Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/compiler.h>
26#include <linux/kernel.h>
27#include <linux/kasan.h>
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
33#include <linux/ratelimit.h>
34#include <linux/oom.h>
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/memremap.h>
46#include <linux/stop_machine.h>
47#include <linux/sort.h>
48#include <linux/pfn.h>
49#include <linux/backing-dev.h>
50#include <linux/fault-inject.h>
51#include <linux/page-isolation.h>
52#include <linux/page_ext.h>
53#include <linux/debugobjects.h>
54#include <linux/kmemleak.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <trace/events/oom.h>
58#include <linux/prefetch.h>
59#include <linux/mm_inline.h>
60#include <linux/migrate.h>
61#include <linux/hugetlb.h>
62#include <linux/sched/rt.h>
63#include <linux/sched/mm.h>
64#include <linux/page_owner.h>
65#include <linux/kthread.h>
66#include <linux/memcontrol.h>
67#include <linux/ftrace.h>
68#include <linux/lockdep.h>
69#include <linux/nmi.h>
70
71#include <asm/sections.h>
72#include <asm/tlbflush.h>
73#include <asm/div64.h>
74#include "internal.h"
75
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
78#define MIN_PERCPU_PAGELIST_FRACTION (8)
79
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
88/*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96int _node_numa_mem_[MAX_NUMNODES];
97#endif
98
99/* work_structs for global per-cpu drains */
100DEFINE_MUTEX(pcpu_drain_mutex);
101DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102
103#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104volatile unsigned long latent_entropy __latent_entropy;
105EXPORT_SYMBOL(latent_entropy);
106#endif
107
108/*
109 * Array of node states.
110 */
111nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 [N_POSSIBLE] = NODE_MASK_ALL,
113 [N_ONLINE] = { { [0] = 1UL } },
114#ifndef CONFIG_NUMA
115 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
116#ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY] = { { [0] = 1UL } },
118#endif
119 [N_MEMORY] = { { [0] = 1UL } },
120 [N_CPU] = { { [0] = 1UL } },
121#endif /* NUMA */
122};
123EXPORT_SYMBOL(node_states);
124
125/* Protect totalram_pages and zone->managed_pages */
126static DEFINE_SPINLOCK(managed_page_count_lock);
127
128unsigned long totalram_pages __read_mostly;
129unsigned long totalreserve_pages __read_mostly;
130unsigned long totalcma_pages __read_mostly;
131
132int percpu_pagelist_fraction;
133gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
134
135/*
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
142 */
143static inline int get_pcppage_migratetype(struct page *page)
144{
145 return page->index;
146}
147
148static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149{
150 page->index = migratetype;
151}
152
153#ifdef CONFIG_PM_SLEEP
154/*
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
158 * they should always be called with system_transition_mutex held
159 * (gfp_allowed_mask also should only be modified with system_transition_mutex
160 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
161 * with that modification).
