at v4.19-rc2 2794 lines 88 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/range.h> 19#include <linux/pfn.h> 20#include <linux/percpu-refcount.h> 21#include <linux/bit_spinlock.h> 22#include <linux/shrinker.h> 23#include <linux/resource.h> 24#include <linux/page_ext.h> 25#include <linux/err.h> 26#include <linux/page_ref.h> 27#include <linux/memremap.h> 28#include <linux/overflow.h> 29 30struct mempolicy; 31struct anon_vma; 32struct anon_vma_chain; 33struct file_ra_state; 34struct user_struct; 35struct writeback_control; 36struct bdi_writeback; 37 38void init_mm_internals(void); 39 40#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 41extern unsigned long max_mapnr; 42 43static inline void set_max_mapnr(unsigned long limit) 44{ 45 max_mapnr = limit; 46} 47#else 48static inline void set_max_mapnr(unsigned long limit) { } 49#endif 50 51extern unsigned long totalram_pages; 52extern void * high_memory; 53extern int page_cluster; 54 55#ifdef CONFIG_SYSCTL 56extern int sysctl_legacy_va_layout; 57#else 58#define sysctl_legacy_va_layout 0 59#endif 60 61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 62extern const int mmap_rnd_bits_min; 63extern const int mmap_rnd_bits_max; 64extern int mmap_rnd_bits __read_mostly; 65#endif 66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 67extern const int mmap_rnd_compat_bits_min; 68extern const int mmap_rnd_compat_bits_max; 69extern int mmap_rnd_compat_bits __read_mostly; 70#endif 71 72#include <asm/page.h> 73#include <asm/pgtable.h> 74#include <asm/processor.h> 75 76#ifndef __pa_symbol 77#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 78#endif 79 80#ifndef page_to_virt 81#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 82#endif 83 84#ifndef lm_alias 85#define lm_alias(x) __va(__pa_symbol(x)) 86#endif 87 88/* 89 * To prevent common memory management code establishing 90 * a zero page mapping on a read fault. 91 * This macro should be defined within <asm/pgtable.h>. 92 * s390 does this to prevent multiplexing of hardware bits 93 * related to the physical page in case of virtualization. 94 */ 95#ifndef mm_forbids_zeropage 96#define mm_forbids_zeropage(X) (0) 97#endif 98 99/* 100 * On some architectures it is expensive to call memset() for small sizes. 101 * Those architectures should provide their own implementation of "struct page" 102 * zeroing by defining this macro in <asm/pgtable.h>. 103 */ 104#ifndef mm_zero_struct_page 105#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 106#endif 107 108/* 109 * Default maximum number of active map areas, this limits the number of vmas 110 * per mm struct. Users can overwrite this number by sysctl but there is a 111 * problem. 112 * 113 * When a program's coredump is generated as ELF format, a section is created 114 * per a vma. In ELF, the number of sections is represented in unsigned short. 115 * This means the number of sections should be smaller than 65535 at coredump. 116 * Because the kernel adds some informative sections to a image of program at 117 * generating coredump, we need some margin. The number of extra sections is 118 * 1-3 now and depends on arch. We use "5" as safe margin, here. 119 * 120 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 121 * not a hard limit any more. Although some userspace tools can be surprised by 122 * that. 123 */ 124#define MAPCOUNT_ELF_CORE_MARGIN (5) 125#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 126 127extern int sysctl_max_map_count; 128 129extern unsigned long sysctl_user_reserve_kbytes; 130extern unsigned long sysctl_admin_reserve_kbytes; 131 132extern int sysctl_overcommit_memory; 133extern int sysctl_overcommit_ratio; 134extern unsigned long sysctl_overcommit_kbytes; 135 136extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 137 size_t *, loff_t *); 138extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 139 size_t *, loff_t *); 140 141#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 142 143/* to align the pointer to the (next) page boundary */ 144#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 145 146/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 147#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 148 149/* 150 * Linux kernel virtual memory manager primitives. 151 * The idea being to have a "virtual" mm in the same way 152 * we have a virtual fs - giving a cleaner interface to the 153 * mm details, and allowing different kinds of memory mappings 154 * (from shared memory to executable loading to arbitrary 155 * mmap() functions). 156 */ 157 158struct vm_area_struct *vm_area_alloc(struct mm_struct *); 159struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 160void vm_area_free(struct vm_area_struct *); 161 162#ifndef CONFIG_MMU 163extern struct rb_root nommu_region_tree; 164extern struct rw_semaphore nommu_region_sem; 165 166extern unsigned int kobjsize(const void *objp); 167#endif 168 169/* 170 * vm_flags in vm_area_struct, see mm_types.h. 171 * When changing, update also include/trace/events/mmflags.h 172 */ 173#define VM_NONE 0x00000000 174 175#define VM_READ 0x00000001 /* currently active flags */ 176#define VM_WRITE 0x00000002 177#define VM_EXEC 0x00000004 178#define VM_SHARED 0x00000008 179 180/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 181#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 182#define VM_MAYWRITE 0x00000020 183#define VM_MAYEXEC 0x00000040 184#define VM_MAYSHARE 0x00000080 185 186#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 187#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 188#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 189#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 190#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 191 192#define VM_LOCKED 0x00002000 193#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 194 195 /* Used by sys_madvise() */ 196#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 197#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 198 199#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 200#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 201#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 202#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 203#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 204#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 205#define VM_SYNC 0x00800000 /* Synchronous page faults */ 206#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 207#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 208#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 209 210#ifdef CONFIG_MEM_SOFT_DIRTY 211# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 212#else 213# define VM_SOFTDIRTY 0 214#endif 215 216#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 217#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 218#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 219#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 220 221#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 222#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 223#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 224#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 225#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 226#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 227#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 228#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 229#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 230#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 231#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 232#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 233 234#ifdef CONFIG_ARCH_HAS_PKEYS 235# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 236# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 237# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 238# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 239# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 240#ifdef CONFIG_PPC 241# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 242#else 243# define VM_PKEY_BIT4 0 244#endif 245#endif /* CONFIG_ARCH_HAS_PKEYS */ 246 247#if defined(CONFIG_X86) 248# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 249#elif defined(CONFIG_PPC) 250# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 251#elif defined(CONFIG_PARISC) 252# define VM_GROWSUP VM_ARCH_1 253#elif defined(CONFIG_IA64) 254# define VM_GROWSUP VM_ARCH_1 255#elif defined(CONFIG_SPARC64) 256# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 257# define VM_ARCH_CLEAR VM_SPARC_ADI 258#elif !defined(CONFIG_MMU) 259# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 260#endif 261 262#if defined(CONFIG_X86_INTEL_MPX) 263/* MPX specific bounds table or bounds directory */ 264# define VM_MPX VM_HIGH_ARCH_4 265#else 266# define VM_MPX VM_NONE 267#endif 268 269#ifndef VM_GROWSUP 270# define VM_GROWSUP VM_NONE 271#endif 272 273/* Bits set in the VMA until the stack is in its final location */ 274#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 275 276#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 277#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 278#endif 279 280#ifdef CONFIG_STACK_GROWSUP 281#define VM_STACK VM_GROWSUP 282#else 283#define VM_STACK VM_GROWSDOWN 284#endif 285 286#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 287 288/* 289 * Special vmas that are non-mergable, non-mlock()able. 290 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 291 */ 292#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 293 294/* This mask defines which mm->def_flags a process can inherit its parent */ 295#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 296 297/* This mask is used to clear all the VMA flags used by mlock */ 298#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 299 300/* Arch-specific flags to clear when updating VM flags on protection change */ 301#ifndef VM_ARCH_CLEAR 302# define VM_ARCH_CLEAR VM_NONE 303#endif 304#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 305 306/* 307 * mapping from the currently active vm_flags protection bits (the 308 * low four bits) to a page protection mask.. 309 */ 310extern pgprot_t protection_map[16]; 311 312#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 313#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 314#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 315#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 316#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 317#define FAULT_FLAG_TRIED 0x20 /* Second try */ 318#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 319#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 320#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 321 322#define FAULT_FLAG_TRACE \ 323 { FAULT_FLAG_WRITE, "WRITE" }, \ 324 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 325 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 326 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 327 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 328 { FAULT_FLAG_TRIED, "TRIED" }, \ 329 { FAULT_FLAG_USER, "USER" }, \ 330 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 331 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 332 333/* 334 * vm_fault is filled by the the pagefault handler and passed to the vma's 335 * ->fault function. The vma's ->fault is responsible for returning a bitmask 336 * of VM_FAULT_xxx flags that give details about how the fault was handled. 337 * 338 * MM layer fills up gfp_mask for page allocations but fault handler might 339 * alter it if its implementation requires a different allocation context. 