Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * random.c -- A strong random number generator
3 *
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5 * Rights Reserved.
6 *
7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8 *
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
10 * rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 */
44
45/*
46 * (now, with legal B.S. out of the way.....)
47 *
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
54 *
55 * Theory of operation
56 * ===================
57 *
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
68 *
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
80 *
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
92 *
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
99 * of purposes.
100 *
101 * Exported interfaces ---- output
102 * ===============================
103 *
104 * There are three exported interfaces; the first is one designed to
105 * be used from within the kernel:
106 *
107 * void get_random_bytes(void *buf, int nbytes);
108 *
109 * This interface will return the requested number of random bytes,
110 * and place it in the requested buffer.
111 *
112 * The two other interfaces are two character devices /dev/random and
113 * /dev/urandom. /dev/random is suitable for use when very high
114 * quality randomness is desired (for example, for key generation or
115 * one-time pads), as it will only return a maximum of the number of
116 * bits of randomness (as estimated by the random number generator)
117 * contained in the entropy pool.
118 *
119 * The /dev/urandom device does not have this limit, and will return
120 * as many bytes as are requested. As more and more random bytes are
121 * requested without giving time for the entropy pool to recharge,
122 * this will result in random numbers that are merely cryptographically
123 * strong. For many applications, however, this is acceptable.
124 *
125 * Exported interfaces ---- input
126 * ==============================
127 *
128 * The current exported interfaces for gathering environmental noise
129 * from the devices are:
130 *
131 * void add_device_randomness(const void *buf, unsigned int size);
132 * void add_input_randomness(unsigned int type, unsigned int code,
133 * unsigned int value);
134 * void add_interrupt_randomness(int irq, int irq_flags);
135 * void add_disk_randomness(struct gendisk *disk);
136 *
137 * add_device_randomness() is for adding data to the random pool that
138 * is likely to differ between two devices (or possibly even per boot).
139 * This would be things like MAC addresses or serial numbers, or the
140 * read-out of the RTC. This does *not* add any actual entropy to the
141 * pool, but it initializes the pool to different values for devices
142 * that might otherwise be identical and have very little entropy
143 * available to them (particularly common in the embedded world).
144 *
145 * add_input_randomness() uses the input layer interrupt timing, as well as
146 * the event type information from the hardware.
147 *
148 * add_interrupt_randomness() uses the interrupt timing as random
149 * inputs to the entropy pool. Using the cycle counters and the irq source
150 * as inputs, it feeds the randomness roughly once a second.
151 *
152 * add_disk_randomness() uses what amounts to the seek time of block
153 * layer request events, on a per-disk_devt basis, as input to the
154 * entropy pool. Note that high-speed solid state drives with very low
155 * seek times do not make for good sources of entropy, as their seek
156 * times are usually fairly consistent.
157 *
158 * All of these routines try to estimate how many bits of randomness a
159 * particular randomness source. They do this by keeping track of the
160 * first and second order deltas of the event timings.
161 *
162 * Ensuring unpredictability at system startup
163 * ============================================
164 *
165 * When any operating system starts up, it will go through a sequence
166 * of actions that are fairly predictable by an adversary, especially
167 * if the start-up does not involve interaction with a human operator.
168 * This reduces the actual number of bits of unpredictability in the
169 * entropy pool below the value in entropy_count. In order to
170 * counteract this effect, it helps to carry information in the
171 * entropy pool across shut-downs and start-ups. To do this, put the
172 * following lines an appropriate script which is run during the boot
173 * sequence:
174 *
175 * echo "Initializing random number generator..."
176 * random_seed=/var/run/random-seed
177 * # Carry a random seed from start-up to start-up
178 * # Load and then save the whole entropy pool
179 * if [ -f $random_seed ]; then
180 * cat $random_seed >/dev/urandom
181 * else
182 * touch $random_seed
183 * fi
184 * chmod 600 $random_seed
185 * dd if=/dev/urandom of=$random_seed count=1 bs=512
186 *
187 * and the following lines in an appropriate script which is run as
188 * the system is shutdown:
189 *
190 * # Carry a random seed from shut-down to start-up
191 * # Save the whole entropy pool
192 * echo "Saving random seed..."
193 * random_seed=/var/run/random-seed
194 * touch $random_seed
195 * chmod 600 $random_seed
196 * dd if=/dev/urandom of=$random_seed count=1 bs=512
197 *
198 * For example, on most modern systems using the System V init
199 * scripts, such code fragments would be found in
200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202 *
203 * Effectively, these commands cause the contents of the entropy pool
204 * to be saved at shut-down time and reloaded into the entropy pool at
205 * start-up. (The 'dd' in the addition to the bootup script is to
206 * make sure that /etc/random-seed is different for every start-up,
207 * even if the system crashes without executing rc.0.) Even with
208 * complete knowledge of the start-up activities, predicting the state
209 * of the entropy pool requires knowledge of the previous history of
210 * the system.
211 *
212 * Configuring the /dev/random driver under Linux
213 * ==============================================
214 *
215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216 * the /dev/mem major number (#1). So if your system does not have
217 * /dev/random and /dev/urandom created already, they can be created
218 * by using the commands:
219 *
220 * mknod /dev/random c 1 8
221 * mknod /dev/urandom c 1 9
222 *
223 * Acknowledgements:
224 * =================
225 *
226 * Ideas for constructing this random number generator were derived
227 * from Pretty Good Privacy's random number generator, and from private
228 * discussions with Phil Karn. Colin Plumb provided a faster random
229 * number generator, which speed up the mixing function of the entropy
230 * pool, taken from PGPfone. Dale Worley has also contributed many
231 * useful ideas and suggestions to improve this driver.
232 *
233 * Any flaws in the design are solely my responsibility, and should
234 * not be attributed to the Phil, Colin, or any of authors of PGP.
235 *
236 * Further background information on this topic may be obtained from
237 * RFC 1750, "Randomness Recommendations for Security", by Donald
238 * Eastlake, Steve Crocker, and Jeff Schiller.
239 */
240
241#include <linux/utsname.h>
242#include <linux/module.h>
243#include <linux/kernel.h>
244#include <linux/major.h>
245#include <linux/string.h>
246#include <linux/fcntl.h>
247#include <linux/slab.h>
248#include <linux/random.h>
249#include <linux/poll.h>
250#include <linux/init.h>
251#include <linux/fs.h>
252#include <linux/genhd.h>
253#include <linux/interrupt.h>
254#include <linux/mm.h>
255#include <linux/nodemask.h>
256#include <linux/spinlock.h>
257#include <linux/kthread.h>
258#include <linux/percpu.h>
259#include <linux/cryptohash.h>
260#include <linux/fips.h>
261#include <linux/ptrace.h>
262#include <linux/workqueue.h>
263#include <linux/irq.h>
264#include <linux/ratelimit.h>
265#include <linux/syscalls.h>
266#include <linux/completion.h>
267#include <linux/uuid.h>
268#include <crypto/chacha20.h>
269
270#include <asm/processor.h>
271#include <linux/uaccess.h>
272#include <asm/irq.h>
273#include <asm/irq_regs.h>
274#include <asm/io.h>
275
276#define CREATE_TRACE_POINTS
277#include <trace/events/random.h>
278
279/* #define ADD_INTERRUPT_BENCH */
280
281/*
282 * Configuration information
283 */
284#define INPUT_POOL_SHIFT 12
285#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
286#define OUTPUT_POOL_SHIFT 10
287#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
288#define SEC_XFER_SIZE 512
289#define EXTRACT_SIZE 10
290
291
292#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
293
294/*
295 * To allow fractional bits to be tracked, the entropy_count field is
296 * denominated in units of 1/8th bits.
297 *
298 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299 * credit_entropy_bits() needs to be 64 bits wide.
300 */
301#define ENTROPY_SHIFT 3
302#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
303
304/*
305 * The minimum number of bits of entropy before we wake up a read on
306 * /dev/random. Should be enough to do a significant reseed.
307 */
308static int random_read_wakeup_bits = 64;
309
310/*
311 * If the entropy count falls under this number of bits, then we
312 * should wake up processes which are selecting or polling on write
313 * access to /dev/random.
314 */
315static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
316
317/*
318 * Originally, we used a primitive polynomial of degree .poolwords
319 * over GF(2). The taps for various sizes are defined below. They
320 * were chosen to be evenly spaced except for the last tap, which is 1
321 * to get the twisting happening as fast as possible.
322 *
323 * For the purposes of better mixing, we use the CRC-32 polynomial as
324 * well to make a (modified) twisted Generalized Feedback Shift
325 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
326 * generators. ACM Transactions on Modeling and Computer Simulation
327 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
328 * GFSR generators II. ACM Transactions on Modeling and Computer
329 * Simulation 4:254-266)
330 *
331 * Thanks to Colin Plumb for suggesting this.
