 skb = validate_xmit_skb_list(skb, dev, &again);
3858 if (skb != orig_skb)
3859 goto drop;
3860
3861 skb_set_queue_mapping(skb, queue_id);
3862 txq = skb_get_tx_queue(dev, skb);
3863
3864 local_bh_disable();
3865
3866 HARD_TX_LOCK(dev, txq, smp_processor_id());
3867 if (!netif_xmit_frozen_or_drv_stopped(txq))
3868 ret = netdev_start_xmit(skb, dev, txq, false);
3869 HARD_TX_UNLOCK(dev, txq);
3870
3871 local_bh_enable();
3872
3873 if (!dev_xmit_complete(ret))
3874 kfree_skb(skb);
3875
3876 return ret;
3877drop:
3878 atomic_long_inc(&dev->tx_dropped);
3879 kfree_skb_list(skb);
3880 return NET_XMIT_DROP;
3881}
3882EXPORT_SYMBOL(dev_direct_xmit);
3883
3884/*************************************************************************
3885 * Receiver routines
3886 *************************************************************************/
3887
3888int netdev_max_backlog __read_mostly = 1000;
3889EXPORT_SYMBOL(netdev_max_backlog);
3890
3891int netdev_tstamp_prequeue __read_mostly = 1;
3892int netdev_budget __read_mostly = 300;
3893unsigned int __read_mostly netdev_budget_usecs = 2000;
3894int weight_p __read_mostly = 64; /* old backlog weight */
3895int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3896int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3897int dev_rx_weight __read_mostly = 64;
3898int dev_tx_weight __read_mostly = 64;
3899
3900/* Called with irq disabled */
3901static inline void ____napi_schedule(struct softnet_data *sd,
3902 struct napi_struct *napi)
3903{
3904 list_add_tail(&napi->poll_list, &sd->poll_list);
3905 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3906}
3907
3908#ifdef CONFIG_RPS
3909
3910/* One global table that all flow-based protocols share. */
3911struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3912EXPORT_SYMBOL(rps_sock_flow_table);
3913u32 rps_cpu_mask __read_mostly;
3914EXPORT_SYMBOL(rps_cpu_mask);
3915
3916struct static_key rps_needed __read_mostly;
3917EXPORT_SYMBOL(rps_needed);
3918struct static_key rfs_needed __read_mostly;
3919EXPORT_SYMBOL(rfs_needed);
3920
3921static struct rps_dev_flow *
3922set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3923 struct rps_dev_flow *rflow, u16 next_cpu)
3924{
3925 if (next_cpu < nr_cpu_ids) {
3926#ifdef CONFIG_RFS_ACCEL
3927 struct netdev_rx_queue *rxqueue;
3928 struct rps_dev_flow_table *flow_table;
3929 struct rps_dev_flow *old_rflow;
3930 u32 flow_id;
3931 u16 rxq_index;
3932 int rc;
3933
3934 /* Should we steer this flow to a different hardware queue? */
3935 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3936 !(dev->features & NETIF_F_NTUPLE))
3937 goto out;
3938 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3939 if (rxq_index == skb_get_rx_queue(skb))
3940 goto out;
3941
3942 rxqueue = dev->_rx + rxq_index;
3943 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3944 if (!flow_table)
3945 goto out;
3946 flow_id = skb_get_hash(skb) & flow_table->mask;
3947 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3948 rxq_index, flow_id);
3949 if (rc < 0)
3950 goto out;
3951 old_rflow = rflow;
3952 rflow = &flow_table->flows[flow_id];
3953 rflow->filter = rc;
3954 if (old_rflow->filter == rflow->filter)
3955 old_rflow->filter = RPS_NO_FILTER;
3956 out:
3957#endif
3958 rflow->last_qtail =
3959 per_cpu(softnet_data, next_cpu).input_queue_head;
3960 }
3961
3962 rflow->cpu = next_cpu;
3963 return rflow;
3964}
3965
3966/*
3967 * get_rps_cpu is called from netif_receive_skb and returns the target
3968 * CPU from the RPS map of the receiving queue for a given skb.
3969 * rcu_read_lock must be held on entry.
3970 */
3971static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3972 struct rps_dev_flow **rflowp)
3973{
3974 const struct rps_sock_flow_table *sock_flow_table;
3975 struct netdev_rx_queue *rxqueue = dev->_rx;
3976 struct rps_dev_flow_table *flow_table;
3977 struct rps_map *map;
3978 int cpu = -1;
3979 u32 tcpu;
3980 u32 hash;
3981
3982 if (skb_rx_queue_recorded(skb)) {
3983 u16 index = skb_get_rx_queue(skb);
3984
3985 if (unlikely(index >= dev->real_num_rx_queues)) {
3986 WARN_ONCE(dev->real_num_rx_queues > 1,
3987 "%s received packet on queue %u, but number "
3988 "of RX queues is %u\n",
3989 dev->name, index, dev->real_num_rx_queues);
3990 goto done;
3991 }
3992 rxqueue += index;
3993 }
3994
3995 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3996
3997 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3998 map = rcu_dereference(rxqueue->rps_map);
3999 if (!flow_table && !map)
4000 goto done;
4001
4002 skb_reset_network_header(skb);
4003 hash = skb_get_hash(skb);
4004 if (!hash)
4005 goto done;
4006
4007 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4008 if (flow_table && sock_flow_table) {
4009 struct rps_dev_flow *rflow;
4010 u32 next_cpu;
4011 u32 ident;
4012
4013 /* First check into global flow table if there is a match */
4014 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4015 if ((ident ^ hash) & ~rps_cpu_mask)
4016 goto try_rps;
4017
4018 next_cpu = ident & rps_cpu_mask;
4019
4020 /* OK, now we know there is a match,
4021 * we can look at the local (per receive queue) flow table
4022 */
4023 rflow = &flow_table->flows[hash & flow_table->mask];
4024 tcpu = rflow->cpu;
4025
4026 /*
4027 * If the desired CPU (where last recvmsg was done) is
4028 * different from current CPU (one in the rx-queue flow
4029 * table entry), switch if one of the following holds:
4030 * - Current CPU is unset (>= nr_cpu_ids).
4031 * - Current CPU is offline.
4032 * - The current CPU's queue tail has advanced beyond the
4033 * last packet that was enqueued using this table entry.
4034 * This guarantees that all previous packets for the flow
4035 * have been dequeued, thus preserving in order delivery.
4036 */
4037 if (unlikely(tcpu != next_cpu) &&
4038 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4039 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4040 rflow->last_qtail)) >= 0)) {
4041 tcpu = next_cpu;
4042 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4043 }
4044
4045 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4046 *rflowp = rflow;
4047 cpu = tcpu;
4048 goto done;
4049 }
4050 }
4051
4052try_rps:
4053
4054 if (map) {
4055 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4056 if (cpu_online(tcpu)) {
4057 cpu = tcpu;
4058 goto done;
4059 }
4060 }
4061
4062done:
4063 return cpu;
4064}
4065
4066#ifdef CONFIG_RFS_ACCEL
4067
4068/**
4069 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4070 * @dev: Device on which the filter was set
4071 * @rxq_index: RX queue index
4072 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4073 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4074 *
4075 * Drivers that implement ndo_rx_flow_steer() should periodically call
4076 * this function for each installed filter and remove the filters for
4077 * which it returns %true.
4078 */
4079bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4080 u32 flow_id, u16 filter_id)
4081{
4082 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4083 struct rps_dev_flow_table *flow_table;
4084 struct rps_dev_flow *rflow;
4085 bool expire = true;
4086 unsigned int cpu;
4087
4088 rcu_read_lock();
4089 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4090 if (flow_table && flow_id <= flow_table->mask) {
4091 rflow = &flow_table->flows[flow_id];
4092 cpu = READ_ONCE(rflow->cpu);
4093 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4094 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4095 rflow->last_qtail) <
4096 (int)(10 * flow_table->mask)))
4097 expire = false;
4098 }
4099 rcu_read_unlock();
4100 return expire;
4101}
4102EXPORT_SYMBOL(rps_may_expire_flow);
4103
4104#endif /* CONFIG_RFS_ACCEL */
4105
4106/* Called from hardirq (IPI) context */
4107static void rps_trigger_softirq(void *data)
4108{
4109 struct softnet_data *sd = data;
4110
4111 ____napi_schedule(sd, &sd->backlog);
4112 sd->received_rps++;
4113}
4114
4115#endif /* CONFIG_RPS */
4116
4117/*
4118 * Check if this softnet_data structure is another cpu one
4119 * If yes, queue it to our IPI list and return 1
4120 * If no, return 0
4121 */
4122static int rps_ipi_queued(struct softnet_data *sd)
4123{
4124#ifdef CONFIG_RPS
4125 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4126
4127 if (sd != mysd) {
4128 sd->rps_ipi_next = mysd->rps_ipi_list;
4129 mysd->rps_ipi_list = sd;
4130
4131 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4132 return 1;
4133 }
4134#endif /* CONFIG_RPS */
4135 return 0;
4136}
4137
4138#ifdef CONFIG_NET_FLOW_LIMIT
4139int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4140#endif
4141
4142static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4143{
4144#ifdef CONFIG_NET_FLOW_LIMIT
4145 struct sd_flow_limit *fl;
4146 struct softnet_data *sd;
4147 unsigned int old_flow, new_flow;
4148
4149 if (qlen < (netdev_max_backlog >> 1))
4150 return false;
4151
4152 sd = this_cpu_ptr(&softnet_data);
4153
4154 rcu_read_lock();
4155 fl = rcu_dereference(sd->flow_limit);
4156 if (fl) {
4157 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4158 old_flow = fl->history[fl->history_head];
4159 fl->history[fl->history_head] = new_flow;
4160
4161 fl->history_head++;
4162 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4163
4164 if (likely(fl->buckets[old_flow]))
4165 fl->buckets[old_flow]--;
4166
4167 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4168 fl->count++;
4169 rcu_read_unlock();
4170 return true;
4171 }
4172 }
4173 rcu_read_unlock();
4174#endif
4175 return false;
4176}
4177
4178/*
4179 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4180 * queue (may be a remote CPU queue).
4181 */
4182static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4183 unsigned int *qtail)
4184{
4185 struct softnet_data *sd;
4186 unsigned long flags;
4187 unsigned int qlen;
4188
4189 sd = &per_cpu(softnet_data, cpu);
4190
4191 local_irq_save(flags);
4192
4193 rps_lock(sd);
4194 if (!netif_running(skb->dev))
4195 goto drop;
4196 qlen = skb_queue_len(&sd->input_pkt_queue);
4197 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4198 if (qlen) {
4199enqueue:
4200 __skb_queue_tail(&sd->input_pkt_queue, skb);
4201 input_queue_tail_incr_save(sd, qtail);
4202 rps_unlock(sd);
4203 local_irq_restore(flags);
4204 return NET_RX_SUCCESS;
4205 }
4206
4207 /* Schedule NAPI for backlog device
4208 * We can use non atomic operation since we own the queue lock
4209 */
4210 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4211 if (!rps_ipi_queued(sd))
4212 ____napi_schedule(sd, &sd->backlog);
4213 }
4214 goto enqueue;
4215 }
4216
4217drop:
4218 sd->dropped++;
4219 rps_unlock(sd);
4220
4221 local_irq_restore(flags);
4222
4223 atomic_long_inc(&skb->dev->rx_dropped);
4224 kfree_skb(skb);
4225 return NET_RX_DROP;
4226}
4227
4228static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4229{
4230 struct net_device *dev = skb->dev;
4231 struct netdev_rx_queue *rxqueue;
4232
4233 rxqueue = dev->_rx;
4234
4235 if (skb_rx_queue_recorded(skb)) {
4236 u16 index = skb_get_rx_queue(skb);
4237
4238 if (unlikely(index >= dev->real_num_rx_queues)) {
4239 WARN_ONCE(dev->real_num_rx_queues > 1,
4240 "%s received packet on queue %u, but number "
4241 "of RX queues is %u\n",
4242 dev->name, index, dev->real_num_rx_queues);
4243
4244 return rxqueue; /* Return first rxqueue */
4245 }
4246 rxqueue += index;
4247 }
4248 return rxqueue;
4249}
4250
4251static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4252 struct xdp_buff *xdp,
4253 struct bpf_prog *xdp_prog)
4254{
4255 struct netdev_rx_queue *rxqueue;
4256 void *orig_data, *orig_data_end;
4257 u32 metalen, act = XDP_DROP;
4258 int hlen, off;
4259 u32 mac_len;
4260
4261 /* Reinjected packets coming from act_mirred or similar should
4262 * not get XDP generic processing.
4263 */
4264 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4265 return XDP_PASS;
4266
4267 /* XDP packets must be linear and must have sufficient headroom
4268 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4269 * native XDP provides, thus we need to do it here as well.
4270 */
4271 if (skb_is_nonlinear(skb) ||
4272 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4273 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4274 int troom = skb->tail + skb->data_len - skb->end;
4275
4276 /* In case we have to go down the path and also linearize,
4277 * then lets do the pskb_expand_head() work just once here.
4278 */
4279 if (pskb_expand_head(skb,
4280 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4281 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4282 goto do_drop;
4283 if (skb_linearize(skb))
4284 goto do_drop;
4285 }
4286
4287 /* The XDP program wants to see the packet starting at the MAC
4288 * header.
4289 */
4290 mac_len = skb->data - skb_mac_header(skb);
4291 hlen = skb_headlen(skb) + mac_len;
4292 xdp->data = skb->data - mac_len;
4293 xdp->data_meta = xdp->data;
4294 xdp->data_end = xdp->data + hlen;
4295 xdp->data_hard_start = skb->data - skb_headroom(skb);
4296 orig_data_end = xdp->data_end;
4297 orig_data = xdp->data;
4298
4299 rxqueue = netif_get_rxqueue(skb);
4300 xdp->rxq = &rxqueue->xdp_rxq;
4301
4302 act = bpf_prog_run_xdp(xdp_prog, xdp);
4303
4304 off = xdp->data - orig_data;
4305 if (off > 0)
4306 __skb_pull(skb, off);
4307 else if (off < 0)
4308 __skb_push(skb, -off);
4309 skb->mac_header += off;
4310
4311 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4312 * pckt.
4313 */
4314 off = orig_data_end - xdp->data_end;
4315 if (off != 0) {
4316 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4317 skb->len -= off;
4318
4319 }
4320
4321 switch (act) {
4322 case XDP_REDIRECT:
4323 case XDP_TX:
4324 __skb_push(skb, mac_len);
4325 break;
4326 case XDP_PASS:
4327 metalen = xdp->data - xdp->data_meta;
4328 if (metalen)
4329 skb_metadata_set(skb, metalen);
4330 break;
4331 default:
4332 bpf_warn_invalid_xdp_action(act);
4333 /* fall through */
4334 case XDP_ABORTED:
4335 trace_xdp_exception(skb->dev, xdp_prog, act);
4336 /* fall through */
4337 case XDP_DROP:
4338 do_drop:
4339 kfree_skb(skb);
4340 break;
4341 }
4342
4343 return act;
4344}
4345
4346/* When doing generic XDP we have to bypass the qdisc layer and the
4347 * network taps in order to match in-driver-XDP behavior.
4348 */
4349void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4350{
4351 struct net_device *dev = skb->dev;
4352 struct netdev_queue *txq;
4353 bool free_skb = true;
4354 int cpu, rc;
4355
4356 txq = netdev_pick_tx(dev, skb, NULL);
4357 cpu = smp_processor_id();
4358 HARD_TX_LOCK(dev, txq, cpu);
4359 if (!netif_xmit_stopped(txq)) {
4360 rc = netdev_start_xmit(skb, dev, txq, 0);
4361 if (dev_xmit_complete(rc))
4362 free_skb = false;
4363 }
4364 HARD_TX_UNLOCK(dev, txq);
4365 if (free_skb) {
4366 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4367 kfree_skb(skb);
4368 }
4369}
4370EXPORT_SYMBOL_GPL(generic_xdp_tx);
4371
4372static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4373
4374int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4375{
4376 if (xdp_prog) {
4377 struct xdp_buff xdp;
4378 u32 act;
4379 int err;
4380
4381 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4382 if (act != XDP_PASS) {
4383 switch (act) {
4384 case XDP_REDIRECT:
4385 err = xdp_do_generic_redirect(skb->dev, skb,
4386 &xdp, xdp_prog);
4387 if (err)
4388 goto out_redir;
4389 break;
4390 case XDP_TX:
4391 generic_xdp_tx(skb, xdp_prog);
4392 break;
4393 }
4394 return XDP_DROP;
4395 }
4396 }
4397 return XDP_PASS;
4398out_redir:
4399 kfree_skb(skb);
4400 return XDP_DROP;
4401}
4402EXPORT_SYMBOL_GPL(do_xdp_generic);
4403
4404static int netif_rx_internal(struct sk_buff *skb)
4405{
4406 int ret;
4407
4408 net_timestamp_check(netdev_tstamp_prequeue, skb);
4409
4410 trace_netif_rx(skb);
4411
4412 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4413 int ret;
4414
4415 preempt_disable();
4416 rcu_read_lock();
4417 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4418 rcu_read_unlock();
4419 preempt_enable();
4420
4421 /* Consider XDP consuming the packet a success from
4422 * the netdev point of view we do not want to count
4423 * this as an error.
4424 */
4425 if (ret != XDP_PASS)
4426 return NET_RX_SUCCESS;
4427 }
4428
4429#ifdef CONFIG_RPS
4430 if (static_key_false(&rps_needed)) {
4431 struct rps_dev_flow voidflow, *rflow = &voidflow;
4432 int cpu;
4433
4434 preempt_disable();
4435 rcu_read_lock();
4436
4437 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4438 if (cpu < 0)
4439 cpu = smp_processor_id();
4440
4441 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4442
4443 rcu_read_unlock();
4444 preempt_enable();
4445 } else
4446#endif
4447 {
4448 unsigned int qtail;
4449
4450 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4451 put_cpu();
4452 }
4453 return ret;
4454}
4455
4456/**
4457 * netif_rx - post buffer to the network code
4458 * @skb: buffer to post
4459 *
4460 * This function receives a packet from a device driver and queues it for
4461 * the upper (protocol) levels to process. It always succeeds. The buffer
4462 * may be dropped during processing for congestion control or by the
4463 * protocol layers.
4464 *
4465 * return values:
4466 * NET_RX_SUCCESS (no congestion)
4467 * NET_RX_DROP (packet was dropped)
4468 *
4469 */
4470
4471int netif_rx(struct sk_buff *skb)
4472{
4473 trace_netif_rx_entry(skb);
4474
4475 return netif_rx_internal(skb);
4476}
4477EXPORT_SYMBOL(netif_rx);
4478
4479int netif_rx_ni(struct sk_buff *skb)
4480{
4481 int err;
4482
4483 trace_netif_rx_ni_entry(skb);
4484
4485 preempt_disable();
4486 err = netif_rx_internal(skb);
4487 if (local_softirq_pending())
4488 do_softirq();
4489 preempt_enable();
4490
4491 return err;
4492}
4493EXPORT_SYMBOL(netif_rx_ni);
4494
4495static __latent_entropy void net_tx_action(struct softirq_action *h)
4496{
4497 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4498
4499 if (sd->completion_queue) {
4500 struct sk_buff *clist;
4501
4502 local_irq_disable();
4503 clist = sd->completion_queue;
4504 sd->completion_queue = NULL;
4505 local_irq_enable();
4506
4507 while (clist) {
4508 struct sk_buff *skb = clist;
4509
4510 clist = clist->next;
4511
4512 WARN_ON(refcount_read(&skb->users));
4513 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4514 trace_consume_skb(skb);
4515 else
4516 trace_kfree_skb(skb, net_tx_action);
4517
4518 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4519 __kfree_skb(skb);
4520 else
4521 __kfree_skb_defer(skb);
4522 }
4523
4524 __kfree_skb_flush();
4525 }
4526
4527 if (sd->output_queue) {
4528 struct Qdisc *head;
4529
4530 local_irq_disable();
4531 head = sd->output_queue;
4532 sd->output_queue = NULL;
4533 sd->output_queue_tailp = &sd->output_queue;
4534 local_irq_enable();
4535
4536 while (head) {
4537 struct Qdisc *q = head;
4538 spinlock_t *root_lock = NULL;
4539
4540 head = head->next_sched;
4541
4542 if (!(q->flags & TCQ_F_NOLOCK)) {
4543 root_lock = qdisc_lock(q);
4544 spin_lock(root_lock);
4545 }
4546 /* We need to make sure head->next_sched is read
4547 * before clearing __QDISC_STATE_SCHED
4548 */
4549 smp_mb__before_atomic();
4550 clear_bit(__QDISC_STATE_SCHED, &q->state);
4551 qdisc_run(q);
4552 if (root_lock)
4553 spin_unlock(root_lock);
4554 }
4555 }
4556
4557 xfrm_dev_backlog(sd);
4558}
4559
4560#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4561/* This hook is defined here for ATM LANE */
4562int (*br_fdb_test_addr_hook)(struct net_device *dev,
4563 unsigned char *addr) __read_mostly;
4564EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4565#endif
4566
4567static inline struct sk_buff *
4568sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4569 struct net_device *orig_dev)
4570{
4571#ifdef CONFIG_NET_CLS_ACT
4572 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4573 struct tcf_result cl_res;
4574
4575 /* If there's at least one ingress present somewhere (so
4576 * we get here via enabled static key), remaining devices
4577 * that are not configured with an ingress qdisc will bail
4578 * out here.