162 */
163
164static gfp_t saved_gfp_mask;
165
166void pm_restore_gfp_mask(void)
167{
168 WARN_ON(!mutex_is_locked(&system_transition_mutex));
169 if (saved_gfp_mask) {
170 gfp_allowed_mask = saved_gfp_mask;
171 saved_gfp_mask = 0;
172 }
173}
174
175void pm_restrict_gfp_mask(void)
176{
177 WARN_ON(!mutex_is_locked(&system_transition_mutex));
178 WARN_ON(saved_gfp_mask);
179 saved_gfp_mask = gfp_allowed_mask;
180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181}
182
183bool pm_suspended_storage(void)
184{
185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 return false;
187 return true;
188}
189#endif /* CONFIG_PM_SLEEP */
190
191#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192unsigned int pageblock_order __read_mostly;
193#endif
194
195static void __free_pages_ok(struct page *page, unsigned int order);
196
197/*
198 * results with 256, 32 in the lowmem_reserve sysctl:
199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200 * 1G machine -> (16M dma, 784M normal, 224M high)
201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204 *
205 * TBD: should special case ZONE_DMA32 machines here - in those we normally
206 * don't need any ZONE_NORMAL reservation
207 */
208int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
209#ifdef CONFIG_ZONE_DMA
210 [ZONE_DMA] = 256,
211#endif
212#ifdef CONFIG_ZONE_DMA32
213 [ZONE_DMA32] = 256,
214#endif
215 [ZONE_NORMAL] = 32,
216#ifdef CONFIG_HIGHMEM
217 [ZONE_HIGHMEM] = 0,
218#endif
219 [ZONE_MOVABLE] = 0,
220};
221
222EXPORT_SYMBOL(totalram_pages);
223
224static char * const zone_names[MAX_NR_ZONES] = {
225#ifdef CONFIG_ZONE_DMA
226 "DMA",
227#endif
228#ifdef CONFIG_ZONE_DMA32
229 "DMA32",
230#endif
231 "Normal",
232#ifdef CONFIG_HIGHMEM
233 "HighMem",
234#endif
235 "Movable",
236#ifdef CONFIG_ZONE_DEVICE
237 "Device",
238#endif
239};
240
241char * const migratetype_names[MIGRATE_TYPES] = {
242 "Unmovable",
243 "Movable",
244 "Reclaimable",
245 "HighAtomic",
246#ifdef CONFIG_CMA
247 "CMA",
248#endif
249#ifdef CONFIG_MEMORY_ISOLATION
250 "Isolate",
251#endif
252};
253
254compound_page_dtor * const compound_page_dtors[] = {
255 NULL,
256 free_compound_page,
257#ifdef CONFIG_HUGETLB_PAGE
258 free_huge_page,
259#endif
260#ifdef CONFIG_TRANSPARENT_HUGEPAGE
261 free_transhuge_page,
262#endif
263};
264
265int min_free_kbytes = 1024;
266int user_min_free_kbytes = -1;
267int watermark_scale_factor = 10;
268
269static unsigned long nr_kernel_pages __meminitdata;
270static unsigned long nr_all_pages __meminitdata;
271static unsigned long dma_reserve __meminitdata;
272
273#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
274static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
276static unsigned long required_kernelcore __initdata;
277static unsigned long required_kernelcore_percent __initdata;
278static unsigned long required_movablecore __initdata;
279static unsigned long required_movablecore_percent __initdata;
280static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
281static bool mirrored_kernelcore __meminitdata;
282
283/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
284int movable_zone;
285EXPORT_SYMBOL(movable_zone);
286#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
287
288#if MAX_NUMNODES > 1
289int nr_node_ids __read_mostly = MAX_NUMNODES;
290int nr_online_nodes __read_mostly = 1;
291EXPORT_SYMBOL(nr_node_ids);
292EXPORT_SYMBOL(nr_online_nodes);
293#endif
294
295int page_group_by_mobility_disabled __read_mostly;
296
297#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
298/* Returns true if the struct page for the pfn is uninitialised */
299static inline bool __meminit early_page_uninitialised(unsigned long pfn)
300{
301 int nid = early_pfn_to_nid(pfn);
302
303 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
304 return true;
305
306 return false;
307}
308
309/*
310 * Returns false when the remaining initialisation should be deferred until
311 * later in the boot cycle when it can be parallelised.