332 *
333 * The mixing operation is much less sensitive than the output hash,
334 * where we use SHA-1. All that we want of mixing operation is that
335 * it be a good non-cryptographic hash; i.e. it not produce collisions
336 * when fed "random" data of the sort we expect to see. As long as
337 * the pool state differs for different inputs, we have preserved the
338 * input entropy and done a good job. The fact that an intelligent
339 * attacker can construct inputs that will produce controlled
340 * alterations to the pool's state is not important because we don't
341 * consider such inputs to contribute any randomness. The only
342 * property we need with respect to them is that the attacker can't
343 * increase his/her knowledge of the pool's state. Since all
344 * additions are reversible (knowing the final state and the input,
345 * you can reconstruct the initial state), if an attacker has any
346 * uncertainty about the initial state, he/she can only shuffle that
347 * uncertainty about, but never cause any collisions (which would
348 * decrease the uncertainty).
349 *
350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351 * Videau in their paper, "The Linux Pseudorandom Number Generator
352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
353 * paper, they point out that we are not using a true Twisted GFSR,
354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355 * is, with only three taps, instead of the six that we are using).
356 * As a result, the resulting polynomial is neither primitive nor
357 * irreducible, and hence does not have a maximal period over
358 * GF(2**32). They suggest a slight change to the generator
359 * polynomial which improves the resulting TGFSR polynomial to be
360 * irreducible, which we have made here.
361 */
362static struct poolinfo {
363 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
365 int tap1, tap2, tap3, tap4, tap5;
366} poolinfo_table[] = {
367 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 { S(128), 104, 76, 51, 25, 1 },
370 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 { S(32), 26, 19, 14, 7, 1 },
373#if 0
374 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
375 { S(2048), 1638, 1231, 819, 411, 1 },
376
377 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
378 { S(1024), 817, 615, 412, 204, 1 },
379
380 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
381 { S(1024), 819, 616, 410, 207, 2 },
382
383 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
384 { S(512), 411, 308, 208, 104, 1 },
385
386 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
387 { S(512), 409, 307, 206, 102, 2 },
388 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
389 { S(512), 409, 309, 205, 103, 2 },
390
391 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
392 { S(256), 205, 155, 101, 52, 1 },
393
394 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
395 { S(128), 103, 78, 51, 27, 2 },
396
397 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
398 { S(64), 52, 39, 26, 14, 1 },
399#endif
400};
401
402/*
403 * Static global variables
404 */
405static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
407static struct fasync_struct *fasync;
408
409static DEFINE_SPINLOCK(random_ready_list_lock);
410static LIST_HEAD(random_ready_list);
411
412struct crng_state {
413 __u32 state[16];
414 unsigned long init_time;
415 spinlock_t lock;
416};
417
418struct crng_state primary_crng = {
419 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
420};
421
422/*
423 * crng_init = 0 --> Uninitialized
424 * 1 --> Initialized
425 * 2 --> Initialized from input_pool
426 *
427 * crng_init is protected by primary_crng->lock, and only increases
428 * its value (from 0->1->2).
429 */
430static int crng_init = 0;
431#define crng_ready() (likely(crng_init > 1))
432static int crng_init_cnt = 0;
433static unsigned long crng_global_init_time = 0;
434#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
435static void _extract_crng(struct crng_state *crng,
436 __u32 out[CHACHA20_BLOCK_WORDS]);
437static void _crng_backtrack_protect(struct crng_state *crng,
438 __u32 tmp[CHACHA20_BLOCK_WORDS], int used);
439static void process_random_ready_list(void);
440static void _get_random_bytes(void *buf, int nbytes);
441
442static struct ratelimit_state unseeded_warning =
443 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
444static struct ratelimit_state urandom_warning =
445 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
446
447static int ratelimit_disable __read_mostly;
448
449module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
450MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
451
452/**********************************************************************
453 *
454 * OS independent entropy store. Here are the functions which handle
455 * storing entropy in an entropy pool.
456 *
457 **********************************************************************/
458
459struct entropy_store;
460struct entropy_store {
461 /* read-only data: */
462 const struct poolinfo *poolinfo;
463 __u32 *pool;
464 const char *name;
465 struct entropy_store *pull;
466 struct work_struct push_work;
467
468 /* read-write data: */
469 unsigned long last_pulled;
470 spinlock_t lock;
471 unsigned short add_ptr;
472 unsigned short input_rotate;
473 int entropy_count;
474 int entropy_total;
475 unsigned int initialized:1;
476 unsigned int last_data_init:1;
477 __u8 last_data[EXTRACT_SIZE];
478};
479
480static ssize_t extract_entropy(struct entropy_store *r, void *buf,
481 size_t nbytes, int min, int rsvd);
482static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
483 size_t nbytes, int fips);
484
485static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
486static void push_to_pool(struct work_struct *work);
487static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
488static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
489
490static struct entropy_store input_pool = {
491 .poolinfo = &poolinfo_table[0],
492 .name = "input",
493 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
494 .pool = input_pool_data
495};
496
497static struct entropy_store blocking_pool = {
498 .poolinfo = &poolinfo_table[1],
499 .name = "blocking",
500 .pull = &input_pool,
501 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
502 .pool = blocking_pool_data,
503 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
504 push_to_pool),
505};
506
507static __u32 const twist_table[8] = {
508 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
509 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
510
511/*
512 * This function adds bytes into the entropy "pool". It does not
513 * update the entropy estimate. The caller should call
514 * credit_entropy_bits if this is appropriate.
515 *
516 * The pool is stirred with a primitive polynomial of the appropriate
517 * degree, and then twisted. We twist by three bits at a time because
518 * it's cheap to do so and helps slightly in the expected case where
519 * the entropy is concentrated in the low-order bits.
520 */
521static void _mix_pool_bytes(struct entropy_store *r, const void *in,
522 int nbytes)
523{
524 unsigned long i, tap1, tap2, tap3, tap4, tap5;
525 int input_rotate;
526 int wordmask = r->poolinfo->poolwords - 1;
527 const char *bytes = in;
528 __u32 w;
529
530 tap1 = r->poolinfo->tap1;
531 tap2 = r->poolinfo->tap2;
532 tap3 = r->poolinfo->tap3;
533 tap4 = r->poolinfo->tap4;
534 tap5 = r->poolinfo->tap5;
535
536 input_rotate = r->input_rotate;
537 i = r->add_ptr;
538
539 /* mix one byte at a time to simplify size handling and churn faster */
540 while (nbytes--) {
541 w = rol32(*bytes++, input_rotate);
542 i = (i - 1) & wordmask;
543
544 /* XOR in the various taps */
545 w ^= r->pool[i];
546 w ^= r->pool[(i + tap1) & wordmask];
547 w ^= r->pool[(i + tap2) & wordmask];
548 w ^= r->pool[(i + tap3) & wordmask];
549 w ^= r->pool[(i + tap4) & wordmask];
550 w ^= r->pool[(i + tap5) & wordmask];
551
552 /* Mix the result back in with a twist */
553 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
554
555 /*
556 * Normally, we add 7 bits of rotation to the pool.
557 * At the beginning of the pool, add an extra 7 bits
558 * rotation, so that successive passes spread the
559 * input bits across the pool evenly.
560 */
561 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
562 }
563
564 r->input_rotate = input_rotate;
565 r->add_ptr = i;
566}
567
568static void __mix_pool_bytes(struct entropy_store *r, const void *in,
569 int nbytes)
570{
571 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
572 _mix_pool_bytes(r, in, nbytes);
573}
574
575static void mix_pool_bytes(struct entropy_store *r, const void *in,
576 int nbytes)
577{
578 unsigned long flags;
579
580 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
581 spin_lock_irqsave(&r->lock, flags);
582 _mix_pool_bytes(r, in, nbytes);
583 spin_unlock_irqrestore(&r->lock, flags);
584}
585
586struct fast_pool {
587 __u32 pool[4];
588 unsigned long last;
589 unsigned short reg_idx;
590 unsigned char count;
591};
592
593/*
594 * This is a fast mixing routine used by the interrupt randomness
595 * collector. It's hardcoded for an 128 bit pool and assumes that any
596 * locks that might be needed are taken by the caller.
597 */
598static void fast_mix(struct fast_pool *f)
599{
600 __u32 a = f->pool[0], b = f->pool[1];
601 __u32 c = f->pool[2], d = f->pool[3];
602
603 a += b; c += d;
604 b = rol32(b, 6); d = rol32(d, 27);
605 d ^= a; b ^= c;
606
607 a += b; c += d;
608 b = rol32(b, 16); d = rol32(d, 14);
609 d ^= a; b ^= c;
610
611 a += b; c += d;
612 b = rol32(b, 6); d = rol32(d, 27);
613 d ^= a; b ^= c;
614
615 a += b; c += d;
616 b = rol32(b, 16); d = rol32(d, 14);
617 d ^= a; b ^= c;
618
619 f->pool[0] = a; f->pool[1] = b;
620 f->pool[2] = c; f->pool[3] = d;
621 f->count++;
622}
623
624static void process_random_ready_list(void)
625{
626 unsigned long flags;
627 struct random_ready_callback *rdy, *tmp;
628
629 spin_lock_irqsave(&random_ready_list_lock, flags);
630 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
631 struct module *owner = rdy->owner;
632
633 list_del_init(&rdy->list);
634 rdy->func(rdy);
635 module_put(owner);
636 }
637 spin_unlock_irqrestore(&random_ready_list_lock, flags);
638}
639
640/*
641 * Credit (or debit) the entropy store with n bits of entropy.