4579 */
4580 if (!miniq)
4581 return skb;
4582
4583 if (*pt_prev) {
4584 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4585 *pt_prev = NULL;
4586 }
4587
4588 qdisc_skb_cb(skb)->pkt_len = skb->len;
4589 skb->tc_at_ingress = 1;
4590 mini_qdisc_bstats_cpu_update(miniq, skb);
4591
4592 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4593 case TC_ACT_OK:
4594 case TC_ACT_RECLASSIFY:
4595 skb->tc_index = TC_H_MIN(cl_res.classid);
4596 break;
4597 case TC_ACT_SHOT:
4598 mini_qdisc_qstats_cpu_drop(miniq);
4599 kfree_skb(skb);
4600 return NULL;
4601 case TC_ACT_STOLEN:
4602 case TC_ACT_QUEUED:
4603 case TC_ACT_TRAP:
4604 consume_skb(skb);
4605 return NULL;
4606 case TC_ACT_REDIRECT:
4607 /* skb_mac_header check was done by cls/act_bpf, so
4608 * we can safely push the L2 header back before
4609 * redirecting to another netdev
4610 */
4611 __skb_push(skb, skb->mac_len);
4612 skb_do_redirect(skb);
4613 return NULL;
4614 case TC_ACT_REINSERT:
4615 /* this does not scrub the packet, and updates stats on error */
4616 skb_tc_reinsert(skb, &cl_res);
4617 return NULL;
4618 default:
4619 break;
4620 }
4621#endif /* CONFIG_NET_CLS_ACT */
4622 return skb;
4623}
4624
4625/**
4626 * netdev_is_rx_handler_busy - check if receive handler is registered
4627 * @dev: device to check
4628 *
4629 * Check if a receive handler is already registered for a given device.
4630 * Return true if there one.
4631 *
4632 * The caller must hold the rtnl_mutex.
4633 */
4634bool netdev_is_rx_handler_busy(struct net_device *dev)
4635{
4636 ASSERT_RTNL();
4637 return dev && rtnl_dereference(dev->rx_handler);
4638}
4639EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4640
4641/**
4642 * netdev_rx_handler_register - register receive handler
4643 * @dev: device to register a handler for
4644 * @rx_handler: receive handler to register
4645 * @rx_handler_data: data pointer that is used by rx handler
4646 *
4647 * Register a receive handler for a device. This handler will then be
4648 * called from __netif_receive_skb. A negative errno code is returned
4649 * on a failure.
4650 *
4651 * The caller must hold the rtnl_mutex.
4652 *
4653 * For a general description of rx_handler, see enum rx_handler_result.
4654 */
4655int netdev_rx_handler_register(struct net_device *dev,
4656 rx_handler_func_t *rx_handler,
4657 void *rx_handler_data)
4658{
4659 if (netdev_is_rx_handler_busy(dev))
4660 return -EBUSY;
4661
4662 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4663 return -EINVAL;
4664
4665 /* Note: rx_handler_data must be set before rx_handler */
4666 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4667 rcu_assign_pointer(dev->rx_handler, rx_handler);
4668
4669 return 0;
4670}
4671EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4672
4673/**
4674 * netdev_rx_handler_unregister - unregister receive handler
4675 * @dev: device to unregister a handler from
4676 *
4677 * Unregister a receive handler from a device.
4678 *
4679 * The caller must hold the rtnl_mutex.
4680 */
4681void netdev_rx_handler_unregister(struct net_device *dev)
4682{
4683
4684 ASSERT_RTNL();
4685 RCU_INIT_POINTER(dev->rx_handler, NULL);
4686 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4687 * section has a guarantee to see a non NULL rx_handler_data
4688 * as well.
4689 */
4690 synchronize_net();
4691 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4692}
4693EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4694
4695/*
4696 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4697 * the special handling of PFMEMALLOC skbs.
4698 */
4699static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4700{
4701 switch (skb->protocol) {
4702 case htons(ETH_P_ARP):
4703 case htons(ETH_P_IP):
4704 case htons(ETH_P_IPV6):
4705 case htons(ETH_P_8021Q):
4706 case htons(ETH_P_8021AD):
4707 return true;
4708 default:
4709 return false;
4710 }
4711}
4712
4713static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4714 int *ret, struct net_device *orig_dev)
4715{
4716#ifdef CONFIG_NETFILTER_INGRESS
4717 if (nf_hook_ingress_active(skb)) {
4718 int ingress_retval;
4719
4720 if (*pt_prev) {
4721 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4722 *pt_prev = NULL;
4723 }
4724
4725 rcu_read_lock();
4726 ingress_retval = nf_hook_ingress(skb);
4727 rcu_read_unlock();
4728 return ingress_retval;
4729 }
4730#endif /* CONFIG_NETFILTER_INGRESS */
4731 return 0;
4732}
4733
4734static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4735 struct packet_type **ppt_prev)
4736{
4737 struct packet_type *ptype, *pt_prev;
4738 rx_handler_func_t *rx_handler;
4739 struct net_device *orig_dev;
4740 bool deliver_exact = false;
4741 int ret = NET_RX_DROP;
4742 __be16 type;
4743
4744 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4745
4746 trace_netif_receive_skb(skb);
4747
4748 orig_dev = skb->dev;
4749
4750 skb_reset_network_header(skb);
4751 if (!skb_transport_header_was_set(skb))
4752 skb_reset_transport_header(skb);
4753 skb_reset_mac_len(skb);
4754
4755 pt_prev = NULL;
4756
4757another_round:
4758 skb->skb_iif = skb->dev->ifindex;
4759
4760 __this_cpu_inc(softnet_data.processed);
4761
4762 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4763 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4764 skb = skb_vlan_untag(skb);
4765 if (unlikely(!skb))
4766 goto out;
4767 }
4768
4769 if (skb_skip_tc_classify(skb))
4770 goto skip_classify;
4771
4772 if (pfmemalloc)
4773 goto skip_taps;
4774
4775 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4776 if (pt_prev)
4777 ret = deliver_skb(skb, pt_prev, orig_dev);
4778 pt_prev = ptype;
4779 }
4780
4781 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4782 if (pt_prev)
4783 ret = deliver_skb(skb, pt_prev, orig_dev);
4784 pt_prev = ptype;
4785 }
4786
4787skip_taps:
4788#ifdef CONFIG_NET_INGRESS
4789 if (static_branch_unlikely(&ingress_needed_key)) {
4790 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4791 if (!skb)
4792 goto out;
4793
4794 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4795 goto out;
4796 }
4797#endif
4798 skb_reset_tc(skb);
4799skip_classify:
4800 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4801 goto drop;
4802
4803 if (skb_vlan_tag_present(skb)) {
4804 if (pt_prev) {
4805 ret = deliver_skb(skb, pt_prev, orig_dev);
4806 pt_prev = NULL;
4807 }
4808 if (vlan_do_receive(&skb))
4809 goto another_round;
4810 else if (unlikely(!skb))
4811 goto out;
4812 }
4813
4814 rx_handler = rcu_dereference(skb->dev->rx_handler);
4815 if (rx_handler) {
4816 if (pt_prev) {
4817 ret = deliver_skb(skb, pt_prev, orig_dev);
4818 pt_prev = NULL;
4819 }
4820 switch (rx_handler(&skb)) {
4821 case RX_HANDLER_CONSUMED:
4822 ret = NET_RX_SUCCESS;
4823 goto out;
4824 case RX_HANDLER_ANOTHER:
4825 goto another_round;
4826 case RX_HANDLER_EXACT:
4827 deliver_exact = true;
4828 case RX_HANDLER_PASS:
4829 break;
4830 default:
4831 BUG();
4832 }
4833 }
4834
4835 if (unlikely(skb_vlan_tag_present(skb))) {
4836 if (skb_vlan_tag_get_id(skb))
4837 skb->pkt_type = PACKET_OTHERHOST;
4838 /* Note: we might in the future use prio bits
4839 * and set skb->priority like in vlan_do_receive()
4840 * For the time being, just ignore Priority Code Point
4841 */
4842 skb->vlan_tci = 0;
4843 }
4844
4845 type = skb->protocol;
4846
4847 /* deliver only exact match when indicated */
4848 if (likely(!deliver_exact)) {
4849 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4850 &ptype_base[ntohs(type) &
4851 PTYPE_HASH_MASK]);
4852 }
4853
4854 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4855 &orig_dev->ptype_specific);
4856
4857 if (unlikely(skb->dev != orig_dev)) {
4858 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4859 &skb->dev->ptype_specific);
4860 }
4861
4862 if (pt_prev) {
4863 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4864 goto drop;
4865 *ppt_prev = pt_prev;
4866 } else {
4867drop:
4868 if (!deliver_exact)
4869 atomic_long_inc(&skb->dev->rx_dropped);
4870 else
4871 atomic_long_inc(&skb->dev->rx_nohandler);
4872 kfree_skb(skb);
4873 /* Jamal, now you will not able to escape explaining
4874 * me how you were going to use this. :-)
4875 */
4876 ret = NET_RX_DROP;
4877 }
4878
4879out:
4880 return ret;
4881}
4882
4883static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4884{
4885 struct net_device *orig_dev = skb->dev;
4886 struct packet_type *pt_prev = NULL;
4887 int ret;
4888
4889 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4890 if (pt_prev)
4891 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4892 return ret;
4893}
4894
4895/**
4896 * netif_receive_skb_core - special purpose version of netif_receive_skb
4897 * @skb: buffer to process
4898 *
4899 * More direct receive version of netif_receive_skb(). It should
4900 * only be used by callers that have a need to skip RPS and Generic XDP.
4901 * Caller must also take care of handling if (page_is_)pfmemalloc.
4902 *
4903 * This function may only be called from softirq context and interrupts
4904 * should be enabled.
4905 *
4906 * Return values (usually ignored):
4907 * NET_RX_SUCCESS: no congestion
4908 * NET_RX_DROP: packet was dropped
4909 */
4910int netif_receive_skb_core(struct sk_buff *skb)
4911{
4912 int ret;
4913
4914 rcu_read_lock();
4915 ret = __netif_receive_skb_one_core(skb, false);
4916 rcu_read_unlock();
4917
4918 return ret;
4919}
4920EXPORT_SYMBOL(netif_receive_skb_core);
4921
4922static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4923 struct packet_type *pt_prev,
4924 struct net_device *orig_dev)
4925{
4926 struct sk_buff *skb, *next;
4927
4928 if (!pt_prev)
4929 return;
4930 if (list_empty(head))
4931 return;
4932 if (pt_prev->list_func != NULL)
4933 pt_prev->list_func(head, pt_prev, orig_dev);
4934 else
4935 list_for_each_entry_safe(skb, next, head, list)
4936 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4937}
4938
4939static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4940{
4941 /* Fast-path assumptions:
4942 * - There is no RX handler.
4943 * - Only one packet_type matches.
4944 * If either of these fails, we will end up doing some per-packet
4945 * processing in-line, then handling the 'last ptype' for the whole
4946 * sublist. This can't cause out-of-order delivery to any single ptype,
4947 * because the 'last ptype' must be constant across the sublist, and all
4948 * other ptypes are handled per-packet.
4949 */
4950 /* Current (common) ptype of sublist */
4951 struct packet_type *pt_curr = NULL;
4952 /* Current (common) orig_dev of sublist */
4953 struct net_device *od_curr = NULL;
4954 struct list_head sublist;
4955 struct sk_buff *skb, *next;
4956
4957 INIT_LIST_HEAD(&sublist);
4958 list_for_each_entry_safe(skb, next, head, list) {
4959 struct net_device *orig_dev = skb->dev;
4960 struct packet_type *pt_prev = NULL;
4961
4962 list_del(&skb->list);
4963 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4964 if (!pt_prev)
4965 continue;
4966 if (pt_curr != pt_prev || od_curr != orig_dev) {
4967 /* dispatch old sublist */
4968 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4969 /* start new sublist */
4970 INIT_LIST_HEAD(&sublist);
4971 pt_curr = pt_prev;
4972 od_curr = orig_dev;
4973 }
4974 list_add_tail(&skb->list, &sublist);
4975 }
4976
4977 /* dispatch final sublist */
4978 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4979}
4980
4981static int __netif_receive_skb(struct sk_buff *skb)
4982{
4983 int ret;
4984
4985 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4986 unsigned int noreclaim_flag;
4987
4988 /*
4989 * PFMEMALLOC skbs are special, they should
4990 * - be delivered to SOCK_MEMALLOC sockets only
4991 * - stay away from userspace
4992 * - have bounded memory usage
4993 *
4994 * Use PF_MEMALLOC as this saves us from propagating the allocation
4995 * context down to all allocation sites.
4996 */
4997 noreclaim_flag = memalloc_noreclaim_save();
4998 ret = __netif_receive_skb_one_core(skb, true);
4999 memalloc_noreclaim_restore(noreclaim_flag);
5000 } else
5001 ret = __netif_receive_skb_one_core(skb, false);
5002
5003 return ret;
5004}
5005
5006static void __netif_receive_skb_list(struct list_head *head)
5007{
5008 unsigned long noreclaim_flag = 0;
5009 struct sk_buff *skb, *next;
5010 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5011
5012 list_for_each_entry_safe(skb, next, head, list) {
5013 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5014 struct list_head sublist;
5015
5016 /* Handle the previous sublist */
5017 list_cut_before(&sublist, head, &skb->list);
5018 if (!list_empty(&sublist))
5019 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5020 pfmemalloc = !pfmemalloc;
5021 /* See comments in __netif_receive_skb */
5022 if (pfmemalloc)
5023 noreclaim_flag = memalloc_noreclaim_save();
5024 else
5025 memalloc_noreclaim_restore(noreclaim_flag);
5026 }
5027 }
5028 /* Handle the remaining sublist */
5029 if (!list_empty(head))
5030 __netif_receive_skb_list_core(head, pfmemalloc);
5031 /* Restore pflags */
5032 if (pfmemalloc)
5033 memalloc_noreclaim_restore(noreclaim_flag);
5034}
5035
5036static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5037{
5038 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5039 struct bpf_prog *new = xdp->prog;
5040 int ret = 0;
5041
5042 switch (xdp->command) {
5043 case XDP_SETUP_PROG:
5044 rcu_assign_pointer(dev->xdp_prog, new);
5045 if (old)
5046 bpf_prog_put(old);
5047
5048 if (old && !new) {
5049 static_branch_dec(&generic_xdp_needed_key);
5050 } else if (new && !old) {
5051 static_branch_inc(&generic_xdp_needed_key);
5052 dev_disable_lro(dev);
5053 dev_disable_gro_hw(dev);
5054 }
5055 break;
5056
5057 case XDP_QUERY_PROG:
5058 xdp->prog_id = old ? old->aux->id : 0;
5059 break;
5060
5061 default:
5062 ret = -EINVAL;
5063 break;
5064 }
5065
5066 return ret;
5067}
5068
5069static int netif_receive_skb_internal(struct sk_buff *skb)
5070{
5071 int ret;
5072
5073 net_timestamp_check(netdev_tstamp_prequeue, skb);
5074
5075 if (skb_defer_rx_timestamp(skb))
5076 return NET_RX_SUCCESS;
5077
5078 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5079 int ret;
5080
5081 preempt_disable();
5082 rcu_read_lock();
5083 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5084 rcu_read_unlock();
5085 preempt_enable();
5086
5087 if (ret != XDP_PASS)
5088 return NET_RX_DROP;
5089 }
5090
5091 rcu_read_lock();
5092#ifdef CONFIG_RPS
5093 if (static_key_false(&rps_needed)) {
5094 struct rps_dev_flow voidflow, *rflow = &voidflow;
5095 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5096
5097 if (cpu >= 0) {
5098 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5099 rcu_read_unlock();
5100 return ret;
5101 }
5102 }
5103#endif
5104 ret = __netif_receive_skb(skb);
5105 rcu_read_unlock();
5106 return ret;
5107}
5108
5109static void netif_receive_skb_list_internal(struct list_head *head)
5110{
5111 struct bpf_prog *xdp_prog = NULL;
5112 struct sk_buff *skb, *next;
5113 struct list_head sublist;
5114
5115 INIT_LIST_HEAD(&sublist);
5116 list_for_each_entry_safe(skb, next, head, list) {
5117 net_timestamp_check(netdev_tstamp_prequeue, skb);
5118 list_del(&skb->list);
5119 if (!skb_defer_rx_timestamp(skb))
5120 list_add_tail(&skb->list, &sublist);
5121 }
5122 list_splice_init(&sublist, head);
5123
5124 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5125 preempt_disable();
5126 rcu_read_lock();
5127 list_for_each_entry_safe(skb, next, head, list) {
5128 xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5129 list_del(&skb->list);
5130 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5131 list_add_tail(&skb->list, &sublist);
5132 }
5133 rcu_read_unlock();
5134 preempt_enable();
5135 /* Put passed packets back on main list */
5136 list_splice_init(&sublist, head);
5137 }
5138
5139 rcu_read_lock();
5140#ifdef CONFIG_RPS
5141 if (static_key_false(&rps_needed)) {
5142 list_for_each_entry_safe(skb, next, head, list) {
5143 struct rps_dev_flow voidflow, *rflow = &voidflow;
5144 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5145
5146 if (cpu >= 0) {
5147 /* Will be handled, remove from list */
5148 list_del(&skb->list);
5149 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5150 }
5151 }
5152 }
5153#endif
5154 __netif_receive_skb_list(head);
5155 rcu_read_unlock();
5156}
5157
5158/**
5159 * netif_receive_skb - process receive buffer from network
5160 * @skb: buffer to process
5161 *
5162 * netif_receive_skb() is the main receive data processing function.
5163 * It always succeeds. The buffer may be dropped during processing
5164 * for congestion control or by the protocol layers.
5165 *
5166 * This function may only be called from softirq context and interrupts
5167 * should be enabled.
5168 *
5169 * Return values (usually ignored):
5170 * NET_RX_SUCCESS: no congestion
5171 * NET_RX_DROP: packet was dropped
5172 */
5173int netif_receive_skb(struct sk_buff *skb)
5174{
5175 trace_netif_receive_skb_entry(skb);
5176
5177 return netif_receive_skb_internal(skb);
5178}
5179EXPORT_SYMBOL(netif_receive_skb);
5180
5181/**
5182 * netif_receive_skb_list - process many receive buffers from network
5183 * @head: list of skbs to process.
5184 *
5185 * Since return value of netif_receive_skb() is normally ignored, and
5186 * wouldn't be meaningful for a list, this function returns void.
5187 *
5188 * This function may only be called from softirq context and interrupts
5189 * should be enabled.
5190 */
5191void netif_receive_skb_list(struct list_head *head)
5192{
5193 struct sk_buff *skb;
5194
5195 if (list_empty(head))
5196 return;
5197 list_for_each_entry(skb, head, list)
5198 trace_netif_receive_skb_list_entry(skb);
5199 netif_receive_skb_list_internal(head);
5200}
5201EXPORT_SYMBOL(netif_receive_skb_list);
5202
5203DEFINE_PER_CPU(struct work_struct, flush_works);
5204
5205/* Network device is going away, flush any packets still pending */
5206static void flush_backlog(struct work_struct *work)
5207{
5208 struct sk_buff *skb, *tmp;
5209 struct softnet_data *sd;
5210
5211 local_bh_disable();
5212 sd = this_cpu_ptr(&softnet_data);
5213
5214 local_irq_disable();
5215 rps_lock(sd);
5216 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5217 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5218 __skb_unlink(skb, &sd->input_pkt_queue);
5219 kfree_skb(skb);
5220 input_queue_head_incr(sd);
5221 }
5222 }
5223 rps_unlock(sd);
5224 local_irq_enable();
5225
5226 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5227 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5228 __skb_unlink(skb, &sd->process_queue);
5229 kfree_skb(skb);
5230 input_queue_head_incr(sd);
5231 }
5232 }
5233 local_bh_enable();
5234}
5235
5236static void flush_all_backlogs(void)
5237{
5238 unsigned int cpu;
5239
5240 get_online_cpus();
5241
5242 for_each_online_cpu(cpu)
5243 queue_work_on(cpu, system_highpri_wq,
5244 per_cpu_ptr(&flush_works, cpu));
5245
5246 for_each_online_cpu(cpu)
5247 flush_work(per_cpu_ptr(&flush_works, cpu));
5248
5249 put_online_cpus();
5250}
5251
5252static int napi_gro_complete(struct sk_buff *skb)
5253{
5254 struct packet_offload *ptype;
5255 __be16 type = skb->protocol;
5256 struct list_head *head = &offload_base;
5257 int err = -ENOENT;
5258
5259 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5260
5261 if (NAPI_GRO_CB(skb)->count == 1) {
5262 skb_shinfo(skb)->gso_size = 0;
5263 goto out;
5264 }
5265
5266 rcu_read_lock();
5267 list_for_each_entry_rcu(ptype, head, list) {
5268 if (ptype->type != type || !ptype->callbacks.gro_complete)
5269 continue;
5270
5271 err = ptype->callbacks.gro_complete(skb, 0);
5272 break;
5273 }
5274 rcu_read_unlock();
5275
5276 if (err) {
5277 WARN_ON(&ptype->list == head);
5278 kfree_skb(skb);
5279 return NET_RX_SUCCESS;
5280 }
5281
5282out:
5283 return netif_receive_skb_internal(skb);
5284}
5285
5286static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5287 bool flush_old)
5288{
5289 struct list_head *head = &napi->gro_hash[index].list;
5290 struct sk_buff *skb, *p;
5291
5292 list_for_each_entry_safe_reverse(skb, p, head, list) {
5293 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5294 return;
5295 list_del(&skb->list);
5296 skb->next = NULL;
5297 napi_gro_complete(skb);
5298 napi->gro_hash[index].count--;
5299 }
5300
5301 if (!napi->gro_hash[index].count)
5302 __clear_bit(index, &napi->gro_bitmask);
5303}
5304
5305/* napi->gro_hash[].list contains packets ordered by age.