340 * 341 * pgoff should be used in favour of virtual_address, if possible. 342 */ 343struct vm_fault { 344 struct vm_area_struct *vma; /* Target VMA */ 345 unsigned int flags; /* FAULT_FLAG_xxx flags */ 346 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 347 pgoff_t pgoff; /* Logical page offset based on vma */ 348 unsigned long address; /* Faulting virtual address */ 349 pmd_t *pmd; /* Pointer to pmd entry matching 350 * the 'address' */ 351 pud_t *pud; /* Pointer to pud entry matching 352 * the 'address' 353 */ 354 pte_t orig_pte; /* Value of PTE at the time of fault */ 355 356 struct page *cow_page; /* Page handler may use for COW fault */ 357 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 358 struct page *page; /* ->fault handlers should return a 359 * page here, unless VM_FAULT_NOPAGE 360 * is set (which is also implied by 361 * VM_FAULT_ERROR). 362 */ 363 /* These three entries are valid only while holding ptl lock */ 364 pte_t *pte; /* Pointer to pte entry matching 365 * the 'address'. NULL if the page 366 * table hasn't been allocated. 367 */ 368 spinlock_t *ptl; /* Page table lock. 369 * Protects pte page table if 'pte' 370 * is not NULL, otherwise pmd. 371 */ 372 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 373 * vm_ops->map_pages() calls 374 * alloc_set_pte() from atomic context. 375 * do_fault_around() pre-allocates 376 * page table to avoid allocation from 377 * atomic context. 378 */ 379}; 380 381/* page entry size for vm->huge_fault() */ 382enum page_entry_size { 383 PE_SIZE_PTE = 0, 384 PE_SIZE_PMD, 385 PE_SIZE_PUD, 386}; 387 388/* 389 * These are the virtual MM functions - opening of an area, closing and 390 * unmapping it (needed to keep files on disk up-to-date etc), pointer 391 * to the functions called when a no-page or a wp-page exception occurs. 392 */ 393struct vm_operations_struct { 394 void (*open)(struct vm_area_struct * area); 395 void (*close)(struct vm_area_struct * area); 396 int (*split)(struct vm_area_struct * area, unsigned long addr); 397 int (*mremap)(struct vm_area_struct * area); 398 vm_fault_t (*fault)(struct vm_fault *vmf); 399 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 400 enum page_entry_size pe_size); 401 void (*map_pages)(struct vm_fault *vmf, 402 pgoff_t start_pgoff, pgoff_t end_pgoff); 403 unsigned long (*pagesize)(struct vm_area_struct * area); 404 405 /* notification that a previously read-only page is about to become 406 * writable, if an error is returned it will cause a SIGBUS */ 407 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 408 409 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 410 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 411 412 /* called by access_process_vm when get_user_pages() fails, typically 413 * for use by special VMAs that can switch between memory and hardware 414 */ 415 int (*access)(struct vm_area_struct *vma, unsigned long addr, 416 void *buf, int len, int write); 417 418 /* Called by the /proc/PID/maps code to ask the vma whether it 419 * has a special name. Returning non-NULL will also cause this 420 * vma to be dumped unconditionally. */ 421 const char *(*name)(struct vm_area_struct *vma); 422 423#ifdef CONFIG_NUMA 424 /* 425 * set_policy() op must add a reference to any non-NULL @new mempolicy 426 * to hold the policy upon return. Caller should pass NULL @new to 427 * remove a policy and fall back to surrounding context--i.e. do not 428 * install a MPOL_DEFAULT policy, nor the task or system default 429 * mempolicy. 430 */ 431 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 432 433 /* 434 * get_policy() op must add reference [mpol_get()] to any policy at 435 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 436 * in mm/mempolicy.c will do this automatically. 437 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 438 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 439 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 440 * must return NULL--i.e., do not "fallback" to task or system default 441 * policy. 442 */ 443 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 444 unsigned long addr); 445#endif 446 /* 447 * Called by vm_normal_page() for special PTEs to find the 448 * page for @addr. This is useful if the default behavior 449 * (using pte_page()) would not find the correct page. 450 */ 451 struct page *(*find_special_page)(struct vm_area_struct *vma, 452 unsigned long addr); 453}; 454 455static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 456{ 457 static const struct vm_operations_struct dummy_vm_ops = {}; 458 459 memset(vma, 0, sizeof(*vma)); 460 vma->vm_mm = mm; 461 vma->vm_ops = &dummy_vm_ops; 462 INIT_LIST_HEAD(&vma->anon_vma_chain); 463} 464 465static inline void vma_set_anonymous(struct vm_area_struct *vma) 466{ 467 vma->vm_ops = NULL; 468} 469 470/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 471#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 472 473struct mmu_gather; 474struct inode; 475 476#define page_private(page) ((page)->private) 477#define set_page_private(page, v) ((page)->private = (v)) 478 479#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 480static inline int pmd_devmap(pmd_t pmd) 481{ 482 return 0; 483} 484static inline int pud_devmap(pud_t pud) 485{ 486 return 0; 487} 488static inline int pgd_devmap(pgd_t pgd) 489{ 490 return 0; 491} 492#endif 493 494/* 495 * FIXME: take this include out, include page-flags.h in 496 * files which need it (119 of them) 497 */ 498#include <linux/page-flags.h> 499#include <linux/huge_mm.h> 500 501/* 502 * Methods to modify the page usage count. 503 * 504 * What counts for a page usage: 505 * - cache mapping (page->mapping) 506 * - private data (page->private) 507 * - page mapped in a task's page tables, each mapping 508 * is counted separately 509 * 510 * Also, many kernel routines increase the page count before a critical 511 * routine so they can be sure the page doesn't go away from under them. 512 */ 513 514/* 515 * Drop a ref, return true if the refcount fell to zero (the page has no users) 516 */ 517static inline int put_page_testzero(struct page *page) 518{ 519 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 520 return page_ref_dec_and_test(page); 521} 522 523/* 524 * Try to grab a ref unless the page has a refcount of zero, return false if 525 * that is the case. 526 * This can be called when MMU is off so it must not access 527 * any of the virtual mappings. 528 */ 529static inline int get_page_unless_zero(struct page *page) 530{ 531 return page_ref_add_unless(page, 1, 0); 532} 533 534extern int page_is_ram(unsigned long pfn); 535 536enum { 537 REGION_INTERSECTS, 538 REGION_DISJOINT, 539 REGION_MIXED, 540}; 541 542int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 543 unsigned long desc); 544 545/* Support for virtually mapped pages */ 546struct page *vmalloc_to_page(const void *addr); 547unsigned long vmalloc_to_pfn(const void *addr); 548 549/* 550 * Determine if an address is within the vmalloc range 551 * 552 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 553 * is no special casing required. 554 */ 555static inline bool is_vmalloc_addr(const void *x) 556{ 557#ifdef CONFIG_MMU 558 unsigned long addr = (unsigned long)x; 559 560 return addr >= VMALLOC_START && addr < VMALLOC_END; 561#else 562 return false; 563#endif 564} 565#ifdef CONFIG_MMU 566extern int is_vmalloc_or_module_addr(const void *x); 567#else 568static inline int is_vmalloc_or_module_addr(const void *x) 569{ 570 return 0; 571} 572#endif 573 574extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 575static inline void *kvmalloc(size_t size, gfp_t flags) 576{ 577 return kvmalloc_node(size, flags, NUMA_NO_NODE); 578} 579static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 580{ 581 return kvmalloc_node(size, flags | __GFP_ZERO, node); 582} 583static inline void *kvzalloc(size_t size, gfp_t flags) 584{ 585 return kvmalloc(size, flags | __GFP_ZERO); 586} 587 588static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 589{ 590 size_t bytes; 591 592 if (unlikely(check_mul_overflow(n, size, &bytes))) 593 return NULL; 594 595 return kvmalloc(bytes, flags); 596} 597 598static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 599{ 600 return kvmalloc_array(n, size, flags | __GFP_ZERO); 601} 602 603extern void kvfree(const void *addr); 604 605static inline atomic_t *compound_mapcount_ptr(struct page *page) 606{ 607 return &page[1].compound_mapcount; 608} 609 610static inline int compound_mapcount(struct page *page) 611{ 612 VM_BUG_ON_PAGE(!PageCompound(page), page); 613 page = compound_head(page); 614 return atomic_read(compound_mapcount_ptr(page)) + 1; 615} 616 617/* 618 * The atomic page->_mapcount, starts from -1: so that transitions 619 * both from it and to it can be tracked, using atomic_inc_and_test 620 * and atomic_add_negative(-1). 621 */ 622static inline void page_mapcount_reset(struct page *page) 623{ 624 atomic_set(&(page)->_mapcount, -1); 625} 626 627int __page_mapcount(struct page *page); 628 629static inline int page_mapcount(struct page *page) 630{ 631 VM_BUG_ON_PAGE(PageSlab(page), page); 632 633 if (unlikely(PageCompound(page))) 634 return __page_mapcount(page); 635 return atomic_read(&page->_mapcount) + 1; 636} 637 638#ifdef CONFIG_TRANSPARENT_HUGEPAGE 639int total_mapcount(struct page *page); 640int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 641#else 642static inline int total_mapcount(struct page *page) 643{ 644 return page_mapcount(page); 645} 646static inline int page_trans_huge_mapcount(struct page *page, 647 int *total_mapcount) 648{ 649 int mapcount = page_mapcount(page); 650 if (total_mapcount) 651 *total_mapcount = mapcount; 652 return mapcount; 653} 654#endif 655 656static inline struct page *virt_to_head_page(const void *x) 657{ 658 struct page *page = virt_to_page(x); 659 660 return compound_head(page); 661} 662 663void __put_page(struct page *page); 664 665void put_pages_list(struct list_head *pages); 666 667void split_page(struct page *page, unsigned int order); 668 669/* 670 * Compound pages have a destructor function. Provide a 671 * prototype for that function and accessor functions. 672 * These are _only_ valid on the head of a compound page. 673 */ 674typedef void compound_page_dtor(struct page *); 675 676/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 677enum compound_dtor_id { 678 NULL_COMPOUND_DTOR, 679 COMPOUND_PAGE_DTOR, 680#ifdef CONFIG_HUGETLB_PAGE 681 HUGETLB_PAGE_DTOR, 682#endif 683#ifdef CONFIG_TRANSPARENT_HUGEPAGE 684 TRANSHUGE_PAGE_DTOR, 685#endif 686 NR_COMPOUND_DTORS, 687}; 688extern compound_page_dtor * const compound_page_dtors[]; 689 690static inline void set_compound_page_dtor(struct page *page, 691 enum compound_dtor_id compound_dtor) 692{ 693 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 694 page[1].compound_dtor = compound_dtor; 695} 696 697static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 698{ 699 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 700 return compound_page_dtors[page[1].compound_dtor]; 701} 702 703static inline unsigned int compound_order(struct page *page) 704{ 705 if (!PageHead(page)) 706 return 0; 707 return page[1].compound_order; 708} 709 710static inline void set_compound_order(struct page *page, unsigned int order) 711{ 712 page[1].compound_order = order; 713} 714 715void free_compound_page(struct page *page); 716 717#ifdef CONFIG_MMU 718/* 719 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 720 * servicing faults for write access. In the normal case, do always want 721 * pte_mkwrite. But get_user_pages can cause write faults for mappings 722 * that do not have writing enabled, when used by access_process_vm. 723 */ 724static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 725{ 726 if (likely(vma->vm_flags & VM_WRITE)) 727 pte = pte_mkwrite(pte); 728 return pte; 729} 730 731vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 732 struct page *page); 733vm_fault_t finish_fault(struct vm_fault *vmf); 734vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 735#endif 736 737/* 738 * Multiple processes may "see" the same page. E.g. for untouched 739 * mappings of /dev/null, all processes see the same page full of 740 * zeroes, and text pages of executables and shared libraries have 741 * only one copy in memory, at most, normally. 