642 * Use credit_entropy_bits_safe() if the value comes from userspace
643 * or otherwise should be checked for extreme values.
644 */
645static void credit_entropy_bits(struct entropy_store *r, int nbits)
646{
647 int entropy_count, orig;
648 const int pool_size = r->poolinfo->poolfracbits;
649 int nfrac = nbits << ENTROPY_SHIFT;
650
651 if (!nbits)
652 return;
653
654retry:
655 entropy_count = orig = READ_ONCE(r->entropy_count);
656 if (nfrac < 0) {
657 /* Debit */
658 entropy_count += nfrac;
659 } else {
660 /*
661 * Credit: we have to account for the possibility of
662 * overwriting already present entropy. Even in the
663 * ideal case of pure Shannon entropy, new contributions
664 * approach the full value asymptotically:
665 *
666 * entropy <- entropy + (pool_size - entropy) *
667 * (1 - exp(-add_entropy/pool_size))
668 *
669 * For add_entropy <= pool_size/2 then
670 * (1 - exp(-add_entropy/pool_size)) >=
671 * (add_entropy/pool_size)*0.7869...
672 * so we can approximate the exponential with
673 * 3/4*add_entropy/pool_size and still be on the
674 * safe side by adding at most pool_size/2 at a time.
675 *
676 * The use of pool_size-2 in the while statement is to
677 * prevent rounding artifacts from making the loop
678 * arbitrarily long; this limits the loop to log2(pool_size)*2
679 * turns no matter how large nbits is.
680 */
681 int pnfrac = nfrac;
682 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
683 /* The +2 corresponds to the /4 in the denominator */
684
685 do {
686 unsigned int anfrac = min(pnfrac, pool_size/2);
687 unsigned int add =
688 ((pool_size - entropy_count)*anfrac*3) >> s;
689
690 entropy_count += add;
691 pnfrac -= anfrac;
692 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
693 }
694
695 if (unlikely(entropy_count < 0)) {
696 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
697 r->name, entropy_count);
698 WARN_ON(1);
699 entropy_count = 0;
700 } else if (entropy_count > pool_size)
701 entropy_count = pool_size;
702 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
703 goto retry;
704
705 r->entropy_total += nbits;
706 if (!r->initialized && r->entropy_total > 128) {
707 r->initialized = 1;
708 r->entropy_total = 0;
709 }
710
711 trace_credit_entropy_bits(r->name, nbits,
712 entropy_count >> ENTROPY_SHIFT,
713 r->entropy_total, _RET_IP_);
714
715 if (r == &input_pool) {
716 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
717
718 if (crng_init < 2 && entropy_bits >= 128) {
719 crng_reseed(&primary_crng, r);
720 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
721 }
722
723 /* should we wake readers? */
724 if (entropy_bits >= random_read_wakeup_bits &&
725 wq_has_sleeper(&random_read_wait)) {
726 wake_up_interruptible(&random_read_wait);
727 kill_fasync(&fasync, SIGIO, POLL_IN);
728 }
729 /* If the input pool is getting full, send some
730 * entropy to the blocking pool until it is 75% full.
731 */
732 if (entropy_bits > random_write_wakeup_bits &&
733 r->initialized &&
734 r->entropy_total >= 2*random_read_wakeup_bits) {
735 struct entropy_store *other = &blocking_pool;
736
737 if (other->entropy_count <=
738 3 * other->poolinfo->poolfracbits / 4) {
739 schedule_work(&other->push_work);
740 r->entropy_total = 0;
741 }
742 }
743 }
744}
745
746static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
747{
748 const int nbits_max = r->poolinfo->poolwords * 32;
749
750 if (nbits < 0)
751 return -EINVAL;
752
753 /* Cap the value to avoid overflows */
754 nbits = min(nbits, nbits_max);
755
756 credit_entropy_bits(r, nbits);
757 return 0;
758}
759
760/*********************************************************************
761 *
762 * CRNG using CHACHA20
763 *
764 *********************************************************************/
765
766#define CRNG_RESEED_INTERVAL (300*HZ)
767
768static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
769
770#ifdef CONFIG_NUMA
771/*
772 * Hack to deal with crazy userspace progams when they are all trying
773 * to access /dev/urandom in parallel. The programs are almost
774 * certainly doing something terribly wrong, but we'll work around
775 * their brain damage.
776 */
777static struct crng_state **crng_node_pool __read_mostly;
778#endif
779
780static void invalidate_batched_entropy(void);
781
782static void crng_initialize(struct crng_state *crng)
783{
784 int i;
785 int arch_init = 1;
786 unsigned long rv;
787
788 memcpy(&crng->state[0], "expand 32-byte k", 16);
789 if (crng == &primary_crng)
790 _extract_entropy(&input_pool, &crng->state[4],
791 sizeof(__u32) * 12, 0);
792 else
793 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
794 for (i = 4; i < 16; i++) {
795 if (!arch_get_random_seed_long(&rv) &&
796 !arch_get_random_long(&rv)) {
797 rv = random_get_entropy();
798 arch_init = 0;
799 }
800 crng->state[i] ^= rv;
801 }
802#ifdef CONFIG_RANDOM_TRUST_CPU
803 if (arch_init) {
804 crng_init = 2;
805 pr_notice("random: crng done (trusting CPU's manufacturer)\n");
806 }
807#endif
808 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
809}
810
811#ifdef CONFIG_NUMA
812static void do_numa_crng_init(struct work_struct *work)
813{
814 int i;
815 struct crng_state *crng;
816 struct crng_state **pool;
817
818 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
819 for_each_online_node(i) {
820 crng = kmalloc_node(sizeof(struct crng_state),
821 GFP_KERNEL | __GFP_NOFAIL, i);
822 spin_lock_init(&crng->lock);
823 crng_initialize(crng);
824 pool[i] = crng;
825 }
826 mb();
827 if (cmpxchg(&crng_node_pool, NULL, pool)) {
828 for_each_node(i)
829 kfree(pool[i]);
830 kfree(pool);
831 }
832}
833
834static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
835
836static void numa_crng_init(void)
837{
838 schedule_work(&numa_crng_init_work);
839}
840#else
841static void numa_crng_init(void) {}
842#endif
843
844/*
845 * crng_fast_load() can be called by code in the interrupt service
846 * path. So we can't afford to dilly-dally.
847 */
848static int crng_fast_load(const char *cp, size_t len)
849{
850 unsigned long flags;
851 char *p;
852
853 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
854 return 0;
855 if (crng_init != 0) {
856 spin_unlock_irqrestore(&primary_crng.lock, flags);
857 return 0;
858 }
859 p = (unsigned char *) &primary_crng.state[4];
860 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
861 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
862 cp++; crng_init_cnt++; len--;
863 }
864 spin_unlock_irqrestore(&primary_crng.lock, flags);
865 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
866 invalidate_batched_entropy();
867 crng_init = 1;
868 wake_up_interruptible(&crng_init_wait);
869 pr_notice("random: fast init done\n");
870 }
871 return 1;
872}
873
874/*
875 * crng_slow_load() is called by add_device_randomness, which has two
876 * attributes. (1) We can't trust the buffer passed to it is
877 * guaranteed to be unpredictable (so it might not have any entropy at
878 * all), and (2) it doesn't have the performance constraints of
879 * crng_fast_load().
880 *
881 * So we do something more comprehensive which is guaranteed to touch
882 * all of the primary_crng's state, and which uses a LFSR with a
883 * period of 255 as part of the mixing algorithm. Finally, we do
884 * *not* advance crng_init_cnt since buffer we may get may be something
885 * like a fixed DMI table (for example), which might very well be
886 * unique to the machine, but is otherwise unvarying.