5306 * youngest packets at the head of it.
5307 * Complete skbs in reverse order to reduce latencies.
5308 */
5309void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5310{
5311 u32 i;
5312
5313 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5314 if (test_bit(i, &napi->gro_bitmask))
5315 __napi_gro_flush_chain(napi, i, flush_old);
5316 }
5317}
5318EXPORT_SYMBOL(napi_gro_flush);
5319
5320static struct list_head *gro_list_prepare(struct napi_struct *napi,
5321 struct sk_buff *skb)
5322{
5323 unsigned int maclen = skb->dev->hard_header_len;
5324 u32 hash = skb_get_hash_raw(skb);
5325 struct list_head *head;
5326 struct sk_buff *p;
5327
5328 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5329 list_for_each_entry(p, head, list) {
5330 unsigned long diffs;
5331
5332 NAPI_GRO_CB(p)->flush = 0;
5333
5334 if (hash != skb_get_hash_raw(p)) {
5335 NAPI_GRO_CB(p)->same_flow = 0;
5336 continue;
5337 }
5338
5339 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5340 diffs |= p->vlan_tci ^ skb->vlan_tci;
5341 diffs |= skb_metadata_dst_cmp(p, skb);
5342 diffs |= skb_metadata_differs(p, skb);
5343 if (maclen == ETH_HLEN)
5344 diffs |= compare_ether_header(skb_mac_header(p),
5345 skb_mac_header(skb));
5346 else if (!diffs)
5347 diffs = memcmp(skb_mac_header(p),
5348 skb_mac_header(skb),
5349 maclen);
5350 NAPI_GRO_CB(p)->same_flow = !diffs;
5351 }
5352
5353 return head;
5354}
5355
5356static void skb_gro_reset_offset(struct sk_buff *skb)
5357{
5358 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5359 const skb_frag_t *frag0 = &pinfo->frags[0];
5360
5361 NAPI_GRO_CB(skb)->data_offset = 0;
5362 NAPI_GRO_CB(skb)->frag0 = NULL;
5363 NAPI_GRO_CB(skb)->frag0_len = 0;
5364
5365 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5366 pinfo->nr_frags &&
5367 !PageHighMem(skb_frag_page(frag0))) {
5368 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5369 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5370 skb_frag_size(frag0),
5371 skb->end - skb->tail);
5372 }
5373}
5374
5375static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5376{
5377 struct skb_shared_info *pinfo = skb_shinfo(skb);
5378
5379 BUG_ON(skb->end - skb->tail < grow);
5380
5381 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5382
5383 skb->data_len -= grow;
5384 skb->tail += grow;
5385
5386 pinfo->frags[0].page_offset += grow;
5387 skb_frag_size_sub(&pinfo->frags[0], grow);
5388
5389 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5390 skb_frag_unref(skb, 0);
5391 memmove(pinfo->frags, pinfo->frags + 1,
5392 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5393 }
5394}
5395
5396static void gro_flush_oldest(struct list_head *head)
5397{
5398 struct sk_buff *oldest;
5399
5400 oldest = list_last_entry(head, struct sk_buff, list);
5401
5402 /* We are called with head length >= MAX_GRO_SKBS, so this is
5403 * impossible.
5404 */
5405 if (WARN_ON_ONCE(!oldest))
5406 return;
5407
5408 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5409 * SKB to the chain.
5410 */
5411 list_del(&oldest->list);
5412 napi_gro_complete(oldest);
5413}
5414
5415static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5416{
5417 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5418 struct list_head *head = &offload_base;
5419 struct packet_offload *ptype;
5420 __be16 type = skb->protocol;
5421 struct list_head *gro_head;
5422 struct sk_buff *pp = NULL;
5423 enum gro_result ret;
5424 int same_flow;
5425 int grow;
5426
5427 if (netif_elide_gro(skb->dev))
5428 goto normal;
5429
5430 gro_head = gro_list_prepare(napi, skb);
5431
5432 rcu_read_lock();
5433 list_for_each_entry_rcu(ptype, head, list) {
5434 if (ptype->type != type || !ptype->callbacks.gro_receive)
5435 continue;
5436
5437 skb_set_network_header(skb, skb_gro_offset(skb));
5438 skb_reset_mac_len(skb);
5439 NAPI_GRO_CB(skb)->same_flow = 0;
5440 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5441 NAPI_GRO_CB(skb)->free = 0;
5442 NAPI_GRO_CB(skb)->encap_mark = 0;
5443 NAPI_GRO_CB(skb)->recursion_counter = 0;
5444 NAPI_GRO_CB(skb)->is_fou = 0;
5445 NAPI_GRO_CB(skb)->is_atomic = 1;
5446 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5447
5448 /* Setup for GRO checksum validation */
5449 switch (skb->ip_summed) {
5450 case CHECKSUM_COMPLETE:
5451 NAPI_GRO_CB(skb)->csum = skb->csum;
5452 NAPI_GRO_CB(skb)->csum_valid = 1;
5453 NAPI_GRO_CB(skb)->csum_cnt = 0;
5454 break;
5455 case CHECKSUM_UNNECESSARY:
5456 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5457 NAPI_GRO_CB(skb)->csum_valid = 0;
5458 break;
5459 default:
5460 NAPI_GRO_CB(skb)->csum_cnt = 0;
5461 NAPI_GRO_CB(skb)->csum_valid = 0;
5462 }
5463
5464 pp = ptype->callbacks.gro_receive(gro_head, skb);
5465 break;
5466 }
5467 rcu_read_unlock();
5468
5469 if (&ptype->list == head)
5470 goto normal;
5471
5472 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5473 ret = GRO_CONSUMED;
5474 goto ok;
5475 }
5476
5477 same_flow = NAPI_GRO_CB(skb)->same_flow;
5478 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5479
5480 if (pp) {
5481 list_del(&pp->list);
5482 pp->next = NULL;
5483 napi_gro_complete(pp);
5484 napi->gro_hash[hash].count--;
5485 }
5486
5487 if (same_flow)
5488 goto ok;
5489
5490 if (NAPI_GRO_CB(skb)->flush)
5491 goto normal;
5492
5493 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5494 gro_flush_oldest(gro_head);
5495 } else {
5496 napi->gro_hash[hash].count++;
5497 }
5498 NAPI_GRO_CB(skb)->count = 1;
5499 NAPI_GRO_CB(skb)->age = jiffies;
5500 NAPI_GRO_CB(skb)->last = skb;
5501 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5502 list_add(&skb->list, gro_head);
5503 ret = GRO_HELD;
5504
5505pull:
5506 grow = skb_gro_offset(skb) - skb_headlen(skb);
5507 if (grow > 0)
5508 gro_pull_from_frag0(skb, grow);
5509ok:
5510 if (napi->gro_hash[hash].count) {
5511 if (!test_bit(hash, &napi->gro_bitmask))
5512 __set_bit(hash, &napi->gro_bitmask);
5513 } else if (test_bit(hash, &napi->gro_bitmask)) {
5514 __clear_bit(hash, &napi->gro_bitmask);
5515 }
5516
5517 return ret;
5518
5519normal:
5520 ret = GRO_NORMAL;
5521 goto pull;
5522}
5523
5524struct packet_offload *gro_find_receive_by_type(__be16 type)
5525{
5526 struct list_head *offload_head = &offload_base;
5527 struct packet_offload *ptype;
5528
5529 list_for_each_entry_rcu(ptype, offload_head, list) {
5530 if (ptype->type != type || !ptype->callbacks.gro_receive)
5531 continue;
5532 return ptype;
5533 }
5534 return NULL;
5535}
5536EXPORT_SYMBOL(gro_find_receive_by_type);
5537
5538struct packet_offload *gro_find_complete_by_type(__be16 type)
5539{
5540 struct list_head *offload_head = &offload_base;
5541 struct packet_offload *ptype;
5542
5543 list_for_each_entry_rcu(ptype, offload_head, list) {
5544 if (ptype->type != type || !ptype->callbacks.gro_complete)
5545 continue;
5546 return ptype;
5547 }
5548 return NULL;
5549}
5550EXPORT_SYMBOL(gro_find_complete_by_type);
5551
5552static void napi_skb_free_stolen_head(struct sk_buff *skb)
5553{
5554 skb_dst_drop(skb);
5555 secpath_reset(skb);
5556 kmem_cache_free(skbuff_head_cache, skb);
5557}
5558
5559static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5560{
5561 switch (ret) {
5562 case GRO_NORMAL:
5563 if (netif_receive_skb_internal(skb))
5564 ret = GRO_DROP;
5565 break;
5566
5567 case GRO_DROP:
5568 kfree_skb(skb);
5569 break;
5570
5571 case GRO_MERGED_FREE:
5572 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5573 napi_skb_free_stolen_head(skb);
5574 else
5575 __kfree_skb(skb);
5576 break;
5577
5578 case GRO_HELD:
5579 case GRO_MERGED:
5580 case GRO_CONSUMED:
5581 break;
5582 }
5583
5584 return ret;
5585}
5586
5587gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5588{
5589 skb_mark_napi_id(skb, napi);
5590 trace_napi_gro_receive_entry(skb);
5591
5592 skb_gro_reset_offset(skb);
5593
5594 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5595}
5596EXPORT_SYMBOL(napi_gro_receive);
5597
5598static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5599{
5600 if (unlikely(skb->pfmemalloc)) {
5601 consume_skb(skb);
5602 return;
5603 }
5604 __skb_pull(skb, skb_headlen(skb));
5605 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5606 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5607 skb->vlan_tci = 0;
5608 skb->dev = napi->dev;
5609 skb->skb_iif = 0;
5610 skb->encapsulation = 0;
5611 skb_shinfo(skb)->gso_type = 0;
5612 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5613 secpath_reset(skb);
5614
5615 napi->skb = skb;
5616}
5617
5618struct sk_buff *napi_get_frags(struct napi_struct *napi)
5619{
5620 struct sk_buff *skb = napi->skb;
5621
5622 if (!skb) {
5623 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5624 if (skb) {
5625 napi->skb = skb;
5626 skb_mark_napi_id(skb, napi);
5627 }
5628 }
5629 return skb;
5630}
5631EXPORT_SYMBOL(napi_get_frags);
5632
5633static gro_result_t napi_frags_finish(struct napi_struct *napi,
5634 struct sk_buff *skb,
5635 gro_result_t ret)
5636{
5637 switch (ret) {
5638 case GRO_NORMAL:
5639 case GRO_HELD:
5640 __skb_push(skb, ETH_HLEN);
5641 skb->protocol = eth_type_trans(skb, skb->dev);
5642 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5643 ret = GRO_DROP;
5644 break;
5645
5646 case GRO_DROP:
5647 napi_reuse_skb(napi, skb);
5648 break;
5649
5650 case GRO_MERGED_FREE:
5651 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5652 napi_skb_free_stolen_head(skb);
5653 else
5654 napi_reuse_skb(napi, skb);
5655 break;
5656
5657 case GRO_MERGED:
5658 case GRO_CONSUMED:
5659 break;
5660 }
5661
5662 return ret;
5663}
5664
5665/* Upper GRO stack assumes network header starts at gro_offset=0
5666 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5667 * We copy ethernet header into skb->data to have a common layout.
5668 */
5669static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5670{
5671 struct sk_buff *skb = napi->skb;
5672 const struct ethhdr *eth;
5673 unsigned int hlen = sizeof(*eth);
5674
5675 napi->skb = NULL;
5676
5677 skb_reset_mac_header(skb);
5678 skb_gro_reset_offset(skb);
5679
5680 eth = skb_gro_header_fast(skb, 0);
5681 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5682 eth = skb_gro_header_slow(skb, hlen, 0);
5683 if (unlikely(!eth)) {
5684 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5685 __func__, napi->dev->name);
5686 napi_reuse_skb(napi, skb);
5687 return NULL;
5688 }
5689 } else {
5690 gro_pull_from_frag0(skb, hlen);
5691 NAPI_GRO_CB(skb)->frag0 += hlen;
5692 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5693 }
5694 __skb_pull(skb, hlen);
5695
5696 /*
5697 * This works because the only protocols we care about don't require
5698 * special handling.
5699 * We'll fix it up properly in napi_frags_finish()
5700 */
5701 skb->protocol = eth->h_proto;
5702
5703 return skb;
5704}
5705
5706gro_result_t napi_gro_frags(struct napi_struct *napi)
5707{
5708 struct sk_buff *skb = napi_frags_skb(napi);
5709
5710 if (!skb)
5711 return GRO_DROP;
5712
5713 trace_napi_gro_frags_entry(skb);
5714
5715 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5716}
5717EXPORT_SYMBOL(napi_gro_frags);
5718
5719/* Compute the checksum from gro_offset and return the folded value
5720 * after adding in any pseudo checksum.
5721 */
5722__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5723{
5724 __wsum wsum;
5725 __sum16 sum;
5726
5727 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5728
5729 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5730 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5731 if (likely(!sum)) {
5732 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5733 !skb->csum_complete_sw)
5734 netdev_rx_csum_fault(skb->dev);
5735 }
5736
5737 NAPI_GRO_CB(skb)->csum = wsum;
5738 NAPI_GRO_CB(skb)->csum_valid = 1;
5739
5740 return sum;
5741}
5742EXPORT_SYMBOL(__skb_gro_checksum_complete);
5743
5744static void net_rps_send_ipi(struct softnet_data *remsd)
5745{
5746#ifdef CONFIG_RPS
5747 while (remsd) {
5748 struct softnet_data *next = remsd->rps_ipi_next;
5749
5750 if (cpu_online(remsd->cpu))
5751 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5752 remsd = next;
5753 }
5754#endif
5755}
5756
5757/*
5758 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5759 * Note: called with local irq disabled, but exits with local irq enabled.
5760 */
5761static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5762{
5763#ifdef CONFIG_RPS
5764 struct softnet_data *remsd = sd->rps_ipi_list;
5765
5766 if (remsd) {
5767 sd->rps_ipi_list = NULL;
5768
5769 local_irq_enable();
5770
5771 /* Send pending IPI's to kick RPS processing on remote cpus. */
5772 net_rps_send_ipi(remsd);
5773 } else
5774#endif
5775 local_irq_enable();
5776}
5777
5778static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5779{
5780#ifdef CONFIG_RPS
5781 return sd->rps_ipi_list != NULL;
5782#else
5783 return false;
5784#endif
5785}
5786
5787static int process_backlog(struct napi_struct *napi, int quota)
5788{
5789 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5790 bool again = true;
5791 int work = 0;
5792
5793 /* Check if we have pending ipi, its better to send them now,
5794 * not waiting net_rx_action() end.
5795 */
5796 if (sd_has_rps_ipi_waiting(sd)) {
5797 local_irq_disable();
5798 net_rps_action_and_irq_enable(sd);
5799 }
5800
5801 napi->weight = dev_rx_weight;
5802 while (again) {
5803 struct sk_buff *skb;
5804
5805 while ((skb = __skb_dequeue(&sd->process_queue))) {
5806 rcu_read_lock();
5807 __netif_receive_skb(skb);
5808 rcu_read_unlock();
5809 input_queue_head_incr(sd);
5810 if (++work >= quota)
5811 return work;
5812
5813 }
5814
5815 local_irq_disable();
5816 rps_lock(sd);
5817 if (skb_queue_empty(&sd->input_pkt_queue)) {
5818 /*
5819 * Inline a custom version of __napi_complete().
5820 * only current cpu owns and manipulates this napi,
5821 * and NAPI_STATE_SCHED is the only possible flag set
5822 * on backlog.
5823 * We can use a plain write instead of clear_bit(),
5824 * and we dont need an smp_mb() memory barrier.
5825 */
5826 napi->state = 0;
5827 again = false;
5828 } else {
5829 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5830 &sd->process_queue);
5831 }
5832 rps_unlock(sd);
5833 local_irq_enable();
5834 }
5835
5836 return work;
5837}
5838
5839/**
5840 * __napi_schedule - schedule for receive
5841 * @n: entry to schedule
5842 *
5843 * The entry's receive function will be scheduled to run.
5844 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5845 */
5846void __napi_schedule(struct napi_struct *n)
5847{
5848 unsigned long flags;
5849
5850 local_irq_save(flags);
5851 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5852 local_irq_restore(flags);
5853}
5854EXPORT_SYMBOL(__napi_schedule);
5855
5856/**
5857 * napi_schedule_prep - check if napi can be scheduled
5858 * @n: napi context
5859 *
5860 * Test if NAPI routine is already running, and if not mark
5861 * it as running. This is used as a condition variable
5862 * insure only one NAPI poll instance runs. We also make
5863 * sure there is no pending NAPI disable.
5864 */
5865bool napi_schedule_prep(struct napi_struct *n)
5866{
5867 unsigned long val, new;
5868
5869 do {
5870 val = READ_ONCE(n->state);
5871 if (unlikely(val & NAPIF_STATE_DISABLE))
5872 return false;
5873 new = val | NAPIF_STATE_SCHED;
5874
5875 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5876 * This was suggested by Alexander Duyck, as compiler
5877 * emits better code than :
5878 * if (val & NAPIF_STATE_SCHED)
5879 * new |= NAPIF_STATE_MISSED;
5880 */
5881 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5882 NAPIF_STATE_MISSED;
5883 } while (cmpxchg(&n->state, val, new) != val);
5884
5885 return !(val & NAPIF_STATE_SCHED);
5886}
5887EXPORT_SYMBOL(napi_schedule_prep);
5888
5889/**
5890 * __napi_schedule_irqoff - schedule for receive
5891 * @n: entry to schedule
5892 *
5893 * Variant of __napi_schedule() assuming hard irqs are masked
5894 */
5895void __napi_schedule_irqoff(struct napi_struct *n)
5896{
5897 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5898}
5899EXPORT_SYMBOL(__napi_schedule_irqoff);
5900
5901bool napi_complete_done(struct napi_struct *n, int work_done)
5902{
5903 unsigned long flags, val, new;
5904
5905 /*
5906 * 1) Don't let napi dequeue from the cpu poll list
5907 * just in case its running on a different cpu.
5908 * 2) If we are busy polling, do nothing here, we have
5909 * the guarantee we will be called later.
5910 */
5911 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5912 NAPIF_STATE_IN_BUSY_POLL)))
5913 return false;
5914
5915 if (n->gro_bitmask) {
5916 unsigned long timeout = 0;
5917
5918 if (work_done)
5919 timeout = n->dev->gro_flush_timeout;
5920
5921 if (timeout)
5922 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5923 HRTIMER_MODE_REL_PINNED);
5924 else
5925 napi_gro_flush(n, false);
5926 }
5927 if (unlikely(!list_empty(&n->poll_list))) {
5928 /* If n->poll_list is not empty, we need to mask irqs */
5929 local_irq_save(flags);
5930 list_del_init(&n->poll_list);
5931 local_irq_restore(flags);
5932 }
5933
5934 do {
5935 val = READ_ONCE(n->state);
5936
5937 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5938
5939 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5940
5941 /* If STATE_MISSED was set, leave STATE_SCHED set,
5942 * because we will call napi->poll() one more time.
5943 * This C code was suggested by Alexander Duyck to help gcc.
5944 */
5945 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5946 NAPIF_STATE_SCHED;
5947 } while (cmpxchg(&n->state, val, new) != val);
5948
5949 if (unlikely(val & NAPIF_STATE_MISSED)) {
5950 __napi_schedule(n);
5951 return false;
5952 }
5953
5954 return true;
5955}
5956EXPORT_SYMBOL(napi_complete_done);
5957
5958/* must be called under rcu_read_lock(), as we dont take a reference */
5959static struct napi_struct *napi_by_id(unsigned int napi_id)
5960{
5961 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5962 struct napi_struct *napi;
5963
5964 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5965 if (napi->napi_id == napi_id)
5966 return napi;
5967
5968 return NULL;
5969}
5970
5971#if defined(CONFIG_NET_RX_BUSY_POLL)
5972
5973#define BUSY_POLL_BUDGET 8
5974
5975static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5976{
5977 int rc;
5978
5979 /* Busy polling means there is a high chance device driver hard irq
5980 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5981 * set in napi_schedule_prep().
5982 * Since we are about to call napi->poll() once more, we can safely
5983 * clear NAPI_STATE_MISSED.
5984 *
5985 * Note: x86 could use a single "lock and ..." instruction
5986 * to perform these two clear_bit()
5987 */
5988 clear_bit(NAPI_STATE_MISSED, &napi->state);
5989 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5990
5991 local_bh_disable();
5992
5993 /* All we really want here is to re-enable device interrupts.
