Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35/*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41#include <linux/module.h>
42#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/mm.h>
45#include <linux/interrupt.h>
46#include <linux/in.h>
47#include <linux/inet.h>
48#include <linux/slab.h>
49#include <linux/tcp.h>
50#include <linux/udp.h>
51#include <linux/sctp.h>
52#include <linux/netdevice.h>
53#ifdef CONFIG_NET_CLS_ACT
54#include <net/pkt_sched.h>
55#endif
56#include <linux/string.h>
57#include <linux/skbuff.h>
58#include <linux/splice.h>
59#include <linux/cache.h>
60#include <linux/rtnetlink.h>
61#include <linux/init.h>
62#include <linux/scatterlist.h>
63#include <linux/errqueue.h>
64#include <linux/prefetch.h>
65#include <linux/if_vlan.h>
66
67#include <net/protocol.h>
68#include <net/dst.h>
69#include <net/sock.h>
70#include <net/checksum.h>
71#include <net/ip6_checksum.h>
72#include <net/xfrm.h>
73
74#include <linux/uaccess.h>
75#include <trace/events/skb.h>
76#include <linux/highmem.h>
77#include <linux/capability.h>
78#include <linux/user_namespace.h>
79
80struct kmem_cache *skbuff_head_cache __ro_after_init;
81static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83EXPORT_SYMBOL(sysctl_max_skb_frags);
84
85/**
86 * skb_panic - private function for out-of-line support
87 * @skb: buffer
88 * @sz: size
89 * @addr: address
90 * @msg: skb_over_panic or skb_under_panic
91 *
92 * Out-of-line support for skb_put() and skb_push().
93 * Called via the wrapper skb_over_panic() or skb_under_panic().
94 * Keep out of line to prevent kernel bloat.
95 * __builtin_return_address is not used because it is not always reliable.
96 */
97static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 const char msg[])
99{
100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 msg, addr, skb->len, sz, skb->head, skb->data,
102 (unsigned long)skb->tail, (unsigned long)skb->end,
103 skb->dev ? skb->dev->name : "<NULL>");
104 BUG();
105}
106
107static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108{
109 skb_panic(skb, sz, addr, __func__);
110}
111
112static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113{
114 skb_panic(skb, sz, addr, __func__);
115}
116
117/*
118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119 * the caller if emergency pfmemalloc reserves are being used. If it is and
120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121 * may be used. Otherwise, the packet data may be discarded until enough
122 * memory is free
123 */
124#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126
127static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 unsigned long ip, bool *pfmemalloc)
129{
130 void *obj;
131 bool ret_pfmemalloc = false;
132
133 /*
134 * Try a regular allocation, when that fails and we're not entitled
135 * to the reserves, fail.
136 */
137 obj = kmalloc_node_track_caller(size,
138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 node);
140 if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 goto out;
142
143 /* Try again but now we are using pfmemalloc reserves */
144 ret_pfmemalloc = true;
145 obj = kmalloc_node_track_caller(size, flags, node);
146
147out:
148 if (pfmemalloc)
149 *pfmemalloc = ret_pfmemalloc;
150
151 return obj;
152}
153
154/* Allocate a new skbuff. We do this ourselves so we can fill in a few
155 * 'private' fields and also do memory statistics to find all the
156 * [BEEP] leaks.
157 *
158 */
159
160/**
161 * __alloc_skb - allocate a network buffer
162 * @size: size to allocate
163 * @gfp_mask: allocation mask
164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165 * instead of head cache and allocate a cloned (child) skb.
166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167 * allocations in case the data is required for writeback
168 * @node: numa node to allocate memory on
169 *
170 * Allocate a new &sk_buff. The returned buffer has no headroom and a
171 * tail room of at least size bytes. The object has a reference count
172 * of one. The return is the buffer. On a failure the return is %NULL.
173 *
174 * Buffers may only be allocated from interrupts using a @gfp_mask of
175 * %GFP_ATOMIC.
176 */
177struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 int flags, int node)
179{
180 struct kmem_cache *cache;
181 struct skb_shared_info *shinfo;
182 struct sk_buff *skb;
183 u8 *data;
184 bool pfmemalloc;
185
186 cache = (flags & SKB_ALLOC_FCLONE)
187 ? skbuff_fclone_cache : skbuff_head_cache;
188
189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 gfp_mask |= __GFP_MEMALLOC;
191
192 /* Get the HEAD */
193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 if (!skb)
195 goto out;
196 prefetchw(skb);
197
198 /* We do our best to align skb_shared_info on a separate cache
199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 * Both skb->head and skb_shared_info are cache line aligned.
202 */
203 size = SKB_DATA_ALIGN(size);
204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 if (!data)
207 goto nodata;
208 /* kmalloc(size) might give us more room than requested.
209 * Put skb_shared_info exactly at the end of allocated zone,
210 * to allow max possible filling before reallocation.
211 */
212 size = SKB_WITH_OVERHEAD(ksize(data));
213 prefetchw(data + size);
214
215 /*
216 * Only clear those fields we need to clear, not those that we will
217 * actually initialise below. Hence, don't put any more fields after
218 * the tail pointer in struct sk_buff!
219 */
220 memset(skb, 0, offsetof(struct sk_buff, tail));
221 /* Account for allocated memory : skb + skb->head */
222 skb->truesize = SKB_TRUESIZE(size);
223 skb->pfmemalloc = pfmemalloc;
224 refcount_set(&skb->users, 1);
225 skb->head = data;
226 skb->data = data;
227 skb_reset_tail_pointer(skb);
228 skb->end = skb->tail + size;
229 skb->mac_header = (typeof(skb->mac_header))~0U;
230 skb->transport_header = (typeof(skb->transport_header))~0U;
231
232 /* make sure we initialize shinfo sequentially */
233 shinfo = skb_shinfo(skb);
234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 atomic_set(&shinfo->dataref, 1);
236
237 if (flags & SKB_ALLOC_FCLONE) {
238 struct sk_buff_fclones *fclones;
239
240 fclones = container_of(skb, struct sk_buff_fclones, skb1);
241
242 skb->fclone = SKB_FCLONE_ORIG;
243 refcount_set(&fclones->fclone_ref, 1);
244
245 fclones->skb2.fclone = SKB_FCLONE_CLONE;
246 }
247out:
248 return skb;
249nodata:
250 kmem_cache_free(cache, skb);
251 skb = NULL;
252 goto out;
253}
254EXPORT_SYMBOL(__alloc_skb);
255
256/**
257 * __build_skb - build a network buffer
258 * @data: data buffer provided by caller
259 * @frag_size: size of data, or 0 if head was kmalloced
260 *
261 * Allocate a new &sk_buff. Caller provides space holding head and
262 * skb_shared_info. @data must have been allocated by kmalloc() only if
263 * @frag_size is 0, otherwise data should come from the page allocator
264 * or vmalloc()
265 * The return is the new skb buffer.
266 * On a failure the return is %NULL, and @data is not freed.
267 * Notes :
268 * Before IO, driver allocates only data buffer where NIC put incoming frame
269 * Driver should add room at head (NET_SKB_PAD) and
270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
272 * before giving packet to stack.
273 * RX rings only contains data buffers, not full skbs.
274 */
275struct sk_buff *__build_skb(void *data, unsigned int frag_size)
276{
277 struct skb_shared_info *shinfo;
278 struct sk_buff *skb;
279 unsigned int size = frag_size ? : ksize(data);
280
281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 if (!skb)
283 return NULL;
284
285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
286
287 memset(skb, 0, offsetof(struct sk_buff, tail));
288 skb->truesize = SKB_TRUESIZE(size);
289 refcount_set(&skb->users, 1);
290 skb->head = data;
291 skb->data = data;
292 skb_reset_tail_pointer(skb);
293 skb->end = skb->tail + size;
294 skb->mac_header = (typeof(skb->mac_header))~0U;
295 skb->transport_header = (typeof(skb->transport_header))~0U;
296
297 /* make sure we initialize shinfo sequentially */
298 shinfo = skb_shinfo(skb);
299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 atomic_set(&shinfo->dataref, 1);
301
302 return skb;
303}
304
305/* build_skb() is wrapper over __build_skb(), that specifically
306 * takes care of skb->head and skb->pfmemalloc
307 * This means that if @frag_size is not zero, then @data must be backed
308 * by a page fragment, not kmalloc() or vmalloc()
309 */
310struct sk_buff *build_skb(void *data, unsigned int frag_size)
311{
312 struct sk_buff *skb = __build_skb(data, frag_size);
313
314 if (skb && frag_size) {
315 skb->head_frag = 1;
316 if (page_is_pfmemalloc(virt_to_head_page(data)))
317 skb->pfmemalloc = 1;
318 }
319 return skb;
320}
321EXPORT_SYMBOL(build_skb);
322
323#define NAPI_SKB_CACHE_SIZE 64
324
325struct napi_alloc_cache {
326 struct page_frag_cache page;
327 unsigned int skb_count;
328 void *skb_cache[NAPI_SKB_CACHE_SIZE];
329};
330
331static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
333
334static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
335{
336 struct page_frag_cache *nc;
337 unsigned long flags;
338 void *data;
339
340 local_irq_save(flags);
341 nc = this_cpu_ptr(&netdev_alloc_cache);
342 data = page_frag_alloc(nc, fragsz, gfp_mask);
343 local_irq_restore(flags);
344 return data;
345}
346
347/**
348 * netdev_alloc_frag - allocate a page fragment
349 * @fragsz: fragment size
350 *
351 * Allocates a frag from a page for receive buffer.
352 * Uses GFP_ATOMIC allocations.
353 */
354void *netdev_alloc_frag(unsigned int fragsz)
355{
356 return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
357}
358EXPORT_SYMBOL(netdev_alloc_frag);
359
360static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
361{
362 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
363
364 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
365}
366
367void *napi_alloc_frag(unsigned int fragsz)
368{
369 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
370}
371EXPORT_SYMBOL(napi_alloc_frag);
372
373/**
374 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
375 * @dev: network device to receive on
376 * @len: length to allocate
377 * @gfp_mask: get_free_pages mask, passed to alloc_skb
378 *
379 * Allocate a new &sk_buff and assign it a usage count of one. The
380 * buffer has NET_SKB_PAD headroom built in. Users should allocate
381 * the headroom they think they need without accounting for the
382 * built in space. The built in space is used for optimisations.
383 *
384 * %NULL is returned if there is no free memory.
385 */
386struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 gfp_t gfp_mask)
388{
389 struct page_frag_cache *nc;
390 unsigned long flags;
391 struct sk_buff *skb;
392 bool pfmemalloc;
393 void *data;
394
395 len += NET_SKB_PAD;
396
397 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 if (!skb)
401 goto skb_fail;
402 goto skb_success;
403 }
404
405 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 len = SKB_DATA_ALIGN(len);
407
408 if (sk_memalloc_socks())
409 gfp_mask |= __GFP_MEMALLOC;
410
411 local_irq_save(flags);
412
413 nc = this_cpu_ptr(&netdev_alloc_cache);
414 data = page_frag_alloc(nc, len, gfp_mask);
415 pfmemalloc = nc->pfmemalloc;
416
417 local_irq_restore(flags);
418
419 if (unlikely(!data))
420 return NULL;
421
422 skb = __build_skb(data, len);
423 if (unlikely(!skb)) {
424 skb_free_frag(data);
425 return NULL;
426 }
427
428 /* use OR instead of assignment to avoid clearing of bits in mask */
429 if (pfmemalloc)
430 skb->pfmemalloc = 1;
431 skb->head_frag = 1;
432
433skb_success:
434 skb_reserve(skb, NET_SKB_PAD);
435 skb->dev = dev;
436
437skb_fail:
438 return skb;
439}
440EXPORT_SYMBOL(__netdev_alloc_skb);
441
442/**
443 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444 * @napi: napi instance this buffer was allocated for
445 * @len: length to allocate
446 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
447 *
448 * Allocate a new sk_buff for use in NAPI receive. This buffer will
449 * attempt to allocate the head from a special reserved region used
450 * only for NAPI Rx allocation. By doing this we can save several
451 * CPU cycles by avoiding having to disable and re-enable IRQs.
452 *
453 * %NULL is returned if there is no free memory.
454 */
455struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 gfp_t gfp_mask)
457{
458 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 struct sk_buff *skb;
460 void *data;
461
462 len += NET_SKB_PAD + NET_IP_ALIGN;
463
464 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 if (!skb)
468 goto skb_fail;
469 goto skb_success;
470 }
471
472 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 len = SKB_DATA_ALIGN(len);
474
475 if (sk_memalloc_socks())
476 gfp_mask |= __GFP_MEMALLOC;
477
478 data = page_frag_alloc(&nc->page, len, gfp_mask);
479 if (unlikely(!data))
480 return NULL;
481
482 skb = __build_skb(data, len);
483 if (unlikely(!skb)) {
484 skb_free_frag(data);
485 return NULL;
486 }
487
488 /* use OR instead of assignment to avoid clearing of bits in mask */
489 if (nc->page.pfmemalloc)
490 skb->pfmemalloc = 1;
491 skb->head_frag = 1;
492
493skb_success:
494 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 skb->dev = napi->dev;
496
497skb_fail:
498 return skb;
499}
500EXPORT_SYMBOL(__napi_alloc_skb);
501
502void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 int size, unsigned int truesize)
504{
505 skb_fill_page_desc(skb, i, page, off, size);
506 skb->len += size;
507 skb->data_len += size;
508 skb->truesize += truesize;
509}
510EXPORT_SYMBOL(skb_add_rx_frag);
511
512void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 unsigned int truesize)
514{
515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
516
517 skb_frag_size_add(frag, size);
518 skb->len += size;
519 skb->data_len += size;
520 skb->truesize += truesize;
521}
522EXPORT_SYMBOL(skb_coalesce_rx_frag);
523
524static void skb_drop_list(struct sk_buff **listp)
525{
526 kfree_skb_list(*listp);
527 *listp = NULL;
528}
529
530static inline void skb_drop_fraglist(struct sk_buff *skb)
531{
532 skb_drop_list(&skb_shinfo(skb)->frag_list);
533}
534
535static void skb_clone_fraglist(struct sk_buff *skb)
536{
537 struct sk_buff *list;
538
539 skb_walk_frags(skb, list)
540 skb_get(list);
541}
542
543static void skb_free_head(struct sk_buff *skb)
544{
545 unsigned char *head = skb->head;
546
547 if (skb->head_frag)
548 skb_free_frag(head);
549 else
550 kfree(head);
551}
552
553static void skb_release_data(struct sk_buff *skb)
554{
555 struct skb_shared_info *shinfo = skb_shinfo(skb);
556 int i;
557
558 if (skb->cloned &&
559 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 &shinfo->dataref))
561 return;
562
563 for (i = 0; i < shinfo->nr_frags; i++)
564 __skb_frag_unref(&shinfo->frags[i]);
565
566 if (shinfo->frag_list)
567 kfree_skb_list(shinfo->frag_list);
568
569 skb_zcopy_clear(skb, true);
570 skb_free_head(skb);
571}
572
573/*
574 * Free an skbuff by memory without cleaning the state.
575 */
576static void kfree_skbmem(struct sk_buff *skb)
577{
578 struct sk_buff_fclones *fclones;
579
580 switch (skb->fclone) {
581 case SKB_FCLONE_UNAVAILABLE:
582 kmem_cache_free(skbuff_head_cache, skb);
583 return;
584
585 case SKB_FCLONE_ORIG:
586 fclones = container_of(skb, struct sk_buff_fclones, skb1);
587
588 /* We usually free the clone (TX completion) before original skb
589 * This test would have no chance to be true for the clone,
590 * while here, branch prediction will be good.
591 */
592 if (refcount_read(&fclones->fclone_ref) == 1)
593 goto fastpath;
594 break;
595
596 default: /* SKB_FCLONE_CLONE */
597 fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 break;
599 }
600 if (!refcount_dec_and_test(&fclones->fclone_ref))
601 return;
602fastpath:
603 kmem_cache_free(skbuff_fclone_cache, fclones);
604}
605
606void skb_release_head_state(struct sk_buff *skb)
607{
608 skb_dst_drop(skb);
609 secpath_reset(skb);
610 if (skb->destructor) {
611 WARN_ON(in_irq());
612 skb->destructor(skb);
613 }
614#if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 nf_conntrack_put(skb_nfct(skb));
616#endif
617#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 nf_bridge_put(skb->nf_bridge);
619#endif
620}
621
622/* Free everything but the sk_buff shell. */
623static void skb_release_all(struct sk_buff *skb)
624{
625 skb_release_head_state(skb);
626 if (likely(skb->head))
627 skb_release_data(skb);
628}
629
630/**
631 * __kfree_skb - private function
632 * @skb: buffer
633 *
634 * Free an sk_buff. Release anything attached to the buffer.
635 * Clean the state. This is an internal helper function. Users should
636 * always call kfree_skb
637 */
638
639void __kfree_skb(struct sk_buff *skb)
640{
641 skb_release_all(skb);
642 kfree_skbmem(skb);
643}
644EXPORT_SYMBOL(__kfree_skb);
645
646/**
647 * kfree_skb - free an sk_buff
648 * @skb: buffer to free
649 *
650 * Drop a reference to the buffer and free it if the usage count has
651 * hit zero.
652 */
653void kfree_skb(struct sk_buff *skb)
654{
655 if (!skb_unref(skb))
656 return;
657
658 trace_kfree_skb(skb, __builtin_return_address(0));
659 __kfree_skb(skb);
660}
661EXPORT_SYMBOL(kfree_skb);
662
663void kfree_skb_list(struct sk_buff *segs)
664{
665 while (segs) {
666 struct sk_buff *next = segs->next;
667
668 kfree_skb(segs);
669 segs = next;
670 }
671}
672EXPORT_SYMBOL(kfree_skb_list);
673
674/**
675 * skb_tx_error - report an sk_buff xmit error
676 * @skb: buffer that triggered an error
677 *
678 * Report xmit error if a device callback is tracking this skb.
679 * skb must be freed afterwards.