887 */
888static int crng_slow_load(const char *cp, size_t len)
889{
890 unsigned long flags;
891 static unsigned char lfsr = 1;
892 unsigned char tmp;
893 unsigned i, max = CHACHA20_KEY_SIZE;
894 const char * src_buf = cp;
895 char * dest_buf = (char *) &primary_crng.state[4];
896
897 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
898 return 0;
899 if (crng_init != 0) {
900 spin_unlock_irqrestore(&primary_crng.lock, flags);
901 return 0;
902 }
903 if (len > max)
904 max = len;
905
906 for (i = 0; i < max ; i++) {
907 tmp = lfsr;
908 lfsr >>= 1;
909 if (tmp & 1)
910 lfsr ^= 0xE1;
911 tmp = dest_buf[i % CHACHA20_KEY_SIZE];
912 dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
913 lfsr += (tmp << 3) | (tmp >> 5);
914 }
915 spin_unlock_irqrestore(&primary_crng.lock, flags);
916 return 1;
917}
918
919static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
920{
921 unsigned long flags;
922 int i, num;
923 union {
924 __u32 block[CHACHA20_BLOCK_WORDS];
925 __u32 key[8];
926 } buf;
927
928 if (r) {
929 num = extract_entropy(r, &buf, 32, 16, 0);
930 if (num == 0)
931 return;
932 } else {
933 _extract_crng(&primary_crng, buf.block);
934 _crng_backtrack_protect(&primary_crng, buf.block,
935 CHACHA20_KEY_SIZE);
936 }
937 spin_lock_irqsave(&crng->lock, flags);
938 for (i = 0; i < 8; i++) {
939 unsigned long rv;
940 if (!arch_get_random_seed_long(&rv) &&
941 !arch_get_random_long(&rv))
942 rv = random_get_entropy();
943 crng->state[i+4] ^= buf.key[i] ^ rv;
944 }
945 memzero_explicit(&buf, sizeof(buf));
946 crng->init_time = jiffies;
947 spin_unlock_irqrestore(&crng->lock, flags);
948 if (crng == &primary_crng && crng_init < 2) {
949 invalidate_batched_entropy();
950 numa_crng_init();
951 crng_init = 2;
952 process_random_ready_list();
953 wake_up_interruptible(&crng_init_wait);
954 pr_notice("random: crng init done\n");
955 if (unseeded_warning.missed) {
956 pr_notice("random: %d get_random_xx warning(s) missed "
957 "due to ratelimiting\n",
958 unseeded_warning.missed);
959 unseeded_warning.missed = 0;
960 }
961 if (urandom_warning.missed) {
962 pr_notice("random: %d urandom warning(s) missed "
963 "due to ratelimiting\n",
964 urandom_warning.missed);
965 urandom_warning.missed = 0;
966 }
967 }
968}
969
970static void _extract_crng(struct crng_state *crng,
971 __u32 out[CHACHA20_BLOCK_WORDS])
972{
973 unsigned long v, flags;
974
975 if (crng_ready() &&
976 (time_after(crng_global_init_time, crng->init_time) ||
977 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
978 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
979 spin_lock_irqsave(&crng->lock, flags);
980 if (arch_get_random_long(&v))
981 crng->state[14] ^= v;
982 chacha20_block(&crng->state[0], out);
983 if (crng->state[12] == 0)
984 crng->state[13]++;
985 spin_unlock_irqrestore(&crng->lock, flags);
986}
987
988static void extract_crng(__u32 out[CHACHA20_BLOCK_WORDS])
989{
990 struct crng_state *crng = NULL;
991
992#ifdef CONFIG_NUMA
993 if (crng_node_pool)
994 crng = crng_node_pool[numa_node_id()];
995 if (crng == NULL)
996#endif
997 crng = &primary_crng;
998 _extract_crng(crng, out);
999}
1000
1001/*
1002 * Use the leftover bytes from the CRNG block output (if there is
1003 * enough) to mutate the CRNG key to provide backtracking protection.
1004 */
1005static void _crng_backtrack_protect(struct crng_state *crng,
1006 __u32 tmp[CHACHA20_BLOCK_WORDS], int used)
1007{
1008 unsigned long flags;
1009 __u32 *s, *d;
1010 int i;
1011
1012 used = round_up(used, sizeof(__u32));
1013 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
1014 extract_crng(tmp);
1015 used = 0;
1016 }
1017 spin_lock_irqsave(&crng->lock, flags);
1018 s = &tmp[used / sizeof(__u32)];
1019 d = &crng->state[4];
1020 for (i=0; i < 8; i++)
1021 *d++ ^= *s++;
1022 spin_unlock_irqrestore(&crng->lock, flags);
1023}
1024
1025static void crng_backtrack_protect(__u32 tmp[CHACHA20_BLOCK_WORDS], int used)
1026{
1027 struct crng_state *crng = NULL;
1028
1029#ifdef CONFIG_NUMA
1030 if (crng_node_pool)
1031 crng = crng_node_pool[numa_node_id()];
1032 if (crng == NULL)
1033#endif
1034 crng = &primary_crng;
1035 _crng_backtrack_protect(crng, tmp, used);
1036}
1037
1038static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1039{
1040 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
1041 __u32 tmp[CHACHA20_BLOCK_WORDS];
1042 int large_request = (nbytes > 256);
1043
1044 while (nbytes) {
1045 if (large_request && need_resched()) {
1046 if (signal_pending(current)) {
1047 if (ret == 0)
1048 ret = -ERESTARTSYS;
1049 break;
1050 }
1051 schedule();
1052 }
1053
1054 extract_crng(tmp);
1055 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
1056 if (copy_to_user(buf, tmp, i)) {
1057 ret = -EFAULT;
1058 break;
1059 }
1060
1061 nbytes -= i;
1062 buf += i;
1063 ret += i;
1064 }
1065 crng_backtrack_protect(tmp, i);
1066
1067 /* Wipe data just written to memory */
1068 memzero_explicit(tmp, sizeof(tmp));
1069
1070 return ret;
1071}
1072
1073
1074/*********************************************************************
1075 *
1076 * Entropy input management
1077 *
1078 *********************************************************************/
1079
1080/* There is one of these per entropy source */
1081struct timer_rand_state {
1082 cycles_t last_time;
1083 long last_delta, last_delta2;
1084};
1085
1086#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1087
1088/*
1089 * Add device- or boot-specific data to the input pool to help
1090 * initialize it.
1091 *
1092 * None of this adds any entropy; it is meant to avoid the problem of
1093 * the entropy pool having similar initial state across largely
1094 * identical devices.
1095 */
1096void add_device_randomness(const void *buf, unsigned int size)
1097{
1098 unsigned long time = random_get_entropy() ^ jiffies;
1099 unsigned long flags;
1100
1101 if (!crng_ready() && size)
1102 crng_slow_load(buf, size);
1103
1104 trace_add_device_randomness(size, _RET_IP_);
1105 spin_lock_irqsave(&input_pool.lock, flags);
1106 _mix_pool_bytes(&input_pool, buf, size);
1107 _mix_pool_bytes(&input_pool, &time, sizeof(time));
1108 spin_unlock_irqrestore(&input_pool.lock, flags);
1109}
1110EXPORT_SYMBOL(add_device_randomness);
1111
1112static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1113
1114/*
1115 * This function adds entropy to the entropy "pool" by using timing
1116 * delays. It uses the timer_rand_state structure to make an estimate
1117 * of how many bits of entropy this call has added to the pool.
1118 *
1119 * The number "num" is also added to the pool - it should somehow describe
1120 * the type of event which just happened. This is currently 0-255 for
1121 * keyboard scan codes, and 256 upwards for interrupts.
1122 *
1123 */
1124static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1125{
1126 struct entropy_store *r;
1127 struct {
1128 long jiffies;
1129 unsigned cycles;
1130 unsigned num;
1131 } sample;
1132 long delta, delta2, delta3;
1133
1134 sample.jiffies = jiffies;
1135 sample.cycles = random_get_entropy();
1136 sample.num = num;
1137 r = &input_pool;
1138 mix_pool_bytes(r, &sample, sizeof(sample));
1139
1140 /*
1141 * Calculate number of bits of randomness we probably added.
1142 * We take into account the first, second and third-order deltas
1143 * in order to make our estimate.
1144 */
1145 delta = sample.jiffies - state->last_time;
1146 state->last_time = sample.jiffies;
1147
1148 delta2 = delta - state->last_delta;
1149 state->last_delta = delta;
1150
1151 delta3 = delta2 - state->last_delta2;
1152 state->last_delta2 = delta2;
1153
1154 if (delta < 0)
1155 delta = -delta;
1156 if (delta2 < 0)
1157 delta2 = -delta2;
1158 if (delta3 < 0)
1159 delta3 = -delta3;
1160 if (delta > delta2)
1161 delta = delta2;
1162 if (delta > delta3)
1163 delta = delta3;
1164
1165 /*
1166 * delta is now minimum absolute delta.
1167 * Round down by 1 bit on general principles,
1168 * and limit entropy entimate to 12 bits.