312 */
313static inline bool update_defer_init(pg_data_t *pgdat,
314 unsigned long pfn, unsigned long zone_end,
315 unsigned long *nr_initialised)
316{
317 /* Always populate low zones for address-constrained allocations */
318 if (zone_end < pgdat_end_pfn(pgdat))
319 return true;
320 (*nr_initialised)++;
321 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
322 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
323 pgdat->first_deferred_pfn = pfn;
324 return false;
325 }
326
327 return true;
328}
329#else
330static inline bool early_page_uninitialised(unsigned long pfn)
331{
332 return false;
333}
334
335static inline bool update_defer_init(pg_data_t *pgdat,
336 unsigned long pfn, unsigned long zone_end,
337 unsigned long *nr_initialised)
338{
339 return true;
340}
341#endif
342
343/* Return a pointer to the bitmap storing bits affecting a block of pages */
344static inline unsigned long *get_pageblock_bitmap(struct page *page,
345 unsigned long pfn)
346{
347#ifdef CONFIG_SPARSEMEM
348 return __pfn_to_section(pfn)->pageblock_flags;
349#else
350 return page_zone(page)->pageblock_flags;
351#endif /* CONFIG_SPARSEMEM */
352}
353
354static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
355{
356#ifdef CONFIG_SPARSEMEM
357 pfn &= (PAGES_PER_SECTION-1);
358 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
359#else
360 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
361 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
362#endif /* CONFIG_SPARSEMEM */
363}
364
365/**
366 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
367 * @page: The page within the block of interest
368 * @pfn: The target page frame number
369 * @end_bitidx: The last bit of interest to retrieve
370 * @mask: mask of bits that the caller is interested in
371 *
372 * Return: pageblock_bits flags
373 */
374static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
375 unsigned long pfn,
376 unsigned long end_bitidx,
377 unsigned long mask)
378{
379 unsigned long *bitmap;
380 unsigned long bitidx, word_bitidx;
381 unsigned long word;
382
383 bitmap = get_pageblock_bitmap(page, pfn);
384 bitidx = pfn_to_bitidx(page, pfn);
385 word_bitidx = bitidx / BITS_PER_LONG;
386 bitidx &= (BITS_PER_LONG-1);
387
388 word = bitmap[word_bitidx];
389 bitidx += end_bitidx;
390 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
391}
392
393unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
394 unsigned long end_bitidx,
395 unsigned long mask)
396{
397 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
398}
399
400static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
401{
402 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
403}
404
405/**
406 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
407 * @page: The page within the block of interest
408 * @flags: The flags to set
409 * @pfn: The target page frame number
410 * @end_bitidx: The last bit of interest
411 * @mask: mask of bits that the caller is interested in
412 */
413void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
414 unsigned long pfn,
415 unsigned long end_bitidx,
416 unsigned long mask)
417{
418 unsigned long *bitmap;
419 unsigned long bitidx, word_bitidx;
420 unsigned long old_word, word;
421
422 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
423
424 bitmap = get_pageblock_bitmap(page, pfn);
425 bitidx = pfn_to_bitidx(page, pfn);
426 word_bitidx = bitidx / BITS_PER_LONG;
427 bitidx &= (BITS_PER_LONG-1);
428
429 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
430
431 bitidx += end_bitidx;
432 mask <<= (BITS_PER_LONG - bitidx - 1);
433 flags <<= (BITS_PER_LONG - bitidx - 1);
434
435 word = READ_ONCE(bitmap[word_bitidx]);
436 for (;;) {
437 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
438 if (word == old_word)
439 break;
440 word = old_word;
441 }
442}
443
444void set_pageblock_migratetype(struct page *page, int migratetype)
445{
446 if (unlikely(page_group_by_mobility_disabled &&
447 migratetype < MIGRATE_PCPTYPES))
448 migratetype = MIGRATE_UNMOVABLE;
449
450 set_pageblock_flags_group(page, (unsigned long)migratetype,
451 PB_migrate, PB_migrate_end);
452}
453
454#ifdef CONFIG_DEBUG_VM
455static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
456{
457 int ret = 0;
458 unsigned seq;
459 unsigned long pfn = page_to_pfn(page);
460 unsigned long sp, start_pfn;
461
462 do {
463 seq = zone_span_seqbegin(zone);
464 start_pfn = zone->zone_start_pfn;
465 sp = zone->spanned_pages;
466 if (!zone_spans_pfn(zone, pfn))
467 ret = 1;
468 } while (zone_span_seqretry(zone, seq));
469
470 if (ret)
471 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
472 pfn, zone_to_nid(zone), zone->name,
473 start_pfn, start_pfn + sp);
474
475 return ret;
476}
477
478static int page_is_consistent(struct zone *zone, struct page *page)
479{
480 if (!pfn_valid_within(page_to_pfn(page)))
481 return 0;
482 if (zone != page_zone(page))
483 return 0;
484
485 return 1;
486}
487/*
488 * Temporary debugging check for pages not lying within a given zone.