680 */
681void skb_tx_error(struct sk_buff *skb)
682{
683 skb_zcopy_clear(skb, true);
684}
685EXPORT_SYMBOL(skb_tx_error);
686
687/**
688 * consume_skb - free an skbuff
689 * @skb: buffer to free
690 *
691 * Drop a ref to the buffer and free it if the usage count has hit zero
692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
693 * is being dropped after a failure and notes that
694 */
695void consume_skb(struct sk_buff *skb)
696{
697 if (!skb_unref(skb))
698 return;
699
700 trace_consume_skb(skb);
701 __kfree_skb(skb);
702}
703EXPORT_SYMBOL(consume_skb);
704
705/**
706 * consume_stateless_skb - free an skbuff, assuming it is stateless
707 * @skb: buffer to free
708 *
709 * Alike consume_skb(), but this variant assumes that this is the last
710 * skb reference and all the head states have been already dropped
711 */
712void __consume_stateless_skb(struct sk_buff *skb)
713{
714 trace_consume_skb(skb);
715 skb_release_data(skb);
716 kfree_skbmem(skb);
717}
718
719void __kfree_skb_flush(void)
720{
721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
722
723 /* flush skb_cache if containing objects */
724 if (nc->skb_count) {
725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 nc->skb_cache);
727 nc->skb_count = 0;
728 }
729}
730
731static inline void _kfree_skb_defer(struct sk_buff *skb)
732{
733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
734
735 /* drop skb->head and call any destructors for packet */
736 skb_release_all(skb);
737
738 /* record skb to CPU local list */
739 nc->skb_cache[nc->skb_count++] = skb;
740
741#ifdef CONFIG_SLUB
742 /* SLUB writes into objects when freeing */
743 prefetchw(skb);
744#endif
745
746 /* flush skb_cache if it is filled */
747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 nc->skb_cache);
750 nc->skb_count = 0;
751 }
752}
753void __kfree_skb_defer(struct sk_buff *skb)
754{
755 _kfree_skb_defer(skb);
756}
757
758void napi_consume_skb(struct sk_buff *skb, int budget)
759{
760 if (unlikely(!skb))
761 return;
762
763 /* Zero budget indicate non-NAPI context called us, like netpoll */
764 if (unlikely(!budget)) {
765 dev_consume_skb_any(skb);
766 return;
767 }
768
769 if (!skb_unref(skb))
770 return;
771
772 /* if reaching here SKB is ready to free */
773 trace_consume_skb(skb);
774
775 /* if SKB is a clone, don't handle this case */
776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 __kfree_skb(skb);
778 return;
779 }
780
781 _kfree_skb_defer(skb);
782}
783EXPORT_SYMBOL(napi_consume_skb);
784
785/* Make sure a field is enclosed inside headers_start/headers_end section */
786#define CHECK_SKB_FIELD(field) \
787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
788 offsetof(struct sk_buff, headers_start)); \
789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
790 offsetof(struct sk_buff, headers_end)); \
791
792static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793{
794 new->tstamp = old->tstamp;
795 /* We do not copy old->sk */
796 new->dev = old->dev;
797 memcpy(new->cb, old->cb, sizeof(old->cb));
798 skb_dst_copy(new, old);
799#ifdef CONFIG_XFRM
800 new->sp = secpath_get(old->sp);
801#endif
802 __nf_copy(new, old, false);
803
804 /* Note : this field could be in headers_start/headers_end section
805 * It is not yet because we do not want to have a 16 bit hole
806 */
807 new->queue_mapping = old->queue_mapping;
808
809 memcpy(&new->headers_start, &old->headers_start,
810 offsetof(struct sk_buff, headers_end) -
811 offsetof(struct sk_buff, headers_start));
812 CHECK_SKB_FIELD(protocol);
813 CHECK_SKB_FIELD(csum);
814 CHECK_SKB_FIELD(hash);
815 CHECK_SKB_FIELD(priority);
816 CHECK_SKB_FIELD(skb_iif);
817 CHECK_SKB_FIELD(vlan_proto);
818 CHECK_SKB_FIELD(vlan_tci);
819 CHECK_SKB_FIELD(transport_header);
820 CHECK_SKB_FIELD(network_header);
821 CHECK_SKB_FIELD(mac_header);
822 CHECK_SKB_FIELD(inner_protocol);
823 CHECK_SKB_FIELD(inner_transport_header);
824 CHECK_SKB_FIELD(inner_network_header);
825 CHECK_SKB_FIELD(inner_mac_header);
826 CHECK_SKB_FIELD(mark);
827#ifdef CONFIG_NETWORK_SECMARK
828 CHECK_SKB_FIELD(secmark);
829#endif
830#ifdef CONFIG_NET_RX_BUSY_POLL
831 CHECK_SKB_FIELD(napi_id);
832#endif
833#ifdef CONFIG_XPS
834 CHECK_SKB_FIELD(sender_cpu);
835#endif
836#ifdef CONFIG_NET_SCHED
837 CHECK_SKB_FIELD(tc_index);
838#endif
839
840}
841
842/*
843 * You should not add any new code to this function. Add it to
844 * __copy_skb_header above instead.
845 */
846static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
847{
848#define C(x) n->x = skb->x
849
850 n->next = n->prev = NULL;
851 n->sk = NULL;
852 __copy_skb_header(n, skb);
853
854 C(len);
855 C(data_len);
856 C(mac_len);
857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 n->cloned = 1;
859 n->nohdr = 0;
860 n->peeked = 0;
861 C(pfmemalloc);
862 n->destructor = NULL;
863 C(tail);
864 C(end);
865 C(head);
866 C(head_frag);
867 C(data);
868 C(truesize);
869 refcount_set(&n->users, 1);
870
871 atomic_inc(&(skb_shinfo(skb)->dataref));
872 skb->cloned = 1;
873
874 return n;
875#undef C
876}
877
878/**
879 * skb_morph - morph one skb into another
880 * @dst: the skb to receive the contents
881 * @src: the skb to supply the contents
882 *
883 * This is identical to skb_clone except that the target skb is
884 * supplied by the user.
885 *
886 * The target skb is returned upon exit.
887 */
888struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
889{
890 skb_release_all(dst);
891 return __skb_clone(dst, src);
892}
893EXPORT_SYMBOL_GPL(skb_morph);
894
895int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
896{
897 unsigned long max_pg, num_pg, new_pg, old_pg;
898 struct user_struct *user;
899
900 if (capable(CAP_IPC_LOCK) || !size)
901 return 0;
902
903 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
904 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
905 user = mmp->user ? : current_user();
906
907 do {
908 old_pg = atomic_long_read(&user->locked_vm);
909 new_pg = old_pg + num_pg;
910 if (new_pg > max_pg)
911 return -ENOBUFS;
912 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
913 old_pg);
914
915 if (!mmp->user) {
916 mmp->user = get_uid(user);
917 mmp->num_pg = num_pg;
918 } else {
919 mmp->num_pg += num_pg;
920 }
921
922 return 0;
923}
924EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
925
926void mm_unaccount_pinned_pages(struct mmpin *mmp)
927{
928 if (mmp->user) {
929 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
930 free_uid(mmp->user);
931 }
932}
933EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
934
935struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
936{
937 struct ubuf_info *uarg;
938 struct sk_buff *skb;
939
940 WARN_ON_ONCE(!in_task());
941
942 if (!sock_flag(sk, SOCK_ZEROCOPY))
943 return NULL;
944
945 skb = sock_omalloc(sk, 0, GFP_KERNEL);
946 if (!skb)
947 return NULL;
948
949 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
950 uarg = (void *)skb->cb;
951 uarg->mmp.user = NULL;
952
953 if (mm_account_pinned_pages(&uarg->mmp, size)) {
954 kfree_skb(skb);
955 return NULL;
956 }
957
958 uarg->callback = sock_zerocopy_callback;
959 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
960 uarg->len = 1;
961 uarg->bytelen = size;
962 uarg->zerocopy = 1;
963 refcount_set(&uarg->refcnt, 1);
964 sock_hold(sk);
965
966 return uarg;
967}
968EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
969
970static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
971{
972 return container_of((void *)uarg, struct sk_buff, cb);
973}
974
975struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
976 struct ubuf_info *uarg)
977{
978 if (uarg) {
979 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
980 u32 bytelen, next;
981
982 /* realloc only when socket is locked (TCP, UDP cork),
983 * so uarg->len and sk_zckey access is serialized
984 */
985 if (!sock_owned_by_user(sk)) {
986 WARN_ON_ONCE(1);
987 return NULL;
988 }
989
990 bytelen = uarg->bytelen + size;
991 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
992 /* TCP can create new skb to attach new uarg */
993 if (sk->sk_type == SOCK_STREAM)
994 goto new_alloc;
995 return NULL;
996 }
997
998 next = (u32)atomic_read(&sk->sk_zckey);
999 if ((u32)(uarg->id + uarg->len) == next) {
1000 if (mm_account_pinned_pages(&uarg->mmp, size))
1001 return NULL;
1002 uarg->len++;
1003 uarg->bytelen = bytelen;
1004 atomic_set(&sk->sk_zckey, ++next);
1005 sock_zerocopy_get(uarg);
1006 return uarg;
1007 }
1008 }
1009
1010new_alloc:
1011 return sock_zerocopy_alloc(sk, size);
1012}
1013EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1014
1015static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1016{
1017 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1018 u32 old_lo, old_hi;
1019 u64 sum_len;
1020
1021 old_lo = serr->ee.ee_info;
1022 old_hi = serr->ee.ee_data;
1023 sum_len = old_hi - old_lo + 1ULL + len;
1024
1025 if (sum_len >= (1ULL << 32))
1026 return false;
1027
1028 if (lo != old_hi + 1)
1029 return false;
1030
1031 serr->ee.ee_data += len;
1032 return true;
1033}
1034
1035void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1036{
1037 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1038 struct sock_exterr_skb *serr;
1039 struct sock *sk = skb->sk;
1040 struct sk_buff_head *q;
1041 unsigned long flags;
1042 u32 lo, hi;
1043 u16 len;
1044
1045 mm_unaccount_pinned_pages(&uarg->mmp);
1046
1047 /* if !len, there was only 1 call, and it was aborted
1048 * so do not queue a completion notification
1049 */
1050 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1051 goto release;
1052
1053 len = uarg->len;
1054 lo = uarg->id;
1055 hi = uarg->id + len - 1;
1056
1057 serr = SKB_EXT_ERR(skb);
1058 memset(serr, 0, sizeof(*serr));
1059 serr->ee.ee_errno = 0;
1060 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1061 serr->ee.ee_data = hi;
1062 serr->ee.ee_info = lo;
1063 if (!success)
1064 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1065
1066 q = &sk->sk_error_queue;
1067 spin_lock_irqsave(&q->lock, flags);
1068 tail = skb_peek_tail(q);
1069 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1070 !skb_zerocopy_notify_extend(tail, lo, len)) {
1071 __skb_queue_tail(q, skb);
1072 skb = NULL;
1073 }
1074 spin_unlock_irqrestore(&q->lock, flags);
1075
1076 sk->sk_error_report(sk);
1077
1078release:
1079 consume_skb(skb);
1080 sock_put(sk);
1081}
1082EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1083
1084void sock_zerocopy_put(struct ubuf_info *uarg)
1085{
1086 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1087 if (uarg->callback)
1088 uarg->callback(uarg, uarg->zerocopy);
1089 else
1090 consume_skb(skb_from_uarg(uarg));
1091 }
1092}
1093EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1094
1095void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1096{
1097 if (uarg) {
1098 struct sock *sk = skb_from_uarg(uarg)->sk;
1099
1100 atomic_dec(&sk->sk_zckey);
1101 uarg->len--;
1102
1103 sock_zerocopy_put(uarg);
1104 }
1105}
1106EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1107
1108extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1109 struct iov_iter *from, size_t length);
1110
1111int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1112 struct msghdr *msg, int len,
1113 struct ubuf_info *uarg)
1114{
1115 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1116 struct iov_iter orig_iter = msg->msg_iter;
1117 int err, orig_len = skb->len;
1118
1119 /* An skb can only point to one uarg. This edge case happens when
1120 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1121 */
1122 if (orig_uarg && uarg != orig_uarg)
1123 return -EEXIST;
1124
1125 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1126 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1127 struct sock *save_sk = skb->sk;
1128
1129 /* Streams do not free skb on error. Reset to prev state. */
1130 msg->msg_iter = orig_iter;
1131 skb->sk = sk;
1132 ___pskb_trim(skb, orig_len);
1133 skb->sk = save_sk;
1134 return err;
1135 }
1136
1137 skb_zcopy_set(skb, uarg);
1138 return skb->len - orig_len;
1139}
1140EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1141
1142static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1143 gfp_t gfp_mask)
1144{
1145 if (skb_zcopy(orig)) {
1146 if (skb_zcopy(nskb)) {
1147 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1148 if (!gfp_mask) {
1149 WARN_ON_ONCE(1);
1150 return -ENOMEM;
1151 }
1152 if (skb_uarg(nskb) == skb_uarg(orig))
1153 return 0;
1154 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1155 return -EIO;
1156 }
1157 skb_zcopy_set(nskb, skb_uarg(orig));
1158 }
1159 return 0;
1160}
1161
1162/**
1163 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1164 * @skb: the skb to modify
1165 * @gfp_mask: allocation priority
1166 *
1167 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1168 * It will copy all frags into kernel and drop the reference
1169 * to userspace pages.
1170 *
1171 * If this function is called from an interrupt gfp_mask() must be
1172 * %GFP_ATOMIC.
1173 *
1174 * Returns 0 on success or a negative error code on failure
1175 * to allocate kernel memory to copy to.
1176 */
1177int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1178{
1179 int num_frags = skb_shinfo(skb)->nr_frags;
1180 struct page *page, *head = NULL;
1181 int i, new_frags;
1182 u32 d_off;
1183
1184 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1185 return -EINVAL;
1186
1187 if (!num_frags)
1188 goto release;
1189
1190 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1191 for (i = 0; i < new_frags; i++) {
1192 page = alloc_page(gfp_mask);
1193 if (!page) {
1194 while (head) {
1195 struct page *next = (struct page *)page_private(head);
1196 put_page(head);
1197 head = next;
1198 }
1199 return -ENOMEM;
1200 }
1201 set_page_private(page, (unsigned long)head);
1202 head = page;
1203 }
1204
1205 page = head;
1206 d_off = 0;
1207 for (i = 0; i < num_frags; i++) {
1208 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1209 u32 p_off, p_len, copied;
1210 struct page *p;
1211 u8 *vaddr;
1212
1213 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1214 p, p_off, p_len, copied) {
1215 u32 copy, done = 0;
1216 vaddr = kmap_atomic(p);
1217
1218 while (done < p_len) {
1219 if (d_off == PAGE_SIZE) {
1220 d_off = 0;
1221 page = (struct page *)page_private(page);
1222 }
1223 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1224 memcpy(page_address(page) + d_off,
1225 vaddr + p_off + done, copy);
1226 done += copy;
1227 d_off += copy;
1228 }
1229 kunmap_atomic(vaddr);
1230 }
1231 }
1232
1233 /* skb frags release userspace buffers */
1234 for (i = 0; i < num_frags; i++)
1235 skb_frag_unref(skb, i);
1236
1237 /* skb frags point to kernel buffers */
1238 for (i = 0; i < new_frags - 1; i++) {
1239 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1240 head = (struct page *)page_private(head);
1241 }
1242 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1243 skb_shinfo(skb)->nr_frags = new_frags;
1244
1245release:
1246 skb_zcopy_clear(skb, false);
1247 return 0;
1248}
1249EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1250
1251/**
1252 * skb_clone - duplicate an sk_buff
1253 * @skb: buffer to clone
1254 * @gfp_mask: allocation priority
1255 *
1256 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1257 * copies share the same packet data but not structure. The new
1258 * buffer has a reference count of 1. If the allocation fails the
1259 * function returns %NULL otherwise the new buffer is returned.
1260 *
1261 * If this function is called from an interrupt gfp_mask() must be
1262 * %GFP_ATOMIC.
1263 */
1264
1265struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1266{
1267 struct sk_buff_fclones *fclones = container_of(skb,
1268 struct sk_buff_fclones,
1269 skb1);
1270 struct sk_buff *n;
1271
1272 if (skb_orphan_frags(skb, gfp_mask))
1273 return NULL;
1274
1275 if (skb->fclone == SKB_FCLONE_ORIG &&
1276 refcount_read(&fclones->fclone_ref) == 1) {
1277 n = &fclones->skb2;
1278 refcount_set(&fclones->fclone_ref, 2);
1279 } else {
1280 if (skb_pfmemalloc(skb))
1281 gfp_mask |= __GFP_MEMALLOC;
1282
1283 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1284 if (!n)
1285 return NULL;
1286
1287 n->fclone = SKB_FCLONE_UNAVAILABLE;
1288 }
1289
1290 return __skb_clone(n, skb);
1291}
1292EXPORT_SYMBOL(skb_clone);
1293
1294void skb_headers_offset_update(struct sk_buff *skb, int off)
1295{
1296 /* Only adjust this if it actually is csum_start rather than csum */
1297 if (skb->ip_summed == CHECKSUM_PARTIAL)
1298 skb->csum_start += off;
1299 /* {transport,network,mac}_header and tail are relative to skb->head */
1300 skb->transport_header += off;
1301 skb->network_header += off;
1302 if (skb_mac_header_was_set(skb))
1303 skb->mac_header += off;
1304 skb->inner_transport_header += off;
1305 skb->inner_network_header += off;
1306 skb->inner_mac_header += off;
1307}
1308EXPORT_SYMBOL(skb_headers_offset_update);
1309
1310void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1311{
1312 __copy_skb_header(new, old);
1313
1314 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1315 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1316 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1317}
1318EXPORT_SYMBOL(skb_copy_header);
1319
1320static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1321{
1322 if (skb_pfmemalloc(skb))
1323 return SKB_ALLOC_RX;
1324 return 0;
1325}
1326
1327/**
1328 * skb_copy - create private copy of an sk_buff
1329 * @skb: buffer to copy
1330 * @gfp_mask: allocation priority
1331 *
1332 * Make a copy of both an &sk_buff and its data. This is used when the
1333 * caller wishes to modify the data and needs a private copy of the
1334 * data to alter. Returns %NULL on failure or the pointer to the buffer
1335 * on success. The returned buffer has a reference count of 1.
1336 *
1337 * As by-product this function converts non-linear &sk_buff to linear
1338 * one, so that &sk_buff becomes completely private and caller is allowed
1339 * to modify all the data of returned buffer. This means that this
1340 * function is not recommended for use in circumstances when only
1341 * header is going to be modified. Use pskb_copy() instead.
1342 */
1343
1344struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1345{
1346 int headerlen = skb_headroom(skb);
1347 unsigned int size = skb_end_offset(skb) + skb->data_len;
1348 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1349 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1350
1351 if (!n)
1352 return NULL;
1353
1354 /* Set the data pointer */
1355 skb_reserve(n, headerlen);
1356 /* Set the tail pointer and length */
1357 skb_put(n, skb->len);
1358
1359 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1360
1361 skb_copy_header(n, skb);
1362 return n;
1363}
1364EXPORT_SYMBOL(skb_copy);
1365
1366/**
1367 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1368 * @skb: buffer to copy
1369 * @headroom: headroom of new skb
1370 * @gfp_mask: allocation priority
1371 * @fclone: if true allocate the copy of the skb from the fclone
1372 * cache instead of the head cache; it is recommended to set this
1373 * to true for the cases where the copy will likely be cloned
1374 *
1375 * Make a copy of both an &sk_buff and part of its data, located
1376 * in header. Fragmented data remain shared. This is used when
1377 * the caller wishes to modify only header of &sk_buff and needs
1378 * private copy of the header to alter. Returns %NULL on failure
1379 * or the pointer to the buffer on success.
1380 * The returned buffer has a reference count of 1.
1381 */
1382
1383struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1384 gfp_t gfp_mask, bool fclone)
1385{
1386 unsigned int size = skb_headlen(skb) + headroom;
1387 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1388 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1389
1390 if (!n)
1391 goto out;
1392
1393 /* Set the data pointer */
1394 skb_reserve(n, headroom);
1395 /* Set the tail pointer and length */
1396 skb_put(n, skb_headlen(skb));
1397 /* Copy the bytes */
1398 skb_copy_from_linear_data(skb, n->data, n->len);
1399
1400 n->truesize += skb->data_len;
1401 n->data_len = skb->data_len;
1402 n->len = skb->len;
1403
1404 if (skb_shinfo(skb)->nr_frags) {
1405 int i;
1406
1407 if (skb_orphan_frags(skb, gfp_mask) ||
1408 skb_zerocopy_clone(n, skb, gfp_mask)) {
1409 kfree_skb(n);
1410 n = NULL;
1411 goto out;
1412 }
1413 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1414 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1415 skb_frag_ref(skb, i);
1416 }
1417 skb_shinfo(n)->nr_frags = i;
1418 }
1419
1420 if (skb_has_frag_list(skb)) {
1421 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1422 skb_clone_fraglist(n);
1423 }
1424
1425 skb_copy_header(n, skb);
1426out:
1427 return n;
1428}
1429EXPORT_SYMBOL(__pskb_copy_fclone);
1430
1431/**
1432 * pskb_expand_head - reallocate header of &sk_buff
1433 * @skb: buffer to reallocate
1434 * @nhead: room to add at head
1435 * @ntail: room to add at tail
1436 * @gfp_mask: allocation priority
1437 *
1438 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1439 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1440 * reference count of 1. Returns zero in the case of success or error,
1441 * if expansion failed. In the last case, &sk_buff is not changed.
1442 *
1443 * All the pointers pointing into skb header may change and must be
1444 * reloaded after call to this function.