1169 */
1170 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1171}
1172
1173void add_input_randomness(unsigned int type, unsigned int code,
1174 unsigned int value)
1175{
1176 static unsigned char last_value;
1177
1178 /* ignore autorepeat and the like */
1179 if (value == last_value)
1180 return;
1181
1182 last_value = value;
1183 add_timer_randomness(&input_timer_state,
1184 (type << 4) ^ code ^ (code >> 4) ^ value);
1185 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1186}
1187EXPORT_SYMBOL_GPL(add_input_randomness);
1188
1189static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1190
1191#ifdef ADD_INTERRUPT_BENCH
1192static unsigned long avg_cycles, avg_deviation;
1193
1194#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1195#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1196
1197static void add_interrupt_bench(cycles_t start)
1198{
1199 long delta = random_get_entropy() - start;
1200
1201 /* Use a weighted moving average */
1202 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1203 avg_cycles += delta;
1204 /* And average deviation */
1205 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1206 avg_deviation += delta;
1207}
1208#else
1209#define add_interrupt_bench(x)
1210#endif
1211
1212static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1213{
1214 __u32 *ptr = (__u32 *) regs;
1215 unsigned int idx;
1216
1217 if (regs == NULL)
1218 return 0;
1219 idx = READ_ONCE(f->reg_idx);
1220 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1221 idx = 0;
1222 ptr += idx++;
1223 WRITE_ONCE(f->reg_idx, idx);
1224 return *ptr;
1225}
1226
1227void add_interrupt_randomness(int irq, int irq_flags)
1228{
1229 struct entropy_store *r;
1230 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1231 struct pt_regs *regs = get_irq_regs();
1232 unsigned long now = jiffies;
1233 cycles_t cycles = random_get_entropy();
1234 __u32 c_high, j_high;
1235 __u64 ip;
1236 unsigned long seed;
1237 int credit = 0;
1238
1239 if (cycles == 0)
1240 cycles = get_reg(fast_pool, regs);
1241 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1242 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1243 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1244 fast_pool->pool[1] ^= now ^ c_high;
1245 ip = regs ? instruction_pointer(regs) : _RET_IP_;
1246 fast_pool->pool[2] ^= ip;
1247 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1248 get_reg(fast_pool, regs);
1249
1250 fast_mix(fast_pool);
1251 add_interrupt_bench(cycles);
1252
1253 if (unlikely(crng_init == 0)) {
1254 if ((fast_pool->count >= 64) &&
1255 crng_fast_load((char *) fast_pool->pool,
1256 sizeof(fast_pool->pool))) {
1257 fast_pool->count = 0;
1258 fast_pool->last = now;
1259 }
1260 return;
1261 }
1262
1263 if ((fast_pool->count < 64) &&
1264 !time_after(now, fast_pool->last + HZ))
1265 return;
1266
1267 r = &input_pool;
1268 if (!spin_trylock(&r->lock))
1269 return;
1270
1271 fast_pool->last = now;
1272 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1273
1274 /*
1275 * If we have architectural seed generator, produce a seed and
1276 * add it to the pool. For the sake of paranoia don't let the
1277 * architectural seed generator dominate the input from the
1278 * interrupt noise.
1279 */
1280 if (arch_get_random_seed_long(&seed)) {
1281 __mix_pool_bytes(r, &seed, sizeof(seed));
1282 credit = 1;
1283 }
1284 spin_unlock(&r->lock);
1285
1286 fast_pool->count = 0;
1287
1288 /* award one bit for the contents of the fast pool */
1289 credit_entropy_bits(r, credit + 1);
1290}
1291EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1292
1293#ifdef CONFIG_BLOCK
1294void add_disk_randomness(struct gendisk *disk)
1295{
1296 if (!disk || !disk->random)
1297 return;
1298 /* first major is 1, so we get >= 0x200 here */
1299 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1300 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1301}
1302EXPORT_SYMBOL_GPL(add_disk_randomness);
1303#endif
1304
1305/*********************************************************************
1306 *
1307 * Entropy extraction routines
1308 *
1309 *********************************************************************/
1310
1311/*
1312 * This utility inline function is responsible for transferring entropy
1313 * from the primary pool to the secondary extraction pool. We make
1314 * sure we pull enough for a 'catastrophic reseed'.
1315 */
1316static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1317static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1318{
1319 if (!r->pull ||
1320 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1321 r->entropy_count > r->poolinfo->poolfracbits)
1322 return;
1323
1324 _xfer_secondary_pool(r, nbytes);
1325}
1326
1327static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1328{
1329 __u32 tmp[OUTPUT_POOL_WORDS];
1330
1331 int bytes = nbytes;
1332
1333 /* pull at least as much as a wakeup */
1334 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1335 /* but never more than the buffer size */
1336 bytes = min_t(int, bytes, sizeof(tmp));
1337
1338 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1339 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1340 bytes = extract_entropy(r->pull, tmp, bytes,
1341 random_read_wakeup_bits / 8, 0);
1342 mix_pool_bytes(r, tmp, bytes);
1343 credit_entropy_bits(r, bytes*8);
1344}
1345
1346/*
1347 * Used as a workqueue function so that when the input pool is getting
1348 * full, we can "spill over" some entropy to the output pools. That
1349 * way the output pools can store some of the excess entropy instead
1350 * of letting it go to waste.
1351 */
1352static void push_to_pool(struct work_struct *work)
1353{
1354 struct entropy_store *r = container_of(work, struct entropy_store,
1355 push_work);
1356 BUG_ON(!r);
1357 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1358 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1359 r->pull->entropy_count >> ENTROPY_SHIFT);
1360}
1361
1362/*
1363 * This function decides how many bytes to actually take from the
1364 * given pool, and also debits the entropy count accordingly.
1365 */
1366static size_t account(struct entropy_store *r, size_t nbytes, int min,
1367 int reserved)
1368{
1369 int entropy_count, orig, have_bytes;
1370 size_t ibytes, nfrac;
1371
1372 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1373
1374 /* Can we pull enough? */
1375retry:
1376 entropy_count = orig = READ_ONCE(r->entropy_count);
1377 ibytes = nbytes;
1378 /* never pull more than available */
1379 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1380
1381 if ((have_bytes -= reserved) < 0)
1382 have_bytes = 0;
1383 ibytes = min_t(size_t, ibytes, have_bytes);
1384 if (ibytes < min)
1385 ibytes = 0;
1386
1387 if (unlikely(entropy_count < 0)) {
1388 pr_warn("random: negative entropy count: pool %s count %d\n",
1389 r->name, entropy_count);
1390 WARN_ON(1);
1391 entropy_count = 0;
1392 }
1393 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1394 if ((size_t) entropy_count > nfrac)
1395 entropy_count -= nfrac;
1396 else
1397 entropy_count = 0;
1398
1399 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1400 goto retry;
1401
1402 trace_debit_entropy(r->name, 8 * ibytes);
1403 if (ibytes &&
1404 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1405 wake_up_interruptible(&random_write_wait);
1406 kill_fasync(&fasync, SIGIO, POLL_OUT);
1407 }
1408
1409 return ibytes;
1410}
1411
1412/*
1413 * This function does the actual extraction for extract_entropy and
1414 * extract_entropy_user.
1415 *
1416 * Note: we assume that .poolwords is a multiple of 16 words.
1417 */
1418static void extract_buf(struct entropy_store *r, __u8 *out)
1419{
1420 int i;
1421 union {
1422 __u32 w[5];
1423 unsigned long l[LONGS(20)];
1424 } hash;
1425 __u32 workspace[SHA_WORKSPACE_WORDS];
1426 unsigned long flags;
1427
1428 /*
1429 * If we have an architectural hardware random number
1430 * generator, use it for SHA's initial vector
1431 */
1432 sha_init(hash.w);
1433 for (i = 0; i < LONGS(20); i++) {
1434 unsigned long v;
1435 if (!arch_get_random_long(&v))
1436 break;
1437 hash.l[i] = v;
1438 }
1439
1440 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1441 spin_lock_irqsave(&r->lock, flags);
1442 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1443 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1444
1445 /*
1446 * We mix the hash back into the pool to prevent backtracking
1447 * attacks (where the attacker knows the state of the pool
1448 * plus the current outputs, and attempts to find previous
1449 * ouputs), unless the hash function can be inverted. By
1450 * mixing at least a SHA1 worth of hash data back, we make
1451 * brute-forcing the feedback as hard as brute-forcing the
1452 * hash.
1453 */
1454 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1455 spin_unlock_irqrestore(&r->lock, flags);
1456
1457 memzero_explicit(workspace, sizeof(workspace));
1458
1459 /*
1460 * In case the hash function has some recognizable output
1461 * pattern, we fold it in half. Thus, we always feed back
1462 * twice as much data as we output.
1463 */
1464 hash.w[0] ^= hash.w[3];
1465 hash.w[1] ^= hash.w[4];
1466 hash.w[2] ^= rol32(hash.w[2], 16);
1467
1468 memcpy(out, &hash, EXTRACT_SIZE);
1469 memzero_explicit(&hash, sizeof(hash));
1470}
1471
1472static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1473 size_t nbytes, int fips)
1474{
1475 ssize_t ret = 0, i;
1476 __u8 tmp[EXTRACT_SIZE];
1477 unsigned long flags;
1478
1479 while (nbytes) {
1480 extract_buf(r, tmp);
1481
1482 if (fips) {
1483 spin_lock_irqsave(&r->lock, flags);
1484 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1485 panic("Hardware RNG duplicated output!\n");
1486 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1487 spin_unlock_irqrestore(&r->lock, flags);
1488 }
1489 i = min_t(int, nbytes, EXTRACT_SIZE);
1490 memcpy(buf, tmp, i);
1491 nbytes -= i;
1492 buf += i;
1493 ret += i;
1494 }
1495
1496 /* Wipe data just returned from memory */
1497 memzero_explicit(tmp, sizeof(tmp));
1498
1499 return ret;
1500}
1501
1502/*
1503 * This function extracts randomness from the "entropy pool", and
1504 * returns it in a buffer.