5994 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5995 */
5996 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5997 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5998 netpoll_poll_unlock(have_poll_lock);
5999 if (rc == BUSY_POLL_BUDGET)
6000 __napi_schedule(napi);
6001 local_bh_enable();
6002}
6003
6004void napi_busy_loop(unsigned int napi_id,
6005 bool (*loop_end)(void *, unsigned long),
6006 void *loop_end_arg)
6007{
6008 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6009 int (*napi_poll)(struct napi_struct *napi, int budget);
6010 void *have_poll_lock = NULL;
6011 struct napi_struct *napi;
6012
6013restart:
6014 napi_poll = NULL;
6015
6016 rcu_read_lock();
6017
6018 napi = napi_by_id(napi_id);
6019 if (!napi)
6020 goto out;
6021
6022 preempt_disable();
6023 for (;;) {
6024 int work = 0;
6025
6026 local_bh_disable();
6027 if (!napi_poll) {
6028 unsigned long val = READ_ONCE(napi->state);
6029
6030 /* If multiple threads are competing for this napi,
6031 * we avoid dirtying napi->state as much as we can.
6032 */
6033 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6034 NAPIF_STATE_IN_BUSY_POLL))
6035 goto count;
6036 if (cmpxchg(&napi->state, val,
6037 val | NAPIF_STATE_IN_BUSY_POLL |
6038 NAPIF_STATE_SCHED) != val)
6039 goto count;
6040 have_poll_lock = netpoll_poll_lock(napi);
6041 napi_poll = napi->poll;
6042 }
6043 work = napi_poll(napi, BUSY_POLL_BUDGET);
6044 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6045count:
6046 if (work > 0)
6047 __NET_ADD_STATS(dev_net(napi->dev),
6048 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6049 local_bh_enable();
6050
6051 if (!loop_end || loop_end(loop_end_arg, start_time))
6052 break;
6053
6054 if (unlikely(need_resched())) {
6055 if (napi_poll)
6056 busy_poll_stop(napi, have_poll_lock);
6057 preempt_enable();
6058 rcu_read_unlock();
6059 cond_resched();
6060 if (loop_end(loop_end_arg, start_time))
6061 return;
6062 goto restart;
6063 }
6064 cpu_relax();
6065 }
6066 if (napi_poll)
6067 busy_poll_stop(napi, have_poll_lock);
6068 preempt_enable();
6069out:
6070 rcu_read_unlock();
6071}
6072EXPORT_SYMBOL(napi_busy_loop);
6073
6074#endif /* CONFIG_NET_RX_BUSY_POLL */
6075
6076static void napi_hash_add(struct napi_struct *napi)
6077{
6078 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6079 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6080 return;
6081
6082 spin_lock(&napi_hash_lock);
6083
6084 /* 0..NR_CPUS range is reserved for sender_cpu use */
6085 do {
6086 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6087 napi_gen_id = MIN_NAPI_ID;
6088 } while (napi_by_id(napi_gen_id));
6089 napi->napi_id = napi_gen_id;
6090
6091 hlist_add_head_rcu(&napi->napi_hash_node,
6092 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6093
6094 spin_unlock(&napi_hash_lock);
6095}
6096
6097/* Warning : caller is responsible to make sure rcu grace period
6098 * is respected before freeing memory containing @napi
6099 */
6100bool napi_hash_del(struct napi_struct *napi)
6101{
6102 bool rcu_sync_needed = false;
6103
6104 spin_lock(&napi_hash_lock);
6105
6106 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6107 rcu_sync_needed = true;
6108 hlist_del_rcu(&napi->napi_hash_node);
6109 }
6110 spin_unlock(&napi_hash_lock);
6111 return rcu_sync_needed;
6112}
6113EXPORT_SYMBOL_GPL(napi_hash_del);
6114
6115static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6116{
6117 struct napi_struct *napi;
6118
6119 napi = container_of(timer, struct napi_struct, timer);
6120
6121 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6122 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6123 */
6124 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6125 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6126 __napi_schedule_irqoff(napi);
6127
6128 return HRTIMER_NORESTART;
6129}
6130
6131static void init_gro_hash(struct napi_struct *napi)
6132{
6133 int i;
6134
6135 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6136 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6137 napi->gro_hash[i].count = 0;
6138 }
6139 napi->gro_bitmask = 0;
6140}
6141
6142void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6143 int (*poll)(struct napi_struct *, int), int weight)
6144{
6145 INIT_LIST_HEAD(&napi->poll_list);
6146 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6147 napi->timer.function = napi_watchdog;
6148 init_gro_hash(napi);
6149 napi->skb = NULL;
6150 napi->poll = poll;
6151 if (weight > NAPI_POLL_WEIGHT)
6152 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6153 weight, dev->name);
6154 napi->weight = weight;
6155 list_add(&napi->dev_list, &dev->napi_list);
6156 napi->dev = dev;
6157#ifdef CONFIG_NETPOLL
6158 napi->poll_owner = -1;
6159#endif
6160 set_bit(NAPI_STATE_SCHED, &napi->state);
6161 napi_hash_add(napi);
6162}
6163EXPORT_SYMBOL(netif_napi_add);
6164
6165void napi_disable(struct napi_struct *n)
6166{
6167 might_sleep();
6168 set_bit(NAPI_STATE_DISABLE, &n->state);
6169
6170 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6171 msleep(1);
6172 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6173 msleep(1);
6174
6175 hrtimer_cancel(&n->timer);
6176
6177 clear_bit(NAPI_STATE_DISABLE, &n->state);
6178}
6179EXPORT_SYMBOL(napi_disable);
6180
6181static void flush_gro_hash(struct napi_struct *napi)
6182{
6183 int i;
6184
6185 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6186 struct sk_buff *skb, *n;
6187
6188 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6189 kfree_skb(skb);
6190 napi->gro_hash[i].count = 0;
6191 }
6192}
6193
6194/* Must be called in process context */
6195void netif_napi_del(struct napi_struct *napi)
6196{
6197 might_sleep();
6198 if (napi_hash_del(napi))
6199 synchronize_net();
6200 list_del_init(&napi->dev_list);
6201 napi_free_frags(napi);
6202
6203 flush_gro_hash(napi);
6204 napi->gro_bitmask = 0;
6205}
6206EXPORT_SYMBOL(netif_napi_del);
6207
6208static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6209{
6210 void *have;
6211 int work, weight;
6212
6213 list_del_init(&n->poll_list);
6214
6215 have = netpoll_poll_lock(n);
6216
6217 weight = n->weight;
6218
6219 /* This NAPI_STATE_SCHED test is for avoiding a race
6220 * with netpoll's poll_napi(). Only the entity which
6221 * obtains the lock and sees NAPI_STATE_SCHED set will
6222 * actually make the ->poll() call. Therefore we avoid
6223 * accidentally calling ->poll() when NAPI is not scheduled.
6224 */
6225 work = 0;
6226 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6227 work = n->poll(n, weight);
6228 trace_napi_poll(n, work, weight);
6229 }
6230
6231 WARN_ON_ONCE(work > weight);
6232
6233 if (likely(work < weight))
6234 goto out_unlock;
6235
6236 /* Drivers must not modify the NAPI state if they
6237 * consume the entire weight. In such cases this code
6238 * still "owns" the NAPI instance and therefore can
6239 * move the instance around on the list at-will.
6240 */
6241 if (unlikely(napi_disable_pending(n))) {
6242 napi_complete(n);
6243 goto out_unlock;
6244 }
6245
6246 if (n->gro_bitmask) {
6247 /* flush too old packets
6248 * If HZ < 1000, flush all packets.
6249 */
6250 napi_gro_flush(n, HZ >= 1000);
6251 }
6252
6253 /* Some drivers may have called napi_schedule
6254 * prior to exhausting their budget.
6255 */
6256 if (unlikely(!list_empty(&n->poll_list))) {
6257 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6258 n->dev ? n->dev->name : "backlog");
6259 goto out_unlock;
6260 }
6261
6262 list_add_tail(&n->poll_list, repoll);
6263
6264out_unlock:
6265 netpoll_poll_unlock(have);
6266
6267 return work;
6268}
6269
6270static __latent_entropy void net_rx_action(struct softirq_action *h)
6271{
6272 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6273 unsigned long time_limit = jiffies +
6274 usecs_to_jiffies(netdev_budget_usecs);
6275 int budget = netdev_budget;
6276 LIST_HEAD(list);
6277 LIST_HEAD(repoll);
6278
6279 local_irq_disable();
6280 list_splice_init(&sd->poll_list, &list);
6281 local_irq_enable();
6282
6283 for (;;) {
6284 struct napi_struct *n;
6285
6286 if (list_empty(&list)) {
6287 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6288 goto out;
6289 break;
6290 }
6291
6292 n = list_first_entry(&list, struct napi_struct, poll_list);
6293 budget -= napi_poll(n, &repoll);
6294
6295 /* If softirq window is exhausted then punt.
6296 * Allow this to run for 2 jiffies since which will allow
6297 * an average latency of 1.5/HZ.
6298 */
6299 if (unlikely(budget <= 0 ||
6300 time_after_eq(jiffies, time_limit))) {
6301 sd->time_squeeze++;
6302 break;
6303 }
6304 }
6305
6306 local_irq_disable();
6307
6308 list_splice_tail_init(&sd->poll_list, &list);
6309 list_splice_tail(&repoll, &list);
6310 list_splice(&list, &sd->poll_list);
6311 if (!list_empty(&sd->poll_list))
6312 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6313
6314 net_rps_action_and_irq_enable(sd);
6315out:
6316 __kfree_skb_flush();
6317}
6318
6319struct netdev_adjacent {
6320 struct net_device *dev;
6321
6322 /* upper master flag, there can only be one master device per list */
6323 bool master;
6324
6325 /* counter for the number of times this device was added to us */
6326 u16 ref_nr;
6327
6328 /* private field for the users */
6329 void *private;
6330
6331 struct list_head list;
6332 struct rcu_head rcu;
6333};
6334
6335static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6336 struct list_head *adj_list)
6337{
6338 struct netdev_adjacent *adj;
6339
6340 list_for_each_entry(adj, adj_list, list) {
6341 if (adj->dev == adj_dev)
6342 return adj;
6343 }
6344 return NULL;
6345}
6346
6347static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6348{
6349 struct net_device *dev = data;
6350
6351 return upper_dev == dev;
6352}
6353
6354/**
6355 * netdev_has_upper_dev - Check if device is linked to an upper device
6356 * @dev: device
6357 * @upper_dev: upper device to check
6358 *
6359 * Find out if a device is linked to specified upper device and return true
6360 * in case it is. Note that this checks only immediate upper device,
6361 * not through a complete stack of devices. The caller must hold the RTNL lock.
6362 */
6363bool netdev_has_upper_dev(struct net_device *dev,
6364 struct net_device *upper_dev)
6365{
6366 ASSERT_RTNL();
6367
6368 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6369 upper_dev);
6370}
6371EXPORT_SYMBOL(netdev_has_upper_dev);
6372
6373/**
6374 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6375 * @dev: device
6376 * @upper_dev: upper device to check
6377 *
6378 * Find out if a device is linked to specified upper device and return true
6379 * in case it is. Note that this checks the entire upper device chain.
6380 * The caller must hold rcu lock.
6381 */
6382
6383bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6384 struct net_device *upper_dev)
6385{
6386 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6387 upper_dev);
6388}
6389EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6390
6391/**
6392 * netdev_has_any_upper_dev - Check if device is linked to some device
6393 * @dev: device
6394 *
6395 * Find out if a device is linked to an upper device and return true in case
6396 * it is. The caller must hold the RTNL lock.
6397 */
6398bool netdev_has_any_upper_dev(struct net_device *dev)
6399{
6400 ASSERT_RTNL();
6401
6402 return !list_empty(&dev->adj_list.upper);
6403}
6404EXPORT_SYMBOL(netdev_has_any_upper_dev);
6405
6406/**
6407 * netdev_master_upper_dev_get - Get master upper device
6408 * @dev: device
6409 *
6410 * Find a master upper device and return pointer to it or NULL in case
6411 * it's not there. The caller must hold the RTNL lock.
6412 */
6413struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6414{
6415 struct netdev_adjacent *upper;
6416
6417 ASSERT_RTNL();
6418
6419 if (list_empty(&dev->adj_list.upper))
6420 return NULL;
6421
6422 upper = list_first_entry(&dev->adj_list.upper,
6423 struct netdev_adjacent, list);
6424 if (likely(upper->master))
6425 return upper->dev;
6426 return NULL;
6427}
6428EXPORT_SYMBOL(netdev_master_upper_dev_get);
6429
6430/**
6431 * netdev_has_any_lower_dev - Check if device is linked to some device
6432 * @dev: device
6433 *
6434 * Find out if a device is linked to a lower device and return true in case
6435 * it is. The caller must hold the RTNL lock.
6436 */
6437static bool netdev_has_any_lower_dev(struct net_device *dev)
6438{
6439 ASSERT_RTNL();
6440
6441 return !list_empty(&dev->adj_list.lower);
6442}
6443
6444void *netdev_adjacent_get_private(struct list_head *adj_list)
6445{
6446 struct netdev_adjacent *adj;
6447
6448 adj = list_entry(adj_list, struct netdev_adjacent, list);
6449
6450 return adj->private;
6451}
6452EXPORT_SYMBOL(netdev_adjacent_get_private);
6453
6454/**
6455 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6456 * @dev: device
6457 * @iter: list_head ** of the current position
6458 *
6459 * Gets the next device from the dev's upper list, starting from iter
6460 * position. The caller must hold RCU read lock.
6461 */
6462struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6463 struct list_head **iter)
6464{
6465 struct netdev_adjacent *upper;
6466
6467 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6468
6469 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6470
6471 if (&upper->list == &dev->adj_list.upper)
6472 return NULL;
6473
6474 *iter = &upper->list;
6475
6476 return upper->dev;
6477}
6478EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6479
6480static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6481 struct list_head **iter)
6482{
6483 struct netdev_adjacent *upper;
6484
6485 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6486
6487 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6488
6489 if (&upper->list == &dev->adj_list.upper)
6490 return NULL;
6491
6492 *iter = &upper->list;
6493
6494 return upper->dev;
6495}
6496
6497int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6498 int (*fn)(struct net_device *dev,
6499 void *data),
6500 void *data)
6501{
6502 struct net_device *udev;
6503 struct list_head *iter;
6504 int ret;
6505
6506 for (iter = &dev->adj_list.upper,
6507 udev = netdev_next_upper_dev_rcu(dev, &iter);
6508 udev;
6509 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6510 /* first is the upper device itself */
6511 ret = fn(udev, data);
6512 if (ret)
6513 return ret;
6514
6515 /* then look at all of its upper devices */
6516 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6517 if (ret)
6518 return ret;
6519 }
6520
6521 return 0;
6522}
6523EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6524
6525/**
6526 * netdev_lower_get_next_private - Get the next ->private from the
6527 * lower neighbour list
6528 * @dev: device
6529 * @iter: list_head ** of the current position
6530 *
6531 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6532 * list, starting from iter position. The caller must hold either hold the
6533 * RTNL lock or its own locking that guarantees that the neighbour lower
6534 * list will remain unchanged.
6535 */
6536void *netdev_lower_get_next_private(struct net_device *dev,
6537 struct list_head **iter)
6538{
6539 struct netdev_adjacent *lower;
6540
6541 lower = list_entry(*iter, struct netdev_adjacent, list);
6542
6543 if (&lower->list == &dev->adj_list.lower)
6544 return NULL;
6545
6546 *iter = lower->list.next;
6547
6548 return lower->private;
6549}
6550EXPORT_SYMBOL(netdev_lower_get_next_private);
6551
6552/**
6553 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6554 * lower neighbour list, RCU
6555 * variant
6556 * @dev: device
6557 * @iter: list_head ** of the current position
6558 *
6559 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6560 * list, starting from iter position. The caller must hold RCU read lock.
6561 */
6562void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6563 struct list_head **iter)
6564{
6565 struct netdev_adjacent *lower;
6566
6567 WARN_ON_ONCE(!rcu_read_lock_held());
6568
6569 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6570
6571 if (&lower->list == &dev->adj_list.lower)
6572 return NULL;
6573
6574 *iter = &lower->list;
6575
6576 return lower->private;
6577}
6578EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6579
6580/**
6581 * netdev_lower_get_next - Get the next device from the lower neighbour
6582 * list
6583 * @dev: device
6584 * @iter: list_head ** of the current position
6585 *
6586 * Gets the next netdev_adjacent from the dev's lower neighbour
6587 * list, starting from iter position. The caller must hold RTNL lock or
6588 * its own locking that guarantees that the neighbour lower
6589 * list will remain unchanged.
6590 */
6591void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6592{
6593 struct netdev_adjacent *lower;
6594
6595 lower = list_entry(*iter, struct netdev_adjacent, list);
6596
6597 if (&lower->list == &dev->adj_list.lower)
6598 return NULL;
6599
6600 *iter = lower->list.next;
6601
6602 return lower->dev;
6603}
6604EXPORT_SYMBOL(netdev_lower_get_next);
6605
6606static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6607 struct list_head **iter)
6608{
6609 struct netdev_adjacent *lower;
6610
6611 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6612
6613 if (&lower->list == &dev->adj_list.lower)
6614 return NULL;
6615
6616 *iter = &lower->list;
6617
6618 return lower->dev;
6619}
6620
6621int netdev_walk_all_lower_dev(struct net_device *dev,
6622 int (*fn)(struct net_device *dev,
6623 void *data),
6624 void *data)
6625{
6626 struct net_device *ldev;
6627 struct list_head *iter;
6628 int ret;
6629
6630 for (iter = &dev->adj_list.lower,
6631 ldev = netdev_next_lower_dev(dev, &iter);
6632 ldev;
6633 ldev = netdev_next_lower_dev(dev, &iter)) {
6634 /* first is the lower device itself */
6635 ret = fn(ldev, data);
6636 if (ret)
6637 return ret;
6638
6639 /* then look at all of its lower devices */
6640 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6641 if (ret)
6642 return ret;
6643 }
6644
6645 return 0;
6646}
6647EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6648
6649static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6650 struct list_head **iter)
6651{
6652 struct netdev_adjacent *lower;
6653
6654 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6655 if (&lower->list == &dev->adj_list.lower)
6656 return NULL;
6657
6658 *iter = &lower->list;
6659
6660 return lower->dev;
6661}
6662
6663int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6664 int (*fn)(struct net_device *dev,
6665 void *data),
6666 void *data)
6667{
6668 struct net_device *ldev;
6669 struct list_head *iter;
6670 int ret;
6671
6672 for (iter = &dev->adj_list.lower,
6673 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6674 ldev;
6675 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6676 /* first is the lower device itself */
6677 ret = fn(ldev, data);
6678 if (ret)
6679 return ret;
6680
6681 /* then look at all of its lower devices */
6682 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6683 if (ret)
6684 return ret;
6685 }
6686
6687 return 0;
6688}
6689EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6690
6691/**
6692 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6693 * lower neighbour list, RCU
6694 * variant
6695 * @dev: device
6696 *
6697 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6698 * list. The caller must hold RCU read lock.
6699 */
6700void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6701{
6702 struct netdev_adjacent *lower;
6703
6704 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6705 struct netdev_adjacent, list);
6706 if (lower)
6707 return lower->private;
6708 return NULL;
6709}
6710EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6711
6712/**
6713 * netdev_master_upper_dev_get_rcu - Get master upper device
6714 * @dev: device
6715 *
6716 * Find a master upper device and return pointer to it or NULL in case
6717 * it's not there. The caller must hold the RCU read lock.