1445 */
1446
1447int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1448 gfp_t gfp_mask)
1449{
1450 int i, osize = skb_end_offset(skb);
1451 int size = osize + nhead + ntail;
1452 long off;
1453 u8 *data;
1454
1455 BUG_ON(nhead < 0);
1456
1457 BUG_ON(skb_shared(skb));
1458
1459 size = SKB_DATA_ALIGN(size);
1460
1461 if (skb_pfmemalloc(skb))
1462 gfp_mask |= __GFP_MEMALLOC;
1463 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1464 gfp_mask, NUMA_NO_NODE, NULL);
1465 if (!data)
1466 goto nodata;
1467 size = SKB_WITH_OVERHEAD(ksize(data));
1468
1469 /* Copy only real data... and, alas, header. This should be
1470 * optimized for the cases when header is void.
1471 */
1472 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1473
1474 memcpy((struct skb_shared_info *)(data + size),
1475 skb_shinfo(skb),
1476 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1477
1478 /*
1479 * if shinfo is shared we must drop the old head gracefully, but if it
1480 * is not we can just drop the old head and let the existing refcount
1481 * be since all we did is relocate the values
1482 */
1483 if (skb_cloned(skb)) {
1484 if (skb_orphan_frags(skb, gfp_mask))
1485 goto nofrags;
1486 if (skb_zcopy(skb))
1487 refcount_inc(&skb_uarg(skb)->refcnt);
1488 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1489 skb_frag_ref(skb, i);
1490
1491 if (skb_has_frag_list(skb))
1492 skb_clone_fraglist(skb);
1493
1494 skb_release_data(skb);
1495 } else {
1496 skb_free_head(skb);
1497 }
1498 off = (data + nhead) - skb->head;
1499
1500 skb->head = data;
1501 skb->head_frag = 0;
1502 skb->data += off;
1503#ifdef NET_SKBUFF_DATA_USES_OFFSET
1504 skb->end = size;
1505 off = nhead;
1506#else
1507 skb->end = skb->head + size;
1508#endif
1509 skb->tail += off;
1510 skb_headers_offset_update(skb, nhead);
1511 skb->cloned = 0;
1512 skb->hdr_len = 0;
1513 skb->nohdr = 0;
1514 atomic_set(&skb_shinfo(skb)->dataref, 1);
1515
1516 skb_metadata_clear(skb);
1517
1518 /* It is not generally safe to change skb->truesize.
1519 * For the moment, we really care of rx path, or
1520 * when skb is orphaned (not attached to a socket).
1521 */
1522 if (!skb->sk || skb->destructor == sock_edemux)
1523 skb->truesize += size - osize;
1524
1525 return 0;
1526
1527nofrags:
1528 kfree(data);
1529nodata:
1530 return -ENOMEM;
1531}
1532EXPORT_SYMBOL(pskb_expand_head);
1533
1534/* Make private copy of skb with writable head and some headroom */
1535
1536struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1537{
1538 struct sk_buff *skb2;
1539 int delta = headroom - skb_headroom(skb);
1540
1541 if (delta <= 0)
1542 skb2 = pskb_copy(skb, GFP_ATOMIC);
1543 else {
1544 skb2 = skb_clone(skb, GFP_ATOMIC);
1545 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1546 GFP_ATOMIC)) {
1547 kfree_skb(skb2);
1548 skb2 = NULL;
1549 }
1550 }
1551 return skb2;
1552}
1553EXPORT_SYMBOL(skb_realloc_headroom);
1554
1555/**
1556 * skb_copy_expand - copy and expand sk_buff
1557 * @skb: buffer to copy
1558 * @newheadroom: new free bytes at head
1559 * @newtailroom: new free bytes at tail
1560 * @gfp_mask: allocation priority
1561 *
1562 * Make a copy of both an &sk_buff and its data and while doing so
1563 * allocate additional space.
1564 *
1565 * This is used when the caller wishes to modify the data and needs a
1566 * private copy of the data to alter as well as more space for new fields.
1567 * Returns %NULL on failure or the pointer to the buffer
1568 * on success. The returned buffer has a reference count of 1.
1569 *
1570 * You must pass %GFP_ATOMIC as the allocation priority if this function
1571 * is called from an interrupt.
1572 */
1573struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1574 int newheadroom, int newtailroom,
1575 gfp_t gfp_mask)
1576{
1577 /*
1578 * Allocate the copy buffer
1579 */
1580 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1581 gfp_mask, skb_alloc_rx_flag(skb),
1582 NUMA_NO_NODE);
1583 int oldheadroom = skb_headroom(skb);
1584 int head_copy_len, head_copy_off;
1585
1586 if (!n)
1587 return NULL;
1588
1589 skb_reserve(n, newheadroom);
1590
1591 /* Set the tail pointer and length */
1592 skb_put(n, skb->len);
1593
1594 head_copy_len = oldheadroom;
1595 head_copy_off = 0;
1596 if (newheadroom <= head_copy_len)
1597 head_copy_len = newheadroom;
1598 else
1599 head_copy_off = newheadroom - head_copy_len;
1600
1601 /* Copy the linear header and data. */
1602 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1603 skb->len + head_copy_len));
1604
1605 skb_copy_header(n, skb);
1606
1607 skb_headers_offset_update(n, newheadroom - oldheadroom);
1608
1609 return n;
1610}
1611EXPORT_SYMBOL(skb_copy_expand);
1612
1613/**
1614 * __skb_pad - zero pad the tail of an skb
1615 * @skb: buffer to pad
1616 * @pad: space to pad
1617 * @free_on_error: free buffer on error
1618 *
1619 * Ensure that a buffer is followed by a padding area that is zero
1620 * filled. Used by network drivers which may DMA or transfer data
1621 * beyond the buffer end onto the wire.
1622 *
1623 * May return error in out of memory cases. The skb is freed on error
1624 * if @free_on_error is true.
1625 */
1626
1627int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1628{
1629 int err;
1630 int ntail;
1631
1632 /* If the skbuff is non linear tailroom is always zero.. */
1633 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1634 memset(skb->data+skb->len, 0, pad);
1635 return 0;
1636 }
1637
1638 ntail = skb->data_len + pad - (skb->end - skb->tail);
1639 if (likely(skb_cloned(skb) || ntail > 0)) {
1640 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1641 if (unlikely(err))
1642 goto free_skb;
1643 }
1644
1645 /* FIXME: The use of this function with non-linear skb's really needs
1646 * to be audited.
1647 */
1648 err = skb_linearize(skb);
1649 if (unlikely(err))
1650 goto free_skb;
1651
1652 memset(skb->data + skb->len, 0, pad);
1653 return 0;
1654
1655free_skb:
1656 if (free_on_error)
1657 kfree_skb(skb);
1658 return err;
1659}
1660EXPORT_SYMBOL(__skb_pad);
1661
1662/**
1663 * pskb_put - add data to the tail of a potentially fragmented buffer
1664 * @skb: start of the buffer to use
1665 * @tail: tail fragment of the buffer to use
1666 * @len: amount of data to add
1667 *
1668 * This function extends the used data area of the potentially
1669 * fragmented buffer. @tail must be the last fragment of @skb -- or
1670 * @skb itself. If this would exceed the total buffer size the kernel
1671 * will panic. A pointer to the first byte of the extra data is
1672 * returned.
1673 */
1674
1675void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1676{
1677 if (tail != skb) {
1678 skb->data_len += len;
1679 skb->len += len;
1680 }
1681 return skb_put(tail, len);
1682}
1683EXPORT_SYMBOL_GPL(pskb_put);
1684
1685/**
1686 * skb_put - add data to a buffer
1687 * @skb: buffer to use
1688 * @len: amount of data to add
1689 *
1690 * This function extends the used data area of the buffer. If this would
1691 * exceed the total buffer size the kernel will panic. A pointer to the
1692 * first byte of the extra data is returned.
1693 */
1694void *skb_put(struct sk_buff *skb, unsigned int len)
1695{
1696 void *tmp = skb_tail_pointer(skb);
1697 SKB_LINEAR_ASSERT(skb);
1698 skb->tail += len;
1699 skb->len += len;
1700 if (unlikely(skb->tail > skb->end))
1701 skb_over_panic(skb, len, __builtin_return_address(0));
1702 return tmp;
1703}
1704EXPORT_SYMBOL(skb_put);
1705
1706/**
1707 * skb_push - add data to the start of a buffer
1708 * @skb: buffer to use
1709 * @len: amount of data to add
1710 *
1711 * This function extends the used data area of the buffer at the buffer
1712 * start. If this would exceed the total buffer headroom the kernel will
1713 * panic. A pointer to the first byte of the extra data is returned.
1714 */
1715void *skb_push(struct sk_buff *skb, unsigned int len)
1716{
1717 skb->data -= len;
1718 skb->len += len;
1719 if (unlikely(skb->data < skb->head))
1720 skb_under_panic(skb, len, __builtin_return_address(0));
1721 return skb->data;
1722}
1723EXPORT_SYMBOL(skb_push);
1724
1725/**
1726 * skb_pull - remove data from the start of a buffer
1727 * @skb: buffer to use
1728 * @len: amount of data to remove
1729 *
1730 * This function removes data from the start of a buffer, returning
1731 * the memory to the headroom. A pointer to the next data in the buffer
1732 * is returned. Once the data has been pulled future pushes will overwrite
1733 * the old data.
1734 */
1735void *skb_pull(struct sk_buff *skb, unsigned int len)
1736{
1737 return skb_pull_inline(skb, len);
1738}
1739EXPORT_SYMBOL(skb_pull);
1740
1741/**
1742 * skb_trim - remove end from a buffer
1743 * @skb: buffer to alter
1744 * @len: new length
1745 *
1746 * Cut the length of a buffer down by removing data from the tail. If
1747 * the buffer is already under the length specified it is not modified.
1748 * The skb must be linear.
1749 */
1750void skb_trim(struct sk_buff *skb, unsigned int len)
1751{
1752 if (skb->len > len)
1753 __skb_trim(skb, len);
1754}
1755EXPORT_SYMBOL(skb_trim);
1756
1757/* Trims skb to length len. It can change skb pointers.
1758 */
1759
1760int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1761{
1762 struct sk_buff **fragp;
1763 struct sk_buff *frag;
1764 int offset = skb_headlen(skb);
1765 int nfrags = skb_shinfo(skb)->nr_frags;
1766 int i;
1767 int err;
1768
1769 if (skb_cloned(skb) &&
1770 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1771 return err;
1772
1773 i = 0;
1774 if (offset >= len)
1775 goto drop_pages;
1776
1777 for (; i < nfrags; i++) {
1778 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1779
1780 if (end < len) {
1781 offset = end;
1782 continue;
1783 }
1784
1785 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1786
1787drop_pages:
1788 skb_shinfo(skb)->nr_frags = i;
1789
1790 for (; i < nfrags; i++)
1791 skb_frag_unref(skb, i);
1792
1793 if (skb_has_frag_list(skb))
1794 skb_drop_fraglist(skb);
1795 goto done;
1796 }
1797
1798 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1799 fragp = &frag->next) {
1800 int end = offset + frag->len;
1801
1802 if (skb_shared(frag)) {
1803 struct sk_buff *nfrag;
1804
1805 nfrag = skb_clone(frag, GFP_ATOMIC);
1806 if (unlikely(!nfrag))
1807 return -ENOMEM;
1808
1809 nfrag->next = frag->next;
1810 consume_skb(frag);
1811 frag = nfrag;
1812 *fragp = frag;
1813 }
1814
1815 if (end < len) {
1816 offset = end;
1817 continue;
1818 }
1819
1820 if (end > len &&
1821 unlikely((err = pskb_trim(frag, len - offset))))
1822 return err;
1823
1824 if (frag->next)
1825 skb_drop_list(&frag->next);
1826 break;
1827 }
1828
1829done:
1830 if (len > skb_headlen(skb)) {
1831 skb->data_len -= skb->len - len;
1832 skb->len = len;
1833 } else {
1834 skb->len = len;
1835 skb->data_len = 0;
1836 skb_set_tail_pointer(skb, len);
1837 }
1838
1839 if (!skb->sk || skb->destructor == sock_edemux)
1840 skb_condense(skb);
1841 return 0;
1842}
1843EXPORT_SYMBOL(___pskb_trim);
1844
1845/* Note : use pskb_trim_rcsum() instead of calling this directly
1846 */
1847int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1848{
1849 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1850 int delta = skb->len - len;
1851
1852 skb->csum = csum_sub(skb->csum,
1853 skb_checksum(skb, len, delta, 0));
1854 }
1855 return __pskb_trim(skb, len);
1856}
1857EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1858
1859/**
1860 * __pskb_pull_tail - advance tail of skb header
1861 * @skb: buffer to reallocate
1862 * @delta: number of bytes to advance tail
1863 *
1864 * The function makes a sense only on a fragmented &sk_buff,
1865 * it expands header moving its tail forward and copying necessary
1866 * data from fragmented part.
1867 *
1868 * &sk_buff MUST have reference count of 1.
1869 *
1870 * Returns %NULL (and &sk_buff does not change) if pull failed
1871 * or value of new tail of skb in the case of success.
1872 *
1873 * All the pointers pointing into skb header may change and must be
1874 * reloaded after call to this function.
1875 */
1876
1877/* Moves tail of skb head forward, copying data from fragmented part,
1878 * when it is necessary.
1879 * 1. It may fail due to malloc failure.
1880 * 2. It may change skb pointers.
1881 *
1882 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1883 */
1884void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1885{
1886 /* If skb has not enough free space at tail, get new one
1887 * plus 128 bytes for future expansions. If we have enough
1888 * room at tail, reallocate without expansion only if skb is cloned.
1889 */
1890 int i, k, eat = (skb->tail + delta) - skb->end;
1891
1892 if (eat > 0 || skb_cloned(skb)) {
1893 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1894 GFP_ATOMIC))
1895 return NULL;
1896 }
1897
1898 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1899 skb_tail_pointer(skb), delta));
1900
1901 /* Optimization: no fragments, no reasons to preestimate
1902 * size of pulled pages. Superb.
1903 */
1904 if (!skb_has_frag_list(skb))
1905 goto pull_pages;
1906
1907 /* Estimate size of pulled pages. */
1908 eat = delta;
1909 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1910 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1911
1912 if (size >= eat)
1913 goto pull_pages;
1914 eat -= size;
1915 }
1916
1917 /* If we need update frag list, we are in troubles.
1918 * Certainly, it is possible to add an offset to skb data,
1919 * but taking into account that pulling is expected to
1920 * be very rare operation, it is worth to fight against
1921 * further bloating skb head and crucify ourselves here instead.
1922 * Pure masohism, indeed. 8)8)
1923 */
1924 if (eat) {
1925 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1926 struct sk_buff *clone = NULL;
1927 struct sk_buff *insp = NULL;
1928
1929 do {
1930 BUG_ON(!list);
1931
1932 if (list->len <= eat) {
1933 /* Eaten as whole. */
1934 eat -= list->len;
1935 list = list->next;
1936 insp = list;
1937 } else {
1938 /* Eaten partially. */
1939
1940 if (skb_shared(list)) {
1941 /* Sucks! We need to fork list. :-( */
1942 clone = skb_clone(list, GFP_ATOMIC);
1943 if (!clone)
1944 return NULL;
1945 insp = list->next;
1946 list = clone;
1947 } else {
1948 /* This may be pulled without
1949 * problems. */
1950 insp = list;
1951 }
1952 if (!pskb_pull(list, eat)) {
1953 kfree_skb(clone);
1954 return NULL;
1955 }
1956 break;
1957 }
1958 } while (eat);
1959
1960 /* Free pulled out fragments. */
1961 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1962 skb_shinfo(skb)->frag_list = list->next;
1963 kfree_skb(list);
1964 }
1965 /* And insert new clone at head. */
1966 if (clone) {
1967 clone->next = list;
1968 skb_shinfo(skb)->frag_list = clone;
1969 }
1970 }
1971 /* Success! Now we may commit changes to skb data. */
1972
1973pull_pages:
1974 eat = delta;
1975 k = 0;
1976 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1977 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1978
1979 if (size <= eat) {
1980 skb_frag_unref(skb, i);
1981 eat -= size;
1982 } else {
1983 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1984 if (eat) {
1985 skb_shinfo(skb)->frags[k].page_offset += eat;
1986 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1987 if (!i)
1988 goto end;
1989 eat = 0;
1990 }
1991 k++;
1992 }
1993 }
1994 skb_shinfo(skb)->nr_frags = k;
1995
1996end:
1997 skb->tail += delta;
1998 skb->data_len -= delta;
1999
2000 if (!skb->data_len)
2001 skb_zcopy_clear(skb, false);
2002
2003 return skb_tail_pointer(skb);
2004}
2005EXPORT_SYMBOL(__pskb_pull_tail);
2006
2007/**
2008 * skb_copy_bits - copy bits from skb to kernel buffer
2009 * @skb: source skb
2010 * @offset: offset in source
2011 * @to: destination buffer
2012 * @len: number of bytes to copy
2013 *
2014 * Copy the specified number of bytes from the source skb to the
2015 * destination buffer.
2016 *
2017 * CAUTION ! :
2018 * If its prototype is ever changed,
2019 * check arch/{*}/net/{*}.S files,
2020 * since it is called from BPF assembly code.
2021 */
2022int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2023{
2024 int start = skb_headlen(skb);
2025 struct sk_buff *frag_iter;
2026 int i, copy;
2027
2028 if (offset > (int)skb->len - len)
2029 goto fault;
2030
2031 /* Copy header. */
2032 if ((copy = start - offset) > 0) {
2033 if (copy > len)
2034 copy = len;
2035 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2036 if ((len -= copy) == 0)
2037 return 0;
2038 offset += copy;
2039 to += copy;
2040 }
2041
2042 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2043 int end;
2044 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2045
2046 WARN_ON(start > offset + len);
2047
2048 end = start + skb_frag_size(f);
2049 if ((copy = end - offset) > 0) {
2050 u32 p_off, p_len, copied;
2051 struct page *p;
2052 u8 *vaddr;
2053
2054 if (copy > len)
2055 copy = len;
2056
2057 skb_frag_foreach_page(f,
2058 f->page_offset + offset - start,
2059 copy, p, p_off, p_len, copied) {
2060 vaddr = kmap_atomic(p);
2061 memcpy(to + copied, vaddr + p_off, p_len);
2062 kunmap_atomic(vaddr);
2063 }
2064
2065 if ((len -= copy) == 0)
2066 return 0;
2067 offset += copy;
2068 to += copy;
2069 }
2070 start = end;
2071 }
2072
2073 skb_walk_frags(skb, frag_iter) {
2074 int end;
2075
2076 WARN_ON(start > offset + len);
2077
2078 end = start + frag_iter->len;
2079 if ((copy = end - offset) > 0) {
2080 if (copy > len)
2081 copy = len;
2082 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2083 goto fault;
2084 if ((len -= copy) == 0)
2085 return 0;
2086 offset += copy;
2087 to += copy;
2088 }
2089 start = end;
2090 }
2091
2092 if (!len)
2093 return 0;
2094
2095fault:
2096 return -EFAULT;
2097}
2098EXPORT_SYMBOL(skb_copy_bits);
2099
2100/*
2101 * Callback from splice_to_pipe(), if we need to release some pages
2102 * at the end of the spd in case we error'ed out in filling the pipe.
2103 */
2104static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2105{
2106 put_page(spd->pages[i]);
2107}
2108
2109static struct page *linear_to_page(struct page *page, unsigned int *len,
2110 unsigned int *offset,
2111 struct sock *sk)
2112{
2113 struct page_frag *pfrag = sk_page_frag(sk);
2114
2115 if (!sk_page_frag_refill(sk, pfrag))
2116 return NULL;
2117
2118 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2119
2120 memcpy(page_address(pfrag->page) + pfrag->offset,
2121 page_address(page) + *offset, *len);
2122 *offset = pfrag->offset;
2123 pfrag->offset += *len;
2124
2125 return pfrag->page;
2126}
2127
2128static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2129 struct page *page,
2130 unsigned int offset)
2131{
2132 return spd->nr_pages &&
2133 spd->pages[spd->nr_pages - 1] == page &&
2134 (spd->partial[spd->nr_pages - 1].offset +
2135 spd->partial[spd->nr_pages - 1].len == offset);
2136}
2137
2138/*
2139 * Fill page/offset/length into spd, if it can hold more pages.