1505 *
1506 * The min parameter specifies the minimum amount we can pull before
1507 * failing to avoid races that defeat catastrophic reseeding while the
1508 * reserved parameter indicates how much entropy we must leave in the
1509 * pool after each pull to avoid starving other readers.
1510 */
1511static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1512 size_t nbytes, int min, int reserved)
1513{
1514 __u8 tmp[EXTRACT_SIZE];
1515 unsigned long flags;
1516
1517 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1518 if (fips_enabled) {
1519 spin_lock_irqsave(&r->lock, flags);
1520 if (!r->last_data_init) {
1521 r->last_data_init = 1;
1522 spin_unlock_irqrestore(&r->lock, flags);
1523 trace_extract_entropy(r->name, EXTRACT_SIZE,
1524 ENTROPY_BITS(r), _RET_IP_);
1525 xfer_secondary_pool(r, EXTRACT_SIZE);
1526 extract_buf(r, tmp);
1527 spin_lock_irqsave(&r->lock, flags);
1528 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1529 }
1530 spin_unlock_irqrestore(&r->lock, flags);
1531 }
1532
1533 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1534 xfer_secondary_pool(r, nbytes);
1535 nbytes = account(r, nbytes, min, reserved);
1536
1537 return _extract_entropy(r, buf, nbytes, fips_enabled);
1538}
1539
1540/*
1541 * This function extracts randomness from the "entropy pool", and
1542 * returns it in a userspace buffer.
1543 */
1544static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1545 size_t nbytes)
1546{
1547 ssize_t ret = 0, i;
1548 __u8 tmp[EXTRACT_SIZE];
1549 int large_request = (nbytes > 256);
1550
1551 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1552 xfer_secondary_pool(r, nbytes);
1553 nbytes = account(r, nbytes, 0, 0);
1554
1555 while (nbytes) {
1556 if (large_request && need_resched()) {
1557 if (signal_pending(current)) {
1558 if (ret == 0)
1559 ret = -ERESTARTSYS;
1560 break;
1561 }
1562 schedule();
1563 }
1564
1565 extract_buf(r, tmp);
1566 i = min_t(int, nbytes, EXTRACT_SIZE);
1567 if (copy_to_user(buf, tmp, i)) {
1568 ret = -EFAULT;
1569 break;
1570 }
1571
1572 nbytes -= i;
1573 buf += i;
1574 ret += i;
1575 }
1576
1577 /* Wipe data just returned from memory */
1578 memzero_explicit(tmp, sizeof(tmp));
1579
1580 return ret;
1581}
1582
1583#define warn_unseeded_randomness(previous) \
1584 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1585
1586static void _warn_unseeded_randomness(const char *func_name, void *caller,
1587 void **previous)
1588{
1589#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1590 const bool print_once = false;
1591#else
1592 static bool print_once __read_mostly;
1593#endif
1594
1595 if (print_once ||
1596 crng_ready() ||
1597 (previous && (caller == READ_ONCE(*previous))))
1598 return;
1599 WRITE_ONCE(*previous, caller);
1600#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1601 print_once = true;
1602#endif
1603 if (__ratelimit(&unseeded_warning))
1604 pr_notice("random: %s called from %pS with crng_init=%d\n",
1605 func_name, caller, crng_init);
1606}
1607
1608/*
1609 * This function is the exported kernel interface. It returns some
1610 * number of good random numbers, suitable for key generation, seeding
1611 * TCP sequence numbers, etc. It does not rely on the hardware random
1612 * number generator. For random bytes direct from the hardware RNG
1613 * (when available), use get_random_bytes_arch(). In order to ensure
1614 * that the randomness provided by this function is okay, the function
1615 * wait_for_random_bytes() should be called and return 0 at least once
1616 * at any point prior.
1617 */
1618static void _get_random_bytes(void *buf, int nbytes)
1619{
1620 __u32 tmp[CHACHA20_BLOCK_WORDS];
1621
1622 trace_get_random_bytes(nbytes, _RET_IP_);
1623
1624 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1625 extract_crng(buf);
1626 buf += CHACHA20_BLOCK_SIZE;
1627 nbytes -= CHACHA20_BLOCK_SIZE;
1628 }
1629
1630 if (nbytes > 0) {
1631 extract_crng(tmp);
1632 memcpy(buf, tmp, nbytes);
1633 crng_backtrack_protect(tmp, nbytes);
1634 } else
1635 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1636 memzero_explicit(tmp, sizeof(tmp));
1637}
1638
1639void get_random_bytes(void *buf, int nbytes)
1640{
1641 static void *previous;
1642
1643 warn_unseeded_randomness(&previous);
1644 _get_random_bytes(buf, nbytes);
1645}
1646EXPORT_SYMBOL(get_random_bytes);
1647
1648/*
1649 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1650 * cryptographically secure random numbers. This applies to: the /dev/urandom
1651 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1652 * family of functions. Using any of these functions without first calling
1653 * this function forfeits the guarantee of security.
1654 *
1655 * Returns: 0 if the urandom pool has been seeded.
1656 * -ERESTARTSYS if the function was interrupted by a signal.
1657 */
1658int wait_for_random_bytes(void)
1659{
1660 if (likely(crng_ready()))
1661 return 0;
1662 return wait_event_interruptible(crng_init_wait, crng_ready());
1663}
1664EXPORT_SYMBOL(wait_for_random_bytes);
1665
1666/*
1667 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1668 * to supply cryptographically secure random numbers. This applies to: the
1669 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1670 * ,u64,int,long} family of functions.
1671 *
1672 * Returns: true if the urandom pool has been seeded.
1673 * false if the urandom pool has not been seeded.
1674 */
1675bool rng_is_initialized(void)
1676{
1677 return crng_ready();
1678}
1679EXPORT_SYMBOL(rng_is_initialized);
1680
1681/*
1682 * Add a callback function that will be invoked when the nonblocking
1683 * pool is initialised.
1684 *
1685 * returns: 0 if callback is successfully added
1686 * -EALREADY if pool is already initialised (callback not called)
1687 * -ENOENT if module for callback is not alive
1688 */
1689int add_random_ready_callback(struct random_ready_callback *rdy)
1690{
1691 struct module *owner;
1692 unsigned long flags;
1693 int err = -EALREADY;
1694
1695 if (crng_ready())
1696 return err;
1697
1698 owner = rdy->owner;
1699 if (!try_module_get(owner))
1700 return -ENOENT;
1701
1702 spin_lock_irqsave(&random_ready_list_lock, flags);
1703 if (crng_ready())
1704 goto out;
1705
1706 owner = NULL;
1707
1708 list_add(&rdy->list, &random_ready_list);
1709 err = 0;
1710
1711out:
1712 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1713
1714 module_put(owner);
1715
1716 return err;
1717}
1718EXPORT_SYMBOL(add_random_ready_callback);
1719
1720/*
1721 * Delete a previously registered readiness callback function.
1722 */
1723void del_random_ready_callback(struct random_ready_callback *rdy)
1724{
1725 unsigned long flags;
1726 struct module *owner = NULL;
1727
1728 spin_lock_irqsave(&random_ready_list_lock, flags);
1729 if (!list_empty(&rdy->list)) {
1730 list_del_init(&rdy->list);
1731 owner = rdy->owner;
1732 }
1733 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1734
1735 module_put(owner);
1736}
1737EXPORT_SYMBOL(del_random_ready_callback);
1738
1739/*
1740 * This function will use the architecture-specific hardware random
1741 * number generator if it is available. The arch-specific hw RNG will
1742 * almost certainly be faster than what we can do in software, but it
1743 * is impossible to verify that it is implemented securely (as
1744 * opposed, to, say, the AES encryption of a sequence number using a
1745 * key known by the NSA). So it's useful if we need the speed, but
1746 * only if we're willing to trust the hardware manufacturer not to
1747 * have put in a back door.
1748 *
1749 * Return number of bytes filled in.
1750 */
1751int __must_check get_random_bytes_arch(void *buf, int nbytes)
1752{
1753 int left = nbytes;
1754 char *p = buf;
1755
1756 trace_get_random_bytes_arch(left, _RET_IP_);
1757 while (left) {
1758 unsigned long v;
1759 int chunk = min_t(int, left, sizeof(unsigned long));
1760
1761 if (!arch_get_random_long(&v))
1762 break;
1763
1764 memcpy(p, &v, chunk);
1765 p += chunk;
1766 left -= chunk;
1767 }
1768
1769 return nbytes - left;
1770}
1771EXPORT_SYMBOL(get_random_bytes_arch);
1772
1773/*
1774 * init_std_data - initialize pool with system data
1775 *
1776 * @r: pool to initialize
1777 *
1778 * This function clears the pool's entropy count and mixes some system
1779 * data into the pool to prepare it for use. The pool is not cleared
1780 * as that can only decrease the entropy in the pool.