489 */
490static int __maybe_unused bad_range(struct zone *zone, struct page *page)
491{
492 if (page_outside_zone_boundaries(zone, page))
493 return 1;
494 if (!page_is_consistent(zone, page))
495 return 1;
496
497 return 0;
498}
499#else
500static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
501{
502 return 0;
503}
504#endif
505
506static void bad_page(struct page *page, const char *reason,
507 unsigned long bad_flags)
508{
509 static unsigned long resume;
510 static unsigned long nr_shown;
511 static unsigned long nr_unshown;
512
513 /*
514 * Allow a burst of 60 reports, then keep quiet for that minute;
515 * or allow a steady drip of one report per second.
516 */
517 if (nr_shown == 60) {
518 if (time_before(jiffies, resume)) {
519 nr_unshown++;
520 goto out;
521 }
522 if (nr_unshown) {
523 pr_alert(
524 "BUG: Bad page state: %lu messages suppressed\n",
525 nr_unshown);
526 nr_unshown = 0;
527 }
528 nr_shown = 0;
529 }
530 if (nr_shown++ == 0)
531 resume = jiffies + 60 * HZ;
532
533 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
534 current->comm, page_to_pfn(page));
535 __dump_page(page, reason);
536 bad_flags &= page->flags;
537 if (bad_flags)
538 pr_alert("bad because of flags: %#lx(%pGp)\n",
539 bad_flags, &bad_flags);
540 dump_page_owner(page);
541
542 print_modules();
543 dump_stack();
544out:
545 /* Leave bad fields for debug, except PageBuddy could make trouble */
546 page_mapcount_reset(page); /* remove PageBuddy */
547 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548}
549
550/*
551 * Higher-order pages are called "compound pages". They are structured thusly:
552 *
553 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
554 *
555 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
556 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
557 *
558 * The first tail page's ->compound_dtor holds the offset in array of compound
559 * page destructors. See compound_page_dtors.
560 *
561 * The first tail page's ->compound_order holds the order of allocation.
562 * This usage means that zero-order pages may not be compound.
563 */
564
565void free_compound_page(struct page *page)
566{
567 __free_pages_ok(page, compound_order(page));
568}
569
570void prep_compound_page(struct page *page, unsigned int order)
571{
572 int i;
573 int nr_pages = 1 << order;
574
575 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
576 set_compound_order(page, order);
577 __SetPageHead(page);
578 for (i = 1; i < nr_pages; i++) {
579 struct page *p = page + i;
580 set_page_count(p, 0);
581 p->mapping = TAIL_MAPPING;
582 set_compound_head(p, page);
583 }
584 atomic_set(compound_mapcount_ptr(page), -1);
585}
586
587#ifdef CONFIG_DEBUG_PAGEALLOC
588unsigned int _debug_guardpage_minorder;
589bool _debug_pagealloc_enabled __read_mostly
590 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
591EXPORT_SYMBOL(_debug_pagealloc_enabled);
592bool _debug_guardpage_enabled __read_mostly;
593
594static int __init early_debug_pagealloc(char *buf)
595{
596 if (!buf)
597 return -EINVAL;
598 return kstrtobool(buf, &_debug_pagealloc_enabled);
599}
600early_param("debug_pagealloc", early_debug_pagealloc);
601
602static bool need_debug_guardpage(void)
603{
604 /* If we don't use debug_pagealloc, we don't need guard page */
605 if (!debug_pagealloc_enabled())
606 return false;
607
608 if (!debug_guardpage_minorder())
609 return false;
610
611 return true;
612}
613
614static void init_debug_guardpage(void)
615{
616 if (!debug_pagealloc_enabled())
617 return;
618
619 if (!debug_guardpage_minorder())
620 return;
621
622 _debug_guardpage_enabled = true;