742 * 743 * For the non-reserved pages, page_count(page) denotes a reference count. 744 * page_count() == 0 means the page is free. page->lru is then used for 745 * freelist management in the buddy allocator. 746 * page_count() > 0 means the page has been allocated. 747 * 748 * Pages are allocated by the slab allocator in order to provide memory 749 * to kmalloc and kmem_cache_alloc. In this case, the management of the 750 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 751 * unless a particular usage is carefully commented. (the responsibility of 752 * freeing the kmalloc memory is the caller's, of course). 753 * 754 * A page may be used by anyone else who does a __get_free_page(). 755 * In this case, page_count still tracks the references, and should only 756 * be used through the normal accessor functions. The top bits of page->flags 757 * and page->virtual store page management information, but all other fields 758 * are unused and could be used privately, carefully. The management of this 759 * page is the responsibility of the one who allocated it, and those who have 760 * subsequently been given references to it. 761 * 762 * The other pages (we may call them "pagecache pages") are completely 763 * managed by the Linux memory manager: I/O, buffers, swapping etc. 764 * The following discussion applies only to them. 765 * 766 * A pagecache page contains an opaque `private' member, which belongs to the 767 * page's address_space. Usually, this is the address of a circular list of 768 * the page's disk buffers. PG_private must be set to tell the VM to call 769 * into the filesystem to release these pages. 770 * 771 * A page may belong to an inode's memory mapping. In this case, page->mapping 772 * is the pointer to the inode, and page->index is the file offset of the page, 773 * in units of PAGE_SIZE. 774 * 775 * If pagecache pages are not associated with an inode, they are said to be 776 * anonymous pages. These may become associated with the swapcache, and in that 777 * case PG_swapcache is set, and page->private is an offset into the swapcache. 778 * 779 * In either case (swapcache or inode backed), the pagecache itself holds one 780 * reference to the page. Setting PG_private should also increment the 781 * refcount. The each user mapping also has a reference to the page. 782 * 783 * The pagecache pages are stored in a per-mapping radix tree, which is 784 * rooted at mapping->i_pages, and indexed by offset. 785 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 786 * lists, we instead now tag pages as dirty/writeback in the radix tree. 787 * 788 * All pagecache pages may be subject to I/O: 789 * - inode pages may need to be read from disk, 790 * - inode pages which have been modified and are MAP_SHARED may need 791 * to be written back to the inode on disk, 792 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 793 * modified may need to be swapped out to swap space and (later) to be read 794 * back into memory. 795 */ 796 797/* 798 * The zone field is never updated after free_area_init_core() 799 * sets it, so none of the operations on it need to be atomic. 800 */ 801 802/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 803#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 804#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 805#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 806#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 807 808/* 809 * Define the bit shifts to access each section. For non-existent 810 * sections we define the shift as 0; that plus a 0 mask ensures 811 * the compiler will optimise away reference to them. 812 */ 813#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 814#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 815#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 816#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 817 818/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 819#ifdef NODE_NOT_IN_PAGE_FLAGS 820#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 821#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 822 SECTIONS_PGOFF : ZONES_PGOFF) 823#else 824#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 825#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 826 NODES_PGOFF : ZONES_PGOFF) 827#endif 828 829#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 830 831#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 832#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 833#endif 834 835#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 836#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 837#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 838#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 839#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 840 841static inline enum zone_type page_zonenum(const struct page *page) 842{ 843 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 844} 845 846#ifdef CONFIG_ZONE_DEVICE 847static inline bool is_zone_device_page(const struct page *page) 848{ 849 return page_zonenum(page) == ZONE_DEVICE; 850} 851#else 852static inline bool is_zone_device_page(const struct page *page) 853{ 854 return false; 855} 856#endif 857 858#ifdef CONFIG_DEV_PAGEMAP_OPS 859void dev_pagemap_get_ops(void); 860void dev_pagemap_put_ops(void); 861void __put_devmap_managed_page(struct page *page); 862DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 863static inline bool put_devmap_managed_page(struct page *page) 864{ 865 if (!static_branch_unlikely(&devmap_managed_key)) 866 return false; 867 if (!is_zone_device_page(page)) 868 return false; 869 switch (page->pgmap->type) { 870 case MEMORY_DEVICE_PRIVATE: 871 case MEMORY_DEVICE_PUBLIC: 872 case MEMORY_DEVICE_FS_DAX: 873 __put_devmap_managed_page(page); 874 return true; 875 default: 876 break; 877 } 878 return false; 879} 880 881static inline bool is_device_private_page(const struct page *page) 882{ 883 return is_zone_device_page(page) && 884 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 885} 886 887static inline bool is_device_public_page(const struct page *page) 888{ 889 return is_zone_device_page(page) && 890 page->pgmap->type == MEMORY_DEVICE_PUBLIC; 891} 892 893#else /* CONFIG_DEV_PAGEMAP_OPS */ 894static inline void dev_pagemap_get_ops(void) 895{ 896} 897 898static inline void dev_pagemap_put_ops(void) 899{ 900} 901 902static inline bool put_devmap_managed_page(struct page *page) 903{ 904 return false; 905} 906 907static inline bool is_device_private_page(const struct page *page) 908{ 909 return false; 910} 911 912static inline bool is_device_public_page(const struct page *page) 913{ 914 return false; 915} 916#endif /* CONFIG_DEV_PAGEMAP_OPS */ 917 918static inline void get_page(struct page *page) 919{ 920 page = compound_head(page); 921 /* 922 * Getting a normal page or the head of a compound page 923 * requires to already have an elevated page->_refcount. 924 */ 925 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 926 page_ref_inc(page); 927} 928 929static inline void put_page(struct page *page) 930{ 931 page = compound_head(page); 932 933 /* 934 * For devmap managed pages we need to catch refcount transition from 935 * 2 to 1, when refcount reach one it means the page is free and we 936 * need to inform the device driver through callback. See 937 * include/linux/memremap.h and HMM for details. 938 */ 939 if (put_devmap_managed_page(page)) 940 return; 941 942 if (put_page_testzero(page)) 943 __put_page(page); 944} 945 946#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 947#define SECTION_IN_PAGE_FLAGS 948#endif 949 950/* 951 * The identification function is mainly used by the buddy allocator for 952 * determining if two pages could be buddies. We are not really identifying 953 * the zone since we could be using the section number id if we do not have 954 * node id available in page flags. 955 * We only guarantee that it will return the same value for two combinable 956 * pages in a zone. 957 */ 958static inline int page_zone_id(struct page *page) 959{ 960 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 961} 962 963#ifdef NODE_NOT_IN_PAGE_FLAGS 964extern int page_to_nid(const struct page *page); 965#else 966static inline int page_to_nid(const struct page *page) 967{ 968 struct page *p = (struct page *)page; 969 970 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 971} 972#endif 973 974#ifdef CONFIG_NUMA_BALANCING 975static inline int cpu_pid_to_cpupid(int cpu, int pid) 976{ 977 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 978} 979 980static inline int cpupid_to_pid(int cpupid) 981{ 982 return cpupid & LAST__PID_MASK; 983} 984 985static inline int cpupid_to_cpu(int cpupid) 986{ 987 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 988} 989 990static inline int cpupid_to_nid(int cpupid) 991{ 992 return cpu_to_node(cpupid_to_cpu(cpupid)); 993} 994 995static inline bool cpupid_pid_unset(int cpupid) 996{ 997 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 998} 999 1000static inline bool cpupid_cpu_unset(int cpupid) 1001{ 1002 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1003} 1004 1005static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1006{ 1007 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1008} 1009 1010#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1011#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1012static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1013{ 1014 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1015} 1016 1017static inline int page_cpupid_last(struct page *page) 1018{ 1019 return page->_last_cpupid; 1020} 1021static inline void page_cpupid_reset_last(struct page *page) 1022{ 1023 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1024} 1025#else 1026static inline int page_cpupid_last(struct page *page) 1027{ 1028 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1029} 1030 1031extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1032 1033static inline void page_cpupid_reset_last(struct page *page) 1034{ 1035 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1036} 1037#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1038#else /* !CONFIG_NUMA_BALANCING */ 1039static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1040{ 1041 return page_to_nid(page); /* XXX */ 1042} 1043 1044static inline int page_cpupid_last(struct page *page) 1045{ 1046 return page_to_nid(page); /* XXX */ 1047} 1048 1049static inline int cpupid_to_nid(int cpupid) 1050{ 1051 return -1; 1052} 1053 1054static inline int cpupid_to_pid(int cpupid) 1055{ 1056 return -1; 1057} 1058 1059static inline int cpupid_to_cpu(int cpupid) 1060{ 1061 return -1; 1062} 1063 1064static inline int cpu_pid_to_cpupid(int nid, int pid) 1065{ 1066 return -1; 1067} 1068 1069static inline bool