1781 */
1782static void init_std_data(struct entropy_store *r)
1783{
1784 int i;
1785 ktime_t now = ktime_get_real();
1786 unsigned long rv;
1787
1788 r->last_pulled = jiffies;
1789 mix_pool_bytes(r, &now, sizeof(now));
1790 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1791 if (!arch_get_random_seed_long(&rv) &&
1792 !arch_get_random_long(&rv))
1793 rv = random_get_entropy();
1794 mix_pool_bytes(r, &rv, sizeof(rv));
1795 }
1796 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1797}
1798
1799/*
1800 * Note that setup_arch() may call add_device_randomness()
1801 * long before we get here. This allows seeding of the pools
1802 * with some platform dependent data very early in the boot
1803 * process. But it limits our options here. We must use
1804 * statically allocated structures that already have all
1805 * initializations complete at compile time. We should also
1806 * take care not to overwrite the precious per platform data
1807 * we were given.
1808 */
1809static int rand_initialize(void)
1810{
1811 init_std_data(&input_pool);
1812 init_std_data(&blocking_pool);
1813 crng_initialize(&primary_crng);
1814 crng_global_init_time = jiffies;
1815 if (ratelimit_disable) {
1816 urandom_warning.interval = 0;
1817 unseeded_warning.interval = 0;
1818 }
1819 return 0;
1820}
1821early_initcall(rand_initialize);
1822
1823#ifdef CONFIG_BLOCK
1824void rand_initialize_disk(struct gendisk *disk)
1825{
1826 struct timer_rand_state *state;
1827
1828 /*
1829 * If kzalloc returns null, we just won't use that entropy
1830 * source.
1831 */
1832 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1833 if (state) {
1834 state->last_time = INITIAL_JIFFIES;
1835 disk->random = state;
1836 }
1837}
1838#endif
1839
1840static ssize_t
1841_random_read(int nonblock, char __user *buf, size_t nbytes)
1842{
1843 ssize_t n;
1844
1845 if (nbytes == 0)
1846 return 0;
1847
1848 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1849 while (1) {
1850 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1851 if (n < 0)
1852 return n;
1853 trace_random_read(n*8, (nbytes-n)*8,
1854 ENTROPY_BITS(&blocking_pool),
1855 ENTROPY_BITS(&input_pool));
1856 if (n > 0)
1857 return n;
1858
1859 /* Pool is (near) empty. Maybe wait and retry. */
1860 if (nonblock)
1861 return -EAGAIN;
1862
1863 wait_event_interruptible(random_read_wait,
1864 ENTROPY_BITS(&input_pool) >=
1865 random_read_wakeup_bits);
1866 if (signal_pending(current))
1867 return -ERESTARTSYS;
1868 }
1869}
1870
1871static ssize_t
1872random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1873{
1874 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1875}
1876
1877static ssize_t
1878urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1879{
1880 unsigned long flags;
1881 static int maxwarn = 10;
1882 int ret;
1883
1884 if (!crng_ready() && maxwarn > 0) {
1885 maxwarn--;
1886 if (__ratelimit(&urandom_warning))
1887 printk(KERN_NOTICE "random: %s: uninitialized "
1888 "urandom read (%zd bytes read)\n",
1889 current->comm, nbytes);
1890 spin_lock_irqsave(&primary_crng.lock, flags);
1891 crng_init_cnt = 0;
1892 spin_unlock_irqrestore(&primary_crng.lock, flags);
1893 }
1894 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1895 ret = extract_crng_user(buf, nbytes);
1896 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1897 return ret;
1898}
1899
1900static __poll_t
1901random_poll(struct file *file, poll_table * wait)
1902{
1903 __poll_t mask;
1904
1905 poll_wait(file, &random_read_wait, wait);
1906 poll_wait(file, &random_write_wait, wait);
1907 mask = 0;
1908 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1909 mask |= EPOLLIN | EPOLLRDNORM;
1910 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1911 mask |= EPOLLOUT | EPOLLWRNORM;
1912 return mask;
1913}
1914
1915static int
1916write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1917{
1918 size_t bytes;
1919 __u32 t, buf[16];
1920 const char __user *p = buffer;
1921
1922 while (count > 0) {
1923 int b, i = 0;
1924
1925 bytes = min(count, sizeof(buf));
1926 if (copy_from_user(&buf, p, bytes))
1927 return -EFAULT;
1928
1929 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1930 if (!arch_get_random_int(&t))
1931 break;
1932 buf[i] ^= t;
1933 }
1934
1935 count -= bytes;
1936 p += bytes;
1937
1938 mix_pool_bytes(r, buf, bytes);
1939 cond_resched();
1940 }
1941
1942 return 0;
1943}
1944
1945static ssize_t random_write(struct file *file, const char __user *buffer,
1946 size_t count, loff_t *ppos)
1947{
1948 size_t ret;
1949
1950 ret = write_pool(&input_pool, buffer, count);
1951 if (ret)
1952 return ret;
1953
1954 return (ssize_t)count;
1955}
1956
1957static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1958{
1959 int size, ent_count;
1960 int __user *p = (int __user *)arg;
1961 int retval;
1962
1963 switch (cmd) {
1964 case RNDGETENTCNT:
1965 /* inherently racy, no point locking */
1966 ent_count = ENTROPY_BITS(&input_pool);
1967 if (put_user(ent_count, p))
1968 return -EFAULT;
1969 return 0;
1970 case RNDADDTOENTCNT:
1971 if (!capable(CAP_SYS_ADMIN))
1972 return -EPERM;
1973 if (get_user(ent_count, p))
1974 return -EFAULT;
1975 return credit_entropy_bits_safe(&input_pool, ent_count);
1976 case RNDADDENTROPY:
1977 if (!capable(CAP_SYS_ADMIN))
1978 return -EPERM;
1979 if (get_user(ent_count, p++))
1980 return -EFAULT;
1981 if (ent_count < 0)
1982 return -EINVAL;
1983 if (get_user(size, p++))
1984 return -EFAULT;
1985 retval = write_pool(&input_pool, (const char __user *)p,
1986 size);
1987 if (retval < 0)
1988 return retval;
1989 return credit_entropy_bits_safe(&input_pool, ent_count);
1990 case RNDZAPENTCNT:
1991 case RNDCLEARPOOL:
1992 /*
1993 * Clear the entropy pool counters. We no longer clear
1994 * the entropy pool, as that's silly.
1995 */
1996 if (!capable(CAP_SYS_ADMIN))
1997 return -EPERM;
1998 input_pool.entropy_count = 0;
1999 blocking_pool.entropy_count = 0;
2000 return 0;
2001 case RNDRESEEDCRNG:
2002 if (!capable(CAP_SYS_ADMIN))
2003 return -EPERM;
2004 if (crng_init < 2)
2005 return -ENODATA;
2006 crng_reseed(&primary_crng, NULL);
2007 crng_global_init_time = jiffies - 1;
2008 return 0;
2009 default:
2010 return -EINVAL;
2011 }
2012}
2013
2014static int random_fasync(int fd, struct file *filp, int on)
2015{
2016 return fasync_helper(fd, filp, on, &fasync);
2017}
2018
2019const struct file_operations random_fops = {
2020 .read = random_read,
2021 .write = random_write,
2022 .poll = random_poll,
2023 .unlocked_ioctl = random_ioctl,
2024 .fasync = random_fasync,
2025 .llseek = noop_llseek,
2026};
2027
2028const struct file_operations urandom_fops = {
2029 .read = urandom_read,
2030 .write = random_write,
2031 .unlocked_ioctl = random_ioctl,
2032 .fasync = random_fasync,
2033 .llseek = noop_llseek,
2034};
2035
2036SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2037 unsigned int, flags)
2038{
2039 int ret;
2040
2041 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2042 return -EINVAL;
2043
2044 if (count > INT_MAX)
2045 count = INT_MAX;
2046
2047 if (flags & GRND_RANDOM)
2048 return _random_read(flags & GRND_NONBLOCK, buf, count);
2049
2050 if (!crng_ready()) {
2051 if (flags & GRND_NONBLOCK)
2052 return -EAGAIN;
2053 ret = wait_for_random_bytes();
2054 if (unlikely(ret))
2055 return ret;
2056 }
2057 return urandom_read(NULL, buf, count, NULL);
2058}
2059
2060/********************************************************************
2061 *
2062 * Sysctl interface
2063 *
2064 ********************************************************************/
2065
2066#ifdef CONFIG_SYSCTL
2067
2068#include <linux/sysctl.h>
2069
2070static int min_read_thresh = 8, min_write_thresh;
2071static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2072static int max_write_thresh = INPUT_POOL_WORDS * 32;
2073static int random_min_urandom_seed = 60;
2074static char sysctl_bootid[16];
2075
2076/*
2077 * This function is used to return both the bootid UUID, and random
2078 * UUID. The difference is in whether table->data is NULL; if it is,
2079 * then a new UUID is generated and returned to the user.