623}
624
625struct page_ext_operations debug_guardpage_ops = {
626 .need = need_debug_guardpage,
627 .init = init_debug_guardpage,
628};
629
630static int __init debug_guardpage_minorder_setup(char *buf)
631{
632 unsigned long res;
633
634 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
635 pr_err("Bad debug_guardpage_minorder value\n");
636 return 0;
637 }
638 _debug_guardpage_minorder = res;
639 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
640 return 0;
641}
642early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
643
644static inline bool set_page_guard(struct zone *zone, struct page *page,
645 unsigned int order, int migratetype)
646{
647 struct page_ext *page_ext;
648
649 if (!debug_guardpage_enabled())
650 return false;
651
652 if (order >= debug_guardpage_minorder())
653 return false;
654
655 page_ext = lookup_page_ext(page);
656 if (unlikely(!page_ext))
657 return false;
658
659 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
660
661 INIT_LIST_HEAD(&page->lru);
662 set_page_private(page, order);
663 /* Guard pages are not available for any usage */
664 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
665
666 return true;
667}
668
669static inline void clear_page_guard(struct zone *zone, struct page *page,
670 unsigned int order, int migratetype)
671{
672 struct page_ext *page_ext;
673
674 if (!debug_guardpage_enabled())
675 return;
676
677 page_ext = lookup_page_ext(page);
678 if (unlikely(!page_ext))
679 return;
680
681 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
682
683 set_page_private(page, 0);
684 if (!is_migrate_isolate(migratetype))
685 __mod_zone_freepage_state(zone, (1 << order), migratetype);
686}
687#else
688struct page_ext_operations debug_guardpage_ops;
689static inline bool set_page_guard(struct zone *zone, struct page *page,
690 unsigned int order, int migratetype) { return false; }
691static inline void clear_page_guard(struct zone *zone, struct page *page,
692 unsigned int order, int migratetype) {}
693#endif
694
695static inline void set_page_order(struct page *page, unsigned int order)
696{
697 set_page_private(page, order);
698 __SetPageBuddy(page);
699}
700
701static inline void rmv_page_order(struct page *page)
702{
703 __ClearPageBuddy(page);
704 set_page_private(page, 0);
705}
706
707/*
708 * This function checks whether a page is free && is the buddy
709 * we can coalesce a page and its buddy if
710 * (a) the buddy is not in a hole (check before calling!) &&
711 * (b) the buddy is in the buddy system &&
712 * (c) a page and its buddy have the same order &&
713 * (d) a page and its buddy are in the same zone.
714 *
715 * For recording whether a page is in the buddy system, we set PageBuddy.
716 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
717 *
718 * For recording page's order, we use page_private(page).
719 */
720static inline int page_is_buddy(struct page *page, struct page *buddy,
721 unsigned int order)
722{
723 if (page_is_guard(buddy) && page_order(buddy) == order) {
724 if (page_zone_id(page) != page_zone_id(buddy))
725 return 0;
726
727 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
728
729 return 1;
730 }
731
732 if (PageBuddy(buddy) && page_order(buddy) == order) {
733 /*
734 * zone check is done late to avoid uselessly
735 * calculating zone/node ids for pages that could
736 * never merge.
737 */
738 if (page_zone_id(page) != page_zone_id(buddy))
739 return 0;
740
741 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
742
743 return 1;
744 }
745 return 0;
746}
747
748/*
749 * Freeing function for a buddy system allocator.