cpupid_pid_unset(int cpupid) 1070{ 1071 return 1; 1072} 1073 1074static inline void page_cpupid_reset_last(struct page *page) 1075{ 1076} 1077 1078static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1079{ 1080 return false; 1081} 1082#endif /* CONFIG_NUMA_BALANCING */ 1083 1084static inline struct zone *page_zone(const struct page *page) 1085{ 1086 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1087} 1088 1089static inline pg_data_t *page_pgdat(const struct page *page) 1090{ 1091 return NODE_DATA(page_to_nid(page)); 1092} 1093 1094#ifdef SECTION_IN_PAGE_FLAGS 1095static inline void set_page_section(struct page *page, unsigned long section) 1096{ 1097 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1098 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1099} 1100 1101static inline unsigned long page_to_section(const struct page *page) 1102{ 1103 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1104} 1105#endif 1106 1107static inline void set_page_zone(struct page *page, enum zone_type zone) 1108{ 1109 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1110 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1111} 1112 1113static inline void set_page_node(struct page *page, unsigned long node) 1114{ 1115 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1116 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1117} 1118 1119static inline void set_page_links(struct page *page, enum zone_type zone, 1120 unsigned long node, unsigned long pfn) 1121{ 1122 set_page_zone(page, zone); 1123 set_page_node(page, node); 1124#ifdef SECTION_IN_PAGE_FLAGS 1125 set_page_section(page, pfn_to_section_nr(pfn)); 1126#endif 1127} 1128 1129#ifdef CONFIG_MEMCG 1130static inline struct mem_cgroup *page_memcg(struct page *page) 1131{ 1132 return page->mem_cgroup; 1133} 1134static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1135{ 1136 WARN_ON_ONCE(!rcu_read_lock_held()); 1137 return READ_ONCE(page->mem_cgroup); 1138} 1139#else 1140static inline struct mem_cgroup *page_memcg(struct page *page) 1141{ 1142 return NULL; 1143} 1144static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1145{ 1146 WARN_ON_ONCE(!rcu_read_lock_held()); 1147 return NULL; 1148} 1149#endif 1150 1151/* 1152 * Some inline functions in vmstat.h depend on page_zone() 1153 */ 1154#include <linux/vmstat.h> 1155 1156static __always_inline void *lowmem_page_address(const struct page *page) 1157{ 1158 return page_to_virt(page); 1159} 1160 1161#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1162#define HASHED_PAGE_VIRTUAL 1163#endif 1164 1165#if defined(WANT_PAGE_VIRTUAL) 1166static inline void *page_address(const struct page *page) 1167{ 1168 return page->virtual; 1169} 1170static inline void set_page_address(struct page *page, void *address) 1171{ 1172 page->virtual = address; 1173} 1174#define page_address_init() do { } while(0) 1175#endif 1176 1177#if defined(HASHED_PAGE_VIRTUAL) 1178void *page_address(const struct page *page); 1179void set_page_address(struct page *page, void *virtual); 1180void page_address_init(void); 1181#endif 1182 1183#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1184#define page_address(page) lowmem_page_address(page) 1185#define set_page_address(page, address) do { } while(0) 1186#define page_address_init() do { } while(0) 1187#endif 1188 1189extern void *page_rmapping(struct page *page); 1190extern struct anon_vma *page_anon_vma(struct page *page); 1191extern struct address_space *page_mapping(struct page *page); 1192 1193extern struct address_space *__page_file_mapping(struct page *); 1194 1195static inline 1196struct address_space *page_file_mapping(struct page *page) 1197{ 1198 if (unlikely(PageSwapCache(page))) 1199 return __page_file_mapping(page); 1200 1201 return page->mapping; 1202} 1203 1204extern pgoff_t __page_file_index(struct page *page); 1205 1206/* 1207 * Return the pagecache index of the passed page. Regular pagecache pages 1208 * use ->index whereas swapcache pages use swp_offset(->private) 1209 */ 1210static inline pgoff_t page_index(struct page *page) 1211{ 1212 if (unlikely(PageSwapCache(page))) 1213 return __page_file_index(page); 1214 return page->index; 1215} 1216 1217bool page_mapped(struct page *page); 1218struct address_space *page_mapping(struct page *page); 1219struct address_space *page_mapping_file(struct page *page); 1220 1221/* 1222 * Return true only if the page has been allocated with 1223 * ALLOC_NO_WATERMARKS and the low watermark was not 1224 * met implying that the system is under some pressure. 1225 */ 1226static inline bool page_is_pfmemalloc(struct page *page) 1227{ 1228 /* 1229 * Page index cannot be this large so this must be 1230 * a pfmemalloc page. 1231 */ 1232 return page->index == -1UL; 1233} 1234 1235/* 1236 * Only to be called by the page allocator on a freshly allocated 1237 * page. 1238 */ 1239static inline void set_page_pfmemalloc(struct page *page) 1240{ 1241 page->index = -1UL; 1242} 1243 1244static inline void clear_page_pfmemalloc(struct page *page) 1245{ 1246 page->index = 0; 1247} 1248 1249/* 1250 * Different kinds of faults, as returned by handle_mm_fault(). 1251 * Used to decide whether a process gets delivered SIGBUS or 1252 * just gets major/minor fault counters bumped up. 1253 */ 1254 1255#define VM_FAULT_OOM 0x0001 1256#define VM_FAULT_SIGBUS 0x0002 1257#define VM_FAULT_MAJOR 0x0004 1258#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1259#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1260#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1261#define VM_FAULT_SIGSEGV 0x0040 1262 1263#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1264#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1265#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1266#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1267#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1268#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables 1269 * and needs fsync() to complete (for 1270 * synchronous page faults in DAX) */ 1271 1272#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1273 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1274 VM_FAULT_FALLBACK) 1275 1276#define VM_FAULT_RESULT_TRACE \ 1277 { VM_FAULT_OOM, "OOM" }, \ 1278 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1279 { VM_FAULT_MAJOR, "MAJOR" }, \ 1280 { VM_FAULT_WRITE, "WRITE" }, \ 1281 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1282 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1283 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1284 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1285 { VM_FAULT_LOCKED, "LOCKED" }, \ 1286 { VM_FAULT_RETRY, "RETRY" }, \ 1287 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1288 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1289 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 1290 1291/* Encode hstate index for a hwpoisoned large page */ 1292#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1293#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1294 1295/* 1296 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1297 */ 1298extern void pagefault_out_of_memory(void); 1299 1300#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1301 1302/* 1303 * Flags passed to show_mem() and show_free_areas() to suppress output in 1304 * various contexts. 1305 */ 1306#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1307 1308extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1309 1310extern bool can_do_mlock(void); 1311extern int user_shm_lock(size_t, struct user_struct *); 1312extern void user_shm_unlock(size_t, struct user_struct *); 1313 1314/* 1315 * Parameter block passed down to zap_pte_range in exceptional cases. 1316 */ 1317struct zap_details { 1318 struct address_space *check_mapping; /* Check page->mapping if set */ 1319 pgoff_t first_index; /* Lowest page->index to unmap */ 1320 pgoff_t last_index; /* Highest page->index to unmap */ 1321}; 1322 1323struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1324 pte_t pte, bool with_public_device); 1325#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false) 1326 1327struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1328 pmd_t pmd); 1329 1330void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1331 unsigned long size); 1332void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1333 unsigned long size); 1334void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1335 unsigned long start, unsigned long end); 1336 1337/** 1338 * mm_walk - callbacks for walk_page_range 1339 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1340 * this handler should only handle pud_trans_huge() puds. 1341 * the pmd_entry or pte_entry callbacks will be used for 1342 * regular PUDs. 1343 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1344 * this handler is required to be able to handle 1345 * pmd_trans_huge() pmds. They may simply choose to 1346 * split_huge_page() instead of handling it explicitly. 1347 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1348 * @pte_hole: if set, called for each hole at all levels 1349 * @hugetlb_entry: if set, called for each hugetlb entry 1350 * @test_walk: caller specific callback function to determine whether 1351 * we walk over the current vma or not. Returning 0 1352 * value means "do page table walk over the current vma," 1353 * and a negative one means "abort current page table walk 1354 * right now." 1 means "skip the current vma." 1355 * @mm: mm_struct representing the target process of page table walk 1356 * @vma: vma currently walked (NULL if walking outside vmas) 1357 * @private: private data for callbacks' usage 1358 * 1359 * (see the comment on walk_page_range() for more details) 1360 */ 1361struct mm_walk { 1362 int (*pud_entry)(pud_t *pud, unsigned long addr, 1363 unsigned long next, struct mm_walk *walk); 1364 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1365 unsigned long next, struct mm_walk *walk); 1366 int (*pte_entry)(pte_t *pte, unsigned long addr, 1367 unsigned long next, struct mm_walk *walk); 1368 int (*pte_hole)(unsigned long addr, unsigned long next, 1369 struct mm_walk *walk); 1370 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1371 unsigned long addr, unsigned long next, 1372 struct mm_walk *walk); 1373 int (*test_walk)(unsigned long addr, unsigned long next, 1374 struct mm_walk *walk); 1375 struct mm_struct *mm; 1376 struct vm_area_struct *vma; 1377 void *private; 1378}; 1379 1380int walk_page_range(unsigned long addr, unsigned long end, 1381 struct mm_walk *walk); 1382int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1383void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1384 unsigned long end, unsigned long floor, unsigned long ceiling); 1385int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1386 struct vm_area_struct *vma); 1387int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1388 unsigned long *start, unsigned long *end, 1389 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1390int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1391 unsigned long *pfn); 1392int follow_phys(struct vm_area_struct *vma, unsigned long address, 1393 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1394int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1395 void *buf, int len, int write); 1396 1397extern void truncate_pagecache(struct inode *inode, loff_t new); 1398extern void truncate_setsize(struct inode *inode, loff_t newsize); 1399void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1400void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1401int