2140 */
2141static bool spd_fill_page(struct splice_pipe_desc *spd,
2142 struct pipe_inode_info *pipe, struct page *page,
2143 unsigned int *len, unsigned int offset,
2144 bool linear,
2145 struct sock *sk)
2146{
2147 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2148 return true;
2149
2150 if (linear) {
2151 page = linear_to_page(page, len, &offset, sk);
2152 if (!page)
2153 return true;
2154 }
2155 if (spd_can_coalesce(spd, page, offset)) {
2156 spd->partial[spd->nr_pages - 1].len += *len;
2157 return false;
2158 }
2159 get_page(page);
2160 spd->pages[spd->nr_pages] = page;
2161 spd->partial[spd->nr_pages].len = *len;
2162 spd->partial[spd->nr_pages].offset = offset;
2163 spd->nr_pages++;
2164
2165 return false;
2166}
2167
2168static bool __splice_segment(struct page *page, unsigned int poff,
2169 unsigned int plen, unsigned int *off,
2170 unsigned int *len,
2171 struct splice_pipe_desc *spd, bool linear,
2172 struct sock *sk,
2173 struct pipe_inode_info *pipe)
2174{
2175 if (!*len)
2176 return true;
2177
2178 /* skip this segment if already processed */
2179 if (*off >= plen) {
2180 *off -= plen;
2181 return false;
2182 }
2183
2184 /* ignore any bits we already processed */
2185 poff += *off;
2186 plen -= *off;
2187 *off = 0;
2188
2189 do {
2190 unsigned int flen = min(*len, plen);
2191
2192 if (spd_fill_page(spd, pipe, page, &flen, poff,
2193 linear, sk))
2194 return true;
2195 poff += flen;
2196 plen -= flen;
2197 *len -= flen;
2198 } while (*len && plen);
2199
2200 return false;
2201}
2202
2203/*
2204 * Map linear and fragment data from the skb to spd. It reports true if the
2205 * pipe is full or if we already spliced the requested length.
2206 */
2207static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2208 unsigned int *offset, unsigned int *len,
2209 struct splice_pipe_desc *spd, struct sock *sk)
2210{
2211 int seg;
2212 struct sk_buff *iter;
2213
2214 /* map the linear part :
2215 * If skb->head_frag is set, this 'linear' part is backed by a
2216 * fragment, and if the head is not shared with any clones then
2217 * we can avoid a copy since we own the head portion of this page.
2218 */
2219 if (__splice_segment(virt_to_page(skb->data),
2220 (unsigned long) skb->data & (PAGE_SIZE - 1),
2221 skb_headlen(skb),
2222 offset, len, spd,
2223 skb_head_is_locked(skb),
2224 sk, pipe))
2225 return true;
2226
2227 /*
2228 * then map the fragments
2229 */
2230 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2231 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2232
2233 if (__splice_segment(skb_frag_page(f),
2234 f->page_offset, skb_frag_size(f),
2235 offset, len, spd, false, sk, pipe))
2236 return true;
2237 }
2238
2239 skb_walk_frags(skb, iter) {
2240 if (*offset >= iter->len) {
2241 *offset -= iter->len;
2242 continue;
2243 }
2244 /* __skb_splice_bits() only fails if the output has no room
2245 * left, so no point in going over the frag_list for the error
2246 * case.
2247 */
2248 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2249 return true;
2250 }
2251
2252 return false;
2253}
2254
2255/*
2256 * Map data from the skb to a pipe. Should handle both the linear part,
2257 * the fragments, and the frag list.
2258 */
2259int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2260 struct pipe_inode_info *pipe, unsigned int tlen,
2261 unsigned int flags)
2262{
2263 struct partial_page partial[MAX_SKB_FRAGS];
2264 struct page *pages[MAX_SKB_FRAGS];
2265 struct splice_pipe_desc spd = {
2266 .pages = pages,
2267 .partial = partial,
2268 .nr_pages_max = MAX_SKB_FRAGS,
2269 .ops = &nosteal_pipe_buf_ops,
2270 .spd_release = sock_spd_release,
2271 };
2272 int ret = 0;
2273
2274 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2275
2276 if (spd.nr_pages)
2277 ret = splice_to_pipe(pipe, &spd);
2278
2279 return ret;
2280}
2281EXPORT_SYMBOL_GPL(skb_splice_bits);
2282
2283/* Send skb data on a socket. Socket must be locked. */
2284int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2285 int len)
2286{
2287 unsigned int orig_len = len;
2288 struct sk_buff *head = skb;
2289 unsigned short fragidx;
2290 int slen, ret;
2291
2292do_frag_list:
2293
2294 /* Deal with head data */
2295 while (offset < skb_headlen(skb) && len) {
2296 struct kvec kv;
2297 struct msghdr msg;
2298
2299 slen = min_t(int, len, skb_headlen(skb) - offset);
2300 kv.iov_base = skb->data + offset;
2301 kv.iov_len = slen;
2302 memset(&msg, 0, sizeof(msg));
2303
2304 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2305 if (ret <= 0)
2306 goto error;
2307
2308 offset += ret;
2309 len -= ret;
2310 }
2311
2312 /* All the data was skb head? */
2313 if (!len)
2314 goto out;
2315
2316 /* Make offset relative to start of frags */
2317 offset -= skb_headlen(skb);
2318
2319 /* Find where we are in frag list */
2320 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2321 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2322
2323 if (offset < frag->size)
2324 break;
2325
2326 offset -= frag->size;
2327 }
2328
2329 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2330 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2331
2332 slen = min_t(size_t, len, frag->size - offset);
2333
2334 while (slen) {
2335 ret = kernel_sendpage_locked(sk, frag->page.p,
2336 frag->page_offset + offset,
2337 slen, MSG_DONTWAIT);
2338 if (ret <= 0)
2339 goto error;
2340
2341 len -= ret;
2342 offset += ret;
2343 slen -= ret;
2344 }
2345
2346 offset = 0;
2347 }
2348
2349 if (len) {
2350 /* Process any frag lists */
2351
2352 if (skb == head) {
2353 if (skb_has_frag_list(skb)) {
2354 skb = skb_shinfo(skb)->frag_list;
2355 goto do_frag_list;
2356 }
2357 } else if (skb->next) {
2358 skb = skb->next;
2359 goto do_frag_list;
2360 }
2361 }
2362
2363out:
2364 return orig_len - len;
2365
2366error:
2367 return orig_len == len ? ret : orig_len - len;
2368}
2369EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2370
2371/* Send skb data on a socket. */
2372int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2373{
2374 int ret = 0;
2375
2376 lock_sock(sk);
2377 ret = skb_send_sock_locked(sk, skb, offset, len);
2378 release_sock(sk);
2379
2380 return ret;
2381}
2382EXPORT_SYMBOL_GPL(skb_send_sock);
2383
2384/**
2385 * skb_store_bits - store bits from kernel buffer to skb
2386 * @skb: destination buffer
2387 * @offset: offset in destination
2388 * @from: source buffer
2389 * @len: number of bytes to copy
2390 *
2391 * Copy the specified number of bytes from the source buffer to the
2392 * destination skb. This function handles all the messy bits of
2393 * traversing fragment lists and such.
2394 */
2395
2396int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2397{
2398 int start = skb_headlen(skb);
2399 struct sk_buff *frag_iter;
2400 int i, copy;
2401
2402 if (offset > (int)skb->len - len)
2403 goto fault;
2404
2405 if ((copy = start - offset) > 0) {
2406 if (copy > len)
2407 copy = len;
2408 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2409 if ((len -= copy) == 0)
2410 return 0;
2411 offset += copy;
2412 from += copy;
2413 }
2414
2415 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2416 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2417 int end;
2418
2419 WARN_ON(start > offset + len);
2420
2421 end = start + skb_frag_size(frag);
2422 if ((copy = end - offset) > 0) {
2423 u32 p_off, p_len, copied;
2424 struct page *p;
2425 u8 *vaddr;
2426
2427 if (copy > len)
2428 copy = len;
2429
2430 skb_frag_foreach_page(frag,
2431 frag->page_offset + offset - start,
2432 copy, p, p_off, p_len, copied) {
2433 vaddr = kmap_atomic(p);
2434 memcpy(vaddr + p_off, from + copied, p_len);
2435 kunmap_atomic(vaddr);
2436 }
2437
2438 if ((len -= copy) == 0)
2439 return 0;
2440 offset += copy;
2441 from += copy;
2442 }
2443 start = end;
2444 }
2445
2446 skb_walk_frags(skb, frag_iter) {
2447 int end;
2448
2449 WARN_ON(start > offset + len);
2450
2451 end = start + frag_iter->len;
2452 if ((copy = end - offset) > 0) {
2453 if (copy > len)
2454 copy = len;
2455 if (skb_store_bits(frag_iter, offset - start,
2456 from, copy))
2457 goto fault;
2458 if ((len -= copy) == 0)
2459 return 0;
2460 offset += copy;
2461 from += copy;
2462 }
2463 start = end;
2464 }
2465 if (!len)
2466 return 0;
2467
2468fault:
2469 return -EFAULT;
2470}
2471EXPORT_SYMBOL(skb_store_bits);
2472
2473/* Checksum skb data. */
2474__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2475 __wsum csum, const struct skb_checksum_ops *ops)
2476{
2477 int start = skb_headlen(skb);
2478 int i, copy = start - offset;
2479 struct sk_buff *frag_iter;
2480 int pos = 0;
2481
2482 /* Checksum header. */
2483 if (copy > 0) {
2484 if (copy > len)
2485 copy = len;
2486 csum = ops->update(skb->data + offset, copy, csum);
2487 if ((len -= copy) == 0)
2488 return csum;
2489 offset += copy;
2490 pos = copy;
2491 }
2492
2493 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2494 int end;
2495 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2496
2497 WARN_ON(start > offset + len);
2498
2499 end = start + skb_frag_size(frag);
2500 if ((copy = end - offset) > 0) {
2501 u32 p_off, p_len, copied;
2502 struct page *p;
2503 __wsum csum2;
2504 u8 *vaddr;
2505
2506 if (copy > len)
2507 copy = len;
2508
2509 skb_frag_foreach_page(frag,
2510 frag->page_offset + offset - start,
2511 copy, p, p_off, p_len, copied) {
2512 vaddr = kmap_atomic(p);
2513 csum2 = ops->update(vaddr + p_off, p_len, 0);
2514 kunmap_atomic(vaddr);
2515 csum = ops->combine(csum, csum2, pos, p_len);
2516 pos += p_len;
2517 }
2518
2519 if (!(len -= copy))
2520 return csum;
2521 offset += copy;
2522 }
2523 start = end;
2524 }
2525
2526 skb_walk_frags(skb, frag_iter) {
2527 int end;
2528
2529 WARN_ON(start > offset + len);
2530
2531 end = start + frag_iter->len;
2532 if ((copy = end - offset) > 0) {
2533 __wsum csum2;
2534 if (copy > len)
2535 copy = len;
2536 csum2 = __skb_checksum(frag_iter, offset - start,
2537 copy, 0, ops);
2538 csum = ops->combine(csum, csum2, pos, copy);
2539 if ((len -= copy) == 0)
2540 return csum;
2541 offset += copy;
2542 pos += copy;
2543 }
2544 start = end;
2545 }
2546 BUG_ON(len);
2547
2548 return csum;
2549}
2550EXPORT_SYMBOL(__skb_checksum);
2551
2552__wsum skb_checksum(const struct sk_buff *skb, int offset,
2553 int len, __wsum csum)
2554{
2555 const struct skb_checksum_ops ops = {
2556 .update = csum_partial_ext,
2557 .combine = csum_block_add_ext,
2558 };
2559
2560 return __skb_checksum(skb, offset, len, csum, &ops);
2561}
2562EXPORT_SYMBOL(skb_checksum);
2563
2564/* Both of above in one bottle. */
2565
2566__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2567 u8 *to, int len, __wsum csum)
2568{
2569 int start = skb_headlen(skb);
2570 int i, copy = start - offset;
2571 struct sk_buff *frag_iter;
2572 int pos = 0;
2573
2574 /* Copy header. */
2575 if (copy > 0) {
2576 if (copy > len)
2577 copy = len;
2578 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2579 copy, csum);
2580 if ((len -= copy) == 0)
2581 return csum;
2582 offset += copy;
2583 to += copy;
2584 pos = copy;
2585 }
2586
2587 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2588 int end;
2589
2590 WARN_ON(start > offset + len);
2591
2592 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2593 if ((copy = end - offset) > 0) {
2594 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2595 u32 p_off, p_len, copied;
2596 struct page *p;
2597 __wsum csum2;
2598 u8 *vaddr;
2599
2600 if (copy > len)
2601 copy = len;
2602
2603 skb_frag_foreach_page(frag,
2604 frag->page_offset + offset - start,
2605 copy, p, p_off, p_len, copied) {
2606 vaddr = kmap_atomic(p);
2607 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2608 to + copied,
2609 p_len, 0);
2610 kunmap_atomic(vaddr);
2611 csum = csum_block_add(csum, csum2, pos);
2612 pos += p_len;
2613 }
2614
2615 if (!(len -= copy))
2616 return csum;
2617 offset += copy;
2618 to += copy;
2619 }
2620 start = end;
2621 }
2622
2623 skb_walk_frags(skb, frag_iter) {
2624 __wsum csum2;
2625 int end;
2626
2627 WARN_ON(start > offset + len);
2628
2629 end = start + frag_iter->len;
2630 if ((copy = end - offset) > 0) {
2631 if (copy > len)
2632 copy = len;
2633 csum2 = skb_copy_and_csum_bits(frag_iter,
2634 offset - start,
2635 to, copy, 0);
2636 csum = csum_block_add(csum, csum2, pos);
2637 if ((len -= copy) == 0)
2638 return csum;
2639 offset += copy;
2640 to += copy;
2641 pos += copy;
2642 }
2643 start = end;
2644 }
2645 BUG_ON(len);
2646 return csum;
2647}
2648EXPORT_SYMBOL(skb_copy_and_csum_bits);
2649
2650static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2651{
2652 net_warn_ratelimited(
2653 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2654 __func__);
2655 return 0;
2656}
2657
2658static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2659 int offset, int len)
2660{
2661 net_warn_ratelimited(
2662 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2663 __func__);
2664 return 0;
2665}
2666
2667static const struct skb_checksum_ops default_crc32c_ops = {
2668 .update = warn_crc32c_csum_update,
2669 .combine = warn_crc32c_csum_combine,
2670};
2671
2672const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2673 &default_crc32c_ops;
2674EXPORT_SYMBOL(crc32c_csum_stub);
2675
2676 /**
2677 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2678 * @from: source buffer
2679 *
2680 * Calculates the amount of linear headroom needed in the 'to' skb passed
2681 * into skb_zerocopy().
2682 */
2683unsigned int
2684skb_zerocopy_headlen(const struct sk_buff *from)
2685{
2686 unsigned int hlen = 0;
2687
2688 if (!from->head_frag ||
2689 skb_headlen(from) < L1_CACHE_BYTES ||
2690 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2691 hlen = skb_headlen(from);
2692
2693 if (skb_has_frag_list(from))
2694 hlen = from->len;
2695
2696 return hlen;
2697}
2698EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2699
2700/**
2701 * skb_zerocopy - Zero copy skb to skb
2702 * @to: destination buffer
2703 * @from: source buffer
2704 * @len: number of bytes to copy from source buffer
2705 * @hlen: size of linear headroom in destination buffer
2706 *
2707 * Copies up to `len` bytes from `from` to `to` by creating references
2708 * to the frags in the source buffer.
2709 *
2710 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2711 * headroom in the `to` buffer.
2712 *
2713 * Return value:
2714 * 0: everything is OK
2715 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2716 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2717 */
2718int
2719skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2720{
2721 int i, j = 0;
2722 int plen = 0; /* length of skb->head fragment */
2723 int ret;
2724 struct page *page;
2725 unsigned int offset;
2726
2727 BUG_ON(!from->head_frag && !hlen);
2728
2729 /* dont bother with small payloads */
2730 if (len <= skb_tailroom(to))
2731 return skb_copy_bits(from, 0, skb_put(to, len), len);
2732
2733 if (hlen) {
2734 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2735 if (unlikely(ret))
2736 return ret;
2737 len -= hlen;
2738 } else {
2739 plen = min_t(int, skb_headlen(from), len);
2740 if (plen) {
2741 page = virt_to_head_page(from->head);
2742 offset = from->data - (unsigned char *)page_address(page);
2743 __skb_fill_page_desc(to, 0, page, offset, plen);
2744 get_page(page);
2745 j = 1;
2746 len -= plen;
2747 }
2748 }
2749
2750 to->truesize += len + plen;
2751 to->len += len + plen;
2752 to->data_len += len + plen;
2753
2754 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2755 skb_tx_error(from);
2756 return -ENOMEM;
2757 }
2758 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2759
2760 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2761 if (!len)
2762 break;
2763 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2764 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2765 len -= skb_shinfo(to)->frags[j].size;
2766 skb_frag_ref(to, j);
2767 j++;
2768 }
2769 skb_shinfo(to)->nr_frags = j;
2770
2771 return 0;
2772}
2773EXPORT_SYMBOL_GPL(skb_zerocopy);
2774
2775void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2776{
2777 __wsum csum;
2778 long csstart;
2779
2780 if (skb->ip_summed == CHECKSUM_PARTIAL)
2781 csstart = skb_checksum_start_offset(skb);
2782 else
2783 csstart = skb_headlen(skb);
2784
2785 BUG_ON(csstart > skb_headlen(skb));
2786
2787 skb_copy_from_linear_data(skb, to, csstart);
2788
2789 csum = 0;
2790 if (csstart != skb->len)
2791 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2792 skb->len - csstart, 0);
2793
2794 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2795 long csstuff = csstart + skb->csum_offset;
2796
2797 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2798 }
2799}
2800EXPORT_SYMBOL(skb_copy_and_csum_dev);
2801
2802/**
2803 * skb_dequeue - remove from the head of the queue
2804 * @list: list to dequeue from
2805 *
2806 * Remove the head of the list. The list lock is taken so the function
2807 * may be used safely with other locking list functions. The head item is
2808 * returned or %NULL if the list is empty.
2809 */
2810
2811struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2812{
2813 unsigned long flags;
2814 struct sk_buff *result;
2815
2816 spin_lock_irqsave(&list->lock, flags);
2817 result = __skb_dequeue(list);
2818 spin_unlock_irqrestore(&list->lock, flags);
2819 return result;
2820}
2821EXPORT_SYMBOL(skb_dequeue);
2822
2823/**
2824 * skb_dequeue_tail - remove from the tail of the queue
2825 * @list: list to dequeue from
2826 *
2827 * Remove the tail of the list. The list lock is taken so the function
2828 * may be used safely with other locking list functions. The tail item is
2829 * returned or %NULL if the list is empty.
2830 */
2831struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2832{
2833 unsigned long flags;
2834 struct sk_buff *result;
2835
2836 spin_lock_irqsave(&list->lock, flags);
2837 result = __skb_dequeue_tail(list);
2838 spin_unlock_irqrestore(&list->lock, flags);
2839 return result;
2840}
2841EXPORT_SYMBOL(skb_dequeue_tail);
2842
2843/**
2844 * skb_queue_purge - empty a list
2845 * @list: list to empty
2846 *
2847 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2848 * the list and one reference dropped. This function takes the list
2849 * lock and is atomic with respect to other list locking functions.
2850 */
2851void skb_queue_purge(struct sk_buff_head *list)
2852{
2853 struct sk_buff *skb;
2854 while ((skb = skb_dequeue(list)) != NULL)
2855 kfree_skb(skb);
2856}
2857EXPORT_SYMBOL(skb_queue_purge);
2858
2859/**
2860 * skb_rbtree_purge - empty a skb rbtree
2861 * @root: root of the rbtree to empty
2862 * Return value: the sum of truesizes of all purged skbs.
2863 *
2864 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2865 * the list and one reference dropped. This function does not take
2866 * any lock. Synchronization should be handled by the caller (e.g., TCP
2867 * out-of-order queue is protected by the socket lock).