2080 *
2081 * If the user accesses this via the proc interface, the UUID will be
2082 * returned as an ASCII string in the standard UUID format; if via the
2083 * sysctl system call, as 16 bytes of binary data.
2084 */
2085static int proc_do_uuid(struct ctl_table *table, int write,
2086 void __user *buffer, size_t *lenp, loff_t *ppos)
2087{
2088 struct ctl_table fake_table;
2089 unsigned char buf[64], tmp_uuid[16], *uuid;
2090
2091 uuid = table->data;
2092 if (!uuid) {
2093 uuid = tmp_uuid;
2094 generate_random_uuid(uuid);
2095 } else {
2096 static DEFINE_SPINLOCK(bootid_spinlock);
2097
2098 spin_lock(&bootid_spinlock);
2099 if (!uuid[8])
2100 generate_random_uuid(uuid);
2101 spin_unlock(&bootid_spinlock);
2102 }
2103
2104 sprintf(buf, "%pU", uuid);
2105
2106 fake_table.data = buf;
2107 fake_table.maxlen = sizeof(buf);
2108
2109 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2110}
2111
2112/*
2113 * Return entropy available scaled to integral bits
2114 */
2115static int proc_do_entropy(struct ctl_table *table, int write,
2116 void __user *buffer, size_t *lenp, loff_t *ppos)
2117{
2118 struct ctl_table fake_table;
2119 int entropy_count;
2120
2121 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2122
2123 fake_table.data = &entropy_count;
2124 fake_table.maxlen = sizeof(entropy_count);
2125
2126 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2127}
2128
2129static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2130extern struct ctl_table random_table[];
2131struct ctl_table random_table[] = {
2132 {
2133 .procname = "poolsize",
2134 .data = &sysctl_poolsize,
2135 .maxlen = sizeof(int),
2136 .mode = 0444,
2137 .proc_handler = proc_dointvec,
2138 },
2139 {
2140 .procname = "entropy_avail",
2141 .maxlen = sizeof(int),
2142 .mode = 0444,
2143 .proc_handler = proc_do_entropy,
2144 .data = &input_pool.entropy_count,
2145 },
2146 {
2147 .procname = "read_wakeup_threshold",
2148 .data = &random_read_wakeup_bits,
2149 .maxlen = sizeof(int),
2150 .mode = 0644,
2151 .proc_handler = proc_dointvec_minmax,
2152 .extra1 = &min_read_thresh,
2153 .extra2 = &max_read_thresh,
2154 },
2155 {
2156 .procname = "write_wakeup_threshold",
2157 .data = &random_write_wakeup_bits,
2158 .maxlen = sizeof(int),
2159 .mode = 0644,
2160 .proc_handler = proc_dointvec_minmax,
2161 .extra1 = &min_write_thresh,
2162 .extra2 = &max_write_thresh,
2163 },
2164 {
2165 .procname = "urandom_min_reseed_secs",
2166 .data = &random_min_urandom_seed,
2167 .maxlen = sizeof(int),
2168 .mode = 0644,
2169 .proc_handler = proc_dointvec,
2170 },
2171 {
2172 .procname = "boot_id",
2173 .data = &sysctl_bootid,
2174 .maxlen = 16,
2175 .mode = 0444,
2176 .proc_handler = proc_do_uuid,
2177 },
2178 {
2179 .procname = "uuid",
2180 .maxlen = 16,
2181 .mode = 0444,
2182 .proc_handler = proc_do_uuid,
2183 },
2184#ifdef ADD_INTERRUPT_BENCH
2185 {
2186 .procname = "add_interrupt_avg_cycles",
2187 .data = &avg_cycles,
2188 .maxlen = sizeof(avg_cycles),
2189 .mode = 0444,
2190 .proc_handler = proc_doulongvec_minmax,
2191 },
2192 {
2193 .procname = "add_interrupt_avg_deviation",
2194 .data = &avg_deviation,
2195 .maxlen = sizeof(avg_deviation),
2196 .mode = 0444,
2197 .proc_handler = proc_doulongvec_minmax,
2198 },
2199#endif
2200 { }
2201};
2202#endif /* CONFIG_SYSCTL */
2203
2204struct batched_entropy {
2205 union {
2206 u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2207 u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
2208 };
2209 unsigned int position;
2210};
2211static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
2212
2213/*
2214 * Get a random word for internal kernel use only. The quality of the random
2215 * number is either as good as RDRAND or as good as /dev/urandom, with the
2216 * goal of being quite fast and not depleting entropy. In order to ensure
2217 * that the randomness provided by this function is okay, the function
2218 * wait_for_random_bytes() should be called and return 0 at least once
2219 * at any point prior.
2220 */
2221static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2222u64 get_random_u64(void)
2223{
2224 u64 ret;
2225 bool use_lock;
2226 unsigned long flags = 0;
2227 struct batched_entropy *batch;
2228 static void *previous;
2229
2230#if BITS_PER_LONG == 64
2231 if (arch_get_random_long((unsigned long *)&ret))
2232 return ret;
2233#else
2234 if (arch_get_random_long((unsigned long *)&ret) &&
2235 arch_get_random_long((unsigned long *)&ret + 1))
2236 return ret;
2237#endif
2238
2239 warn_unseeded_randomness(&previous);
2240
2241 use_lock = READ_ONCE(crng_init) < 2;
2242 batch = &get_cpu_var(batched_entropy_u64);
2243 if (use_lock)
2244 read_lock_irqsave(&batched_entropy_reset_lock, flags);
2245 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2246 extract_crng((__u32 *)batch->entropy_u64);
2247 batch->position = 0;
2248 }
2249 ret = batch->entropy_u64[batch->position++];
2250 if (use_lock)
2251 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2252 put_cpu_var(batched_entropy_u64);
2253 return ret;
2254}
2255EXPORT_SYMBOL(get_random_u64);
2256
2257static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2258u32 get_random_u32(void)
2259{
2260 u32 ret;
2261 bool use_lock;
2262 unsigned long flags = 0;
2263 struct batched_entropy *batch;
2264 static void *previous;
2265
2266 if (arch_get_random_int(&ret))
2267 return ret;
2268
2269 warn_unseeded_randomness(&previous);
2270
2271 use_lock = READ_ONCE(crng_init) < 2;
2272 batch = &get_cpu_var(batched_entropy_u32);
2273 if (use_lock)
2274 read_lock_irqsave(&batched_entropy_reset_lock, flags);
2275 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2276 extract_crng(batch->entropy_u32);
2277 batch->position = 0;
2278 }
2279 ret = batch->entropy_u32[batch->position++];
2280 if (use_lock)
2281 read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2282 put_cpu_var(batched_entropy_u32);
2283 return ret;
2284}
2285EXPORT_SYMBOL(get_random_u32);
2286
2287/* It's important to invalidate all potential batched entropy that might
2288 * be stored before the crng is initialized, which we can do lazily by
2289 * simply resetting the counter to zero so that it's re-extracted on the
2290 * next usage. */
2291static void invalidate_batched_entropy(void)
2292{
2293 int cpu;
2294 unsigned long flags;
2295
2296 write_lock_irqsave(&batched_entropy_reset_lock, flags);
2297 for_each_possible_cpu (cpu) {
2298 per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
2299 per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
2300 }
2301 write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2302}
2303
2304/**
2305 * randomize_page - Generate a random, page aligned address
2306 * @start: The smallest acceptable address the caller will take.
2307 * @range: The size of the area, starting at @start, within which the
2308 * random address must fall.
2309 *
2310 * If @start + @range would overflow, @range is capped.
2311 *
2312 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2313 * @start was already page aligned. We now align it regardless.
2314 *
2315 * Return: A page aligned address within [start, start + range). On error,
2316 * @start is returned.
2317 */
2318unsigned long
2319randomize_page(unsigned long start, unsigned long range)
2320{
2321 if (!PAGE_ALIGNED(start)) {
2322 range -= PAGE_ALIGN(start) - start;
2323 start = PAGE_ALIGN(start);
2324 }
2325
2326 if (start > ULONG_MAX - range)
2327 range = ULONG_MAX - start;
2328
2329 range >>= PAGE_SHIFT;
2330
2331 if (range == 0)
2332 return start;
2333
2334 return start + (get_random_long() % range << PAGE_SHIFT);
2335}
2336
2337/* Interface for in-kernel drivers of true hardware RNGs.
2338 * Those devices may produce endless random bits and will be throttled
2339 * when our pool is full.
2340 */
2341void add_hwgenerator_randomness(const char *buffer, size_t count,
2342 size_t entropy)
2343{
2344 struct entropy_store *poolp = &input_pool;
2345
2346 if (unlikely(crng_init == 0)) {
2347 crng_fast_load(buffer, count);
2348 return;
2349 }
2350
2351 /* Suspend writing if we're above the trickle threshold.
2352 * We'll be woken up again once below random_write_wakeup_thresh,
2353 * or when the calling thread is about to terminate.
2354 */
2355 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2356 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2357 mix_pool_bytes(poolp, buffer, count);
2358 credit_entropy_bits(poolp, entropy);
2359}
2360EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);