truncate_inode_page(struct address_space *mapping, struct page *page); 1402int generic_error_remove_page(struct address_space *mapping, struct page *page); 1403int invalidate_inode_page(struct page *page); 1404 1405#ifdef CONFIG_MMU 1406extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1407 unsigned long address, unsigned int flags); 1408extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1409 unsigned long address, unsigned int fault_flags, 1410 bool *unlocked); 1411void unmap_mapping_pages(struct address_space *mapping, 1412 pgoff_t start, pgoff_t nr, bool even_cows); 1413void unmap_mapping_range(struct address_space *mapping, 1414 loff_t const holebegin, loff_t const holelen, int even_cows); 1415#else 1416static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1417 unsigned long address, unsigned int flags) 1418{ 1419 /* should never happen if there's no MMU */ 1420 BUG(); 1421 return VM_FAULT_SIGBUS; 1422} 1423static inline int fixup_user_fault(struct task_struct *tsk, 1424 struct mm_struct *mm, unsigned long address, 1425 unsigned int fault_flags, bool *unlocked) 1426{ 1427 /* should never happen if there's no MMU */ 1428 BUG(); 1429 return -EFAULT; 1430} 1431static inline void unmap_mapping_pages(struct address_space *mapping, 1432 pgoff_t start, pgoff_t nr, bool even_cows) { } 1433static inline void unmap_mapping_range(struct address_space *mapping, 1434 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1435#endif 1436 1437static inline void unmap_shared_mapping_range(struct address_space *mapping, 1438 loff_t const holebegin, loff_t const holelen) 1439{ 1440 unmap_mapping_range(mapping, holebegin, holelen, 0); 1441} 1442 1443extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1444 void *buf, int len, unsigned int gup_flags); 1445extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1446 void *buf, int len, unsigned int gup_flags); 1447extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1448 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1449 1450long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1451 unsigned long start, unsigned long nr_pages, 1452 unsigned int gup_flags, struct page **pages, 1453 struct vm_area_struct **vmas, int *locked); 1454long get_user_pages(unsigned long start, unsigned long nr_pages, 1455 unsigned int gup_flags, struct page **pages, 1456 struct vm_area_struct **vmas); 1457long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1458 unsigned int gup_flags, struct page **pages, int *locked); 1459long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1460 struct page **pages, unsigned int gup_flags); 1461#ifdef CONFIG_FS_DAX 1462long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1463 unsigned int gup_flags, struct page **pages, 1464 struct vm_area_struct **vmas); 1465#else 1466static inline long get_user_pages_longterm(unsigned long start, 1467 unsigned long nr_pages, unsigned int gup_flags, 1468 struct page **pages, struct vm_area_struct **vmas) 1469{ 1470 return get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1471} 1472#endif /* CONFIG_FS_DAX */ 1473 1474int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1475 struct page **pages); 1476 1477/* Container for pinned pfns / pages */ 1478struct frame_vector { 1479 unsigned int nr_allocated; /* Number of frames we have space for */ 1480 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1481 bool got_ref; /* Did we pin pages by getting page ref? */ 1482 bool is_pfns; /* Does array contain pages or pfns? */ 1483 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1484 * pfns_vector_pages() or pfns_vector_pfns() 1485 * for access */ 1486}; 1487 1488struct frame_vector *frame_vector_create(unsigned int nr_frames); 1489void frame_vector_destroy(struct frame_vector *vec); 1490int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1491 unsigned int gup_flags, struct frame_vector *vec); 1492void put_vaddr_frames(struct frame_vector *vec); 1493int frame_vector_to_pages(struct frame_vector *vec); 1494void frame_vector_to_pfns(struct frame_vector *vec); 1495 1496static inline unsigned int frame_vector_count(struct frame_vector *vec) 1497{ 1498 return vec->nr_frames; 1499} 1500 1501static inline struct page **frame_vector_pages(struct frame_vector *vec) 1502{ 1503 if (vec->is_pfns) { 1504 int err = frame_vector_to_pages(vec); 1505 1506 if (err) 1507 return ERR_PTR(err); 1508 } 1509 return (struct page **)(vec->ptrs); 1510} 1511 1512static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1513{ 1514 if (!vec->is_pfns) 1515 frame_vector_to_pfns(vec); 1516 return (unsigned long *)(vec->ptrs); 1517} 1518 1519struct kvec; 1520int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1521 struct page **pages); 1522int get_kernel_page(unsigned long start, int write, struct page **pages); 1523struct page *get_dump_page(unsigned long addr); 1524 1525extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1526extern void do_invalidatepage(struct page *page, unsigned int offset, 1527 unsigned int length); 1528 1529void __set_page_dirty(struct page *, struct address_space *, int warn); 1530int __set_page_dirty_nobuffers(struct page *page); 1531int __set_page_dirty_no_writeback(struct page *page); 1532int redirty_page_for_writepage(struct writeback_control *wbc, 1533 struct page *page); 1534void account_page_dirtied(struct page *page, struct address_space *mapping); 1535void account_page_cleaned(struct page *page, struct address_space *mapping, 1536 struct bdi_writeback *wb); 1537int set_page_dirty(struct page *page); 1538int set_page_dirty_lock(struct page *page); 1539void __cancel_dirty_page(struct page *page); 1540static inline void cancel_dirty_page(struct page *page) 1541{ 1542 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1543 if (PageDirty(page)) 1544 __cancel_dirty_page(page); 1545} 1546int clear_page_dirty_for_io(struct page *page); 1547 1548int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1549 1550static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1551{ 1552 return !vma->vm_ops; 1553} 1554 1555#ifdef CONFIG_SHMEM 1556/* 1557 * The vma_is_shmem is not inline because it is used only by slow 1558 * paths in userfault. 1559 */ 1560bool vma_is_shmem(struct vm_area_struct *vma); 1561#else 1562static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1563#endif 1564 1565int vma_is_stack_for_current(struct vm_area_struct *vma); 1566 1567extern unsigned long move_page_tables(struct vm_area_struct *vma, 1568 unsigned long old_addr, struct vm_area_struct *new_vma, 1569 unsigned long new_addr, unsigned long len, 1570 bool need_rmap_locks); 1571extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1572 unsigned long end, pgprot_t newprot, 1573 int dirty_accountable, int prot_numa); 1574extern int mprotect_fixup(struct vm_area_struct *vma, 1575 struct vm_area_struct **pprev, unsigned long start, 1576 unsigned long end, unsigned long newflags); 1577 1578/* 1579 * doesn't attempt to fault and will return short. 1580 */ 1581int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1582 struct page **pages); 1583/* 1584 * per-process(per-mm_struct) statistics. 1585 */ 1586static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1587{ 1588 long val = atomic_long_read(&mm->rss_stat.count[member]); 1589 1590#ifdef SPLIT_RSS_COUNTING 1591 /* 1592 * counter is updated in asynchronous manner and may go to minus. 1593 * But it's never be expected number for users. 1594 */ 1595 if (val < 0) 1596 val = 0; 1597#endif 1598 return (unsigned long)val; 1599} 1600 1601static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1602{ 1603 atomic_long_add(value, &mm->rss_stat.count[member]); 1604} 1605 1606static inline void inc_mm_counter(struct mm_struct *mm, int member) 1607{ 1608 atomic_long_inc(&mm->rss_stat.count[member]); 1609} 1610 1611static inline void dec_mm_counter(struct mm_struct *mm, int member) 1612{ 1613 atomic_long_dec(&mm->rss_stat.count[member]); 1614} 1615 1616/* Optimized variant when page is already known not to be PageAnon */ 1617static inline int mm_counter_file(struct page *page) 1618{ 1619 if (PageSwapBacked(page)) 1620 return MM_SHMEMPAGES; 1621 return MM_FILEPAGES; 1622} 1623 1624static inline int mm_counter(struct page *page) 1625{ 1626 if (PageAnon(page)) 1627 return MM_ANONPAGES; 1628 return mm_counter_file(page); 1629} 1630 1631static inline unsigned long get_mm_rss(struct mm_struct *mm) 1632{ 1633 return get_mm_counter(mm, MM_FILEPAGES) + 1634 get_mm_counter(mm, MM_ANONPAGES) + 1635 get_mm_counter(mm, MM_SHMEMPAGES); 1636} 1637 1638static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1639{ 1640 return max(mm->hiwater_rss, get_mm_rss(mm)); 1641} 1642 1643static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1644{ 1645 return max(mm->hiwater_vm, mm->total_vm); 1646} 1647 1648static inline void update_hiwater_rss(struct mm_struct *mm) 1649{ 1650 unsigned long _rss = get_mm_rss(mm); 1651 1652 if ((mm)->hiwater_rss < _rss) 1653 (mm)->hiwater_rss = _rss; 1654} 1655 1656static inline void update_hiwater_vm(struct mm_struct *mm) 1657{ 1658 if (mm->hiwater_vm < mm->total_vm) 1659 mm->hiwater_vm = mm->total_vm; 1660} 1661 1662static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1663{ 1664 mm->hiwater_rss = get_mm_rss(mm); 1665} 1666 1667static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1668 struct mm_struct *mm) 1669{ 1670 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1671 1672 if (*maxrss < hiwater_rss) 1673 *maxrss = hiwater_rss; 1674} 1675 1676#if defined(SPLIT_RSS_COUNTING) 1677void sync_mm_rss(struct mm_struct *mm); 1678#else 1679static inline void sync_mm_rss(struct mm_struct *mm) 1680{ 1681} 1682#endif 1683 1684#ifndef __HAVE_ARCH_PTE_DEVMAP 1685static inline int pte_devmap(pte_t pte) 1686{ 1687 return 0; 1688} 1689#endif 1690 1691int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1692 1693extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1694 spinlock_t **ptl); 1695static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1696 spinlock_t **ptl) 1697{ 1698 pte_t *ptep; 1699 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1700 return ptep; 1701} 1702 1703#ifdef __PAGETABLE_P4D_FOLDED 1704static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1705 unsigned long address) 1706{ 1707 return 0; 1708} 1709#else 1710int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1711#endif 1712 1713#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1714static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1715 unsigned long address) 1716{ 1717 return 0; 1718} 1719static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1720static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1721 1722#else 1723int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1724 1725static inline void mm_inc_nr_puds(struct mm_struct *mm) 1726{ 1727 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1728} 1729 1730static inline void mm_dec_nr_puds(struct mm_struct *mm) 1731{ 1732 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1733} 1734#endif 1735 1736#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1737static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1738 unsigned long address) 1739{ 1740 return 0; 1741} 1742 1743static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1744static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1745 1746#else 1747int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1748 1749static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1750{ 1751 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1752} 1753 1754static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1755{ 1756 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1757} 1758#endif 1759 1760#ifdef CONFIG_MMU 1761static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1762{ 1763 atomic_long_set(&mm->pgtables_bytes, 0); 1764} 1765 1766static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1767{ 1768 return atomic_long_read(&mm->pgtables_bytes); 1769} 1770 1771static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1772{ 1773 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1774} 1775 1776static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1777{ 1778 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1779} 1780#else 1781 1782static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1783static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1784{ 1785 return 0; 1786} 1787 1788static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1789static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1790#endif 1791 1792int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1793int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1794 1795/* 1796 * The following ifdef needed to get the 4level-fixup.h header to work. 1797 * Remove it when 4level-fixup.h has been removed. 