2868 */
2869unsigned int skb_rbtree_purge(struct rb_root *root)
2870{
2871 struct rb_node *p = rb_first(root);
2872 unsigned int sum = 0;
2873
2874 while (p) {
2875 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2876
2877 p = rb_next(p);
2878 rb_erase(&skb->rbnode, root);
2879 sum += skb->truesize;
2880 kfree_skb(skb);
2881 }
2882 return sum;
2883}
2884
2885/**
2886 * skb_queue_head - queue a buffer at the list head
2887 * @list: list to use
2888 * @newsk: buffer to queue
2889 *
2890 * Queue a buffer at the start of the list. This function takes the
2891 * list lock and can be used safely with other locking &sk_buff functions
2892 * safely.
2893 *
2894 * A buffer cannot be placed on two lists at the same time.
2895 */
2896void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2897{
2898 unsigned long flags;
2899
2900 spin_lock_irqsave(&list->lock, flags);
2901 __skb_queue_head(list, newsk);
2902 spin_unlock_irqrestore(&list->lock, flags);
2903}
2904EXPORT_SYMBOL(skb_queue_head);
2905
2906/**
2907 * skb_queue_tail - queue a buffer at the list tail
2908 * @list: list to use
2909 * @newsk: buffer to queue
2910 *
2911 * Queue a buffer at the tail of the list. This function takes the
2912 * list lock and can be used safely with other locking &sk_buff functions
2913 * safely.
2914 *
2915 * A buffer cannot be placed on two lists at the same time.
2916 */
2917void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2918{
2919 unsigned long flags;
2920
2921 spin_lock_irqsave(&list->lock, flags);
2922 __skb_queue_tail(list, newsk);
2923 spin_unlock_irqrestore(&list->lock, flags);
2924}
2925EXPORT_SYMBOL(skb_queue_tail);
2926
2927/**
2928 * skb_unlink - remove a buffer from a list
2929 * @skb: buffer to remove
2930 * @list: list to use
2931 *
2932 * Remove a packet from a list. The list locks are taken and this
2933 * function is atomic with respect to other list locked calls
2934 *
2935 * You must know what list the SKB is on.
2936 */
2937void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2938{
2939 unsigned long flags;
2940
2941 spin_lock_irqsave(&list->lock, flags);
2942 __skb_unlink(skb, list);
2943 spin_unlock_irqrestore(&list->lock, flags);
2944}
2945EXPORT_SYMBOL(skb_unlink);
2946
2947/**
2948 * skb_append - append a buffer
2949 * @old: buffer to insert after
2950 * @newsk: buffer to insert
2951 * @list: list to use
2952 *
2953 * Place a packet after a given packet in a list. The list locks are taken
2954 * and this function is atomic with respect to other list locked calls.
2955 * A buffer cannot be placed on two lists at the same time.
2956 */
2957void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2958{
2959 unsigned long flags;
2960
2961 spin_lock_irqsave(&list->lock, flags);
2962 __skb_queue_after(list, old, newsk);
2963 spin_unlock_irqrestore(&list->lock, flags);
2964}
2965EXPORT_SYMBOL(skb_append);
2966
2967/**
2968 * skb_insert - insert a buffer
2969 * @old: buffer to insert before
2970 * @newsk: buffer to insert
2971 * @list: list to use
2972 *
2973 * Place a packet before a given packet in a list. The list locks are
2974 * taken and this function is atomic with respect to other list locked
2975 * calls.
2976 *
2977 * A buffer cannot be placed on two lists at the same time.
2978 */
2979void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2980{
2981 unsigned long flags;
2982
2983 spin_lock_irqsave(&list->lock, flags);
2984 __skb_insert(newsk, old->prev, old, list);
2985 spin_unlock_irqrestore(&list->lock, flags);
2986}
2987EXPORT_SYMBOL(skb_insert);
2988
2989static inline void skb_split_inside_header(struct sk_buff *skb,
2990 struct sk_buff* skb1,
2991 const u32 len, const int pos)
2992{
2993 int i;
2994
2995 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2996 pos - len);
2997 /* And move data appendix as is. */
2998 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2999 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3000
3001 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3002 skb_shinfo(skb)->nr_frags = 0;
3003 skb1->data_len = skb->data_len;
3004 skb1->len += skb1->data_len;
3005 skb->data_len = 0;
3006 skb->len = len;
3007 skb_set_tail_pointer(skb, len);
3008}
3009
3010static inline void skb_split_no_header(struct sk_buff *skb,
3011 struct sk_buff* skb1,
3012 const u32 len, int pos)
3013{
3014 int i, k = 0;
3015 const int nfrags = skb_shinfo(skb)->nr_frags;
3016
3017 skb_shinfo(skb)->nr_frags = 0;
3018 skb1->len = skb1->data_len = skb->len - len;
3019 skb->len = len;
3020 skb->data_len = len - pos;
3021
3022 for (i = 0; i < nfrags; i++) {
3023 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3024
3025 if (pos + size > len) {
3026 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3027
3028 if (pos < len) {
3029 /* Split frag.
3030 * We have two variants in this case:
3031 * 1. Move all the frag to the second
3032 * part, if it is possible. F.e.
3033 * this approach is mandatory for TUX,
3034 * where splitting is expensive.
3035 * 2. Split is accurately. We make this.
3036 */
3037 skb_frag_ref(skb, i);
3038 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3039 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3040 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3041 skb_shinfo(skb)->nr_frags++;
3042 }
3043 k++;
3044 } else
3045 skb_shinfo(skb)->nr_frags++;
3046 pos += size;
3047 }
3048 skb_shinfo(skb1)->nr_frags = k;
3049}
3050
3051/**
3052 * skb_split - Split fragmented skb to two parts at length len.
3053 * @skb: the buffer to split
3054 * @skb1: the buffer to receive the second part
3055 * @len: new length for skb
3056 */
3057void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3058{
3059 int pos = skb_headlen(skb);
3060
3061 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3062 SKBTX_SHARED_FRAG;
3063 skb_zerocopy_clone(skb1, skb, 0);
3064 if (len < pos) /* Split line is inside header. */
3065 skb_split_inside_header(skb, skb1, len, pos);
3066 else /* Second chunk has no header, nothing to copy. */
3067 skb_split_no_header(skb, skb1, len, pos);
3068}
3069EXPORT_SYMBOL(skb_split);
3070
3071/* Shifting from/to a cloned skb is a no-go.
3072 *
3073 * Caller cannot keep skb_shinfo related pointers past calling here!
3074 */
3075static int skb_prepare_for_shift(struct sk_buff *skb)
3076{
3077 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3078}
3079
3080/**
3081 * skb_shift - Shifts paged data partially from skb to another
3082 * @tgt: buffer into which tail data gets added
3083 * @skb: buffer from which the paged data comes from
3084 * @shiftlen: shift up to this many bytes
3085 *
3086 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3087 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3088 * It's up to caller to free skb if everything was shifted.
3089 *
3090 * If @tgt runs out of frags, the whole operation is aborted.
3091 *
3092 * Skb cannot include anything else but paged data while tgt is allowed
3093 * to have non-paged data as well.
3094 *
3095 * TODO: full sized shift could be optimized but that would need
3096 * specialized skb free'er to handle frags without up-to-date nr_frags.
3097 */
3098int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3099{
3100 int from, to, merge, todo;
3101 struct skb_frag_struct *fragfrom, *fragto;
3102
3103 BUG_ON(shiftlen > skb->len);
3104
3105 if (skb_headlen(skb))
3106 return 0;
3107 if (skb_zcopy(tgt) || skb_zcopy(skb))
3108 return 0;
3109
3110 todo = shiftlen;
3111 from = 0;
3112 to = skb_shinfo(tgt)->nr_frags;
3113 fragfrom = &skb_shinfo(skb)->frags[from];
3114
3115 /* Actual merge is delayed until the point when we know we can
3116 * commit all, so that we don't have to undo partial changes
3117 */
3118 if (!to ||
3119 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3120 fragfrom->page_offset)) {
3121 merge = -1;
3122 } else {
3123 merge = to - 1;
3124
3125 todo -= skb_frag_size(fragfrom);
3126 if (todo < 0) {
3127 if (skb_prepare_for_shift(skb) ||
3128 skb_prepare_for_shift(tgt))
3129 return 0;
3130
3131 /* All previous frag pointers might be stale! */
3132 fragfrom = &skb_shinfo(skb)->frags[from];
3133 fragto = &skb_shinfo(tgt)->frags[merge];
3134
3135 skb_frag_size_add(fragto, shiftlen);
3136 skb_frag_size_sub(fragfrom, shiftlen);
3137 fragfrom->page_offset += shiftlen;
3138
3139 goto onlymerged;
3140 }
3141
3142 from++;
3143 }
3144
3145 /* Skip full, not-fitting skb to avoid expensive operations */
3146 if ((shiftlen == skb->len) &&
3147 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3148 return 0;
3149
3150 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3151 return 0;
3152
3153 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3154 if (to == MAX_SKB_FRAGS)
3155 return 0;
3156
3157 fragfrom = &skb_shinfo(skb)->frags[from];
3158 fragto = &skb_shinfo(tgt)->frags[to];
3159
3160 if (todo >= skb_frag_size(fragfrom)) {
3161 *fragto = *fragfrom;
3162 todo -= skb_frag_size(fragfrom);
3163 from++;
3164 to++;
3165
3166 } else {
3167 __skb_frag_ref(fragfrom);
3168 fragto->page = fragfrom->page;
3169 fragto->page_offset = fragfrom->page_offset;
3170 skb_frag_size_set(fragto, todo);
3171
3172 fragfrom->page_offset += todo;
3173 skb_frag_size_sub(fragfrom, todo);
3174 todo = 0;
3175
3176 to++;
3177 break;
3178 }
3179 }
3180
3181 /* Ready to "commit" this state change to tgt */
3182 skb_shinfo(tgt)->nr_frags = to;
3183
3184 if (merge >= 0) {
3185 fragfrom = &skb_shinfo(skb)->frags[0];
3186 fragto = &skb_shinfo(tgt)->frags[merge];
3187
3188 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3189 __skb_frag_unref(fragfrom);
3190 }
3191
3192 /* Reposition in the original skb */
3193 to = 0;
3194 while (from < skb_shinfo(skb)->nr_frags)
3195 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3196 skb_shinfo(skb)->nr_frags = to;
3197
3198 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3199
3200onlymerged:
3201 /* Most likely the tgt won't ever need its checksum anymore, skb on
3202 * the other hand might need it if it needs to be resent
3203 */
3204 tgt->ip_summed = CHECKSUM_PARTIAL;
3205 skb->ip_summed = CHECKSUM_PARTIAL;
3206
3207 /* Yak, is it really working this way? Some helper please? */
3208 skb->len -= shiftlen;
3209 skb->data_len -= shiftlen;
3210 skb->truesize -= shiftlen;
3211 tgt->len += shiftlen;
3212 tgt->data_len += shiftlen;
3213 tgt->truesize += shiftlen;
3214
3215 return shiftlen;
3216}
3217
3218/**
3219 * skb_prepare_seq_read - Prepare a sequential read of skb data
3220 * @skb: the buffer to read
3221 * @from: lower offset of data to be read
3222 * @to: upper offset of data to be read
3223 * @st: state variable
3224 *
3225 * Initializes the specified state variable. Must be called before
3226 * invoking skb_seq_read() for the first time.
3227 */
3228void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3229 unsigned int to, struct skb_seq_state *st)
3230{
3231 st->lower_offset = from;
3232 st->upper_offset = to;
3233 st->root_skb = st->cur_skb = skb;
3234 st->frag_idx = st->stepped_offset = 0;
3235 st->frag_data = NULL;
3236}
3237EXPORT_SYMBOL(skb_prepare_seq_read);
3238
3239/**
3240 * skb_seq_read - Sequentially read skb data
3241 * @consumed: number of bytes consumed by the caller so far
3242 * @data: destination pointer for data to be returned
3243 * @st: state variable
3244 *
3245 * Reads a block of skb data at @consumed relative to the
3246 * lower offset specified to skb_prepare_seq_read(). Assigns
3247 * the head of the data block to @data and returns the length
3248 * of the block or 0 if the end of the skb data or the upper
3249 * offset has been reached.
3250 *
3251 * The caller is not required to consume all of the data
3252 * returned, i.e. @consumed is typically set to the number
3253 * of bytes already consumed and the next call to
3254 * skb_seq_read() will return the remaining part of the block.
3255 *
3256 * Note 1: The size of each block of data returned can be arbitrary,
3257 * this limitation is the cost for zerocopy sequential
3258 * reads of potentially non linear data.
3259 *
3260 * Note 2: Fragment lists within fragments are not implemented
3261 * at the moment, state->root_skb could be replaced with
3262 * a stack for this purpose.
3263 */
3264unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3265 struct skb_seq_state *st)
3266{
3267 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3268 skb_frag_t *frag;
3269
3270 if (unlikely(abs_offset >= st->upper_offset)) {
3271 if (st->frag_data) {
3272 kunmap_atomic(st->frag_data);
3273 st->frag_data = NULL;
3274 }
3275 return 0;
3276 }
3277
3278next_skb:
3279 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3280
3281 if (abs_offset < block_limit && !st->frag_data) {
3282 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3283 return block_limit - abs_offset;
3284 }
3285
3286 if (st->frag_idx == 0 && !st->frag_data)
3287 st->stepped_offset += skb_headlen(st->cur_skb);
3288
3289 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3290 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3291 block_limit = skb_frag_size(frag) + st->stepped_offset;
3292
3293 if (abs_offset < block_limit) {
3294 if (!st->frag_data)
3295 st->frag_data = kmap_atomic(skb_frag_page(frag));
3296
3297 *data = (u8 *) st->frag_data + frag->page_offset +
3298 (abs_offset - st->stepped_offset);
3299
3300 return block_limit - abs_offset;
3301 }
3302
3303 if (st->frag_data) {
3304 kunmap_atomic(st->frag_data);
3305 st->frag_data = NULL;
3306 }
3307
3308 st->frag_idx++;
3309 st->stepped_offset += skb_frag_size(frag);
3310 }
3311
3312 if (st->frag_data) {
3313 kunmap_atomic(st->frag_data);
3314 st->frag_data = NULL;
3315 }
3316
3317 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3318 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3319 st->frag_idx = 0;
3320 goto next_skb;
3321 } else if (st->cur_skb->next) {
3322 st->cur_skb = st->cur_skb->next;
3323 st->frag_idx = 0;
3324 goto next_skb;
3325 }
3326
3327 return 0;
3328}
3329EXPORT_SYMBOL(skb_seq_read);
3330
3331/**
3332 * skb_abort_seq_read - Abort a sequential read of skb data
3333 * @st: state variable
3334 *
3335 * Must be called if skb_seq_read() was not called until it
3336 * returned 0.
3337 */
3338void skb_abort_seq_read(struct skb_seq_state *st)
3339{
3340 if (st->frag_data)
3341 kunmap_atomic(st->frag_data);
3342}
3343EXPORT_SYMBOL(skb_abort_seq_read);
3344
3345#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3346
3347static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3348 struct ts_config *conf,
3349 struct ts_state *state)
3350{
3351 return skb_seq_read(offset, text, TS_SKB_CB(state));
3352}
3353
3354static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3355{
3356 skb_abort_seq_read(TS_SKB_CB(state));
3357}
3358
3359/**
3360 * skb_find_text - Find a text pattern in skb data
3361 * @skb: the buffer to look in
3362 * @from: search offset
3363 * @to: search limit
3364 * @config: textsearch configuration
3365 *
3366 * Finds a pattern in the skb data according to the specified
3367 * textsearch configuration. Use textsearch_next() to retrieve
3368 * subsequent occurrences of the pattern. Returns the offset
3369 * to the first occurrence or UINT_MAX if no match was found.
3370 */
3371unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3372 unsigned int to, struct ts_config *config)
3373{
3374 struct ts_state state;
3375 unsigned int ret;
3376
3377 config->get_next_block = skb_ts_get_next_block;
3378 config->finish = skb_ts_finish;
3379
3380 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3381
3382 ret = textsearch_find(config, &state);
3383 return (ret <= to - from ? ret : UINT_MAX);
3384}
3385EXPORT_SYMBOL(skb_find_text);
3386
3387/**
3388 * skb_append_datato_frags - append the user data to a skb
3389 * @sk: sock structure
3390 * @skb: skb structure to be appended with user data.
3391 * @getfrag: call back function to be used for getting the user data
3392 * @from: pointer to user message iov
3393 * @length: length of the iov message
3394 *
3395 * Description: This procedure append the user data in the fragment part
3396 * of the skb if any page alloc fails user this procedure returns -ENOMEM
3397 */
3398int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3399 int (*getfrag)(void *from, char *to, int offset,
3400 int len, int odd, struct sk_buff *skb),
3401 void *from, int length)
3402{
3403 int frg_cnt = skb_shinfo(skb)->nr_frags;
3404 int copy;
3405 int offset = 0;
3406 int ret;
3407 struct page_frag *pfrag = ¤t->task_frag;
3408
3409 do {
3410 /* Return error if we don't have space for new frag */
3411 if (frg_cnt >= MAX_SKB_FRAGS)
3412 return -EMSGSIZE;
3413
3414 if (!sk_page_frag_refill(sk, pfrag))
3415 return -ENOMEM;
3416
3417 /* copy the user data to page */
3418 copy = min_t(int, length, pfrag->size - pfrag->offset);
3419
3420 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3421 offset, copy, 0, skb);
3422 if (ret < 0)
3423 return -EFAULT;
3424
3425 /* copy was successful so update the size parameters */
3426 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3427 copy);
3428 frg_cnt++;
3429 pfrag->offset += copy;
3430 get_page(pfrag->page);
3431
3432 skb->truesize += copy;
3433 refcount_add(copy, &sk->sk_wmem_alloc);
3434 skb->len += copy;
3435 skb->data_len += copy;
3436 offset += copy;
3437 length -= copy;
3438
3439 } while (length > 0);
3440
3441 return 0;
3442}
3443EXPORT_SYMBOL(skb_append_datato_frags);
3444
3445int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3446 int offset, size_t size)
3447{
3448 int i = skb_shinfo(skb)->nr_frags;
3449
3450 if (skb_can_coalesce(skb, i, page, offset)) {
3451 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3452 } else if (i < MAX_SKB_FRAGS) {
3453 get_page(page);
3454 skb_fill_page_desc(skb, i, page, offset, size);
3455 } else {
3456 return -EMSGSIZE;
3457 }
3458
3459 return 0;
3460}
3461EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3462
3463/**
3464 * skb_pull_rcsum - pull skb and update receive checksum
3465 * @skb: buffer to update
3466 * @len: length of data pulled
3467 *
3468 * This function performs an skb_pull on the packet and updates
3469 * the CHECKSUM_COMPLETE checksum. It should be used on
3470 * receive path processing instead of skb_pull unless you know
3471 * that the checksum difference is zero (e.g., a valid IP header)
3472 * or you are setting ip_summed to CHECKSUM_NONE.
3473 */
3474void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3475{
3476 unsigned char *data = skb->data;
3477
3478 BUG_ON(len > skb->len);
3479 __skb_pull(skb, len);
3480 skb_postpull_rcsum(skb, data, len);
3481 return skb->data;
3482}
3483EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3484
3485static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3486{
3487 skb_frag_t head_frag;
3488 struct page *page;
3489
3490 page = virt_to_head_page(frag_skb->head);
3491 head_frag.page.p = page;
3492 head_frag.page_offset = frag_skb->data -
3493 (unsigned char *)page_address(page);
3494 head_frag.size = skb_headlen(frag_skb);
3495 return head_frag;
3496}
3497
3498/**
3499 * skb_segment - Perform protocol segmentation on skb.
3500 * @head_skb: buffer to segment
3501 * @features: features for the output path (see dev->features)
3502 *
3503 * This function performs segmentation on the given skb. It returns
3504 * a pointer to the first in a list of new skbs for the segments.
3505 * In case of error it returns ERR_PTR(err).