6718 */
6719struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6720{
6721 struct netdev_adjacent *upper;
6722
6723 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6724 struct netdev_adjacent, list);
6725 if (upper && likely(upper->master))
6726 return upper->dev;
6727 return NULL;
6728}
6729EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6730
6731static int netdev_adjacent_sysfs_add(struct net_device *dev,
6732 struct net_device *adj_dev,
6733 struct list_head *dev_list)
6734{
6735 char linkname[IFNAMSIZ+7];
6736
6737 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6738 "upper_%s" : "lower_%s", adj_dev->name);
6739 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6740 linkname);
6741}
6742static void netdev_adjacent_sysfs_del(struct net_device *dev,
6743 char *name,
6744 struct list_head *dev_list)
6745{
6746 char linkname[IFNAMSIZ+7];
6747
6748 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6749 "upper_%s" : "lower_%s", name);
6750 sysfs_remove_link(&(dev->dev.kobj), linkname);
6751}
6752
6753static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6754 struct net_device *adj_dev,
6755 struct list_head *dev_list)
6756{
6757 return (dev_list == &dev->adj_list.upper ||
6758 dev_list == &dev->adj_list.lower) &&
6759 net_eq(dev_net(dev), dev_net(adj_dev));
6760}
6761
6762static int __netdev_adjacent_dev_insert(struct net_device *dev,
6763 struct net_device *adj_dev,
6764 struct list_head *dev_list,
6765 void *private, bool master)
6766{
6767 struct netdev_adjacent *adj;
6768 int ret;
6769
6770 adj = __netdev_find_adj(adj_dev, dev_list);
6771
6772 if (adj) {
6773 adj->ref_nr += 1;
6774 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6775 dev->name, adj_dev->name, adj->ref_nr);
6776
6777 return 0;
6778 }
6779
6780 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6781 if (!adj)
6782 return -ENOMEM;
6783
6784 adj->dev = adj_dev;
6785 adj->master = master;
6786 adj->ref_nr = 1;
6787 adj->private = private;
6788 dev_hold(adj_dev);
6789
6790 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6791 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6792
6793 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6794 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6795 if (ret)
6796 goto free_adj;
6797 }
6798
6799 /* Ensure that master link is always the first item in list. */
6800 if (master) {
6801 ret = sysfs_create_link(&(dev->dev.kobj),
6802 &(adj_dev->dev.kobj), "master");
6803 if (ret)
6804 goto remove_symlinks;
6805
6806 list_add_rcu(&adj->list, dev_list);
6807 } else {
6808 list_add_tail_rcu(&adj->list, dev_list);
6809 }
6810
6811 return 0;
6812
6813remove_symlinks:
6814 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6815 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6816free_adj:
6817 kfree(adj);
6818 dev_put(adj_dev);
6819
6820 return ret;
6821}
6822
6823static void __netdev_adjacent_dev_remove(struct net_device *dev,
6824 struct net_device *adj_dev,
6825 u16 ref_nr,
6826 struct list_head *dev_list)
6827{
6828 struct netdev_adjacent *adj;
6829
6830 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6831 dev->name, adj_dev->name, ref_nr);
6832
6833 adj = __netdev_find_adj(adj_dev, dev_list);
6834
6835 if (!adj) {
6836 pr_err("Adjacency does not exist for device %s from %s\n",
6837 dev->name, adj_dev->name);
6838 WARN_ON(1);
6839 return;
6840 }
6841
6842 if (adj->ref_nr > ref_nr) {
6843 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6844 dev->name, adj_dev->name, ref_nr,
6845 adj->ref_nr - ref_nr);
6846 adj->ref_nr -= ref_nr;
6847 return;
6848 }
6849
6850 if (adj->master)
6851 sysfs_remove_link(&(dev->dev.kobj), "master");
6852
6853 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6854 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6855
6856 list_del_rcu(&adj->list);
6857 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6858 adj_dev->name, dev->name, adj_dev->name);
6859 dev_put(adj_dev);
6860 kfree_rcu(adj, rcu);
6861}
6862
6863static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6864 struct net_device *upper_dev,
6865 struct list_head *up_list,
6866 struct list_head *down_list,
6867 void *private, bool master)
6868{
6869 int ret;
6870
6871 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6872 private, master);
6873 if (ret)
6874 return ret;
6875
6876 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6877 private, false);
6878 if (ret) {
6879 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6880 return ret;
6881 }
6882
6883 return 0;
6884}
6885
6886static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6887 struct net_device *upper_dev,
6888 u16 ref_nr,
6889 struct list_head *up_list,
6890 struct list_head *down_list)
6891{
6892 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6893 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6894}
6895
6896static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6897 struct net_device *upper_dev,
6898 void *private, bool master)
6899{
6900 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6901 &dev->adj_list.upper,
6902 &upper_dev->adj_list.lower,
6903 private, master);
6904}
6905
6906static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6907 struct net_device *upper_dev)
6908{
6909 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6910 &dev->adj_list.upper,
6911 &upper_dev->adj_list.lower);
6912}
6913
6914static int __netdev_upper_dev_link(struct net_device *dev,
6915 struct net_device *upper_dev, bool master,
6916 void *upper_priv, void *upper_info,
6917 struct netlink_ext_ack *extack)
6918{
6919 struct netdev_notifier_changeupper_info changeupper_info = {
6920 .info = {
6921 .dev = dev,
6922 .extack = extack,
6923 },
6924 .upper_dev = upper_dev,
6925 .master = master,
6926 .linking = true,
6927 .upper_info = upper_info,
6928 };
6929 struct net_device *master_dev;
6930 int ret = 0;
6931
6932 ASSERT_RTNL();
6933
6934 if (dev == upper_dev)
6935 return -EBUSY;
6936
6937 /* To prevent loops, check if dev is not upper device to upper_dev. */
6938 if (netdev_has_upper_dev(upper_dev, dev))
6939 return -EBUSY;
6940
6941 if (!master) {
6942 if (netdev_has_upper_dev(dev, upper_dev))
6943 return -EEXIST;
6944 } else {
6945 master_dev = netdev_master_upper_dev_get(dev);
6946 if (master_dev)
6947 return master_dev == upper_dev ? -EEXIST : -EBUSY;
6948 }
6949
6950 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6951 &changeupper_info.info);
6952 ret = notifier_to_errno(ret);
6953 if (ret)
6954 return ret;
6955
6956 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6957 master);
6958 if (ret)
6959 return ret;
6960
6961 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6962 &changeupper_info.info);
6963 ret = notifier_to_errno(ret);
6964 if (ret)
6965 goto rollback;
6966
6967 return 0;
6968
6969rollback:
6970 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6971
6972 return ret;
6973}
6974
6975/**
6976 * netdev_upper_dev_link - Add a link to the upper device
6977 * @dev: device
6978 * @upper_dev: new upper device
6979 * @extack: netlink extended ack
6980 *
6981 * Adds a link to device which is upper to this one. The caller must hold
6982 * the RTNL lock. On a failure a negative errno code is returned.
6983 * On success the reference counts are adjusted and the function
6984 * returns zero.
6985 */
6986int netdev_upper_dev_link(struct net_device *dev,
6987 struct net_device *upper_dev,
6988 struct netlink_ext_ack *extack)
6989{
6990 return __netdev_upper_dev_link(dev, upper_dev, false,
6991 NULL, NULL, extack);
6992}
6993EXPORT_SYMBOL(netdev_upper_dev_link);
6994
6995/**
6996 * netdev_master_upper_dev_link - Add a master link to the upper device
6997 * @dev: device
6998 * @upper_dev: new upper device
6999 * @upper_priv: upper device private
7000 * @upper_info: upper info to be passed down via notifier
7001 * @extack: netlink extended ack
7002 *
7003 * Adds a link to device which is upper to this one. In this case, only
7004 * one master upper device can be linked, although other non-master devices
7005 * might be linked as well. The caller must hold the RTNL lock.
7006 * On a failure a negative errno code is returned. On success the reference
7007 * counts are adjusted and the function returns zero.
7008 */
7009int netdev_master_upper_dev_link(struct net_device *dev,
7010 struct net_device *upper_dev,
7011 void *upper_priv, void *upper_info,
7012 struct netlink_ext_ack *extack)
7013{
7014 return __netdev_upper_dev_link(dev, upper_dev, true,
7015 upper_priv, upper_info, extack);
7016}
7017EXPORT_SYMBOL(netdev_master_upper_dev_link);
7018
7019/**
7020 * netdev_upper_dev_unlink - Removes a link to upper device
7021 * @dev: device
7022 * @upper_dev: new upper device
7023 *
7024 * Removes a link to device which is upper to this one. The caller must hold
7025 * the RTNL lock.
7026 */
7027void netdev_upper_dev_unlink(struct net_device *dev,
7028 struct net_device *upper_dev)
7029{
7030 struct netdev_notifier_changeupper_info changeupper_info = {
7031 .info = {
7032 .dev = dev,
7033 },
7034 .upper_dev = upper_dev,
7035 .linking = false,
7036 };
7037
7038 ASSERT_RTNL();
7039
7040 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7041
7042 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7043 &changeupper_info.info);
7044
7045 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7046
7047 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7048 &changeupper_info.info);
7049}
7050EXPORT_SYMBOL(netdev_upper_dev_unlink);
7051
7052/**
7053 * netdev_bonding_info_change - Dispatch event about slave change
7054 * @dev: device
7055 * @bonding_info: info to dispatch
7056 *
7057 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7058 * The caller must hold the RTNL lock.
7059 */
7060void netdev_bonding_info_change(struct net_device *dev,
7061 struct netdev_bonding_info *bonding_info)
7062{
7063 struct netdev_notifier_bonding_info info = {
7064 .info.dev = dev,
7065 };
7066
7067 memcpy(&info.bonding_info, bonding_info,
7068 sizeof(struct netdev_bonding_info));
7069 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7070 &info.info);
7071}
7072EXPORT_SYMBOL(netdev_bonding_info_change);
7073
7074static void netdev_adjacent_add_links(struct net_device *dev)
7075{
7076 struct netdev_adjacent *iter;
7077
7078 struct net *net = dev_net(dev);
7079
7080 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7081 if (!net_eq(net, dev_net(iter->dev)))
7082 continue;
7083 netdev_adjacent_sysfs_add(iter->dev, dev,
7084 &iter->dev->adj_list.lower);
7085 netdev_adjacent_sysfs_add(dev, iter->dev,
7086 &dev->adj_list.upper);
7087 }
7088
7089 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7090 if (!net_eq(net, dev_net(iter->dev)))
7091 continue;
7092 netdev_adjacent_sysfs_add(iter->dev, dev,
7093 &iter->dev->adj_list.upper);
7094 netdev_adjacent_sysfs_add(dev, iter->dev,
7095 &dev->adj_list.lower);
7096 }
7097}
7098
7099static void netdev_adjacent_del_links(struct net_device *dev)
7100{
7101 struct netdev_adjacent *iter;
7102
7103 struct net *net = dev_net(dev);
7104
7105 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7106 if (!net_eq(net, dev_net(iter->dev)))
7107 continue;
7108 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7109 &iter->dev->adj_list.lower);
7110 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7111 &dev->adj_list.upper);
7112 }
7113
7114 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7115 if (!net_eq(net, dev_net(iter->dev)))
7116 continue;
7117 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7118 &iter->dev->adj_list.upper);
7119 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7120 &dev->adj_list.lower);
7121 }
7122}
7123
7124void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7125{
7126 struct netdev_adjacent *iter;
7127
7128 struct net *net = dev_net(dev);
7129
7130 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7131 if (!net_eq(net, dev_net(iter->dev)))
7132 continue;
7133 netdev_adjacent_sysfs_del(iter->dev, oldname,
7134 &iter->dev->adj_list.lower);
7135 netdev_adjacent_sysfs_add(iter->dev, dev,
7136 &iter->dev->adj_list.lower);
7137 }
7138
7139 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7140 if (!net_eq(net, dev_net(iter->dev)))
7141 continue;
7142 netdev_adjacent_sysfs_del(iter->dev, oldname,
7143 &iter->dev->adj_list.upper);
7144 netdev_adjacent_sysfs_add(iter->dev, dev,
7145 &iter->dev->adj_list.upper);
7146 }
7147}
7148
7149void *netdev_lower_dev_get_private(struct net_device *dev,
7150 struct net_device *lower_dev)
7151{
7152 struct netdev_adjacent *lower;
7153
7154 if (!lower_dev)
7155 return NULL;
7156 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7157 if (!lower)
7158 return NULL;
7159
7160 return lower->private;
7161}
7162EXPORT_SYMBOL(netdev_lower_dev_get_private);
7163
7164
7165int dev_get_nest_level(struct net_device *dev)
7166{
7167 struct net_device *lower = NULL;
7168 struct list_head *iter;
7169 int max_nest = -1;
7170 int nest;
7171
7172 ASSERT_RTNL();
7173
7174 netdev_for_each_lower_dev(dev, lower, iter) {
7175 nest = dev_get_nest_level(lower);
7176 if (max_nest < nest)
7177 max_nest = nest;
7178 }
7179
7180 return max_nest + 1;
7181}
7182EXPORT_SYMBOL(dev_get_nest_level);
7183
7184/**
7185 * netdev_lower_change - Dispatch event about lower device state change
7186 * @lower_dev: device
7187 * @lower_state_info: state to dispatch
7188 *
7189 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7190 * The caller must hold the RTNL lock.
7191 */
7192void netdev_lower_state_changed(struct net_device *lower_dev,
7193 void *lower_state_info)
7194{
7195 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7196 .info.dev = lower_dev,
7197 };
7198
7199 ASSERT_RTNL();
7200 changelowerstate_info.lower_state_info = lower_state_info;
7201 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7202 &changelowerstate_info.info);
7203}
7204EXPORT_SYMBOL(netdev_lower_state_changed);
7205
7206static void dev_change_rx_flags(struct net_device *dev, int flags)
7207{
7208 const struct net_device_ops *ops = dev->netdev_ops;
7209
7210 if (ops->ndo_change_rx_flags)
7211 ops->ndo_change_rx_flags(dev, flags);
7212}
7213
7214static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7215{
7216 unsigned int old_flags = dev->flags;
7217 kuid_t uid;
7218 kgid_t gid;
7219
7220 ASSERT_RTNL();
7221
7222 dev->flags |= IFF_PROMISC;
7223 dev->promiscuity += inc;
7224 if (dev->promiscuity == 0) {
7225 /*
7226 * Avoid overflow.
7227 * If inc causes overflow, untouch promisc and return error.
7228 */
7229 if (inc < 0)
7230 dev->flags &= ~IFF_PROMISC;
7231 else {
7232 dev->promiscuity -= inc;
7233 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7234 dev->name);
7235 return -EOVERFLOW;
7236 }
7237 }
7238 if (dev->flags != old_flags) {
7239 pr_info("device %s %s promiscuous mode\n",
7240 dev->name,
7241 dev->flags & IFF_PROMISC ? "entered" : "left");
7242 if (audit_enabled) {
7243 current_uid_gid(&uid, &gid);
7244 audit_log(audit_context(), GFP_ATOMIC,
7245 AUDIT_ANOM_PROMISCUOUS,
7246 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7247 dev->name, (dev->flags & IFF_PROMISC),
7248 (old_flags & IFF_PROMISC),
7249 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7250 from_kuid(&init_user_ns, uid),
7251 from_kgid(&init_user_ns, gid),
7252 audit_get_sessionid(current));
7253 }
7254
7255 dev_change_rx_flags(dev, IFF_PROMISC);
7256 }
7257 if (notify)
7258 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7259 return 0;
7260}
7261
7262/**
7263 * dev_set_promiscuity - update promiscuity count on a device
7264 * @dev: device
7265 * @inc: modifier
7266 *
7267 * Add or remove promiscuity from a device. While the count in the device
7268 * remains above zero the interface remains promiscuous. Once it hits zero
7269 * the device reverts back to normal filtering operation. A negative inc
7270 * value is used to drop promiscuity on the device.
7271 * Return 0 if successful or a negative errno code on error.
7272 */
7273int dev_set_promiscuity(struct net_device *dev, int inc)
7274{
7275 unsigned int old_flags = dev->flags;
7276 int err;
7277
7278 err = __dev_set_promiscuity(dev, inc, true);
7279 if (err < 0)
7280 return err;
7281 if (dev->flags != old_flags)
7282 dev_set_rx_mode(dev);
7283 return err;
7284}
7285EXPORT_SYMBOL(dev_set_promiscuity);
7286
7287static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7288{
7289 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7290
7291 ASSERT_RTNL();
7292
7293 dev->flags |= IFF_ALLMULTI;
7294 dev->allmulti += inc;
7295 if (dev->allmulti == 0) {
7296 /*
7297 * Avoid overflow.
7298 * If inc causes overflow, untouch allmulti and return error.
7299 */
7300 if (inc < 0)
7301 dev->flags &= ~IFF_ALLMULTI;
7302 else {
7303 dev->allmulti -= inc;
7304 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7305 dev->name);
7306 return -EOVERFLOW;
7307 }
7308 }
7309 if (dev->flags ^ old_flags) {
7310 dev_change_rx_flags(dev, IFF_ALLMULTI);
7311 dev_set_rx_mode(dev);
7312 if (notify)
7313 __dev_notify_flags(dev, old_flags,
7314 dev->gflags ^ old_gflags);
7315 }
7316 return 0;
7317}
7318
7319/**
7320 * dev_set_allmulti - update allmulti count on a device
7321 * @dev: device
7322 * @inc: modifier
7323 *
7324 * Add or remove reception of all multicast frames to a device. While the
7325 * count in the device remains above zero the interface remains listening
7326 * to all interfaces. Once it hits zero the device reverts back to normal
7327 * filtering operation. A negative @inc value is used to drop the counter
7328 * when releasing a resource needing all multicasts.
7329 * Return 0 if successful or a negative errno code on error.
7330 */
7331
7332int dev_set_allmulti(struct net_device *dev, int inc)
7333{
7334 return __dev_set_allmulti(dev, inc, true);
7335}
7336EXPORT_SYMBOL(dev_set_allmulti);
7337
7338/*
7339 * Upload unicast and multicast address lists to device and
7340 * configure RX filtering. When the device doesn't support unicast
7341 * filtering it is put in promiscuous mode while unicast addresses
7342 * are present.
7343 */
7344void __dev_set_rx_mode(struct net_device *dev)
7345{
7346 const struct net_device_ops *ops = dev->netdev_ops;
7347
7348 /* dev_open will call this function so the list will stay sane. */
7349 if (!(dev->flags&IFF_UP))
7350 return;
7351
7352 if (!netif_device_present(dev))
7353 return;
7354
7355 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7356 /* Unicast addresses changes may only happen under the rtnl,
7357 * therefore calling __dev_set_promiscuity here is safe.
7358 */
7359 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7360 __dev_set_promiscuity(dev, 1, false);
7361 dev->uc_promisc = true;
7362 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7363 __dev_set_promiscuity(dev, -1, false);
7364 dev->uc_promisc = false;
7365 }
7366 }
7367
7368 if (ops->ndo_set_rx_mode)
7369 ops->ndo_set_rx_mode(dev);
7370}
7371
7372void dev_set_rx_mode(struct net_device *dev)
7373{
7374 netif_addr_lock_bh(dev);
7375 __dev_set_rx_mode(dev);
7376 netif_addr_unlock_bh(dev);
7377}
7378
7379/**
7380 * dev_get_flags - get flags reported to userspace
7381 * @dev: device
7382 *
7383 * Get the combination of flag bits exported through APIs to userspace.
7384 */
7385unsigned int dev_get_flags(const struct net_device *dev)
7386{
7387 unsigned int flags;
7388
7389 flags = (dev->flags & ~(IFF_PROMISC |
7390 IFF_ALLMULTI |
7391 IFF_RUNNING |
7392 IFF_LOWER_UP |
7393 IFF_DORMANT)) |
7394 (dev->gflags & (IFF_PROMISC |
7395 IFF_ALLMULTI));
7396
7397 if (netif_running(dev)) {
7398 if (netif_oper_up(dev))
7399 flags |= IFF_RUNNING;
7400 if (netif_carrier_ok(dev))
7401 flags |= IFF_LOWER_UP;
7402 if (netif_dormant(dev))
7403 flags |= IFF_DORMANT;
7404 }
7405
7406 return flags;
7407}
7408EXPORT_SYMBOL(dev_get_flags);
7409
7410int __dev_change_flags(struct net_device *dev, unsigned int flags)
7411{
7412 unsigned int old_flags = dev->flags;
7413 int ret;
7414
7415 ASSERT_RTNL();
7416
7417 /*
7418 * Set the flags on our device.
7419 */
7420
7421 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7422 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7423 IFF_AUTOMEDIA)) |
7424 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7425 IFF_ALLMULTI));
7426
7427 /*
7428 * Load in the correct multicast list now the flags have changed.
7429 */
7430
7431 if ((old_flags ^ flags) & IFF_MULTICAST)
7432 dev_change_rx_flags(dev, IFF_MULTICAST);
7433
7434 dev_set_rx_mode(dev);
7435
7436 /*
7437 * Have we downed the interface. We handle IFF_UP ourselves
7438 * according to user attempts to set it, rather than blindly
7439 * setting it.
7440 */
7441
7442 ret = 0;
7443 if ((old_flags ^ flags) & IFF_UP) {
7444 if (old_flags & IFF_UP)
7445 __dev_close(dev);
7446 else
7447 ret = __dev_open(dev);
7448 }
7449
7450 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7451 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7452 unsigned int old_flags = dev->flags;
7453
7454 dev->gflags ^= IFF_PROMISC;
7455
7456 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7457 if (dev->flags != old_flags)
7458 dev_set_rx_mode(dev);
7459 }
7460
7461 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7462 * is important. Some (broken) drivers set IFF_PROMISC, when
7463 * IFF_ALLMULTI is requested not asking us and not reporting.
7464 */
7465 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7466 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7467
7468 dev->gflags ^= IFF_ALLMULTI;
7469 __dev_set_allmulti(dev, inc, false);
7470 }
7471
7472 return ret;
7473}
7474
7475void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7476 unsigned int gchanges)
7477{
7478 unsigned int changes = dev->flags ^ old_flags;
7479
7480 if (gchanges)
7481 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7482
7483 if (changes & IFF_UP) {
7484 if (dev->flags & IFF_UP)
7485 call_netdevice_notifiers(NETDEV_UP, dev);
7486 else
7487 call_netdevice_notifiers(NETDEV_DOWN, dev);
7488 }
7489
7490 if (dev->flags & IFF_UP &&
7491 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7492 struct netdev_notifier_change_info change_info = {
7493 .info = {
7494 .dev = dev,
7495 },
7496 .flags_changed = changes,
7497 };
7498
7499 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7500 }
7501}
7502
7503/**
7504 * dev_change_flags - change device settings
7505 * @dev: device
7506 * @flags: device state flags
7507 *
7508 * Change settings on device based state flags. The flags are
7509 * in the userspace exported format.