1798 */ 1799#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1800 1801#ifndef __ARCH_HAS_5LEVEL_HACK 1802static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1803 unsigned long address) 1804{ 1805 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1806 NULL : p4d_offset(pgd, address); 1807} 1808 1809static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1810 unsigned long address) 1811{ 1812 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1813 NULL : pud_offset(p4d, address); 1814} 1815#endif /* !__ARCH_HAS_5LEVEL_HACK */ 1816 1817static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1818{ 1819 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1820 NULL: pmd_offset(pud, address); 1821} 1822#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1823 1824#if USE_SPLIT_PTE_PTLOCKS 1825#if ALLOC_SPLIT_PTLOCKS 1826void __init ptlock_cache_init(void); 1827extern bool ptlock_alloc(struct page *page); 1828extern void ptlock_free(struct page *page); 1829 1830static inline spinlock_t *ptlock_ptr(struct page *page) 1831{ 1832 return page->ptl; 1833} 1834#else /* ALLOC_SPLIT_PTLOCKS */ 1835static inline void ptlock_cache_init(void) 1836{ 1837} 1838 1839static inline bool ptlock_alloc(struct page *page) 1840{ 1841 return true; 1842} 1843 1844static inline void ptlock_free(struct page *page) 1845{ 1846} 1847 1848static inline spinlock_t *ptlock_ptr(struct page *page) 1849{ 1850 return &page->ptl; 1851} 1852#endif /* ALLOC_SPLIT_PTLOCKS */ 1853 1854static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1855{ 1856 return ptlock_ptr(pmd_page(*pmd)); 1857} 1858 1859static inline bool ptlock_init(struct page *page) 1860{ 1861 /* 1862 * prep_new_page() initialize page->private (and therefore page->ptl) 1863 * with 0. Make sure nobody took it in use in between. 1864 * 1865 * It can happen if arch try to use slab for page table allocation: 1866 * slab code uses page->slab_cache, which share storage with page->ptl. 1867 */ 1868 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1869 if (!ptlock_alloc(page)) 1870 return false; 1871 spin_lock_init(ptlock_ptr(page)); 1872 return true; 1873} 1874 1875/* Reset page->mapping so free_pages_check won't complain. */ 1876static inline void pte_lock_deinit(struct page *page) 1877{ 1878 page->mapping = NULL; 1879 ptlock_free(page); 1880} 1881 1882#else /* !USE_SPLIT_PTE_PTLOCKS */ 1883/* 1884 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1885 */ 1886static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1887{ 1888 return &mm->page_table_lock; 1889} 1890static inline void ptlock_cache_init(void) {} 1891static inline bool ptlock_init(struct page *page) { return true; } 1892static inline void pte_lock_deinit(struct page *page) {} 1893#endif /* USE_SPLIT_PTE_PTLOCKS */ 1894 1895static inline void pgtable_init(void) 1896{ 1897 ptlock_cache_init(); 1898 pgtable_cache_init(); 1899} 1900 1901static inline bool pgtable_page_ctor(struct page *page) 1902{ 1903 if (!ptlock_init(page)) 1904 return false; 1905 __SetPageTable(page); 1906 inc_zone_page_state(page, NR_PAGETABLE); 1907 return true; 1908} 1909 1910static inline void pgtable_page_dtor(struct page *page) 1911{ 1912 pte_lock_deinit(page); 1913 __ClearPageTable(page); 1914 dec_zone_page_state(page, NR_PAGETABLE); 1915} 1916 1917#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1918({ \ 1919 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1920 pte_t *__pte = pte_offset_map(pmd, address); \ 1921 *(ptlp) = __ptl; \ 1922 spin_lock(__ptl); \ 1923 __pte; \ 1924}) 1925 1926#define pte_unmap_unlock(pte, ptl) do { \ 1927 spin_unlock(ptl); \ 1928 pte_unmap(pte); \ 1929} while (0) 1930 1931#define pte_alloc(mm, pmd, address) \ 1932 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1933 1934#define pte_alloc_map(mm, pmd, address) \ 1935 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1936 1937#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1938 (pte_alloc(mm, pmd, address) ? \ 1939 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1940 1941#define pte_alloc_kernel(pmd, address) \ 1942 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1943 NULL: pte_offset_kernel(pmd, address)) 1944 1945#if USE_SPLIT_PMD_PTLOCKS 1946 1947static struct page *pmd_to_page(pmd_t *pmd) 1948{ 1949 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1950 return virt_to_page((void *)((unsigned long) pmd & mask)); 1951} 1952 1953static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1954{ 1955 return ptlock_ptr(pmd_to_page(pmd)); 1956} 1957 1958static inline bool pgtable_pmd_page_ctor(struct page *page) 1959{ 1960#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1961 page->pmd_huge_pte = NULL; 1962#endif 1963 return ptlock_init(page); 1964} 1965 1966static inline void pgtable_pmd_page_dtor(struct page *page) 1967{ 1968#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1969 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1970#endif 1971 ptlock_free(page); 1972} 1973 1974#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1975 1976#else 1977 1978static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1979{ 1980 return &mm->page_table_lock; 1981} 1982 1983static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1984static inline void pgtable_pmd_page_dtor(struct page *page) {} 1985 1986#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1987 1988#endif 1989 1990static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1991{ 1992 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1993 spin_lock(ptl); 1994 return ptl; 1995} 1996 1997/* 1998 * No scalability reason to split PUD locks yet, but follow the same pattern 1999 * as the PMD locks to make it easier if we decide to. The VM should not be 2000 * considered ready to switch to split PUD locks yet; there may be places 2001 * which need to be converted from page_table_lock. 2002 */ 2003static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2004{ 2005 return &mm->page_table_lock; 2006} 2007 2008static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2009{ 2010 spinlock_t *ptl = pud_lockptr(mm, pud); 2011 2012 spin_lock(ptl); 2013 return ptl; 2014} 2015 2016extern void __init pagecache_init(void); 2017extern void free_area_init(unsigned long * zones_size); 2018extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2019 unsigned long zone_start_pfn, unsigned long *zholes_size); 2020extern void free_initmem(void); 2021 2022/* 2023 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2024 * into the buddy system. The freed pages will be poisoned with pattern 2025 * "poison" if it's within range [0, UCHAR_MAX]. 2026 * Return pages freed into the buddy system. 2027 */ 2028extern unsigned long free_reserved_area(void *start, void *end, 2029 int poison, char *s); 2030 2031#ifdef CONFIG_HIGHMEM 2032/* 2033 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2034 * and totalram_pages. 2035 */ 2036extern void free_highmem_page(struct page *page); 2037#endif 2038 2039extern void adjust_managed_page_count(struct page *page, long count); 2040extern void mem_init_print_info(const char *str); 2041 2042extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2043 2044/* Free the reserved page into the buddy system, so it gets managed. */ 2045static inline void __free_reserved_page(struct page *page) 2046{ 2047 ClearPageReserved(page); 2048 init_page_count(page); 2049 __free_page(page); 2050} 2051 2052static inline void free_reserved_page(struct page *page) 2053{ 2054 __free_reserved_page(page); 2055 adjust_managed_page_count(page, 1); 2056} 2057 2058static inline void mark_page_reserved(struct page *page) 2059{ 2060 SetPageReserved(page); 2061 adjust_managed_page_count(page, -1); 2062} 2063 2064/* 2065 * Default method to free all the __init memory into the buddy system. 2066 * The freed pages will be poisoned with pattern "poison" if it's within 2067 * range [0, UCHAR_MAX]. 2068 * Return pages freed into the buddy system. 2069 */ 2070static inline unsigned long free_initmem_default(int poison) 2071{ 2072 extern char __init_begin[], __init_end[]; 2073 2074 return free_reserved_area(&__init_begin, &__init_end, 2075 poison, "unused kernel"); 2076} 2077 2078static inline unsigned long get_num_physpages(void) 2079{ 2080 int nid; 2081 unsigned long phys_pages = 0; 2082 2083 for_each_online_node(nid) 2084 phys_pages += node_present_pages(nid); 2085 2086 return phys_pages; 2087} 2088 2089#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2090/* 2091 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2092 * zones, allocate the backing mem_map and account for memory holes in a more 2093 * architecture independent manner. This is a substitute for creating the 2094 * zone_sizes[] and zholes_size[] arrays and passing them to 2095 * free_area_init_node() 2096 * 2097 * An architecture is expected to register range of page frames backed by 2098 * physical memory with memblock_add[_node]() before calling 2099 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2100 * usage, an architecture is expected to do something like 2101 * 2102 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2103 * max_highmem_pfn}; 2104 * for_each_valid_physical_page_range() 2105 * memblock_add_node(base, size, nid) 2106 * free_area_init_nodes(max_zone_pfns); 2107 * 2108 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2109 * registered physical page range. Similarly 2110 * sparse_memory_present_with_active_regions() calls memory_present() for 2111 * each range when SPARSEMEM is enabled. 