3506 */
3507struct sk_buff *skb_segment(struct sk_buff *head_skb,
3508 netdev_features_t features)
3509{
3510 struct sk_buff *segs = NULL;
3511 struct sk_buff *tail = NULL;
3512 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3513 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3514 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3515 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3516 struct sk_buff *frag_skb = head_skb;
3517 unsigned int offset = doffset;
3518 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3519 unsigned int partial_segs = 0;
3520 unsigned int headroom;
3521 unsigned int len = head_skb->len;
3522 __be16 proto;
3523 bool csum, sg;
3524 int nfrags = skb_shinfo(head_skb)->nr_frags;
3525 int err = -ENOMEM;
3526 int i = 0;
3527 int pos;
3528 int dummy;
3529
3530 __skb_push(head_skb, doffset);
3531 proto = skb_network_protocol(head_skb, &dummy);
3532 if (unlikely(!proto))
3533 return ERR_PTR(-EINVAL);
3534
3535 sg = !!(features & NETIF_F_SG);
3536 csum = !!can_checksum_protocol(features, proto);
3537
3538 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3539 if (!(features & NETIF_F_GSO_PARTIAL)) {
3540 struct sk_buff *iter;
3541 unsigned int frag_len;
3542
3543 if (!list_skb ||
3544 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3545 goto normal;
3546
3547 /* If we get here then all the required
3548 * GSO features except frag_list are supported.
3549 * Try to split the SKB to multiple GSO SKBs
3550 * with no frag_list.
3551 * Currently we can do that only when the buffers don't
3552 * have a linear part and all the buffers except
3553 * the last are of the same length.
3554 */
3555 frag_len = list_skb->len;
3556 skb_walk_frags(head_skb, iter) {
3557 if (frag_len != iter->len && iter->next)
3558 goto normal;
3559 if (skb_headlen(iter) && !iter->head_frag)
3560 goto normal;
3561
3562 len -= iter->len;
3563 }
3564
3565 if (len != frag_len)
3566 goto normal;
3567 }
3568
3569 /* GSO partial only requires that we trim off any excess that
3570 * doesn't fit into an MSS sized block, so take care of that
3571 * now.
3572 */
3573 partial_segs = len / mss;
3574 if (partial_segs > 1)
3575 mss *= partial_segs;
3576 else
3577 partial_segs = 0;
3578 }
3579
3580normal:
3581 headroom = skb_headroom(head_skb);
3582 pos = skb_headlen(head_skb);
3583
3584 do {
3585 struct sk_buff *nskb;
3586 skb_frag_t *nskb_frag;
3587 int hsize;
3588 int size;
3589
3590 if (unlikely(mss == GSO_BY_FRAGS)) {
3591 len = list_skb->len;
3592 } else {
3593 len = head_skb->len - offset;
3594 if (len > mss)
3595 len = mss;
3596 }
3597
3598 hsize = skb_headlen(head_skb) - offset;
3599 if (hsize < 0)
3600 hsize = 0;
3601 if (hsize > len || !sg)
3602 hsize = len;
3603
3604 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3605 (skb_headlen(list_skb) == len || sg)) {
3606 BUG_ON(skb_headlen(list_skb) > len);
3607
3608 i = 0;
3609 nfrags = skb_shinfo(list_skb)->nr_frags;
3610 frag = skb_shinfo(list_skb)->frags;
3611 frag_skb = list_skb;
3612 pos += skb_headlen(list_skb);
3613
3614 while (pos < offset + len) {
3615 BUG_ON(i >= nfrags);
3616
3617 size = skb_frag_size(frag);
3618 if (pos + size > offset + len)
3619 break;
3620
3621 i++;
3622 pos += size;
3623 frag++;
3624 }
3625
3626 nskb = skb_clone(list_skb, GFP_ATOMIC);
3627 list_skb = list_skb->next;
3628
3629 if (unlikely(!nskb))
3630 goto err;
3631
3632 if (unlikely(pskb_trim(nskb, len))) {
3633 kfree_skb(nskb);
3634 goto err;
3635 }
3636
3637 hsize = skb_end_offset(nskb);
3638 if (skb_cow_head(nskb, doffset + headroom)) {
3639 kfree_skb(nskb);
3640 goto err;
3641 }
3642
3643 nskb->truesize += skb_end_offset(nskb) - hsize;
3644 skb_release_head_state(nskb);
3645 __skb_push(nskb, doffset);
3646 } else {
3647 nskb = __alloc_skb(hsize + doffset + headroom,
3648 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3649 NUMA_NO_NODE);
3650
3651 if (unlikely(!nskb))
3652 goto err;
3653
3654 skb_reserve(nskb, headroom);
3655 __skb_put(nskb, doffset);
3656 }
3657
3658 if (segs)
3659 tail->next = nskb;
3660 else
3661 segs = nskb;
3662 tail = nskb;
3663
3664 __copy_skb_header(nskb, head_skb);
3665
3666 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3667 skb_reset_mac_len(nskb);
3668
3669 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3670 nskb->data - tnl_hlen,
3671 doffset + tnl_hlen);
3672
3673 if (nskb->len == len + doffset)
3674 goto perform_csum_check;
3675
3676 if (!sg) {
3677 if (!nskb->remcsum_offload)
3678 nskb->ip_summed = CHECKSUM_NONE;
3679 SKB_GSO_CB(nskb)->csum =
3680 skb_copy_and_csum_bits(head_skb, offset,
3681 skb_put(nskb, len),
3682 len, 0);
3683 SKB_GSO_CB(nskb)->csum_start =
3684 skb_headroom(nskb) + doffset;
3685 continue;
3686 }
3687
3688 nskb_frag = skb_shinfo(nskb)->frags;
3689
3690 skb_copy_from_linear_data_offset(head_skb, offset,
3691 skb_put(nskb, hsize), hsize);
3692
3693 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3694 SKBTX_SHARED_FRAG;
3695
3696 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3697 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3698 goto err;
3699
3700 while (pos < offset + len) {
3701 if (i >= nfrags) {
3702 i = 0;
3703 nfrags = skb_shinfo(list_skb)->nr_frags;
3704 frag = skb_shinfo(list_skb)->frags;
3705 frag_skb = list_skb;
3706 if (!skb_headlen(list_skb)) {
3707 BUG_ON(!nfrags);
3708 } else {
3709 BUG_ON(!list_skb->head_frag);
3710
3711 /* to make room for head_frag. */
3712 i--;
3713 frag--;
3714 }
3715 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3716 skb_zerocopy_clone(nskb, frag_skb,
3717 GFP_ATOMIC))
3718 goto err;
3719
3720 list_skb = list_skb->next;
3721 }
3722
3723 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3724 MAX_SKB_FRAGS)) {
3725 net_warn_ratelimited(
3726 "skb_segment: too many frags: %u %u\n",
3727 pos, mss);
3728 err = -EINVAL;
3729 goto err;
3730 }
3731
3732 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3733 __skb_frag_ref(nskb_frag);
3734 size = skb_frag_size(nskb_frag);
3735
3736 if (pos < offset) {
3737 nskb_frag->page_offset += offset - pos;
3738 skb_frag_size_sub(nskb_frag, offset - pos);
3739 }
3740
3741 skb_shinfo(nskb)->nr_frags++;
3742
3743 if (pos + size <= offset + len) {
3744 i++;
3745 frag++;
3746 pos += size;
3747 } else {
3748 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3749 goto skip_fraglist;
3750 }
3751
3752 nskb_frag++;
3753 }
3754
3755skip_fraglist:
3756 nskb->data_len = len - hsize;
3757 nskb->len += nskb->data_len;
3758 nskb->truesize += nskb->data_len;
3759
3760perform_csum_check:
3761 if (!csum) {
3762 if (skb_has_shared_frag(nskb) &&
3763 __skb_linearize(nskb))
3764 goto err;
3765
3766 if (!nskb->remcsum_offload)
3767 nskb->ip_summed = CHECKSUM_NONE;
3768 SKB_GSO_CB(nskb)->csum =
3769 skb_checksum(nskb, doffset,
3770 nskb->len - doffset, 0);
3771 SKB_GSO_CB(nskb)->csum_start =
3772 skb_headroom(nskb) + doffset;
3773 }
3774 } while ((offset += len) < head_skb->len);
3775
3776 /* Some callers want to get the end of the list.
3777 * Put it in segs->prev to avoid walking the list.
3778 * (see validate_xmit_skb_list() for example)
3779 */
3780 segs->prev = tail;
3781
3782 if (partial_segs) {
3783 struct sk_buff *iter;
3784 int type = skb_shinfo(head_skb)->gso_type;
3785 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3786
3787 /* Update type to add partial and then remove dodgy if set */
3788 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3789 type &= ~SKB_GSO_DODGY;
3790
3791 /* Update GSO info and prepare to start updating headers on
3792 * our way back down the stack of protocols.
3793 */
3794 for (iter = segs; iter; iter = iter->next) {
3795 skb_shinfo(iter)->gso_size = gso_size;
3796 skb_shinfo(iter)->gso_segs = partial_segs;
3797 skb_shinfo(iter)->gso_type = type;
3798 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3799 }
3800
3801 if (tail->len - doffset <= gso_size)
3802 skb_shinfo(tail)->gso_size = 0;
3803 else if (tail != segs)
3804 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3805 }
3806
3807 /* Following permits correct backpressure, for protocols
3808 * using skb_set_owner_w().
3809 * Idea is to tranfert ownership from head_skb to last segment.
3810 */
3811 if (head_skb->destructor == sock_wfree) {
3812 swap(tail->truesize, head_skb->truesize);
3813 swap(tail->destructor, head_skb->destructor);
3814 swap(tail->sk, head_skb->sk);
3815 }
3816 return segs;
3817
3818err:
3819 kfree_skb_list(segs);
3820 return ERR_PTR(err);
3821}
3822EXPORT_SYMBOL_GPL(skb_segment);
3823
3824int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3825{
3826 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3827 unsigned int offset = skb_gro_offset(skb);
3828 unsigned int headlen = skb_headlen(skb);
3829 unsigned int len = skb_gro_len(skb);
3830 unsigned int delta_truesize;
3831 struct sk_buff *lp;
3832
3833 if (unlikely(p->len + len >= 65536))
3834 return -E2BIG;
3835
3836 lp = NAPI_GRO_CB(p)->last;
3837 pinfo = skb_shinfo(lp);
3838
3839 if (headlen <= offset) {
3840 skb_frag_t *frag;
3841 skb_frag_t *frag2;
3842 int i = skbinfo->nr_frags;
3843 int nr_frags = pinfo->nr_frags + i;
3844
3845 if (nr_frags > MAX_SKB_FRAGS)
3846 goto merge;
3847
3848 offset -= headlen;
3849 pinfo->nr_frags = nr_frags;
3850 skbinfo->nr_frags = 0;
3851
3852 frag = pinfo->frags + nr_frags;
3853 frag2 = skbinfo->frags + i;
3854 do {
3855 *--frag = *--frag2;
3856 } while (--i);
3857
3858 frag->page_offset += offset;
3859 skb_frag_size_sub(frag, offset);
3860
3861 /* all fragments truesize : remove (head size + sk_buff) */
3862 delta_truesize = skb->truesize -
3863 SKB_TRUESIZE(skb_end_offset(skb));
3864
3865 skb->truesize -= skb->data_len;
3866 skb->len -= skb->data_len;
3867 skb->data_len = 0;
3868
3869 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3870 goto done;
3871 } else if (skb->head_frag) {
3872 int nr_frags = pinfo->nr_frags;
3873 skb_frag_t *frag = pinfo->frags + nr_frags;
3874 struct page *page = virt_to_head_page(skb->head);
3875 unsigned int first_size = headlen - offset;
3876 unsigned int first_offset;
3877
3878 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3879 goto merge;
3880
3881 first_offset = skb->data -
3882 (unsigned char *)page_address(page) +
3883 offset;
3884
3885 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3886
3887 frag->page.p = page;
3888 frag->page_offset = first_offset;
3889 skb_frag_size_set(frag, first_size);
3890
3891 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3892 /* We dont need to clear skbinfo->nr_frags here */
3893
3894 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3895 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3896 goto done;
3897 }
3898
3899merge:
3900 delta_truesize = skb->truesize;
3901 if (offset > headlen) {
3902 unsigned int eat = offset - headlen;
3903
3904 skbinfo->frags[0].page_offset += eat;
3905 skb_frag_size_sub(&skbinfo->frags[0], eat);
3906 skb->data_len -= eat;
3907 skb->len -= eat;
3908 offset = headlen;
3909 }
3910
3911 __skb_pull(skb, offset);
3912
3913 if (NAPI_GRO_CB(p)->last == p)
3914 skb_shinfo(p)->frag_list = skb;
3915 else
3916 NAPI_GRO_CB(p)->last->next = skb;
3917 NAPI_GRO_CB(p)->last = skb;
3918 __skb_header_release(skb);
3919 lp = p;
3920
3921done:
3922 NAPI_GRO_CB(p)->count++;
3923 p->data_len += len;
3924 p->truesize += delta_truesize;
3925 p->len += len;
3926 if (lp != p) {
3927 lp->data_len += len;
3928 lp->truesize += delta_truesize;
3929 lp->len += len;
3930 }
3931 NAPI_GRO_CB(skb)->same_flow = 1;
3932 return 0;
3933}
3934EXPORT_SYMBOL_GPL(skb_gro_receive);
3935
3936void __init skb_init(void)
3937{
3938 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3939 sizeof(struct sk_buff),
3940 0,
3941 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3942 offsetof(struct sk_buff, cb),
3943 sizeof_field(struct sk_buff, cb),
3944 NULL);
3945 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3946 sizeof(struct sk_buff_fclones),
3947 0,
3948 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3949 NULL);
3950}
3951
3952static int
3953__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3954 unsigned int recursion_level)
3955{
3956 int start = skb_headlen(skb);
3957 int i, copy = start - offset;
3958 struct sk_buff *frag_iter;
3959 int elt = 0;
3960
3961 if (unlikely(recursion_level >= 24))
3962 return -EMSGSIZE;
3963
3964 if (copy > 0) {
3965 if (copy > len)
3966 copy = len;
3967 sg_set_buf(sg, skb->data + offset, copy);
3968 elt++;
3969 if ((len -= copy) == 0)
3970 return elt;
3971 offset += copy;
3972 }
3973
3974 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3975 int end;
3976
3977 WARN_ON(start > offset + len);
3978
3979 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3980 if ((copy = end - offset) > 0) {
3981 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3982 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3983 return -EMSGSIZE;
3984
3985 if (copy > len)
3986 copy = len;
3987 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3988 frag->page_offset+offset-start);
3989 elt++;
3990 if (!(len -= copy))
3991 return elt;
3992 offset += copy;
3993 }
3994 start = end;
3995 }
3996
3997 skb_walk_frags(skb, frag_iter) {
3998 int end, ret;
3999
4000 WARN_ON(start > offset + len);
4001
4002 end = start + frag_iter->len;
4003 if ((copy = end - offset) > 0) {
4004 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4005 return -EMSGSIZE;
4006
4007 if (copy > len)
4008 copy = len;
4009 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4010 copy, recursion_level + 1);
4011 if (unlikely(ret < 0))
4012 return ret;
4013 elt += ret;
4014 if ((len -= copy) == 0)
4015 return elt;
4016 offset += copy;
4017 }
4018 start = end;
4019 }
4020 BUG_ON(len);
4021 return elt;
4022}
4023
4024/**
4025 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4026 * @skb: Socket buffer containing the buffers to be mapped
4027 * @sg: The scatter-gather list to map into
4028 * @offset: The offset into the buffer's contents to start mapping
4029 * @len: Length of buffer space to be mapped
4030 *
4031 * Fill the specified scatter-gather list with mappings/pointers into a
4032 * region of the buffer space attached to a socket buffer. Returns either
4033 * the number of scatterlist items used, or -EMSGSIZE if the contents
4034 * could not fit.
4035 */
4036int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4037{
4038 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4039
4040 if (nsg <= 0)
4041 return nsg;
4042
4043 sg_mark_end(&sg[nsg - 1]);
4044
4045 return nsg;
4046}
4047EXPORT_SYMBOL_GPL(skb_to_sgvec);
4048
4049/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4050 * sglist without mark the sg which contain last skb data as the end.
4051 * So the caller can mannipulate sg list as will when padding new data after
4052 * the first call without calling sg_unmark_end to expend sg list.
4053 *
4054 * Scenario to use skb_to_sgvec_nomark:
4055 * 1. sg_init_table
4056 * 2. skb_to_sgvec_nomark(payload1)
4057 * 3. skb_to_sgvec_nomark(payload2)
4058 *
4059 * This is equivalent to:
4060 * 1. sg_init_table
4061 * 2. skb_to_sgvec(payload1)
4062 * 3. sg_unmark_end
4063 * 4. skb_to_sgvec(payload2)
4064 *
4065 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4066 * is more preferable.
4067 */
4068int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4069 int offset, int len)
4070{
4071 return __skb_to_sgvec(skb, sg, offset, len, 0);
4072}
4073EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4074
4075
4076
4077/**
4078 * skb_cow_data - Check that a socket buffer's data buffers are writable
4079 * @skb: The socket buffer to check.
4080 * @tailbits: Amount of trailing space to be added
4081 * @trailer: Returned pointer to the skb where the @tailbits space begins
4082 *
4083 * Make sure that the data buffers attached to a socket buffer are
4084 * writable. If they are not, private copies are made of the data buffers
4085 * and the socket buffer is set to use these instead.
4086 *
4087 * If @tailbits is given, make sure that there is space to write @tailbits
4088 * bytes of data beyond current end of socket buffer. @trailer will be
4089 * set to point to the skb in which this space begins.
4090 *
4091 * The number of scatterlist elements required to completely map the
4092 * COW'd and extended socket buffer will be returned.
4093 */
4094int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4095{
4096 int copyflag;
4097 int elt;
4098 struct sk_buff *skb1, **skb_p;
4099
4100 /* If skb is cloned or its head is paged, reallocate
4101 * head pulling out all the pages (pages are considered not writable
4102 * at the moment even if they are anonymous).
4103 */
4104 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4105 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4106 return -ENOMEM;
4107
4108 /* Easy case. Most of packets will go this way. */
4109 if (!skb_has_frag_list(skb)) {
4110 /* A little of trouble, not enough of space for trailer.
4111 * This should not happen, when stack is tuned to generate
4112 * good frames. OK, on miss we reallocate and reserve even more
4113 * space, 128 bytes is fair. */
4114
4115 if (skb_tailroom(skb) < tailbits &&
4116 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4117 return -ENOMEM;
4118
4119 /* Voila! */
4120 *trailer = skb;
4121 return 1;
4122 }
4123
4124 /* Misery. We are in troubles, going to mincer fragments... */
4125
4126 elt = 1;
4127 skb_p = &skb_shinfo(skb)->frag_list;
4128 copyflag = 0;
4129
4130 while ((skb1 = *skb_p) != NULL) {
4131 int ntail = 0;
4132
4133 /* The fragment is partially pulled by someone,
4134 * this can happen on input. Copy it and everything
4135 * after it. */
4136
4137 if (skb_shared(skb1))
4138 copyflag = 1;
4139
4140 /* If the skb is the last, worry about trailer. */
4141
4142 if (skb1->next == NULL && tailbits) {
4143 if (skb_shinfo(skb1)->nr_frags ||
4144 skb_has_frag_list(skb1) ||
4145 skb_tailroom(skb1) < tailbits)
4146 ntail = tailbits + 128;
4147 }
4148
4149 if (copyflag ||
4150 skb_cloned(skb1) ||
4151 ntail ||
4152 skb_shinfo(skb1)->nr_frags ||
4153 skb_has_frag_list(skb1)) {
4154 struct sk_buff *skb2;
4155
4156 /* Fuck, we are miserable poor guys... */
4157 if (ntail == 0)
4158 skb2 = skb_copy(skb1, GFP_ATOMIC);
4159 else
4160 skb2 = skb_copy_expand(skb1,
4161 skb_headroom(skb1),
4162 ntail,
4163 GFP_ATOMIC);
4164 if (unlikely(skb2 == NULL))
4165 return -ENOMEM;
4166
4167 if (skb1->sk)
4168 skb_set_owner_w(skb2, skb1->sk);
4169
4170 /* Looking around. Are we still alive?