7510 */
7511int dev_change_flags(struct net_device *dev, unsigned int flags)
7512{
7513 int ret;
7514 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7515
7516 ret = __dev_change_flags(dev, flags);
7517 if (ret < 0)
7518 return ret;
7519
7520 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7521 __dev_notify_flags(dev, old_flags, changes);
7522 return ret;
7523}
7524EXPORT_SYMBOL(dev_change_flags);
7525
7526int __dev_set_mtu(struct net_device *dev, int new_mtu)
7527{
7528 const struct net_device_ops *ops = dev->netdev_ops;
7529
7530 if (ops->ndo_change_mtu)
7531 return ops->ndo_change_mtu(dev, new_mtu);
7532
7533 dev->mtu = new_mtu;
7534 return 0;
7535}
7536EXPORT_SYMBOL(__dev_set_mtu);
7537
7538/**
7539 * dev_set_mtu_ext - Change maximum transfer unit
7540 * @dev: device
7541 * @new_mtu: new transfer unit
7542 * @extack: netlink extended ack
7543 *
7544 * Change the maximum transfer size of the network device.
7545 */
7546int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7547 struct netlink_ext_ack *extack)
7548{
7549 int err, orig_mtu;
7550
7551 if (new_mtu == dev->mtu)
7552 return 0;
7553
7554 /* MTU must be positive, and in range */
7555 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7556 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7557 return -EINVAL;
7558 }
7559
7560 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7561 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7562 return -EINVAL;
7563 }
7564
7565 if (!netif_device_present(dev))
7566 return -ENODEV;
7567
7568 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7569 err = notifier_to_errno(err);
7570 if (err)
7571 return err;
7572
7573 orig_mtu = dev->mtu;
7574 err = __dev_set_mtu(dev, new_mtu);
7575
7576 if (!err) {
7577 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7578 err = notifier_to_errno(err);
7579 if (err) {
7580 /* setting mtu back and notifying everyone again,
7581 * so that they have a chance to revert changes.
7582 */
7583 __dev_set_mtu(dev, orig_mtu);
7584 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7585 }
7586 }
7587 return err;
7588}
7589
7590int dev_set_mtu(struct net_device *dev, int new_mtu)
7591{
7592 struct netlink_ext_ack extack;
7593 int err;
7594
7595 memset(&extack, 0, sizeof(extack));
7596 err = dev_set_mtu_ext(dev, new_mtu, &extack);
7597 if (err && extack._msg)
7598 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7599 return err;
7600}
7601EXPORT_SYMBOL(dev_set_mtu);
7602
7603/**
7604 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7605 * @dev: device
7606 * @new_len: new tx queue length
7607 */
7608int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7609{
7610 unsigned int orig_len = dev->tx_queue_len;
7611 int res;
7612
7613 if (new_len != (unsigned int)new_len)
7614 return -ERANGE;
7615
7616 if (new_len != orig_len) {
7617 dev->tx_queue_len = new_len;
7618 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7619 res = notifier_to_errno(res);
7620 if (res)
7621 goto err_rollback;
7622 res = dev_qdisc_change_tx_queue_len(dev);
7623 if (res)
7624 goto err_rollback;
7625 }
7626
7627 return 0;
7628
7629err_rollback:
7630 netdev_err(dev, "refused to change device tx_queue_len\n");
7631 dev->tx_queue_len = orig_len;
7632 return res;
7633}
7634
7635/**
7636 * dev_set_group - Change group this device belongs to
7637 * @dev: device
7638 * @new_group: group this device should belong to
7639 */
7640void dev_set_group(struct net_device *dev, int new_group)
7641{
7642 dev->group = new_group;
7643}
7644EXPORT_SYMBOL(dev_set_group);
7645
7646/**
7647 * dev_set_mac_address - Change Media Access Control Address
7648 * @dev: device
7649 * @sa: new address
7650 *
7651 * Change the hardware (MAC) address of the device
7652 */
7653int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7654{
7655 const struct net_device_ops *ops = dev->netdev_ops;
7656 int err;
7657
7658 if (!ops->ndo_set_mac_address)
7659 return -EOPNOTSUPP;
7660 if (sa->sa_family != dev->type)
7661 return -EINVAL;
7662 if (!netif_device_present(dev))
7663 return -ENODEV;
7664 err = ops->ndo_set_mac_address(dev, sa);
7665 if (err)
7666 return err;
7667 dev->addr_assign_type = NET_ADDR_SET;
7668 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7669 add_device_randomness(dev->dev_addr, dev->addr_len);
7670 return 0;
7671}
7672EXPORT_SYMBOL(dev_set_mac_address);
7673
7674/**
7675 * dev_change_carrier - Change device carrier
7676 * @dev: device
7677 * @new_carrier: new value
7678 *
7679 * Change device carrier
7680 */
7681int dev_change_carrier(struct net_device *dev, bool new_carrier)
7682{
7683 const struct net_device_ops *ops = dev->netdev_ops;
7684
7685 if (!ops->ndo_change_carrier)
7686 return -EOPNOTSUPP;
7687 if (!netif_device_present(dev))
7688 return -ENODEV;
7689 return ops->ndo_change_carrier(dev, new_carrier);
7690}
7691EXPORT_SYMBOL(dev_change_carrier);
7692
7693/**
7694 * dev_get_phys_port_id - Get device physical port ID
7695 * @dev: device
7696 * @ppid: port ID
7697 *
7698 * Get device physical port ID
7699 */
7700int dev_get_phys_port_id(struct net_device *dev,
7701 struct netdev_phys_item_id *ppid)
7702{
7703 const struct net_device_ops *ops = dev->netdev_ops;
7704
7705 if (!ops->ndo_get_phys_port_id)
7706 return -EOPNOTSUPP;
7707 return ops->ndo_get_phys_port_id(dev, ppid);
7708}
7709EXPORT_SYMBOL(dev_get_phys_port_id);
7710
7711/**
7712 * dev_get_phys_port_name - Get device physical port name
7713 * @dev: device
7714 * @name: port name
7715 * @len: limit of bytes to copy to name
7716 *
7717 * Get device physical port name
7718 */
7719int dev_get_phys_port_name(struct net_device *dev,
7720 char *name, size_t len)
7721{
7722 const struct net_device_ops *ops = dev->netdev_ops;
7723
7724 if (!ops->ndo_get_phys_port_name)
7725 return -EOPNOTSUPP;
7726 return ops->ndo_get_phys_port_name(dev, name, len);
7727}
7728EXPORT_SYMBOL(dev_get_phys_port_name);
7729
7730/**
7731 * dev_change_proto_down - update protocol port state information
7732 * @dev: device
7733 * @proto_down: new value
7734 *
7735 * This info can be used by switch drivers to set the phys state of the
7736 * port.
7737 */
7738int dev_change_proto_down(struct net_device *dev, bool proto_down)
7739{
7740 const struct net_device_ops *ops = dev->netdev_ops;
7741
7742 if (!ops->ndo_change_proto_down)
7743 return -EOPNOTSUPP;
7744 if (!netif_device_present(dev))
7745 return -ENODEV;
7746 return ops->ndo_change_proto_down(dev, proto_down);
7747}
7748EXPORT_SYMBOL(dev_change_proto_down);
7749
7750u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7751 enum bpf_netdev_command cmd)
7752{
7753 struct netdev_bpf xdp;
7754
7755 if (!bpf_op)
7756 return 0;
7757
7758 memset(&xdp, 0, sizeof(xdp));
7759 xdp.command = cmd;
7760
7761 /* Query must always succeed. */
7762 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7763
7764 return xdp.prog_id;
7765}
7766
7767static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7768 struct netlink_ext_ack *extack, u32 flags,
7769 struct bpf_prog *prog)
7770{
7771 struct netdev_bpf xdp;
7772
7773 memset(&xdp, 0, sizeof(xdp));
7774 if (flags & XDP_FLAGS_HW_MODE)
7775 xdp.command = XDP_SETUP_PROG_HW;
7776 else
7777 xdp.command = XDP_SETUP_PROG;
7778 xdp.extack = extack;
7779 xdp.flags = flags;
7780 xdp.prog = prog;
7781
7782 return bpf_op(dev, &xdp);
7783}
7784
7785static void dev_xdp_uninstall(struct net_device *dev)
7786{
7787 struct netdev_bpf xdp;
7788 bpf_op_t ndo_bpf;
7789
7790 /* Remove generic XDP */
7791 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7792
7793 /* Remove from the driver */
7794 ndo_bpf = dev->netdev_ops->ndo_bpf;
7795 if (!ndo_bpf)
7796 return;
7797
7798 memset(&xdp, 0, sizeof(xdp));
7799 xdp.command = XDP_QUERY_PROG;
7800 WARN_ON(ndo_bpf(dev, &xdp));
7801 if (xdp.prog_id)
7802 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7803 NULL));
7804
7805 /* Remove HW offload */
7806 memset(&xdp, 0, sizeof(xdp));
7807 xdp.command = XDP_QUERY_PROG_HW;
7808 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7809 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7810 NULL));
7811}
7812
7813/**
7814 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7815 * @dev: device
7816 * @extack: netlink extended ack
7817 * @fd: new program fd or negative value to clear
7818 * @flags: xdp-related flags
7819 *
7820 * Set or clear a bpf program for a device
7821 */
7822int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7823 int fd, u32 flags)
7824{
7825 const struct net_device_ops *ops = dev->netdev_ops;
7826 enum bpf_netdev_command query;
7827 struct bpf_prog *prog = NULL;
7828 bpf_op_t bpf_op, bpf_chk;
7829 int err;
7830
7831 ASSERT_RTNL();
7832
7833 query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7834
7835 bpf_op = bpf_chk = ops->ndo_bpf;
7836 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7837 return -EOPNOTSUPP;
7838 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7839 bpf_op = generic_xdp_install;
7840 if (bpf_op == bpf_chk)
7841 bpf_chk = generic_xdp_install;
7842
7843 if (fd >= 0) {
7844 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7845 __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7846 return -EEXIST;
7847 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7848 __dev_xdp_query(dev, bpf_op, query))
7849 return -EBUSY;
7850
7851 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7852 bpf_op == ops->ndo_bpf);
7853 if (IS_ERR(prog))
7854 return PTR_ERR(prog);
7855
7856 if (!(flags & XDP_FLAGS_HW_MODE) &&
7857 bpf_prog_is_dev_bound(prog->aux)) {
7858 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7859 bpf_prog_put(prog);
7860 return -EINVAL;
7861 }
7862 }
7863
7864 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7865 if (err < 0 && prog)
7866 bpf_prog_put(prog);
7867
7868 return err;
7869}
7870
7871/**
7872 * dev_new_index - allocate an ifindex
7873 * @net: the applicable net namespace
7874 *
7875 * Returns a suitable unique value for a new device interface
7876 * number. The caller must hold the rtnl semaphore or the
7877 * dev_base_lock to be sure it remains unique.
7878 */
7879static int dev_new_index(struct net *net)
7880{
7881 int ifindex = net->ifindex;
7882
7883 for (;;) {
7884 if (++ifindex <= 0)
7885 ifindex = 1;
7886 if (!__dev_get_by_index(net, ifindex))
7887 return net->ifindex = ifindex;
7888 }
7889}
7890
7891/* Delayed registration/unregisteration */
7892static LIST_HEAD(net_todo_list);
7893DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7894
7895static void net_set_todo(struct net_device *dev)
7896{
7897 list_add_tail(&dev->todo_list, &net_todo_list);
7898 dev_net(dev)->dev_unreg_count++;
7899}
7900
7901static void rollback_registered_many(struct list_head *head)
7902{
7903 struct net_device *dev, *tmp;
7904 LIST_HEAD(close_head);
7905
7906 BUG_ON(dev_boot_phase);
7907 ASSERT_RTNL();
7908
7909 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7910 /* Some devices call without registering
7911 * for initialization unwind. Remove those
7912 * devices and proceed with the remaining.
7913 */
7914 if (dev->reg_state == NETREG_UNINITIALIZED) {
7915 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7916 dev->name, dev);
7917
7918 WARN_ON(1);
7919 list_del(&dev->unreg_list);
7920 continue;
7921 }
7922 dev->dismantle = true;
7923 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7924 }
7925
7926 /* If device is running, close it first. */
7927 list_for_each_entry(dev, head, unreg_list)
7928 list_add_tail(&dev->close_list, &close_head);
7929 dev_close_many(&close_head, true);
7930
7931 list_for_each_entry(dev, head, unreg_list) {
7932 /* And unlink it from device chain. */
7933 unlist_netdevice(dev);
7934
7935 dev->reg_state = NETREG_UNREGISTERING;
7936 }
7937 flush_all_backlogs();
7938
7939 synchronize_net();
7940
7941 list_for_each_entry(dev, head, unreg_list) {
7942 struct sk_buff *skb = NULL;
7943
7944 /* Shutdown queueing discipline. */
7945 dev_shutdown(dev);
7946
7947 dev_xdp_uninstall(dev);
7948
7949 /* Notify protocols, that we are about to destroy
7950 * this device. They should clean all the things.
7951 */
7952 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7953
7954 if (!dev->rtnl_link_ops ||
7955 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7956 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7957 GFP_KERNEL, NULL, 0);
7958
7959 /*
7960 * Flush the unicast and multicast chains
7961 */
7962 dev_uc_flush(dev);
7963 dev_mc_flush(dev);
7964
7965 if (dev->netdev_ops->ndo_uninit)
7966 dev->netdev_ops->ndo_uninit(dev);
7967
7968 if (skb)
7969 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7970
7971 /* Notifier chain MUST detach us all upper devices. */
7972 WARN_ON(netdev_has_any_upper_dev(dev));
7973 WARN_ON(netdev_has_any_lower_dev(dev));
7974
7975 /* Remove entries from kobject tree */
7976 netdev_unregister_kobject(dev);
7977#ifdef CONFIG_XPS
7978 /* Remove XPS queueing entries */
7979 netif_reset_xps_queues_gt(dev, 0);
7980#endif
7981 }
7982
7983 synchronize_net();
7984
7985 list_for_each_entry(dev, head, unreg_list)
7986 dev_put(dev);
7987}
7988
7989static void rollback_registered(struct net_device *dev)
7990{
7991 LIST_HEAD(single);
7992
7993 list_add(&dev->unreg_list, &single);
7994 rollback_registered_many(&single);
7995 list_del(&single);
7996}
7997
7998static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7999 struct net_device *upper, netdev_features_t features)
8000{
8001 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8002 netdev_features_t feature;
8003 int feature_bit;
8004
8005 for_each_netdev_feature(&upper_disables, feature_bit) {
8006 feature = __NETIF_F_BIT(feature_bit);
8007 if (!(upper->wanted_features & feature)
8008 && (features & feature)) {
8009 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8010 &feature, upper->name);
8011 features &= ~feature;
8012 }
8013 }
8014
8015 return features;
8016}
8017
8018static void netdev_sync_lower_features(struct net_device *upper,
8019 struct net_device *lower, netdev_features_t features)
8020{
8021 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8022 netdev_features_t feature;
8023 int feature_bit;
8024
8025 for_each_netdev_feature(&upper_disables, feature_bit) {
8026 feature = __NETIF_F_BIT(feature_bit);
8027 if (!(features & feature) && (lower->features & feature)) {
8028 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8029 &feature, lower->name);
8030 lower->wanted_features &= ~feature;
8031 netdev_update_features(lower);
8032
8033 if (unlikely(lower->features & feature))
8034 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8035 &feature, lower->name);
8036 }
8037 }
8038}
8039
8040static netdev_features_t netdev_fix_features(struct net_device *dev,
8041 netdev_features_t features)
8042{
8043 /* Fix illegal checksum combinations */
8044 if ((features & NETIF_F_HW_CSUM) &&
8045 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8046 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8047 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8048 }
8049
8050 /* TSO requires that SG is present as well. */
8051 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8052 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8053 features &= ~NETIF_F_ALL_TSO;
8054 }
8055
8056 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8057 !(features & NETIF_F_IP_CSUM)) {
8058 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8059 features &= ~NETIF_F_TSO;
8060 features &= ~NETIF_F_TSO_ECN;
8061 }
8062
8063 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8064 !(features & NETIF_F_IPV6_CSUM)) {
8065 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8066 features &= ~NETIF_F_TSO6;
8067 }
8068
8069 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8070 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8071 features &= ~NETIF_F_TSO_MANGLEID;
8072
8073 /* TSO ECN requires that TSO is present as well. */
8074 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8075 features &= ~NETIF_F_TSO_ECN;
8076
8077 /* Software GSO depends on SG. */
8078 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8079 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8080 features &= ~NETIF_F_GSO;
8081 }
8082
8083 /* GSO partial features require GSO partial be set */
8084 if ((features & dev->gso_partial_features) &&
8085 !(features & NETIF_F_GSO_PARTIAL)) {
8086 netdev_dbg(dev,
8087 "Dropping partially supported GSO features since no GSO partial.\n");
8088 features &= ~dev->gso_partial_features;
8089 }
8090
8091 if (!(features & NETIF_F_RXCSUM)) {
8092 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8093 * successfully merged by hardware must also have the
8094 * checksum verified by hardware. If the user does not
8095 * want to enable RXCSUM, logically, we should disable GRO_HW.
8096 */
8097 if (features & NETIF_F_GRO_HW) {
8098 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8099 features &= ~NETIF_F_GRO_HW;
8100 }
8101 }
8102
8103 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8104 if (features & NETIF_F_RXFCS) {
8105 if (features & NETIF_F_LRO) {
8106 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8107 features &= ~NETIF_F_LRO;
8108 }
8109
8110 if (features & NETIF_F_GRO_HW) {
8111 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8112 features &= ~NETIF_F_GRO_HW;
8113 }
8114 }
8115
8116 return features;
8117}
8118
8119int __netdev_update_features(struct net_device *dev)
8120{
8121 struct net_device *upper, *lower;
8122 netdev_features_t features;
8123 struct list_head *iter;
8124 int err = -1;
8125
8126 ASSERT_RTNL();
8127
8128 features = netdev_get_wanted_features(dev);
8129
8130 if (dev->netdev_ops->ndo_fix_features)
8131 features = dev->netdev_ops->ndo_fix_features(dev, features);
8132
8133 /* driver might be less strict about feature dependencies */
8134 features = netdev_fix_features(dev, features);
8135
8136 /* some features can't be enabled if they're off an an upper device */
8137 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8138 features = netdev_sync_upper_features(dev, upper, features);
8139
8140 if (dev->features == features)
8141 goto sync_lower;
8142
8143 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8144 &dev->features, &features);
8145
8146 if (dev->netdev_ops->ndo_set_features)
8147 err = dev->netdev_ops->ndo_set_features(dev, features);
8148 else
8149 err = 0;
8150
8151 if (unlikely(err < 0)) {
8152 netdev_err(dev,
8153 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8154 err, &features, &dev->features);
8155 /* return non-0 since some features might have changed and
8156 * it's better to fire a spurious notification than miss it
8157 */
8158 return -1;
8159 }
8160
8161sync_lower:
8162 /* some features must be disabled on lower devices when disabled
8163 * on an upper device (think: bonding master or bridge)
8164 */
8165 netdev_for_each_lower_dev(dev, lower, iter)
8166 netdev_sync_lower_features(dev, lower, features);
8167
8168 if (!err) {
8169 netdev_features_t diff = features ^ dev->features;
8170
8171 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8172 /* udp_tunnel_{get,drop}_rx_info both need
8173 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8174 * device, or they won't do anything.
8175 * Thus we need to update dev->features
8176 * *before* calling udp_tunnel_get_rx_info,
8177 * but *after* calling udp_tunnel_drop_rx_info.
8178 */
8179 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8180 dev->features = features;
8181 udp_tunnel_get_rx_info(dev);
8182 } else {
8183 udp_tunnel_drop_rx_info(dev);
8184 }
8185 }
8186
8187 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8188 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8189 dev->features = features;
8190 err |= vlan_get_rx_ctag_filter_info(dev);
8191 } else {
8192 vlan_drop_rx_ctag_filter_info(dev);
8193 }
8194 }
8195
8196 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8197 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8198 dev->features = features;
8199 err |= vlan_get_rx_stag_filter_info(dev);
8200 } else {
8201 vlan_drop_rx_stag_filter_info(dev);
8202 }
8203 }
8204
8205 dev->features = features;
8206 }
8207
8208 return err < 0 ? 0 : 1;
8209}
8210
8211/**
8212 * netdev_update_features - recalculate device features
8213 * @dev: the device to check
8214 *
8215 * Recalculate dev->features set and send notifications if it
8216 * has changed. Should be called after driver or hardware dependent
8217 * conditions might have changed that influence the features.
8218 */
8219void netdev_update_features(struct net_device *dev)
8220{
8221 if (__netdev_update_features(dev))
8222 netdev_features_change(dev);
8223}
8224EXPORT_SYMBOL(netdev_update_features);
8225
8226/**
8227 * netdev_change_features - recalculate device features
8228 * @dev: the device to check
8229 *
8230 * Recalculate dev->features set and send notifications even
8231 * if they have not changed. Should be called instead of
8232 * netdev_update_features() if also dev->vlan_features might
8233 * have changed to allow the changes to be propagated to stacked
8234 * VLAN devices.