2112 * 2113 * See mm/page_alloc.c for more information on each function exposed by 2114 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2115 */ 2116extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2117unsigned long node_map_pfn_alignment(void); 2118unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2119 unsigned long end_pfn); 2120extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2121 unsigned long end_pfn); 2122extern void get_pfn_range_for_nid(unsigned int nid, 2123 unsigned long *start_pfn, unsigned long *end_pfn); 2124extern unsigned long find_min_pfn_with_active_regions(void); 2125extern void free_bootmem_with_active_regions(int nid, 2126 unsigned long max_low_pfn); 2127extern void sparse_memory_present_with_active_regions(int nid); 2128 2129#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2130 2131#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2132 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2133static inline int __early_pfn_to_nid(unsigned long pfn, 2134 struct mminit_pfnnid_cache *state) 2135{ 2136 return 0; 2137} 2138#else 2139/* please see mm/page_alloc.c */ 2140extern int __meminit early_pfn_to_nid(unsigned long pfn); 2141/* there is a per-arch backend function. */ 2142extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2143 struct mminit_pfnnid_cache *state); 2144#endif 2145 2146#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP) 2147void zero_resv_unavail(void); 2148#else 2149static inline void zero_resv_unavail(void) {} 2150#endif 2151 2152extern void set_dma_reserve(unsigned long new_dma_reserve); 2153extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2154 enum memmap_context, struct vmem_altmap *); 2155extern void setup_per_zone_wmarks(void); 2156extern int __meminit init_per_zone_wmark_min(void); 2157extern void mem_init(void); 2158extern void __init mmap_init(void); 2159extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2160extern long si_mem_available(void); 2161extern void si_meminfo(struct sysinfo * val); 2162extern void si_meminfo_node(struct sysinfo *val, int nid); 2163#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2164extern unsigned long arch_reserved_kernel_pages(void); 2165#endif 2166 2167extern __printf(3, 4) 2168void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2169 2170extern void setup_per_cpu_pageset(void); 2171 2172extern void zone_pcp_update(struct zone *zone); 2173extern void zone_pcp_reset(struct zone *zone); 2174 2175/* page_alloc.c */ 2176extern int min_free_kbytes; 2177extern int watermark_scale_factor; 2178 2179/* nommu.c */ 2180extern atomic_long_t mmap_pages_allocated; 2181extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2182 2183/* interval_tree.c */ 2184void vma_interval_tree_insert(struct vm_area_struct *node, 2185 struct rb_root_cached *root); 2186void vma_interval_tree_insert_after(struct vm_area_struct *node, 2187 struct vm_area_struct *prev, 2188 struct rb_root_cached *root); 2189void vma_interval_tree_remove(struct vm_area_struct *node, 2190 struct rb_root_cached *root); 2191struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2192 unsigned long start, unsigned long last); 2193struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2194 unsigned long start, unsigned long last); 2195 2196#define vma_interval_tree_foreach(vma, root, start, last) \ 2197 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2198 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2199 2200void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2201 struct rb_root_cached *root); 2202void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2203 struct rb_root_cached *root); 2204struct anon_vma_chain * 2205anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2206 unsigned long start, unsigned long last); 2207struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2208 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2209#ifdef CONFIG_DEBUG_VM_RB 2210void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2211#endif 2212 2213#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2214 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2215 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2216 2217/* mmap.c */ 2218extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2219extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2220 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2221 struct vm_area_struct *expand); 2222static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2223 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2224{ 2225 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2226} 2227extern struct vm_area_struct *vma_merge(struct mm_struct *, 2228 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2229 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2230 struct mempolicy *, struct vm_userfaultfd_ctx); 2231extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2232extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2233 unsigned long addr, int new_below); 2234extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2235 unsigned long addr, int new_below); 2236extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2237extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2238 struct rb_node **, struct rb_node *); 2239extern void unlink_file_vma(struct vm_area_struct *); 2240extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2241 unsigned long addr, unsigned long len, pgoff_t pgoff, 2242 bool *need_rmap_locks); 2243extern void exit_mmap(struct mm_struct *); 2244 2245static inline int check_data_rlimit(unsigned long rlim, 2246 unsigned long new, 2247 unsigned long start, 2248 unsigned long end_data, 2249 unsigned long start_data) 2250{ 2251 if (rlim < RLIM_INFINITY) { 2252 if (((new - start) + (end_data - start_data)) > rlim) 2253 return -ENOSPC; 2254 } 2255 2256 return 0; 2257} 2258 2259extern int mm_take_all_locks(struct mm_struct *mm); 2260extern void mm_drop_all_locks(struct mm_struct *mm); 2261 2262extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2263extern struct file *get_mm_exe_file(struct mm_struct *mm); 2264extern struct file *get_task_exe_file(struct task_struct *task); 2265 2266extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2267extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2268 2269extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2270 const struct vm_special_mapping *sm); 2271extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2272 unsigned long addr, unsigned long len, 2273 unsigned long flags, 2274 const struct vm_special_mapping *spec); 2275/* This is an obsolete alternative to _install_special_mapping. */ 2276extern int install_special_mapping(struct mm_struct *mm, 2277 unsigned long addr, unsigned long len, 2278 unsigned long flags, struct page **pages); 2279 2280extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2281 2282extern unsigned long mmap_region(struct file *file, unsigned long addr, 2283 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2284 struct list_head *uf); 2285extern unsigned long do_mmap(struct file *file, unsigned long addr, 2286 unsigned long len, unsigned long prot, unsigned long flags, 2287 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2288 struct list_head *uf); 2289extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2290 struct list_head *uf); 2291 2292static inline unsigned long 2293do_mmap_pgoff(struct file *file, unsigned long addr, 2294 unsigned long len, unsigned long prot, unsigned long flags, 2295 unsigned long pgoff, unsigned long *populate, 2296 struct list_head *uf) 2297{ 2298 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2299} 2300 2301#ifdef CONFIG_MMU 2302extern int __mm_populate(unsigned long addr, unsigned long len, 2303 int ignore_errors); 2304static inline void mm_populate(unsigned long addr, unsigned long len) 2305{ 2306 /* Ignore errors */ 2307 (void) __mm_populate(addr, len, 1); 2308} 2309#else 2310static inline void mm_populate(unsigned long addr, unsigned long len) {} 2311#endif 2312 2313/* These take the mm semaphore themselves */ 2314extern int __must_check vm_brk(unsigned long, unsigned long); 2315extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2316extern int vm_munmap(unsigned long, size_t); 2317extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2318 unsigned long, unsigned long, 2319 unsigned long, unsigned long); 2320 2321struct vm_unmapped_area_info { 2322#define VM_UNMAPPED_AREA_TOPDOWN 1 2323 unsigned long flags; 2324 unsigned long length; 2325 unsigned long low_limit; 2326 unsigned long high_limit; 2327 unsigned long align_mask; 2328 unsigned long align_offset; 2329}; 2330 2331extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2332extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2333 2334/* 2335 * Search for an unmapped address range. 2336 * 2337 * We are looking for a range that: 2338 * - does not intersect with any VMA; 2339 * - is contained within the [low_limit, high_limit) interval; 2340 * - is at least the desired size. 2341 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2342 */ 2343static inline unsigned long 2344vm_unmapped_area(struct vm_unmapped_area_info *info) 2345{ 2346 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2347 return unmapped_area_topdown(info); 2348 else 2349 return unmapped_area(info); 2350} 2351 2352/* truncate.c */ 2353extern void truncate_inode_pages(struct address_space *, loff_t); 2354extern void truncate_inode_pages_range(struct address_space *, 2355 loff_t lstart, loff_t lend); 2356extern void truncate_inode_pages_final(struct address_space *); 2357 2358/* generic vm_area_ops exported for stackable file systems */ 2359extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2360extern void filemap_map_pages(struct vm_fault *vmf, 2361 pgoff_t start_pgoff, pgoff_t end_pgoff); 2362extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2363 2364/* mm/page-writeback.c */ 2365int __must_check write_one_page(struct page *page); 2366void task_dirty_inc(struct task_struct *tsk); 2367 2368/* readahead.c */ 2369#define VM_MAX_READAHEAD 128 /* kbytes */ 2370#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2371 2372int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2373 pgoff_t offset, unsigned long nr_to_read); 2374 2375void page_cache_sync_readahead(struct address_space *mapping, 2376 struct file_ra_state *ra, 2377 struct file *filp, 2378 pgoff_t offset, 2379 unsigned long size); 2380 2381void page_cache_async_readahead(struct address_space *mapping, 2382 struct file_ra_state *ra, 2383 struct file *filp, 2384 struct page *pg, 2385 pgoff_t offset, 2386 unsigned long size); 2387 2388extern unsigned long stack_guard_gap; 2389/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2390extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2391 2392/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2393extern int expand_downwards(struct vm_area_struct *vma, 2394 unsigned long address); 2395#if VM_GROWSUP 2396extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2397#else 2398 #define expand_upwards(vma, address) (0) 2399#endif 2400 2401/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2402extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2403extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2404 struct vm_area_struct **pprev); 2405 2406/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2407 NULL if none. Assume start_addr < end_addr. */ 2408static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2409{ 2410 struct vm_area_struct * vma = find_vma(mm,start_addr); 2411 2412 if (vma && end_addr <= vma->vm_start) 2413 vma = NULL; 2414 return vma; 2415} 2416 2417static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2418{ 2419 unsigned long vm_start = vma->vm_start; 2420 2421 if (vma->vm_flags & VM_GROWSDOWN) { 2422 vm_start -= stack_guard_gap; 2423 if (vm_start > vma->vm_start) 2424 vm_start = 0; 2425 } 2426 return vm_start; 2427} 2428 2429static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2430{ 2431 unsigned long vm_end = vma->vm_end; 2432 2433 if (vma->vm_flags & VM_GROWSUP) { 2434 vm_end += stack_guard_gap; 2435 if (vm_end < vma->vm_end) 2436 vm_end = -PAGE_SIZE; 2437 } 2438 return vm_end; 2439} 2440 2441static inline unsigned long vma_pages(struct vm_area_struct *vma) 2442{ 2443 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2444} 