4171 * OK, link new skb, drop old one */
4172
4173 skb2->next = skb1->next;
4174 *skb_p = skb2;
4175 kfree_skb(skb1);
4176 skb1 = skb2;
4177 }
4178 elt++;
4179 *trailer = skb1;
4180 skb_p = &skb1->next;
4181 }
4182
4183 return elt;
4184}
4185EXPORT_SYMBOL_GPL(skb_cow_data);
4186
4187static void sock_rmem_free(struct sk_buff *skb)
4188{
4189 struct sock *sk = skb->sk;
4190
4191 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4192}
4193
4194static void skb_set_err_queue(struct sk_buff *skb)
4195{
4196 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4197 * So, it is safe to (mis)use it to mark skbs on the error queue.
4198 */
4199 skb->pkt_type = PACKET_OUTGOING;
4200 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4201}
4202
4203/*
4204 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4205 */
4206int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4207{
4208 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4209 (unsigned int)sk->sk_rcvbuf)
4210 return -ENOMEM;
4211
4212 skb_orphan(skb);
4213 skb->sk = sk;
4214 skb->destructor = sock_rmem_free;
4215 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4216 skb_set_err_queue(skb);
4217
4218 /* before exiting rcu section, make sure dst is refcounted */
4219 skb_dst_force(skb);
4220
4221 skb_queue_tail(&sk->sk_error_queue, skb);
4222 if (!sock_flag(sk, SOCK_DEAD))
4223 sk->sk_error_report(sk);
4224 return 0;
4225}
4226EXPORT_SYMBOL(sock_queue_err_skb);
4227
4228static bool is_icmp_err_skb(const struct sk_buff *skb)
4229{
4230 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4231 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4232}
4233
4234struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4235{
4236 struct sk_buff_head *q = &sk->sk_error_queue;
4237 struct sk_buff *skb, *skb_next = NULL;
4238 bool icmp_next = false;
4239 unsigned long flags;
4240
4241 spin_lock_irqsave(&q->lock, flags);
4242 skb = __skb_dequeue(q);
4243 if (skb && (skb_next = skb_peek(q))) {
4244 icmp_next = is_icmp_err_skb(skb_next);
4245 if (icmp_next)
4246 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4247 }
4248 spin_unlock_irqrestore(&q->lock, flags);
4249
4250 if (is_icmp_err_skb(skb) && !icmp_next)
4251 sk->sk_err = 0;
4252
4253 if (skb_next)
4254 sk->sk_error_report(sk);
4255
4256 return skb;
4257}
4258EXPORT_SYMBOL(sock_dequeue_err_skb);
4259
4260/**
4261 * skb_clone_sk - create clone of skb, and take reference to socket
4262 * @skb: the skb to clone
4263 *
4264 * This function creates a clone of a buffer that holds a reference on
4265 * sk_refcnt. Buffers created via this function are meant to be
4266 * returned using sock_queue_err_skb, or free via kfree_skb.
4267 *
4268 * When passing buffers allocated with this function to sock_queue_err_skb
4269 * it is necessary to wrap the call with sock_hold/sock_put in order to
4270 * prevent the socket from being released prior to being enqueued on
4271 * the sk_error_queue.
4272 */
4273struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4274{
4275 struct sock *sk = skb->sk;
4276 struct sk_buff *clone;
4277
4278 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4279 return NULL;
4280
4281 clone = skb_clone(skb, GFP_ATOMIC);
4282 if (!clone) {
4283 sock_put(sk);
4284 return NULL;
4285 }
4286
4287 clone->sk = sk;
4288 clone->destructor = sock_efree;
4289
4290 return clone;
4291}
4292EXPORT_SYMBOL(skb_clone_sk);
4293
4294static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4295 struct sock *sk,
4296 int tstype,
4297 bool opt_stats)
4298{
4299 struct sock_exterr_skb *serr;
4300 int err;
4301
4302 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4303
4304 serr = SKB_EXT_ERR(skb);
4305 memset(serr, 0, sizeof(*serr));
4306 serr->ee.ee_errno = ENOMSG;
4307 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4308 serr->ee.ee_info = tstype;
4309 serr->opt_stats = opt_stats;
4310 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4311 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4312 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4313 if (sk->sk_protocol == IPPROTO_TCP &&
4314 sk->sk_type == SOCK_STREAM)
4315 serr->ee.ee_data -= sk->sk_tskey;
4316 }
4317
4318 err = sock_queue_err_skb(sk, skb);
4319
4320 if (err)
4321 kfree_skb(skb);
4322}
4323
4324static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4325{
4326 bool ret;
4327
4328 if (likely(sysctl_tstamp_allow_data || tsonly))
4329 return true;
4330
4331 read_lock_bh(&sk->sk_callback_lock);
4332 ret = sk->sk_socket && sk->sk_socket->file &&
4333 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4334 read_unlock_bh(&sk->sk_callback_lock);
4335 return ret;
4336}
4337
4338void skb_complete_tx_timestamp(struct sk_buff *skb,
4339 struct skb_shared_hwtstamps *hwtstamps)
4340{
4341 struct sock *sk = skb->sk;
4342
4343 if (!skb_may_tx_timestamp(sk, false))
4344 goto err;
4345
4346 /* Take a reference to prevent skb_orphan() from freeing the socket,
4347 * but only if the socket refcount is not zero.
4348 */
4349 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4350 *skb_hwtstamps(skb) = *hwtstamps;
4351 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4352 sock_put(sk);
4353 return;
4354 }
4355
4356err:
4357 kfree_skb(skb);
4358}
4359EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4360
4361void __skb_tstamp_tx(struct sk_buff *orig_skb,
4362 struct skb_shared_hwtstamps *hwtstamps,
4363 struct sock *sk, int tstype)
4364{
4365 struct sk_buff *skb;
4366 bool tsonly, opt_stats = false;
4367
4368 if (!sk)
4369 return;
4370
4371 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4372 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4373 return;
4374
4375 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4376 if (!skb_may_tx_timestamp(sk, tsonly))
4377 return;
4378
4379 if (tsonly) {
4380#ifdef CONFIG_INET
4381 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4382 sk->sk_protocol == IPPROTO_TCP &&
4383 sk->sk_type == SOCK_STREAM) {
4384 skb = tcp_get_timestamping_opt_stats(sk);
4385 opt_stats = true;
4386 } else
4387#endif
4388 skb = alloc_skb(0, GFP_ATOMIC);
4389 } else {
4390 skb = skb_clone(orig_skb, GFP_ATOMIC);
4391 }
4392 if (!skb)
4393 return;
4394
4395 if (tsonly) {
4396 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4397 SKBTX_ANY_TSTAMP;
4398 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4399 }
4400
4401 if (hwtstamps)
4402 *skb_hwtstamps(skb) = *hwtstamps;
4403 else
4404 skb->tstamp = ktime_get_real();
4405
4406 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4407}
4408EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4409
4410void skb_tstamp_tx(struct sk_buff *orig_skb,
4411 struct skb_shared_hwtstamps *hwtstamps)
4412{
4413 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4414 SCM_TSTAMP_SND);
4415}
4416EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4417
4418void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4419{
4420 struct sock *sk = skb->sk;
4421 struct sock_exterr_skb *serr;
4422 int err = 1;
4423
4424 skb->wifi_acked_valid = 1;
4425 skb->wifi_acked = acked;
4426
4427 serr = SKB_EXT_ERR(skb);
4428 memset(serr, 0, sizeof(*serr));
4429 serr->ee.ee_errno = ENOMSG;
4430 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4431
4432 /* Take a reference to prevent skb_orphan() from freeing the socket,
4433 * but only if the socket refcount is not zero.
4434 */
4435 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4436 err = sock_queue_err_skb(sk, skb);
4437 sock_put(sk);
4438 }
4439 if (err)
4440 kfree_skb(skb);
4441}
4442EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4443
4444/**
4445 * skb_partial_csum_set - set up and verify partial csum values for packet
4446 * @skb: the skb to set
4447 * @start: the number of bytes after skb->data to start checksumming.
4448 * @off: the offset from start to place the checksum.
4449 *
4450 * For untrusted partially-checksummed packets, we need to make sure the values
4451 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4452 *
4453 * This function checks and sets those values and skb->ip_summed: if this
4454 * returns false you should drop the packet.
4455 */
4456bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4457{
4458 if (unlikely(start > skb_headlen(skb)) ||
4459 unlikely((int)start + off > skb_headlen(skb) - 2)) {
4460 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4461 start, off, skb_headlen(skb));
4462 return false;
4463 }
4464 skb->ip_summed = CHECKSUM_PARTIAL;
4465 skb->csum_start = skb_headroom(skb) + start;
4466 skb->csum_offset = off;
4467 skb_set_transport_header(skb, start);
4468 return true;
4469}
4470EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4471
4472static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4473 unsigned int max)
4474{
4475 if (skb_headlen(skb) >= len)
4476 return 0;
4477
4478 /* If we need to pullup then pullup to the max, so we
4479 * won't need to do it again.
4480 */
4481 if (max > skb->len)
4482 max = skb->len;
4483
4484 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4485 return -ENOMEM;
4486
4487 if (skb_headlen(skb) < len)
4488 return -EPROTO;
4489
4490 return 0;
4491}
4492
4493#define MAX_TCP_HDR_LEN (15 * 4)
4494
4495static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4496 typeof(IPPROTO_IP) proto,
4497 unsigned int off)
4498{
4499 switch (proto) {
4500 int err;
4501
4502 case IPPROTO_TCP:
4503 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4504 off + MAX_TCP_HDR_LEN);
4505 if (!err && !skb_partial_csum_set(skb, off,
4506 offsetof(struct tcphdr,
4507 check)))
4508 err = -EPROTO;
4509 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4510
4511 case IPPROTO_UDP:
4512 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4513 off + sizeof(struct udphdr));
4514 if (!err && !skb_partial_csum_set(skb, off,
4515 offsetof(struct udphdr,
4516 check)))
4517 err = -EPROTO;
4518 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4519 }
4520
4521 return ERR_PTR(-EPROTO);
4522}
4523
4524/* This value should be large enough to cover a tagged ethernet header plus
4525 * maximally sized IP and TCP or UDP headers.
4526 */
4527#define MAX_IP_HDR_LEN 128
4528
4529static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4530{
4531 unsigned int off;
4532 bool fragment;
4533 __sum16 *csum;
4534 int err;
4535
4536 fragment = false;
4537
4538 err = skb_maybe_pull_tail(skb,
4539 sizeof(struct iphdr),
4540 MAX_IP_HDR_LEN);
4541 if (err < 0)
4542 goto out;
4543
4544 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4545 fragment = true;
4546
4547 off = ip_hdrlen(skb);
4548
4549 err = -EPROTO;
4550
4551 if (fragment)
4552 goto out;
4553
4554 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4555 if (IS_ERR(csum))
4556 return PTR_ERR(csum);
4557
4558 if (recalculate)
4559 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4560 ip_hdr(skb)->daddr,
4561 skb->len - off,
4562 ip_hdr(skb)->protocol, 0);
4563 err = 0;
4564
4565out:
4566 return err;
4567}
4568
4569/* This value should be large enough to cover a tagged ethernet header plus
4570 * an IPv6 header, all options, and a maximal TCP or UDP header.
4571 */
4572#define MAX_IPV6_HDR_LEN 256
4573
4574#define OPT_HDR(type, skb, off) \
4575 (type *)(skb_network_header(skb) + (off))
4576
4577static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4578{
4579 int err;
4580 u8 nexthdr;
4581 unsigned int off;
4582 unsigned int len;
4583 bool fragment;
4584 bool done;
4585 __sum16 *csum;
4586
4587 fragment = false;
4588 done = false;
4589
4590 off = sizeof(struct ipv6hdr);
4591
4592 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4593 if (err < 0)
4594 goto out;
4595
4596 nexthdr = ipv6_hdr(skb)->nexthdr;
4597
4598 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4599 while (off <= len && !done) {
4600 switch (nexthdr) {
4601 case IPPROTO_DSTOPTS:
4602 case IPPROTO_HOPOPTS:
4603 case IPPROTO_ROUTING: {
4604 struct ipv6_opt_hdr *hp;
4605
4606 err = skb_maybe_pull_tail(skb,
4607 off +
4608 sizeof(struct ipv6_opt_hdr),
4609 MAX_IPV6_HDR_LEN);
4610 if (err < 0)
4611 goto out;
4612
4613 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4614 nexthdr = hp->nexthdr;
4615 off += ipv6_optlen(hp);
4616 break;
4617 }
4618 case IPPROTO_AH: {
4619 struct ip_auth_hdr *hp;
4620
4621 err = skb_maybe_pull_tail(skb,
4622 off +
4623 sizeof(struct ip_auth_hdr),
4624 MAX_IPV6_HDR_LEN);
4625 if (err < 0)
4626 goto out;
4627
4628 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4629 nexthdr = hp->nexthdr;
4630 off += ipv6_authlen(hp);
4631 break;
4632 }
4633 case IPPROTO_FRAGMENT: {
4634 struct frag_hdr *hp;
4635
4636 err = skb_maybe_pull_tail(skb,
4637 off +
4638 sizeof(struct frag_hdr),
4639 MAX_IPV6_HDR_LEN);
4640 if (err < 0)
4641 goto out;
4642
4643 hp = OPT_HDR(struct frag_hdr, skb, off);
4644
4645 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4646 fragment = true;
4647
4648 nexthdr = hp->nexthdr;
4649 off += sizeof(struct frag_hdr);
4650 break;
4651 }
4652 default:
4653 done = true;
4654 break;
4655 }
4656 }
4657
4658 err = -EPROTO;
4659
4660 if (!done || fragment)
4661 goto out;
4662
4663 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4664 if (IS_ERR(csum))
4665 return PTR_ERR(csum);
4666
4667 if (recalculate)
4668 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4669 &ipv6_hdr(skb)->daddr,
4670 skb->len - off, nexthdr, 0);
4671 err = 0;
4672
4673out:
4674 return err;
4675}
4676
4677/**
4678 * skb_checksum_setup - set up partial checksum offset
4679 * @skb: the skb to set up
4680 * @recalculate: if true the pseudo-header checksum will be recalculated
4681 */
4682int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4683{
4684 int err;
4685
4686 switch (skb->protocol) {
4687 case htons(ETH_P_IP):
4688 err = skb_checksum_setup_ipv4(skb, recalculate);
4689 break;
4690
4691 case htons(ETH_P_IPV6):
4692 err = skb_checksum_setup_ipv6(skb, recalculate);
4693 break;
4694
4695 default:
4696 err = -EPROTO;
4697 break;
4698 }
4699
4700 return err;
4701}
4702EXPORT_SYMBOL(skb_checksum_setup);
4703
4704/**
4705 * skb_checksum_maybe_trim - maybe trims the given skb
4706 * @skb: the skb to check
4707 * @transport_len: the data length beyond the network header
4708 *
4709 * Checks whether the given skb has data beyond the given transport length.
4710 * If so, returns a cloned skb trimmed to this transport length.
4711 * Otherwise returns the provided skb. Returns NULL in error cases
4712 * (e.g. transport_len exceeds skb length or out-of-memory).
4713 *
4714 * Caller needs to set the skb transport header and free any returned skb if it
4715 * differs from the provided skb.
4716 */
4717static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4718 unsigned int transport_len)
4719{
4720 struct sk_buff *skb_chk;
4721 unsigned int len = skb_transport_offset(skb) + transport_len;
4722 int ret;
4723
4724 if (skb->len < len)
4725 return NULL;
4726 else if (skb->len == len)
4727 return skb;
4728
4729 skb_chk = skb_clone(skb, GFP_ATOMIC);
4730 if (!skb_chk)
4731 return NULL;
4732
4733 ret = pskb_trim_rcsum(skb_chk, len);
4734 if (ret) {
4735 kfree_skb(skb_chk);
4736 return NULL;
4737 }
4738
4739 return skb_chk;
4740}
4741
4742/**
4743 * skb_checksum_trimmed - validate checksum of an skb
4744 * @skb: the skb to check
4745 * @transport_len: the data length beyond the network header
4746 * @skb_chkf: checksum function to use
4747 *
4748 * Applies the given checksum function skb_chkf to the provided skb.
4749 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4750 *
4751 * If the skb has data beyond the given transport length, then a
4752 * trimmed & cloned skb is checked and returned.
4753 *
4754 * Caller needs to set the skb transport header and free any returned skb if it
4755 * differs from the provided skb.
4756 */
4757struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4758 unsigned int transport_len,
4759 __sum16(*skb_chkf)(struct sk_buff *skb))
4760{
4761 struct sk_buff *skb_chk;
4762 unsigned int offset = skb_transport_offset(skb);
4763 __sum16 ret;
4764
4765 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4766 if (!skb_chk)
4767 goto err;
4768
4769 if (!pskb_may_pull(skb_chk, offset))
4770 goto err;
4771
4772 skb_pull_rcsum(skb_chk, offset);
4773 ret = skb_chkf(skb_chk);
4774 skb_push_rcsum(skb_chk, offset);
4775
4776 if (ret)
4777 goto err;
4778
4779 return skb_chk;
4780
4781err:
4782 if (skb_chk && skb_chk != skb)
4783 kfree_skb(skb_chk);
4784
4785 return NULL;
4786
4787}
4788EXPORT_SYMBOL(skb_checksum_trimmed);
4789
4790void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4791{
4792 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4793 skb->dev->name);
4794}
4795EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4796
4797void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4798{
4799 if (head_stolen) {
4800 skb_release_head_state(skb);
4801 kmem_cache_free(skbuff_head_cache, skb);
4802 } else {
4803 __kfree_skb(skb);
4804 }
4805}
4806EXPORT_SYMBOL(kfree_skb_partial);
4807
4808/**
4809 * skb_try_coalesce - try to merge skb to prior one
4810 * @to: prior buffer
4811 * @from: buffer to add
4812 * @fragstolen: pointer to boolean
4813 * @delta_truesize: how much more was allocated than was requested
4814 */
4815bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4816 bool *fragstolen, int *delta_truesize)
4817{
4818 struct skb_shared_info *to_shinfo, *from_shinfo;
4819 int i, delta, len = from->len;
4820
4821 *fragstolen = false;
4822
4823 if (skb_cloned(to))
4824 return false;
4825
4826 if (len <= skb_tailroom(to)) {
4827 if (len)
4828 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4829 *delta_truesize = 0;
4830 return true;
4831 }
4832
4833 to_shinfo = skb_shinfo(to);
4834 from_shinfo = skb_shinfo(from);
4835 if (to_shinfo->frag_list || from_shinfo->frag_list)
4836 return false;
4837 if (skb_zcopy(to) || skb_zcopy(from))
4838 return false;
4839
4840 if (skb_headlen(from) != 0) {
4841 struct page *page;
4842 unsigned int offset;
4843
4844 if (to_shinfo->nr_frags +
4845 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4846 return false;
4847
4848 if (skb_head_is_locked(from))
4849 return false;
4850
4851 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4852
4853 page = virt_to_head_page(from->head);
4854 offset = from->data - (unsigned char *)page_address(page);
4855
4856 skb_fill_page_desc(to, to_shinfo->nr_frags,
4857 page, offset, skb_headlen(from));
4858 *fragstolen = true;
4859 } else {
4860 if (to_shinfo->nr_frags +
4861 from_shinfo->nr_frags > MAX_SKB_FRAGS)
4862 return false;
4863
4864 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4865 }
4866
4867 WARN_ON_ONCE(delta < len);
4868
4869 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4870 from_shinfo->frags,
4871 from_shinfo->nr_frags * sizeof(skb_frag_t));
4872 to_shinfo->nr_frags += from_shinfo->nr_frags;
4873
4874 if (!skb_cloned(from))
4875 from_shinfo->nr_frags = 0;
4876
4877 /* if the skb is not cloned this does nothing
4878 * since we set nr_frags to 0.