8235 */
8236void netdev_change_features(struct net_device *dev)
8237{
8238 __netdev_update_features(dev);
8239 netdev_features_change(dev);
8240}
8241EXPORT_SYMBOL(netdev_change_features);
8242
8243/**
8244 * netif_stacked_transfer_operstate - transfer operstate
8245 * @rootdev: the root or lower level device to transfer state from
8246 * @dev: the device to transfer operstate to
8247 *
8248 * Transfer operational state from root to device. This is normally
8249 * called when a stacking relationship exists between the root
8250 * device and the device(a leaf device).
8251 */
8252void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8253 struct net_device *dev)
8254{
8255 if (rootdev->operstate == IF_OPER_DORMANT)
8256 netif_dormant_on(dev);
8257 else
8258 netif_dormant_off(dev);
8259
8260 if (netif_carrier_ok(rootdev))
8261 netif_carrier_on(dev);
8262 else
8263 netif_carrier_off(dev);
8264}
8265EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8266
8267static int netif_alloc_rx_queues(struct net_device *dev)
8268{
8269 unsigned int i, count = dev->num_rx_queues;
8270 struct netdev_rx_queue *rx;
8271 size_t sz = count * sizeof(*rx);
8272 int err = 0;
8273
8274 BUG_ON(count < 1);
8275
8276 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8277 if (!rx)
8278 return -ENOMEM;
8279
8280 dev->_rx = rx;
8281
8282 for (i = 0; i < count; i++) {
8283 rx[i].dev = dev;
8284
8285 /* XDP RX-queue setup */
8286 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8287 if (err < 0)
8288 goto err_rxq_info;
8289 }
8290 return 0;
8291
8292err_rxq_info:
8293 /* Rollback successful reg's and free other resources */
8294 while (i--)
8295 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8296 kvfree(dev->_rx);
8297 dev->_rx = NULL;
8298 return err;
8299}
8300
8301static void netif_free_rx_queues(struct net_device *dev)
8302{
8303 unsigned int i, count = dev->num_rx_queues;
8304
8305 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8306 if (!dev->_rx)
8307 return;
8308
8309 for (i = 0; i < count; i++)
8310 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8311
8312 kvfree(dev->_rx);
8313}
8314
8315static void netdev_init_one_queue(struct net_device *dev,
8316 struct netdev_queue *queue, void *_unused)
8317{
8318 /* Initialize queue lock */
8319 spin_lock_init(&queue->_xmit_lock);
8320 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8321 queue->xmit_lock_owner = -1;
8322 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8323 queue->dev = dev;
8324#ifdef CONFIG_BQL
8325 dql_init(&queue->dql, HZ);
8326#endif
8327}
8328
8329static void netif_free_tx_queues(struct net_device *dev)
8330{
8331 kvfree(dev->_tx);
8332}
8333
8334static int netif_alloc_netdev_queues(struct net_device *dev)
8335{
8336 unsigned int count = dev->num_tx_queues;
8337 struct netdev_queue *tx;
8338 size_t sz = count * sizeof(*tx);
8339
8340 if (count < 1 || count > 0xffff)
8341 return -EINVAL;
8342
8343 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8344 if (!tx)
8345 return -ENOMEM;
8346
8347 dev->_tx = tx;
8348
8349 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8350 spin_lock_init(&dev->tx_global_lock);
8351
8352 return 0;
8353}
8354
8355void netif_tx_stop_all_queues(struct net_device *dev)
8356{
8357 unsigned int i;
8358
8359 for (i = 0; i < dev->num_tx_queues; i++) {
8360 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8361
8362 netif_tx_stop_queue(txq);
8363 }
8364}
8365EXPORT_SYMBOL(netif_tx_stop_all_queues);
8366
8367/**
8368 * register_netdevice - register a network device
8369 * @dev: device to register
8370 *
8371 * Take a completed network device structure and add it to the kernel
8372 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8373 * chain. 0 is returned on success. A negative errno code is returned
8374 * on a failure to set up the device, or if the name is a duplicate.
8375 *
8376 * Callers must hold the rtnl semaphore. You may want
8377 * register_netdev() instead of this.
8378 *
8379 * BUGS:
8380 * The locking appears insufficient to guarantee two parallel registers
8381 * will not get the same name.
8382 */
8383
8384int register_netdevice(struct net_device *dev)
8385{
8386 int ret;
8387 struct net *net = dev_net(dev);
8388
8389 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8390 NETDEV_FEATURE_COUNT);
8391 BUG_ON(dev_boot_phase);
8392 ASSERT_RTNL();
8393
8394 might_sleep();
8395
8396 /* When net_device's are persistent, this will be fatal. */
8397 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8398 BUG_ON(!net);
8399
8400 spin_lock_init(&dev->addr_list_lock);
8401 netdev_set_addr_lockdep_class(dev);
8402
8403 ret = dev_get_valid_name(net, dev, dev->name);
8404 if (ret < 0)
8405 goto out;
8406
8407 /* Init, if this function is available */
8408 if (dev->netdev_ops->ndo_init) {
8409 ret = dev->netdev_ops->ndo_init(dev);
8410 if (ret) {
8411 if (ret > 0)
8412 ret = -EIO;
8413 goto out;
8414 }
8415 }
8416
8417 if (((dev->hw_features | dev->features) &
8418 NETIF_F_HW_VLAN_CTAG_FILTER) &&
8419 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8420 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8421 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8422 ret = -EINVAL;
8423 goto err_uninit;
8424 }
8425
8426 ret = -EBUSY;
8427 if (!dev->ifindex)
8428 dev->ifindex = dev_new_index(net);
8429 else if (__dev_get_by_index(net, dev->ifindex))
8430 goto err_uninit;
8431
8432 /* Transfer changeable features to wanted_features and enable
8433 * software offloads (GSO and GRO).
8434 */
8435 dev->hw_features |= NETIF_F_SOFT_FEATURES;
8436 dev->features |= NETIF_F_SOFT_FEATURES;
8437
8438 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8439 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8440 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8441 }
8442
8443 dev->wanted_features = dev->features & dev->hw_features;
8444
8445 if (!(dev->flags & IFF_LOOPBACK))
8446 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8447
8448 /* If IPv4 TCP segmentation offload is supported we should also
8449 * allow the device to enable segmenting the frame with the option
8450 * of ignoring a static IP ID value. This doesn't enable the
8451 * feature itself but allows the user to enable it later.
8452 */
8453 if (dev->hw_features & NETIF_F_TSO)
8454 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8455 if (dev->vlan_features & NETIF_F_TSO)
8456 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8457 if (dev->mpls_features & NETIF_F_TSO)
8458 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8459 if (dev->hw_enc_features & NETIF_F_TSO)
8460 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8461
8462 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8463 */
8464 dev->vlan_features |= NETIF_F_HIGHDMA;
8465
8466 /* Make NETIF_F_SG inheritable to tunnel devices.
8467 */
8468 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8469
8470 /* Make NETIF_F_SG inheritable to MPLS.
8471 */
8472 dev->mpls_features |= NETIF_F_SG;
8473
8474 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8475 ret = notifier_to_errno(ret);
8476 if (ret)
8477 goto err_uninit;
8478
8479 ret = netdev_register_kobject(dev);
8480 if (ret)
8481 goto err_uninit;
8482 dev->reg_state = NETREG_REGISTERED;
8483
8484 __netdev_update_features(dev);
8485
8486 /*
8487 * Default initial state at registry is that the
8488 * device is present.
8489 */
8490
8491 set_bit(__LINK_STATE_PRESENT, &dev->state);
8492
8493 linkwatch_init_dev(dev);
8494
8495 dev_init_scheduler(dev);
8496 dev_hold(dev);
8497 list_netdevice(dev);
8498 add_device_randomness(dev->dev_addr, dev->addr_len);
8499
8500 /* If the device has permanent device address, driver should
8501 * set dev_addr and also addr_assign_type should be set to
8502 * NET_ADDR_PERM (default value).
8503 */
8504 if (dev->addr_assign_type == NET_ADDR_PERM)
8505 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8506
8507 /* Notify protocols, that a new device appeared. */
8508 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8509 ret = notifier_to_errno(ret);
8510 if (ret) {
8511 rollback_registered(dev);
8512 dev->reg_state = NETREG_UNREGISTERED;
8513 }
8514 /*
8515 * Prevent userspace races by waiting until the network
8516 * device is fully setup before sending notifications.
8517 */
8518 if (!dev->rtnl_link_ops ||
8519 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8520 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8521
8522out:
8523 return ret;
8524
8525err_uninit:
8526 if (dev->netdev_ops->ndo_uninit)
8527 dev->netdev_ops->ndo_uninit(dev);
8528 if (dev->priv_destructor)
8529 dev->priv_destructor(dev);
8530 goto out;
8531}
8532EXPORT_SYMBOL(register_netdevice);
8533
8534/**
8535 * init_dummy_netdev - init a dummy network device for NAPI
8536 * @dev: device to init
8537 *
8538 * This takes a network device structure and initialize the minimum
8539 * amount of fields so it can be used to schedule NAPI polls without
8540 * registering a full blown interface. This is to be used by drivers
8541 * that need to tie several hardware interfaces to a single NAPI
8542 * poll scheduler due to HW limitations.
8543 */
8544int init_dummy_netdev(struct net_device *dev)
8545{
8546 /* Clear everything. Note we don't initialize spinlocks
8547 * are they aren't supposed to be taken by any of the
8548 * NAPI code and this dummy netdev is supposed to be
8549 * only ever used for NAPI polls
8550 */
8551 memset(dev, 0, sizeof(struct net_device));
8552
8553 /* make sure we BUG if trying to hit standard
8554 * register/unregister code path
8555 */
8556 dev->reg_state = NETREG_DUMMY;
8557
8558 /* NAPI wants this */
8559 INIT_LIST_HEAD(&dev->napi_list);
8560
8561 /* a dummy interface is started by default */
8562 set_bit(__LINK_STATE_PRESENT, &dev->state);
8563 set_bit(__LINK_STATE_START, &dev->state);
8564
8565 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8566 * because users of this 'device' dont need to change
8567 * its refcount.
8568 */
8569
8570 return 0;
8571}
8572EXPORT_SYMBOL_GPL(init_dummy_netdev);
8573
8574
8575/**
8576 * register_netdev - register a network device
8577 * @dev: device to register
8578 *
8579 * Take a completed network device structure and add it to the kernel
8580 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8581 * chain. 0 is returned on success. A negative errno code is returned
8582 * on a failure to set up the device, or if the name is a duplicate.
8583 *
8584 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8585 * and expands the device name if you passed a format string to
8586 * alloc_netdev.
8587 */
8588int register_netdev(struct net_device *dev)
8589{
8590 int err;
8591
8592 if (rtnl_lock_killable())
8593 return -EINTR;
8594 err = register_netdevice(dev);
8595 rtnl_unlock();
8596 return err;
8597}
8598EXPORT_SYMBOL(register_netdev);
8599
8600int netdev_refcnt_read(const struct net_device *dev)
8601{
8602 int i, refcnt = 0;
8603
8604 for_each_possible_cpu(i)
8605 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8606 return refcnt;
8607}
8608EXPORT_SYMBOL(netdev_refcnt_read);
8609
8610/**
8611 * netdev_wait_allrefs - wait until all references are gone.
8612 * @dev: target net_device
8613 *
8614 * This is called when unregistering network devices.
8615 *
8616 * Any protocol or device that holds a reference should register
8617 * for netdevice notification, and cleanup and put back the
8618 * reference if they receive an UNREGISTER event.
8619 * We can get stuck here if buggy protocols don't correctly
8620 * call dev_put.
8621 */
8622static void netdev_wait_allrefs(struct net_device *dev)
8623{
8624 unsigned long rebroadcast_time, warning_time;
8625 int refcnt;
8626
8627 linkwatch_forget_dev(dev);
8628
8629 rebroadcast_time = warning_time = jiffies;
8630 refcnt = netdev_refcnt_read(dev);
8631
8632 while (refcnt != 0) {
8633 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8634 rtnl_lock();
8635
8636 /* Rebroadcast unregister notification */
8637 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8638
8639 __rtnl_unlock();
8640 rcu_barrier();
8641 rtnl_lock();
8642
8643 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8644 &dev->state)) {
8645 /* We must not have linkwatch events
8646 * pending on unregister. If this
8647 * happens, we simply run the queue
8648 * unscheduled, resulting in a noop
8649 * for this device.
8650 */
8651 linkwatch_run_queue();
8652 }
8653
8654 __rtnl_unlock();
8655
8656 rebroadcast_time = jiffies;
8657 }
8658
8659 msleep(250);
8660
8661 refcnt = netdev_refcnt_read(dev);
8662
8663 if (time_after(jiffies, warning_time + 10 * HZ)) {
8664 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8665 dev->name, refcnt);
8666 warning_time = jiffies;
8667 }
8668 }
8669}
8670
8671/* The sequence is:
8672 *
8673 * rtnl_lock();
8674 * ...
8675 * register_netdevice(x1);
8676 * register_netdevice(x2);
8677 * ...
8678 * unregister_netdevice(y1);
8679 * unregister_netdevice(y2);
8680 * ...
8681 * rtnl_unlock();
8682 * free_netdev(y1);
8683 * free_netdev(y2);
8684 *
8685 * We are invoked by rtnl_unlock().
8686 * This allows us to deal with problems:
8687 * 1) We can delete sysfs objects which invoke hotplug
8688 * without deadlocking with linkwatch via keventd.
8689 * 2) Since we run with the RTNL semaphore not held, we can sleep
8690 * safely in order to wait for the netdev refcnt to drop to zero.
8691 *
8692 * We must not return until all unregister events added during
8693 * the interval the lock was held have been completed.
8694 */
8695void netdev_run_todo(void)
8696{
8697 struct list_head list;
8698
8699 /* Snapshot list, allow later requests */
8700 list_replace_init(&net_todo_list, &list);
8701
8702 __rtnl_unlock();
8703
8704
8705 /* Wait for rcu callbacks to finish before next phase */
8706 if (!list_empty(&list))
8707 rcu_barrier();
8708
8709 while (!list_empty(&list)) {
8710 struct net_device *dev
8711 = list_first_entry(&list, struct net_device, todo_list);
8712 list_del(&dev->todo_list);
8713
8714 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8715 pr_err("network todo '%s' but state %d\n",
8716 dev->name, dev->reg_state);
8717 dump_stack();
8718 continue;
8719 }
8720
8721 dev->reg_state = NETREG_UNREGISTERED;
8722
8723 netdev_wait_allrefs(dev);
8724
8725 /* paranoia */
8726 BUG_ON(netdev_refcnt_read(dev));
8727 BUG_ON(!list_empty(&dev->ptype_all));
8728 BUG_ON(!list_empty(&dev->ptype_specific));
8729 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8730 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8731#if IS_ENABLED(CONFIG_DECNET)
8732 WARN_ON(dev->dn_ptr);
8733#endif
8734 if (dev->priv_destructor)
8735 dev->priv_destructor(dev);
8736 if (dev->needs_free_netdev)
8737 free_netdev(dev);
8738
8739 /* Report a network device has been unregistered */
8740 rtnl_lock();
8741 dev_net(dev)->dev_unreg_count--;
8742 __rtnl_unlock();
8743 wake_up(&netdev_unregistering_wq);
8744
8745 /* Free network device */
8746 kobject_put(&dev->dev.kobj);
8747 }
8748}
8749
8750/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8751 * all the same fields in the same order as net_device_stats, with only
8752 * the type differing, but rtnl_link_stats64 may have additional fields
8753 * at the end for newer counters.
8754 */
8755void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8756 const struct net_device_stats *netdev_stats)
8757{
8758#if BITS_PER_LONG == 64
8759 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8760 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8761 /* zero out counters that only exist in rtnl_link_stats64 */
8762 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8763 sizeof(*stats64) - sizeof(*netdev_stats));
8764#else
8765 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8766 const unsigned long *src = (const unsigned long *)netdev_stats;
8767 u64 *dst = (u64 *)stats64;
8768
8769 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8770 for (i = 0; i < n; i++)
8771 dst[i] = src[i];
8772 /* zero out counters that only exist in rtnl_link_stats64 */
8773 memset((char *)stats64 + n * sizeof(u64), 0,
8774 sizeof(*stats64) - n * sizeof(u64));
8775#endif
8776}
8777EXPORT_SYMBOL(netdev_stats_to_stats64);
8778
8779/**
8780 * dev_get_stats - get network device statistics
8781 * @dev: device to get statistics from
8782 * @storage: place to store stats
8783 *
8784 * Get network statistics from device. Return @storage.
8785 * The device driver may provide its own method by setting
8786 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8787 * otherwise the internal statistics structure is used.
8788 */
8789struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8790 struct rtnl_link_stats64 *storage)
8791{
8792 const struct net_device_ops *ops = dev->netdev_ops;
8793
8794 if (ops->ndo_get_stats64) {
8795 memset(storage, 0, sizeof(*storage));
8796 ops->ndo_get_stats64(dev, storage);
8797 } else if (ops->ndo_get_stats) {
8798 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8799 } else {
8800 netdev_stats_to_stats64(storage, &dev->stats);
8801 }
8802 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8803 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8804 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8805 return storage;
8806}
8807EXPORT_SYMBOL(dev_get_stats);
8808
8809struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8810{
8811 struct netdev_queue *queue = dev_ingress_queue(dev);
8812
8813#ifdef CONFIG_NET_CLS_ACT
8814 if (queue)
8815 return queue;
8816 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8817 if (!queue)
8818 return NULL;
8819 netdev_init_one_queue(dev, queue, NULL);
8820 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8821 queue->qdisc_sleeping = &noop_qdisc;
8822 rcu_assign_pointer(dev->ingress_queue, queue);
8823#endif
8824 return queue;
8825}
8826
8827static const struct ethtool_ops default_ethtool_ops;
8828
8829void netdev_set_default_ethtool_ops(struct net_device *dev,
8830 const struct ethtool_ops *ops)
8831{
8832 if (dev->ethtool_ops == &default_ethtool_ops)
8833 dev->ethtool_ops = ops;
8834}
8835EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8836
8837void netdev_freemem(struct net_device *dev)
8838{
8839 char *addr = (char *)dev - dev->padded;
8840
8841 kvfree(addr);
8842}
8843
8844/**
8845 * alloc_netdev_mqs - allocate network device
8846 * @sizeof_priv: size of private data to allocate space for
8847 * @name: device name format string
8848 * @name_assign_type: origin of device name
8849 * @setup: callback to initialize device
8850 * @txqs: the number of TX subqueues to allocate
8851 * @rxqs: the number of RX subqueues to allocate
8852 *
8853 * Allocates a struct net_device with private data area for driver use
8854 * and performs basic initialization. Also allocates subqueue structs
8855 * for each queue on the device.
8856 */
8857struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8858 unsigned char name_assign_type,
8859 void (*setup)(struct net_device *),
8860 unsigned int txqs, unsigned int rxqs)
8861{
8862 struct net_device *dev;
8863 unsigned int alloc_size;
8864 struct net_device *p;
8865
8866 BUG_ON(strlen(name) >= sizeof(dev->name));
8867
8868 if (txqs < 1) {
8869 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8870 return NULL;
8871 }
8872
8873 if (rxqs < 1) {
8874 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8875 return NULL;
8876 }
8877
8878 alloc_size = sizeof(struct net_device);
8879 if (sizeof_priv) {
8880 /* ensure 32-byte alignment of private area */
8881 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8882 alloc_size += sizeof_priv;
8883 }
8884 /* ensure 32-byte alignment of whole construct */
8885 alloc_size += NETDEV_ALIGN - 1;
8886
8887 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8888 if (!p)
8889 return NULL;
8890
8891 dev = PTR_ALIGN(p, NETDEV_ALIGN);
8892 dev->padded = (char *)dev - (char *)p;
8893
8894 dev->pcpu_refcnt = alloc_percpu(int);
8895 if (!dev->pcpu_refcnt)
8896 goto free_dev;
8897
8898 if (dev_addr_init(dev))
8899 goto free_pcpu;
8900
8901 dev_mc_init(dev);
8902 dev_uc_init(dev);
8903
8904 dev_net_set(dev, &init_net);
8905
8906 dev->gso_max_size = GSO_MAX_SIZE;
8907 dev->gso_max_segs = GSO_MAX_SEGS;
8908
8909 INIT_LIST_HEAD(&dev->napi_list);
8910 INIT_LIST_HEAD(&dev->unreg_list);
8911 INIT_LIST_HEAD(&dev->close_list);
8912 INIT_LIST_HEAD(&dev->link_watch_list);
8913 INIT_LIST_HEAD(&dev->adj_list.upper);
8914 INIT_LIST_HEAD(&dev->adj_list.lower);
8915 INIT_LIST_HEAD(&dev->ptype_all);
8916 INIT_LIST_HEAD(&dev->ptype_specific);
8917#ifdef CONFIG_NET_SCHED
8918 hash_init(dev->qdisc_hash);
8919#endif
8920 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8921 setup(dev);
8922
8923 if (!dev->tx_queue_len) {
8924 dev->priv_flags |= IFF_NO_QUEUE;
8925 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8926 }
8927
8928 dev->num_tx_queues = txqs;
8929 dev->real_num_tx_queues = txqs;
8930 if (netif_alloc_netdev_queues(dev))
8931 goto free_all;
8932
8933 dev->num_rx_queues = rxqs;
8934 dev->real_num_rx_queues = rxqs;
8935 if (netif_alloc_rx_queues(dev))
8936 goto free_all;
8937
8938 strcpy(dev->name, name);
8939 dev->name_assign_type = name_assign_type;
8940 dev->group = INIT_NETDEV_GROUP;
8941 if (!dev->ethtool_ops)
8942 dev->ethtool_ops = &default_ethtool_ops;
8943
8944 nf_hook_ingress_init(dev);
8945
8946 return dev;
8947
8948free_all:
8949 free_netdev(dev);
8950 return NULL;
8951
8952free_pcpu:
8953 free_percpu(dev->pcpu_refcnt);
8954free_dev:
8955 netdev_freemem(dev);
8956 return NULL;
8957}
8958EXPORT_SYMBOL(alloc_netdev_mqs);
8959
8960/**
8961 * free_netdev - free network device
8962 * @dev: device
8963 *
8964 * This function does the last stage of destroying an allocated device
8965 * interface. The reference to the device object is released. If this
8966 * is the last reference then it will be freed.Must be called in process
8967 * context.