2445 2446/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2447static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2448 unsigned long vm_start, unsigned long vm_end) 2449{ 2450 struct vm_area_struct *vma = find_vma(mm, vm_start); 2451 2452 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2453 vma = NULL; 2454 2455 return vma; 2456} 2457 2458#ifdef CONFIG_MMU 2459pgprot_t vm_get_page_prot(unsigned long vm_flags); 2460void vma_set_page_prot(struct vm_area_struct *vma); 2461#else 2462static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2463{ 2464 return __pgprot(0); 2465} 2466static inline void vma_set_page_prot(struct vm_area_struct *vma) 2467{ 2468 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2469} 2470#endif 2471 2472#ifdef CONFIG_NUMA_BALANCING 2473unsigned long change_prot_numa(struct vm_area_struct *vma, 2474 unsigned long start, unsigned long end); 2475#endif 2476 2477struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2478int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2479 unsigned long pfn, unsigned long size, pgprot_t); 2480int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2481int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2482 unsigned long pfn); 2483int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2484 unsigned long pfn, pgprot_t pgprot); 2485int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2486 pfn_t pfn); 2487vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2488 unsigned long addr, pfn_t pfn); 2489int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2490 2491static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2492 unsigned long addr, struct page *page) 2493{ 2494 int err = vm_insert_page(vma, addr, page); 2495 2496 if (err == -ENOMEM) 2497 return VM_FAULT_OOM; 2498 if (err < 0 && err != -EBUSY) 2499 return VM_FAULT_SIGBUS; 2500 2501 return VM_FAULT_NOPAGE; 2502} 2503 2504static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, 2505 unsigned long addr, pfn_t pfn) 2506{ 2507 int err = vm_insert_mixed(vma, addr, pfn); 2508 2509 if (err == -ENOMEM) 2510 return VM_FAULT_OOM; 2511 if (err < 0 && err != -EBUSY) 2512 return VM_FAULT_SIGBUS; 2513 2514 return VM_FAULT_NOPAGE; 2515} 2516 2517static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, 2518 unsigned long addr, unsigned long pfn) 2519{ 2520 int err = vm_insert_pfn(vma, addr, pfn); 2521 2522 if (err == -ENOMEM) 2523 return VM_FAULT_OOM; 2524 if (err < 0 && err != -EBUSY) 2525 return VM_FAULT_SIGBUS; 2526 2527 return VM_FAULT_NOPAGE; 2528} 2529 2530static inline vm_fault_t vmf_error(int err) 2531{ 2532 if (err == -ENOMEM) 2533 return VM_FAULT_OOM; 2534 return VM_FAULT_SIGBUS; 2535} 2536 2537struct page *follow_page_mask(struct vm_area_struct *vma, 2538 unsigned long address, unsigned int foll_flags, 2539 unsigned int *page_mask); 2540 2541static inline struct page *follow_page(struct vm_area_struct *vma, 2542 unsigned long address, unsigned int foll_flags) 2543{ 2544 unsigned int unused_page_mask; 2545 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2546} 2547 2548#define FOLL_WRITE 0x01 /* check pte is writable */ 2549#define FOLL_TOUCH 0x02 /* mark page accessed */ 2550#define FOLL_GET 0x04 /* do get_page on page */ 2551#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2552#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2553#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2554 * and return without waiting upon it */ 2555#define FOLL_POPULATE 0x40 /* fault in page */ 2556#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2557#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2558#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2559#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2560#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2561#define FOLL_MLOCK 0x1000 /* lock present pages */ 2562#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2563#define FOLL_COW 0x4000 /* internal GUP flag */ 2564#define FOLL_ANON 0x8000 /* don't do file mappings */ 2565 2566static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2567{ 2568 if (vm_fault & VM_FAULT_OOM) 2569 return -ENOMEM; 2570 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2571 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2572 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2573 return -EFAULT; 2574 return 0; 2575} 2576 2577typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2578 void *data); 2579extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2580 unsigned long size, pte_fn_t fn, void *data); 2581 2582 2583#ifdef CONFIG_PAGE_POISONING 2584extern bool page_poisoning_enabled(void); 2585extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2586#else 2587static inline bool page_poisoning_enabled(void) { return false; } 2588static inline void kernel_poison_pages(struct page *page, int numpages, 2589 int enable) { } 2590#endif 2591 2592#ifdef CONFIG_DEBUG_PAGEALLOC 2593extern bool _debug_pagealloc_enabled; 2594extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2595 2596static inline bool debug_pagealloc_enabled(void) 2597{ 2598 return _debug_pagealloc_enabled; 2599} 2600 2601static inline void 2602kernel_map_pages(struct page *page, int numpages, int enable) 2603{ 2604 if (!debug_pagealloc_enabled()) 2605 return; 2606 2607 __kernel_map_pages(page, numpages, enable); 2608} 2609#ifdef CONFIG_HIBERNATION 2610extern bool kernel_page_present(struct page *page); 2611#endif /* CONFIG_HIBERNATION */ 2612#else /* CONFIG_DEBUG_PAGEALLOC */ 2613static inline void 2614kernel_map_pages(struct page *page, int numpages, int enable) {} 2615#ifdef CONFIG_HIBERNATION 2616static inline bool kernel_page_present(struct page *page) { return true; } 2617#endif /* CONFIG_HIBERNATION */ 2618static inline bool debug_pagealloc_enabled(void) 2619{ 2620 return false; 2621} 2622#endif /* CONFIG_DEBUG_PAGEALLOC */ 2623 2624#ifdef __HAVE_ARCH_GATE_AREA 2625extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2626extern int in_gate_area_no_mm(unsigned long addr); 2627extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2628#else 2629static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2630{ 2631 return NULL; 2632} 2633static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2634static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2635{ 2636 return 0; 2637} 2638#endif /* __HAVE_ARCH_GATE_AREA */ 2639 2640extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2641 2642#ifdef CONFIG_SYSCTL 2643extern int sysctl_drop_caches; 2644int drop_caches_sysctl_handler(struct ctl_table *, int, 2645 void __user *, size_t *, loff_t *); 2646#endif 2647 2648void drop_slab(void); 2649void drop_slab_node(int nid); 2650 2651#ifndef CONFIG_MMU 2652#define randomize_va_space 0 2653#else 2654extern int randomize_va_space; 2655#endif 2656 2657const char * arch_vma_name(struct vm_area_struct *vma); 2658void print_vma_addr(char *prefix, unsigned long rip); 2659 2660void *sparse_buffer_alloc(unsigned long size); 2661struct page *sparse_mem_map_populate(unsigned long pnum, int nid, 2662 struct vmem_altmap *altmap); 2663pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2664p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2665pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2666pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2667pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2668void *vmemmap_alloc_block(unsigned long size, int node); 2669struct vmem_altmap; 2670void *vmemmap_alloc_block_buf(unsigned long size, int node); 2671void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2672void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2673int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2674 int node); 2675int vmemmap_populate(unsigned long start, unsigned long end, int node, 2676 struct vmem_altmap *altmap); 2677void vmemmap_populate_print_last(void); 2678#ifdef CONFIG_MEMORY_HOTPLUG 2679void vmemmap_free(unsigned long start, unsigned long end, 2680 struct vmem_altmap *altmap); 2681#endif 2682void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2683 unsigned long nr_pages); 2684 2685enum mf_flags { 2686 MF_COUNT_INCREASED = 1 << 0, 2687 MF_ACTION_REQUIRED = 1 << 1, 2688 MF_MUST_KILL = 1 << 2, 2689 MF_SOFT_OFFLINE = 1 << 3, 2690}; 2691extern int memory_failure(unsigned long pfn, int flags); 2692extern void memory_failure_queue(unsigned long pfn, int flags); 2693extern int unpoison_memory(unsigned long pfn); 2694extern int get_hwpoison_page(struct page *page); 2695#define put_hwpoison_page(page) put_page(page) 2696extern int sysctl_memory_failure_early_kill; 2697extern int sysctl_memory_failure_recovery; 2698extern void shake_page(struct page *p, int access); 2699extern atomic_long_t num_poisoned_pages __read_mostly; 2700extern int soft_offline_page(struct page *page, int flags); 2701 2702 2703/* 2704 * Error handlers for various types of pages. 2705 */ 2706enum mf_result { 2707 MF_IGNORED, /* Error: cannot be handled */ 2708 MF_FAILED, /* Error: handling failed */ 2709 MF_DELAYED, /* Will be handled later */ 2710 MF_RECOVERED, /* Successfully recovered */ 2711}; 2712 2713enum mf_action_page_type { 2714 MF_MSG_KERNEL, 2715 MF_MSG_KERNEL_HIGH_ORDER, 2716 MF_MSG_SLAB, 2717 MF_MSG_DIFFERENT_COMPOUND, 2718 MF_MSG_POISONED_HUGE, 2719 MF_MSG_HUGE, 2720 MF_MSG_FREE_HUGE, 2721 MF_MSG_NON_PMD_HUGE, 2722 MF_MSG_UNMAP_FAILED, 2723 MF_MSG_DIRTY_SWAPCACHE, 2724 MF_MSG_CLEAN_SWAPCACHE, 2725 MF_MSG_DIRTY_MLOCKED_LRU, 2726 MF_MSG_CLEAN_MLOCKED_LRU, 2727 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2728 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2729 MF_MSG_DIRTY_LRU, 2730 MF_MSG_CLEAN_LRU, 2731 MF_MSG_TRUNCATED_LRU, 2732 MF_MSG_BUDDY, 2733 MF_MSG_BUDDY_2ND, 2734 MF_MSG_DAX, 2735 MF_MSG_UNKNOWN, 2736}; 2737 2738#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2739extern void clear_huge_page(struct page *page, 2740 unsigned long addr_hint, 2741 unsigned int pages_per_huge_page); 2742extern void copy_user_huge_page(struct page *dst, struct page *src, 2743 unsigned long addr_hint, 2744 struct vm_area_struct *vma, 2745 unsigned int pages_per_huge_page); 2746extern long copy_huge_page_from_user(struct page *dst_page, 2747 const void __user *usr_src, 2748 unsigned int pages_per_huge_page, 2749 bool allow_pagefault); 2750#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2751 2752extern struct page_ext_operations debug_guardpage_ops; 2753 2754#ifdef CONFIG_DEBUG_PAGEALLOC 2755extern unsigned int _debug_guardpage_minorder; 2756extern bool _debug_guardpage_enabled; 2757 2758static inline unsigned int debug_guardpage_minorder(void) 2759{ 2760 return _debug_guardpage_minorder; 2761} 2762 2763static inline bool debug_guardpage_enabled(void) 2764{ 2765 return _debug_guardpage_enabled; 2766} 2767 2768static inline bool page_is_guard(struct page *page) 2769{ 2770 struct page_ext *page_ext; 2771 2772 if (!debug_guardpage_enabled()) 2773 return false; 2774 2775 page_ext = lookup_page_ext(page); 2776 if (unlikely(!page_ext)) 2777 return false; 2778 2779 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2780} 2781#else 2782static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2783static inline bool debug_guardpage_enabled(void) { return false; } 2784static inline bool page_is_guard(struct page *page) { return false; } 2785#endif /* CONFIG_DEBUG_PAGEALLOC */ 2786 2787#if MAX_NUMNODES > 1 2788void __init setup_nr_node_ids(void); 2789#else 2790static inline void setup_nr_node_ids(void) {} 2791#endif 2792 2793#endif /* __KERNEL__ */ 2794#endif /* _LINUX_MM_H */