4879 */
4880 for (i = 0; i < from_shinfo->nr_frags; i++)
4881 __skb_frag_ref(&from_shinfo->frags[i]);
4882
4883 to->truesize += delta;
4884 to->len += len;
4885 to->data_len += len;
4886
4887 *delta_truesize = delta;
4888 return true;
4889}
4890EXPORT_SYMBOL(skb_try_coalesce);
4891
4892/**
4893 * skb_scrub_packet - scrub an skb
4894 *
4895 * @skb: buffer to clean
4896 * @xnet: packet is crossing netns
4897 *
4898 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4899 * into/from a tunnel. Some information have to be cleared during these
4900 * operations.
4901 * skb_scrub_packet can also be used to clean a skb before injecting it in
4902 * another namespace (@xnet == true). We have to clear all information in the
4903 * skb that could impact namespace isolation.
4904 */
4905void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4906{
4907 skb->pkt_type = PACKET_HOST;
4908 skb->skb_iif = 0;
4909 skb->ignore_df = 0;
4910 skb_dst_drop(skb);
4911 secpath_reset(skb);
4912 nf_reset(skb);
4913 nf_reset_trace(skb);
4914
4915 if (!xnet)
4916 return;
4917
4918 ipvs_reset(skb);
4919 skb->mark = 0;
4920 skb->tstamp = 0;
4921}
4922EXPORT_SYMBOL_GPL(skb_scrub_packet);
4923
4924/**
4925 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4926 *
4927 * @skb: GSO skb
4928 *
4929 * skb_gso_transport_seglen is used to determine the real size of the
4930 * individual segments, including Layer4 headers (TCP/UDP).
4931 *
4932 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4933 */
4934static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4935{
4936 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4937 unsigned int thlen = 0;
4938
4939 if (skb->encapsulation) {
4940 thlen = skb_inner_transport_header(skb) -
4941 skb_transport_header(skb);
4942
4943 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4944 thlen += inner_tcp_hdrlen(skb);
4945 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4946 thlen = tcp_hdrlen(skb);
4947 } else if (unlikely(skb_is_gso_sctp(skb))) {
4948 thlen = sizeof(struct sctphdr);
4949 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4950 thlen = sizeof(struct udphdr);
4951 }
4952 /* UFO sets gso_size to the size of the fragmentation
4953 * payload, i.e. the size of the L4 (UDP) header is already
4954 * accounted for.
4955 */
4956 return thlen + shinfo->gso_size;
4957}
4958
4959/**
4960 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4961 *
4962 * @skb: GSO skb
4963 *
4964 * skb_gso_network_seglen is used to determine the real size of the
4965 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4966 *
4967 * The MAC/L2 header is not accounted for.
4968 */
4969static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4970{
4971 unsigned int hdr_len = skb_transport_header(skb) -
4972 skb_network_header(skb);
4973
4974 return hdr_len + skb_gso_transport_seglen(skb);
4975}
4976
4977/**
4978 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4979 *
4980 * @skb: GSO skb
4981 *
4982 * skb_gso_mac_seglen is used to determine the real size of the
4983 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4984 * headers (TCP/UDP).
4985 */
4986static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4987{
4988 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4989
4990 return hdr_len + skb_gso_transport_seglen(skb);
4991}
4992
4993/**
4994 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4995 *
4996 * There are a couple of instances where we have a GSO skb, and we
4997 * want to determine what size it would be after it is segmented.
4998 *
4999 * We might want to check:
5000 * - L3+L4+payload size (e.g. IP forwarding)
5001 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5002 *
5003 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5004 *
5005 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5006 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5007 *
5008 * @max_len: The maximum permissible length.
5009 *
5010 * Returns true if the segmented length <= max length.
5011 */
5012static inline bool skb_gso_size_check(const struct sk_buff *skb,
5013 unsigned int seg_len,
5014 unsigned int max_len) {
5015 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5016 const struct sk_buff *iter;
5017
5018 if (shinfo->gso_size != GSO_BY_FRAGS)
5019 return seg_len <= max_len;
5020
5021 /* Undo this so we can re-use header sizes */
5022 seg_len -= GSO_BY_FRAGS;
5023
5024 skb_walk_frags(skb, iter) {
5025 if (seg_len + skb_headlen(iter) > max_len)
5026 return false;
5027 }
5028
5029 return true;
5030}
5031
5032/**
5033 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5034 *
5035 * @skb: GSO skb
5036 * @mtu: MTU to validate against
5037 *
5038 * skb_gso_validate_network_len validates if a given skb will fit a
5039 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5040 * payload.
5041 */
5042bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5043{
5044 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5045}
5046EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5047
5048/**
5049 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5050 *
5051 * @skb: GSO skb
5052 * @len: length to validate against
5053 *
5054 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5055 * length once split, including L2, L3 and L4 headers and the payload.
5056 */
5057bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5058{
5059 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5060}
5061EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5062
5063static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5064{
5065 int mac_len;
5066
5067 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5068 kfree_skb(skb);
5069 return NULL;
5070 }
5071
5072 mac_len = skb->data - skb_mac_header(skb);
5073 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5074 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5075 mac_len - VLAN_HLEN - ETH_TLEN);
5076 }
5077 skb->mac_header += VLAN_HLEN;
5078 return skb;
5079}
5080
5081struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5082{
5083 struct vlan_hdr *vhdr;
5084 u16 vlan_tci;
5085
5086 if (unlikely(skb_vlan_tag_present(skb))) {
5087 /* vlan_tci is already set-up so leave this for another time */
5088 return skb;
5089 }
5090
5091 skb = skb_share_check(skb, GFP_ATOMIC);
5092 if (unlikely(!skb))
5093 goto err_free;
5094
5095 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5096 goto err_free;
5097
5098 vhdr = (struct vlan_hdr *)skb->data;
5099 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5100 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5101
5102 skb_pull_rcsum(skb, VLAN_HLEN);
5103 vlan_set_encap_proto(skb, vhdr);
5104
5105 skb = skb_reorder_vlan_header(skb);
5106 if (unlikely(!skb))
5107 goto err_free;
5108
5109 skb_reset_network_header(skb);
5110 skb_reset_transport_header(skb);
5111 skb_reset_mac_len(skb);
5112
5113 return skb;
5114
5115err_free:
5116 kfree_skb(skb);
5117 return NULL;
5118}
5119EXPORT_SYMBOL(skb_vlan_untag);
5120
5121int skb_ensure_writable(struct sk_buff *skb, int write_len)
5122{
5123 if (!pskb_may_pull(skb, write_len))
5124 return -ENOMEM;
5125
5126 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5127 return 0;
5128
5129 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5130}
5131EXPORT_SYMBOL(skb_ensure_writable);
5132
5133/* remove VLAN header from packet and update csum accordingly.
5134 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5135 */
5136int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5137{
5138 struct vlan_hdr *vhdr;
5139 int offset = skb->data - skb_mac_header(skb);
5140 int err;
5141
5142 if (WARN_ONCE(offset,
5143 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5144 offset)) {
5145 return -EINVAL;
5146 }
5147
5148 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5149 if (unlikely(err))
5150 return err;
5151
5152 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5153
5154 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5155 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5156
5157 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5158 __skb_pull(skb, VLAN_HLEN);
5159
5160 vlan_set_encap_proto(skb, vhdr);
5161 skb->mac_header += VLAN_HLEN;
5162
5163 if (skb_network_offset(skb) < ETH_HLEN)
5164 skb_set_network_header(skb, ETH_HLEN);
5165
5166 skb_reset_mac_len(skb);
5167
5168 return err;
5169}
5170EXPORT_SYMBOL(__skb_vlan_pop);
5171
5172/* Pop a vlan tag either from hwaccel or from payload.
5173 * Expects skb->data at mac header.
5174 */
5175int skb_vlan_pop(struct sk_buff *skb)
5176{
5177 u16 vlan_tci;
5178 __be16 vlan_proto;
5179 int err;
5180
5181 if (likely(skb_vlan_tag_present(skb))) {
5182 skb->vlan_tci = 0;
5183 } else {
5184 if (unlikely(!eth_type_vlan(skb->protocol)))
5185 return 0;
5186
5187 err = __skb_vlan_pop(skb, &vlan_tci);
5188 if (err)
5189 return err;
5190 }
5191 /* move next vlan tag to hw accel tag */
5192 if (likely(!eth_type_vlan(skb->protocol)))
5193 return 0;
5194
5195 vlan_proto = skb->protocol;
5196 err = __skb_vlan_pop(skb, &vlan_tci);
5197 if (unlikely(err))
5198 return err;
5199
5200 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5201 return 0;
5202}
5203EXPORT_SYMBOL(skb_vlan_pop);
5204
5205/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5206 * Expects skb->data at mac header.
5207 */
5208int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5209{
5210 if (skb_vlan_tag_present(skb)) {
5211 int offset = skb->data - skb_mac_header(skb);
5212 int err;
5213
5214 if (WARN_ONCE(offset,
5215 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5216 offset)) {
5217 return -EINVAL;
5218 }
5219
5220 err = __vlan_insert_tag(skb, skb->vlan_proto,
5221 skb_vlan_tag_get(skb));
5222 if (err)
5223 return err;
5224
5225 skb->protocol = skb->vlan_proto;
5226 skb->mac_len += VLAN_HLEN;
5227
5228 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5229 }
5230 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5231 return 0;
5232}
5233EXPORT_SYMBOL(skb_vlan_push);
5234
5235/**
5236 * alloc_skb_with_frags - allocate skb with page frags
5237 *
5238 * @header_len: size of linear part
5239 * @data_len: needed length in frags
5240 * @max_page_order: max page order desired.
5241 * @errcode: pointer to error code if any
5242 * @gfp_mask: allocation mask
5243 *
5244 * This can be used to allocate a paged skb, given a maximal order for frags.
5245 */
5246struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5247 unsigned long data_len,
5248 int max_page_order,
5249 int *errcode,
5250 gfp_t gfp_mask)
5251{
5252 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5253 unsigned long chunk;
5254 struct sk_buff *skb;
5255 struct page *page;
5256 gfp_t gfp_head;
5257 int i;
5258
5259 *errcode = -EMSGSIZE;
5260 /* Note this test could be relaxed, if we succeed to allocate
5261 * high order pages...
5262 */
5263 if (npages > MAX_SKB_FRAGS)
5264 return NULL;
5265
5266 gfp_head = gfp_mask;
5267 if (gfp_head & __GFP_DIRECT_RECLAIM)
5268 gfp_head |= __GFP_RETRY_MAYFAIL;
5269
5270 *errcode = -ENOBUFS;
5271 skb = alloc_skb(header_len, gfp_head);
5272 if (!skb)
5273 return NULL;
5274
5275 skb->truesize += npages << PAGE_SHIFT;
5276
5277 for (i = 0; npages > 0; i++) {
5278 int order = max_page_order;
5279
5280 while (order) {
5281 if (npages >= 1 << order) {
5282 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5283 __GFP_COMP |
5284 __GFP_NOWARN,
5285 order);
5286 if (page)
5287 goto fill_page;
5288 /* Do not retry other high order allocations */
5289 order = 1;
5290 max_page_order = 0;
5291 }
5292 order--;
5293 }
5294 page = alloc_page(gfp_mask);
5295 if (!page)
5296 goto failure;
5297fill_page:
5298 chunk = min_t(unsigned long, data_len,
5299 PAGE_SIZE << order);
5300 skb_fill_page_desc(skb, i, page, 0, chunk);
5301 data_len -= chunk;
5302 npages -= 1 << order;
5303 }
5304 return skb;
5305
5306failure:
5307 kfree_skb(skb);
5308 return NULL;
5309}
5310EXPORT_SYMBOL(alloc_skb_with_frags);
5311
5312/* carve out the first off bytes from skb when off < headlen */
5313static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5314 const int headlen, gfp_t gfp_mask)
5315{
5316 int i;
5317 int size = skb_end_offset(skb);
5318 int new_hlen = headlen - off;
5319 u8 *data;
5320
5321 size = SKB_DATA_ALIGN(size);
5322
5323 if (skb_pfmemalloc(skb))
5324 gfp_mask |= __GFP_MEMALLOC;
5325 data = kmalloc_reserve(size +
5326 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5327 gfp_mask, NUMA_NO_NODE, NULL);
5328 if (!data)
5329 return -ENOMEM;
5330
5331 size = SKB_WITH_OVERHEAD(ksize(data));
5332
5333 /* Copy real data, and all frags */
5334 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5335 skb->len -= off;
5336
5337 memcpy((struct skb_shared_info *)(data + size),
5338 skb_shinfo(skb),
5339 offsetof(struct skb_shared_info,
5340 frags[skb_shinfo(skb)->nr_frags]));
5341 if (skb_cloned(skb)) {
5342 /* drop the old head gracefully */
5343 if (skb_orphan_frags(skb, gfp_mask)) {
5344 kfree(data);
5345 return -ENOMEM;
5346 }
5347 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5348 skb_frag_ref(skb, i);
5349 if (skb_has_frag_list(skb))
5350 skb_clone_fraglist(skb);
5351 skb_release_data(skb);
5352 } else {
5353 /* we can reuse existing recount- all we did was
5354 * relocate values
5355 */
5356 skb_free_head(skb);
5357 }
5358
5359 skb->head = data;
5360 skb->data = data;
5361 skb->head_frag = 0;
5362#ifdef NET_SKBUFF_DATA_USES_OFFSET
5363 skb->end = size;
5364#else
5365 skb->end = skb->head + size;
5366#endif
5367 skb_set_tail_pointer(skb, skb_headlen(skb));
5368 skb_headers_offset_update(skb, 0);
5369 skb->cloned = 0;
5370 skb->hdr_len = 0;
5371 skb->nohdr = 0;
5372 atomic_set(&skb_shinfo(skb)->dataref, 1);
5373
5374 return 0;
5375}
5376
5377static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5378
5379/* carve out the first eat bytes from skb's frag_list. May recurse into
5380 * pskb_carve()
5381 */
5382static int pskb_carve_frag_list(struct sk_buff *skb,
5383 struct skb_shared_info *shinfo, int eat,
5384 gfp_t gfp_mask)
5385{
5386 struct sk_buff *list = shinfo->frag_list;
5387 struct sk_buff *clone = NULL;
5388 struct sk_buff *insp = NULL;
5389
5390 do {
5391 if (!list) {
5392 pr_err("Not enough bytes to eat. Want %d\n", eat);
5393 return -EFAULT;
5394 }
5395 if (list->len <= eat) {
5396 /* Eaten as whole. */
5397 eat -= list->len;
5398 list = list->next;
5399 insp = list;
5400 } else {
5401 /* Eaten partially. */
5402 if (skb_shared(list)) {
5403 clone = skb_clone(list, gfp_mask);
5404 if (!clone)
5405 return -ENOMEM;
5406 insp = list->next;
5407 list = clone;
5408 } else {
5409 /* This may be pulled without problems. */
5410 insp = list;
5411 }
5412 if (pskb_carve(list, eat, gfp_mask) < 0) {
5413 kfree_skb(clone);
5414 return -ENOMEM;
5415 }
5416 break;
5417 }
5418 } while (eat);
5419
5420 /* Free pulled out fragments. */
5421 while ((list = shinfo->frag_list) != insp) {
5422 shinfo->frag_list = list->next;
5423 kfree_skb(list);
5424 }
5425 /* And insert new clone at head. */
5426 if (clone) {
5427 clone->next = list;
5428 shinfo->frag_list = clone;
5429 }
5430 return 0;
5431}
5432
5433/* carve off first len bytes from skb. Split line (off) is in the
5434 * non-linear part of skb
5435 */
5436static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5437 int pos, gfp_t gfp_mask)
5438{
5439 int i, k = 0;
5440 int size = skb_end_offset(skb);
5441 u8 *data;
5442 const int nfrags = skb_shinfo(skb)->nr_frags;
5443 struct skb_shared_info *shinfo;
5444
5445 size = SKB_DATA_ALIGN(size);
5446
5447 if (skb_pfmemalloc(skb))
5448 gfp_mask |= __GFP_MEMALLOC;
5449 data = kmalloc_reserve(size +
5450 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5451 gfp_mask, NUMA_NO_NODE, NULL);
5452 if (!data)
5453 return -ENOMEM;
5454
5455 size = SKB_WITH_OVERHEAD(ksize(data));
5456
5457 memcpy((struct skb_shared_info *)(data + size),
5458 skb_shinfo(skb), offsetof(struct skb_shared_info,
5459 frags[skb_shinfo(skb)->nr_frags]));
5460 if (skb_orphan_frags(skb, gfp_mask)) {
5461 kfree(data);
5462 return -ENOMEM;
5463 }
5464 shinfo = (struct skb_shared_info *)(data + size);
5465 for (i = 0; i < nfrags; i++) {
5466 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5467
5468 if (pos + fsize > off) {
5469 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5470
5471 if (pos < off) {
5472 /* Split frag.
5473 * We have two variants in this case:
5474 * 1. Move all the frag to the second
5475 * part, if it is possible. F.e.
5476 * this approach is mandatory for TUX,
5477 * where splitting is expensive.
5478 * 2. Split is accurately. We make this.
5479 */
5480 shinfo->frags[0].page_offset += off - pos;
5481 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5482 }
5483 skb_frag_ref(skb, i);
5484 k++;
5485 }
5486 pos += fsize;
5487 }
5488 shinfo->nr_frags = k;
5489 if (skb_has_frag_list(skb))
5490 skb_clone_fraglist(skb);
5491
5492 if (k == 0) {
5493 /* split line is in frag list */
5494 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5495 }
5496 skb_release_data(skb);
5497
5498 skb->head = data;
5499 skb->head_frag = 0;
5500 skb->data = data;
5501#ifdef NET_SKBUFF_DATA_USES_OFFSET
5502 skb->end = size;
5503#else
5504 skb->end = skb->head + size;
5505#endif
5506 skb_reset_tail_pointer(skb);
5507 skb_headers_offset_update(skb, 0);
5508 skb->cloned = 0;
5509 skb->hdr_len = 0;
5510 skb->nohdr = 0;
5511 skb->len -= off;
5512 skb->data_len = skb->len;
5513 atomic_set(&skb_shinfo(skb)->dataref, 1);
5514 return 0;
5515}
5516
5517/* remove len bytes from the beginning of the skb */
5518static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5519{
5520 int headlen = skb_headlen(skb);
5521
5522 if (len < headlen)
5523 return pskb_carve_inside_header(skb, len, headlen, gfp);
5524 else
5525 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5526}
5527
5528/* Extract to_copy bytes starting at off from skb, and return this in
5529 * a new skb
5530 */
5531struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5532 int to_copy, gfp_t gfp)
5533{
5534 struct sk_buff *clone = skb_clone(skb, gfp);
5535
5536 if (!clone)
5537 return NULL;
5538
5539 if (pskb_carve(clone, off, gfp) < 0 ||
5540 pskb_trim(clone, to_copy)) {
5541 kfree_skb(clone);
5542 return NULL;
5543 }
5544 return clone;
5545}
5546EXPORT_SYMBOL(pskb_extract);
5547
5548/**
5549 * skb_condense - try to get rid of fragments/frag_list if possible
5550 * @skb: buffer
5551 *
5552 * Can be used to save memory before skb is added to a busy queue.
5553 * If packet has bytes in frags and enough tail room in skb->head,
5554 * pull all of them, so that we can free the frags right now and adjust
5555 * truesize.
5556 * Notes:
5557 * We do not reallocate skb->head thus can not fail.
5558 * Caller must re-evaluate skb->truesize if needed.
5559 */
5560void skb_condense(struct sk_buff *skb)
5561{
5562 if (skb->data_len) {
5563 if (skb->data_len > skb->end - skb->tail ||
5564 skb_cloned(skb))
5565 return;
5566
5567 /* Nice, we can free page frag(s) right now */
5568 __pskb_pull_tail(skb, skb->data_len);
5569 }
5570 /* At this point, skb->truesize might be over estimated,
5571 * because skb had a fragment, and fragments do not tell
5572 * their truesize.
5573 * When we pulled its content into skb->head, fragment
5574 * was freed, but __pskb_pull_tail() could not possibly
5575 * adjust skb->truesize, not knowing the frag truesize.
5576 */
5577 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5578}