750 *
751 * The concept of a buddy system is to maintain direct-mapped table
752 * (containing bit values) for memory blocks of various "orders".
753 * The bottom level table contains the map for the smallest allocatable
754 * units of memory (here, pages), and each level above it describes
755 * pairs of units from the levels below, hence, "buddies".
756 * At a high level, all that happens here is marking the table entry
757 * at the bottom level available, and propagating the changes upward
758 * as necessary, plus some accounting needed to play nicely with other
759 * parts of the VM system.
760 * At each level, we keep a list of pages, which are heads of continuous
761 * free pages of length of (1 << order) and marked with PageBuddy.
762 * Page's order is recorded in page_private(page) field.
763 * So when we are allocating or freeing one, we can derive the state of the
764 * other. That is, if we allocate a small block, and both were
765 * free, the remainder of the region must be split into blocks.
766 * If a block is freed, and its buddy is also free, then this
767 * triggers coalescing into a block of larger size.
768 *
769 * -- nyc
770 */
771
772static inline void __free_one_page(struct page *page,
773 unsigned long pfn,
774 struct zone *zone, unsigned int order,
775 int migratetype)
776{
777 unsigned long combined_pfn;
778 unsigned long uninitialized_var(buddy_pfn);
779 struct page *buddy;
780 unsigned int max_order;
781
782 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
783
784 VM_BUG_ON(!zone_is_initialized(zone));
785 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
786
787 VM_BUG_ON(migratetype == -1);
788 if (likely(!is_migrate_isolate(migratetype)))
789 __mod_zone_freepage_state(zone, 1 << order, migratetype);
790
791 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
792 VM_BUG_ON_PAGE(bad_range(zone, page), page);
793
794continue_merging:
795 while (order < max_order - 1) {
796 buddy_pfn = __find_buddy_pfn(pfn, order);
797 buddy = page + (buddy_pfn - pfn);
798
799 if (!pfn_valid_within(buddy_pfn))
800 goto done_merging;
801 if (!page_is_buddy(page, buddy, order))
802 goto done_merging;
803 /*
804 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
805 * merge with it and move up one order.
806 */
807 if (page_is_guard(buddy)) {
808 clear_page_guard(zone, buddy, order, migratetype);
809 } else {
810 list_del(&buddy->lru);
811 zone->free_area[order].nr_free--;
812 rmv_page_order(buddy);
813 }
814 combined_pfn = buddy_pfn & pfn;
815 page = page + (combined_pfn - pfn);
816 pfn = combined_pfn;
817 order++;
818 }
819 if (max_order < MAX_ORDER) {
820 /* If we are here, it means order is >= pageblock_order.
821 * We want to prevent merge between freepages on isolate
822 * pageblock and normal pageblock. Without this, pageblock
823 * isolation could cause incorrect freepage or CMA accounting.
824 *
825 * We don't want to hit this code for the more frequent
826 * low-order merging.
827 */
828 if (unlikely(has_isolate_pageblock(zone))) {
829 int buddy_mt;
830
831 buddy_pfn = __find_buddy_pfn(pfn, order);
832 buddy = page + (buddy_pfn - pfn);
833 buddy_mt = get_pageblock_migratetype(buddy);
834
835 if (migratetype != buddy_mt
836 && (is_migrate_isolate(migratetype) ||
837 is_migrate_isolate(buddy_mt)))
838 goto done_merging;
839 }
840 max_order++;
841 goto continue_merging;
842 }
843
844done_merging:
845 set_page_order(page, order);
846
847 /*
848 * If this is not the largest possible page, check if the buddy
849 * of the next-highest order is free. If it is, it's possible
850 * that pages are being freed that will coalesce soon. In case,
851 * that is happening, add the free page to the tail of the list
852 * so it's less likely to be used soon and more likely to be merged
853 * as a higher order page
854 */
855 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
856 struct page *higher_page, *higher_buddy;
857 combined_pfn = buddy_pfn & pfn;
858 higher_page = page + (combined_pfn - pfn);
859 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
860 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
861 if (pfn_valid_within(buddy_pfn) &&
862 page_is_buddy(higher_page, higher_buddy, order + 1)) {
863 list_add_tail(&page->lru,
864 &zone->free_area[order].free_list[migratetype]);
865 goto out;
866 }
867 }
868
869 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
870out:
871 zone->free_area[order].nr_free++;
872}
873
874/*
875 * A bad page could be due to a number of fields. Instead of multiple branches,
876 * try and check multiple fields with one check. The caller must do a detailed
877 * check if necessary.