8968 */
8969void free_netdev(struct net_device *dev)
8970{
8971 struct napi_struct *p, *n;
8972
8973 might_sleep();
8974 netif_free_tx_queues(dev);
8975 netif_free_rx_queues(dev);
8976
8977 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8978
8979 /* Flush device addresses */
8980 dev_addr_flush(dev);
8981
8982 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8983 netif_napi_del(p);
8984
8985 free_percpu(dev->pcpu_refcnt);
8986 dev->pcpu_refcnt = NULL;
8987
8988 /* Compatibility with error handling in drivers */
8989 if (dev->reg_state == NETREG_UNINITIALIZED) {
8990 netdev_freemem(dev);
8991 return;
8992 }
8993
8994 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8995 dev->reg_state = NETREG_RELEASED;
8996
8997 /* will free via device release */
8998 put_device(&dev->dev);
8999}
9000EXPORT_SYMBOL(free_netdev);
9001
9002/**
9003 * synchronize_net - Synchronize with packet receive processing
9004 *
9005 * Wait for packets currently being received to be done.
9006 * Does not block later packets from starting.
9007 */
9008void synchronize_net(void)
9009{
9010 might_sleep();
9011 if (rtnl_is_locked())
9012 synchronize_rcu_expedited();
9013 else
9014 synchronize_rcu();
9015}
9016EXPORT_SYMBOL(synchronize_net);
9017
9018/**
9019 * unregister_netdevice_queue - remove device from the kernel
9020 * @dev: device
9021 * @head: list
9022 *
9023 * This function shuts down a device interface and removes it
9024 * from the kernel tables.
9025 * If head not NULL, device is queued to be unregistered later.
9026 *
9027 * Callers must hold the rtnl semaphore. You may want
9028 * unregister_netdev() instead of this.
9029 */
9030
9031void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9032{
9033 ASSERT_RTNL();
9034
9035 if (head) {
9036 list_move_tail(&dev->unreg_list, head);
9037 } else {
9038 rollback_registered(dev);
9039 /* Finish processing unregister after unlock */
9040 net_set_todo(dev);
9041 }
9042}
9043EXPORT_SYMBOL(unregister_netdevice_queue);
9044
9045/**
9046 * unregister_netdevice_many - unregister many devices
9047 * @head: list of devices
9048 *
9049 * Note: As most callers use a stack allocated list_head,
9050 * we force a list_del() to make sure stack wont be corrupted later.
9051 */
9052void unregister_netdevice_many(struct list_head *head)
9053{
9054 struct net_device *dev;
9055
9056 if (!list_empty(head)) {
9057 rollback_registered_many(head);
9058 list_for_each_entry(dev, head, unreg_list)
9059 net_set_todo(dev);
9060 list_del(head);
9061 }
9062}
9063EXPORT_SYMBOL(unregister_netdevice_many);
9064
9065/**
9066 * unregister_netdev - remove device from the kernel
9067 * @dev: device
9068 *
9069 * This function shuts down a device interface and removes it
9070 * from the kernel tables.
9071 *
9072 * This is just a wrapper for unregister_netdevice that takes
9073 * the rtnl semaphore. In general you want to use this and not
9074 * unregister_netdevice.
9075 */
9076void unregister_netdev(struct net_device *dev)
9077{
9078 rtnl_lock();
9079 unregister_netdevice(dev);
9080 rtnl_unlock();
9081}
9082EXPORT_SYMBOL(unregister_netdev);
9083
9084/**
9085 * dev_change_net_namespace - move device to different nethost namespace
9086 * @dev: device
9087 * @net: network namespace
9088 * @pat: If not NULL name pattern to try if the current device name
9089 * is already taken in the destination network namespace.
9090 *
9091 * This function shuts down a device interface and moves it
9092 * to a new network namespace. On success 0 is returned, on
9093 * a failure a netagive errno code is returned.
9094 *
9095 * Callers must hold the rtnl semaphore.
9096 */
9097
9098int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9099{
9100 int err, new_nsid, new_ifindex;
9101
9102 ASSERT_RTNL();
9103
9104 /* Don't allow namespace local devices to be moved. */
9105 err = -EINVAL;
9106 if (dev->features & NETIF_F_NETNS_LOCAL)
9107 goto out;
9108
9109 /* Ensure the device has been registrered */
9110 if (dev->reg_state != NETREG_REGISTERED)
9111 goto out;
9112
9113 /* Get out if there is nothing todo */
9114 err = 0;
9115 if (net_eq(dev_net(dev), net))
9116 goto out;
9117
9118 /* Pick the destination device name, and ensure
9119 * we can use it in the destination network namespace.
9120 */
9121 err = -EEXIST;
9122 if (__dev_get_by_name(net, dev->name)) {
9123 /* We get here if we can't use the current device name */
9124 if (!pat)
9125 goto out;
9126 err = dev_get_valid_name(net, dev, pat);
9127 if (err < 0)
9128 goto out;
9129 }
9130
9131 /*
9132 * And now a mini version of register_netdevice unregister_netdevice.
9133 */
9134
9135 /* If device is running close it first. */
9136 dev_close(dev);
9137
9138 /* And unlink it from device chain */
9139 unlist_netdevice(dev);
9140
9141 synchronize_net();
9142
9143 /* Shutdown queueing discipline. */
9144 dev_shutdown(dev);
9145
9146 /* Notify protocols, that we are about to destroy
9147 * this device. They should clean all the things.
9148 *
9149 * Note that dev->reg_state stays at NETREG_REGISTERED.
9150 * This is wanted because this way 8021q and macvlan know
9151 * the device is just moving and can keep their slaves up.
9152 */
9153 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9154 rcu_barrier();
9155
9156 new_nsid = peernet2id_alloc(dev_net(dev), net);
9157 /* If there is an ifindex conflict assign a new one */
9158 if (__dev_get_by_index(net, dev->ifindex))
9159 new_ifindex = dev_new_index(net);
9160 else
9161 new_ifindex = dev->ifindex;
9162
9163 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9164 new_ifindex);
9165
9166 /*
9167 * Flush the unicast and multicast chains
9168 */
9169 dev_uc_flush(dev);
9170 dev_mc_flush(dev);
9171
9172 /* Send a netdev-removed uevent to the old namespace */
9173 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9174 netdev_adjacent_del_links(dev);
9175
9176 /* Actually switch the network namespace */
9177 dev_net_set(dev, net);
9178 dev->ifindex = new_ifindex;
9179
9180 /* Send a netdev-add uevent to the new namespace */
9181 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9182 netdev_adjacent_add_links(dev);
9183
9184 /* Fixup kobjects */
9185 err = device_rename(&dev->dev, dev->name);
9186 WARN_ON(err);
9187
9188 /* Add the device back in the hashes */
9189 list_netdevice(dev);
9190
9191 /* Notify protocols, that a new device appeared. */
9192 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9193
9194 /*
9195 * Prevent userspace races by waiting until the network
9196 * device is fully setup before sending notifications.
9197 */
9198 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9199
9200 synchronize_net();
9201 err = 0;
9202out:
9203 return err;
9204}
9205EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9206
9207static int dev_cpu_dead(unsigned int oldcpu)
9208{
9209 struct sk_buff **list_skb;
9210 struct sk_buff *skb;
9211 unsigned int cpu;
9212 struct softnet_data *sd, *oldsd, *remsd = NULL;
9213
9214 local_irq_disable();
9215 cpu = smp_processor_id();
9216 sd = &per_cpu(softnet_data, cpu);
9217 oldsd = &per_cpu(softnet_data, oldcpu);
9218
9219 /* Find end of our completion_queue. */
9220 list_skb = &sd->completion_queue;
9221 while (*list_skb)
9222 list_skb = &(*list_skb)->next;
9223 /* Append completion queue from offline CPU. */
9224 *list_skb = oldsd->completion_queue;
9225 oldsd->completion_queue = NULL;
9226
9227 /* Append output queue from offline CPU. */
9228 if (oldsd->output_queue) {
9229 *sd->output_queue_tailp = oldsd->output_queue;
9230 sd->output_queue_tailp = oldsd->output_queue_tailp;
9231 oldsd->output_queue = NULL;
9232 oldsd->output_queue_tailp = &oldsd->output_queue;
9233 }
9234 /* Append NAPI poll list from offline CPU, with one exception :
9235 * process_backlog() must be called by cpu owning percpu backlog.
9236 * We properly handle process_queue & input_pkt_queue later.
9237 */
9238 while (!list_empty(&oldsd->poll_list)) {
9239 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9240 struct napi_struct,
9241 poll_list);
9242
9243 list_del_init(&napi->poll_list);
9244 if (napi->poll == process_backlog)
9245 napi->state = 0;
9246 else
9247 ____napi_schedule(sd, napi);
9248 }
9249
9250 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9251 local_irq_enable();
9252
9253#ifdef CONFIG_RPS
9254 remsd = oldsd->rps_ipi_list;
9255 oldsd->rps_ipi_list = NULL;
9256#endif
9257 /* send out pending IPI's on offline CPU */
9258 net_rps_send_ipi(remsd);
9259
9260 /* Process offline CPU's input_pkt_queue */
9261 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9262 netif_rx_ni(skb);
9263 input_queue_head_incr(oldsd);
9264 }
9265 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9266 netif_rx_ni(skb);
9267 input_queue_head_incr(oldsd);
9268 }
9269
9270 return 0;
9271}
9272
9273/**
9274 * netdev_increment_features - increment feature set by one
9275 * @all: current feature set
9276 * @one: new feature set
9277 * @mask: mask feature set
9278 *
9279 * Computes a new feature set after adding a device with feature set
9280 * @one to the master device with current feature set @all. Will not
9281 * enable anything that is off in @mask. Returns the new feature set.
9282 */
9283netdev_features_t netdev_increment_features(netdev_features_t all,
9284 netdev_features_t one, netdev_features_t mask)
9285{
9286 if (mask & NETIF_F_HW_CSUM)
9287 mask |= NETIF_F_CSUM_MASK;
9288 mask |= NETIF_F_VLAN_CHALLENGED;
9289
9290 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9291 all &= one | ~NETIF_F_ALL_FOR_ALL;
9292
9293 /* If one device supports hw checksumming, set for all. */
9294 if (all & NETIF_F_HW_CSUM)
9295 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9296
9297 return all;
9298}
9299EXPORT_SYMBOL(netdev_increment_features);
9300
9301static struct hlist_head * __net_init netdev_create_hash(void)
9302{
9303 int i;
9304 struct hlist_head *hash;
9305
9306 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9307 if (hash != NULL)
9308 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9309 INIT_HLIST_HEAD(&hash[i]);
9310
9311 return hash;
9312}
9313
9314/* Initialize per network namespace state */
9315static int __net_init netdev_init(struct net *net)
9316{
9317 BUILD_BUG_ON(GRO_HASH_BUCKETS >
9318 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9319
9320 if (net != &init_net)
9321 INIT_LIST_HEAD(&net->dev_base_head);
9322
9323 net->dev_name_head = netdev_create_hash();
9324 if (net->dev_name_head == NULL)
9325 goto err_name;
9326
9327 net->dev_index_head = netdev_create_hash();
9328 if (net->dev_index_head == NULL)
9329 goto err_idx;
9330
9331 return 0;
9332
9333err_idx:
9334 kfree(net->dev_name_head);
9335err_name:
9336 return -ENOMEM;
9337}
9338
9339/**
9340 * netdev_drivername - network driver for the device
9341 * @dev: network device
9342 *
9343 * Determine network driver for device.
9344 */
9345const char *netdev_drivername(const struct net_device *dev)
9346{
9347 const struct device_driver *driver;
9348 const struct device *parent;
9349 const char *empty = "";
9350
9351 parent = dev->dev.parent;
9352 if (!parent)
9353 return empty;
9354
9355 driver = parent->driver;
9356 if (driver && driver->name)
9357 return driver->name;
9358 return empty;
9359}
9360
9361static void __netdev_printk(const char *level, const struct net_device *dev,
9362 struct va_format *vaf)
9363{
9364 if (dev && dev->dev.parent) {
9365 dev_printk_emit(level[1] - '0',
9366 dev->dev.parent,
9367 "%s %s %s%s: %pV",
9368 dev_driver_string(dev->dev.parent),
9369 dev_name(dev->dev.parent),
9370 netdev_name(dev), netdev_reg_state(dev),
9371 vaf);
9372 } else if (dev) {
9373 printk("%s%s%s: %pV",
9374 level, netdev_name(dev), netdev_reg_state(dev), vaf);
9375 } else {
9376 printk("%s(NULL net_device): %pV", level, vaf);
9377 }
9378}
9379
9380void netdev_printk(const char *level, const struct net_device *dev,
9381 const char *format, ...)
9382{
9383 struct va_format vaf;
9384 va_list args;
9385
9386 va_start(args, format);
9387
9388 vaf.fmt = format;
9389 vaf.va = &args;
9390
9391 __netdev_printk(level, dev, &vaf);
9392
9393 va_end(args);
9394}
9395EXPORT_SYMBOL(netdev_printk);
9396
9397#define define_netdev_printk_level(func, level) \
9398void func(const struct net_device *dev, const char *fmt, ...) \
9399{ \
9400 struct va_format vaf; \
9401 va_list args; \
9402 \
9403 va_start(args, fmt); \
9404 \
9405 vaf.fmt = fmt; \
9406 vaf.va = &args; \
9407 \
9408 __netdev_printk(level, dev, &vaf); \
9409 \
9410 va_end(args); \
9411} \
9412EXPORT_SYMBOL(func);
9413
9414define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9415define_netdev_printk_level(netdev_alert, KERN_ALERT);
9416define_netdev_printk_level(netdev_crit, KERN_CRIT);
9417define_netdev_printk_level(netdev_err, KERN_ERR);
9418define_netdev_printk_level(netdev_warn, KERN_WARNING);
9419define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9420define_netdev_printk_level(netdev_info, KERN_INFO);
9421
9422static void __net_exit netdev_exit(struct net *net)
9423{
9424 kfree(net->dev_name_head);
9425 kfree(net->dev_index_head);
9426 if (net != &init_net)
9427 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9428}
9429
9430static struct pernet_operations __net_initdata netdev_net_ops = {
9431 .init = netdev_init,
9432 .exit = netdev_exit,
9433};
9434
9435static void __net_exit default_device_exit(struct net *net)
9436{
9437 struct net_device *dev, *aux;
9438 /*
9439 * Push all migratable network devices back to the
9440 * initial network namespace
9441 */
9442 rtnl_lock();
9443 for_each_netdev_safe(net, dev, aux) {
9444 int err;
9445 char fb_name[IFNAMSIZ];
9446
9447 /* Ignore unmoveable devices (i.e. loopback) */
9448 if (dev->features & NETIF_F_NETNS_LOCAL)
9449 continue;
9450
9451 /* Leave virtual devices for the generic cleanup */
9452 if (dev->rtnl_link_ops)
9453 continue;
9454
9455 /* Push remaining network devices to init_net */
9456 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9457 err = dev_change_net_namespace(dev, &init_net, fb_name);
9458 if (err) {
9459 pr_emerg("%s: failed to move %s to init_net: %d\n",
9460 __func__, dev->name, err);
9461 BUG();
9462 }
9463 }
9464 rtnl_unlock();
9465}
9466
9467static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9468{
9469 /* Return with the rtnl_lock held when there are no network
9470 * devices unregistering in any network namespace in net_list.
9471 */
9472 struct net *net;
9473 bool unregistering;
9474 DEFINE_WAIT_FUNC(wait, woken_wake_function);
9475
9476 add_wait_queue(&netdev_unregistering_wq, &wait);
9477 for (;;) {
9478 unregistering = false;
9479 rtnl_lock();
9480 list_for_each_entry(net, net_list, exit_list) {
9481 if (net->dev_unreg_count > 0) {
9482 unregistering = true;
9483 break;
9484 }
9485 }
9486 if (!unregistering)
9487 break;
9488 __rtnl_unlock();
9489
9490 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9491 }
9492 remove_wait_queue(&netdev_unregistering_wq, &wait);
9493}
9494
9495static void __net_exit default_device_exit_batch(struct list_head *net_list)
9496{
9497 /* At exit all network devices most be removed from a network
9498 * namespace. Do this in the reverse order of registration.
9499 * Do this across as many network namespaces as possible to
9500 * improve batching efficiency.
9501 */
9502 struct net_device *dev;
9503 struct net *net;
9504 LIST_HEAD(dev_kill_list);
9505
9506 /* To prevent network device cleanup code from dereferencing
9507 * loopback devices or network devices that have been freed
9508 * wait here for all pending unregistrations to complete,
9509 * before unregistring the loopback device and allowing the
9510 * network namespace be freed.
9511 *
9512 * The netdev todo list containing all network devices
9513 * unregistrations that happen in default_device_exit_batch
9514 * will run in the rtnl_unlock() at the end of
9515 * default_device_exit_batch.
9516 */
9517 rtnl_lock_unregistering(net_list);
9518 list_for_each_entry(net, net_list, exit_list) {
9519 for_each_netdev_reverse(net, dev) {
9520 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9521 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9522 else
9523 unregister_netdevice_queue(dev, &dev_kill_list);
9524 }
9525 }
9526 unregister_netdevice_many(&dev_kill_list);
9527 rtnl_unlock();
9528}
9529
9530static struct pernet_operations __net_initdata default_device_ops = {
9531 .exit = default_device_exit,
9532 .exit_batch = default_device_exit_batch,
9533};
9534
9535/*
9536 * Initialize the DEV module. At boot time this walks the device list and
9537 * unhooks any devices that fail to initialise (normally hardware not
9538 * present) and leaves us with a valid list of present and active devices.
9539 *
9540 */
9541
9542/*
9543 * This is called single threaded during boot, so no need
9544 * to take the rtnl semaphore.
9545 */
9546static int __init net_dev_init(void)
9547{
9548 int i, rc = -ENOMEM;
9549
9550 BUG_ON(!dev_boot_phase);
9551
9552 if (dev_proc_init())
9553 goto out;
9554
9555 if (netdev_kobject_init())
9556 goto out;
9557
9558 INIT_LIST_HEAD(&ptype_all);
9559 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9560 INIT_LIST_HEAD(&ptype_base[i]);
9561
9562 INIT_LIST_HEAD(&offload_base);
9563
9564 if (register_pernet_subsys(&netdev_net_ops))
9565 goto out;
9566
9567 /*
9568 * Initialise the packet receive queues.
9569 */
9570
9571 for_each_possible_cpu(i) {
9572 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9573 struct softnet_data *sd = &per_cpu(softnet_data, i);
9574
9575 INIT_WORK(flush, flush_backlog);
9576
9577 skb_queue_head_init(&sd->input_pkt_queue);
9578 skb_queue_head_init(&sd->process_queue);
9579#ifdef CONFIG_XFRM_OFFLOAD
9580 skb_queue_head_init(&sd->xfrm_backlog);
9581#endif
9582 INIT_LIST_HEAD(&sd->poll_list);
9583 sd->output_queue_tailp = &sd->output_queue;
9584#ifdef CONFIG_RPS
9585 sd->csd.func = rps_trigger_softirq;
9586 sd->csd.info = sd;
9587 sd->cpu = i;
9588#endif
9589
9590 init_gro_hash(&sd->backlog);
9591 sd->backlog.poll = process_backlog;
9592 sd->backlog.weight = weight_p;
9593 }
9594
9595 dev_boot_phase = 0;
9596
9597 /* The loopback device is special if any other network devices
9598 * is present in a network namespace the loopback device must
9599 * be present. Since we now dynamically allocate and free the
9600 * loopback device ensure this invariant is maintained by
9601 * keeping the loopback device as the first device on the
9602 * list of network devices. Ensuring the loopback devices
9603 * is the first device that appears and the last network device
9604 * that disappears.
9605 */
9606 if (register_pernet_device(&loopback_net_ops))
9607 goto out;
9608
9609 if (register_pernet_device(&default_device_ops))
9610 goto out;
9611
9612 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9613 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9614
9615 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9616 NULL, dev_cpu_dead);
9617 WARN_ON(rc < 0);
9618 rc = 0;
9619out:
9620 return rc;
9621}
9622
9623subsys_initcall(net_dev_init);