878 */
879static inline bool page_expected_state(struct page *page,
880 unsigned long check_flags)
881{
882 if (unlikely(atomic_read(&page->_mapcount) != -1))
883 return false;
884
885 if (unlikely((unsigned long)page->mapping |
886 page_ref_count(page) |
887#ifdef CONFIG_MEMCG
888 (unsigned long)page->mem_cgroup |
889#endif
890 (page->flags & check_flags)))
891 return false;
892
893 return true;
894}
895
896static void free_pages_check_bad(struct page *page)
897{
898 const char *bad_reason;
899 unsigned long bad_flags;
900
901 bad_reason = NULL;
902 bad_flags = 0;
903
904 if (unlikely(atomic_read(&page->_mapcount) != -1))
905 bad_reason = "nonzero mapcount";
906 if (unlikely(page->mapping != NULL))
907 bad_reason = "non-NULL mapping";
908 if (unlikely(page_ref_count(page) != 0))
909 bad_reason = "nonzero _refcount";
910 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
911 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
912 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
913 }
914#ifdef CONFIG_MEMCG
915 if (unlikely(page->mem_cgroup))
916 bad_reason = "page still charged to cgroup";
917#endif
918 bad_page(page, bad_reason, bad_flags);
919}
920
921static inline int free_pages_check(struct page *page)
922{
923 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
924 return 0;
925
926 /* Something has gone sideways, find it */
927 free_pages_check_bad(page);
928 return 1;
929}
930
931static int free_tail_pages_check(struct page *head_page, struct page *page)
932{
933 int ret = 1;
934
935 /*
936 * We rely page->lru.next never has bit 0 set, unless the page
937 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
938 */
939 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
940
941 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
942 ret = 0;
943 goto out;
944 }
945 switch (page - head_page) {
946 case 1:
947 /* the first tail page: ->mapping may be compound_mapcount() */
948 if (unlikely(compound_mapcount(page))) {
949 bad_page(page, "nonzero compound_mapcount", 0);
950 goto out;
951 }
952 break;
953 case 2:
954 /*
955 * the second tail page: ->mapping is
956 * deferred_list.next -- ignore value.
957 */
958 break;
959 default:
960 if (page->mapping != TAIL_MAPPING) {
961 bad_page(page, "corrupted mapping in tail page", 0);
962 goto out;
963 }
964 break;
965 }
966 if (unlikely(!PageTail(page))) {
967 bad_page(page, "PageTail not set", 0);
968 goto out;
969 }
970 if (unlikely(compound_head(page) != head_page)) {
971 bad_page(page, "compound_head not consistent", 0);
972 goto out;
973 }
974 ret = 0;
975out:
976 page->mapping = NULL;
977 clear_compound_head(page);
978 return ret;
979}
980
981static __always_inline bool free_pages_prepare(struct page *page,
982 unsigned int order, bool check_free)
983{
984 int bad = 0;
985
986 VM_BUG_ON_PAGE(PageTail(page), page);
987
988 trace_mm_page_free(page, order);
989
990 /*
991 * Check tail pages before head page information is cleared to
992 * avoid checking PageCompound for order-0 pages.
993 */
994 if (unlikely(order)) {
995 bool compound = PageCompound(page);
996 int i;
997
998 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
999
1000 if (compound)
1001 ClearPageDoubleMap(page);
1002 for (i = 1; i < (1 << order); i++) {
1003 if (compound)
1004 bad += free_tail_pages_check(page, page + i);
1005 if (unlikely(free_pages_check(page + i))) {
1006 bad++;
1007 continue;
1008 }
1009 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1010 }
1011 }
1012 if (PageMappingFlags(page))
1013 page->mapping = NULL;
1014 if (memcg_kmem_enabled() && PageKmemcg(page))
1015 memcg_kmem_uncharge(page, order);
1016 if (check_free)
1017 bad += free_pages_check(page);
1018 if (bad)
1019 return false;
1020
1021 page_cpupid_reset_last(page);
1022 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 reset_page_owner(page, order);
1024
1025 if (!PageHighMem(page)) {
1026 debug_check_no_locks_freed(page_address(page),
1027 PAGE_SIZE << order);
1028 debug_check_no_obj_freed(page_address(page),
1029 PAGE_SIZE << order);
1030 }
1031 arch_free_page(page, order);
1032 kernel_poison_pages(page, 1 << order, 0);
1033 kernel_map_pages(page, 1 << order, 0);
1034 kasan_free_pages(page, order);
1035
1036 return true;
1037}
1038
1039#ifdef CONFIG_DEBUG_VM
1040static inline bool free_pcp_prepare(struct page *page)
1041{
1042 return free_pages_prepare(page, 0, true);
1043}
1044
1045static inline bool bulkfree_pcp_prepare(struct page *page)
1046{
1047 return false;
1048}
1049#else
1050static bool free_pcp_prepare(struct page *page)
1051{
1052 return free_pages_prepare(page, 0, false);
1053}
1054
1055static bool bulkfree_pcp_prepare(struct page *page)
1056{
1057 return free_pages_check(page);
1058}
1059#endif /* CONFIG_DEBUG_VM */
1060
1061static inline void prefetch_buddy(struct page *page)
1062{
1063 unsigned long pfn = page_to_pfn(page);
1064 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1065 struct page *buddy = page + (buddy_pfn - pfn);
1066
1067 prefetch(buddy);
1068}
1069
1070/*
1071 * Frees a number of pages from the PCP lists
1072 * Assumes all pages on list are in same zone, and of same order.
1073 * count is the number of pages to free.
1074 *
1075 * If the zone was previously in an "all pages pinned" state then look to
1076 * see if this freeing clears that state.
1077 *
1078 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1079 * pinned" detection logic.
1080 */
1081static void free_pcppages_bulk(struct zone *zone, int count,
1082 struct per_cpu_pages *pcp)
1083{
1084 int migratetype = 0;
1085 int batch_free = 0;
1086 int prefetch_nr = 0;
1087 bool isolated_pageblocks;
1088 struct page *page, *tmp;
1089 LIST_HEAD(head);
1090
1091 while (count) {
1092 struct list_head *list;
1093
1094 /*
1095 * Remove pages from lists in a round-robin fashion. A
1096 * batch_free count is maintained that is incremented when an
1097 * empty list is encountered. This is so more pages are freed
1098 * off fuller lists instead of spinning excessively around empty
1099 * lists
1100 */
1101 do {
1102 batch_free++;
1103 if (++migratetype == MIGRATE_PCPTYPES)
1104 migratetype = 0;
1105 list = &pcp->lists[migratetype];
1106 } while (list_empty(list));
1107
1108 /* This is the only non-empty list. Free them all. */
1109 if (batch_free == MIGRATE_PCPTYPES)
1110 batch_free = count;
1111
1112 do {
1113 page = list_last_entry(list, struct page, lru);
1114 /* must delete to avoid corrupting pcp list */
1115 list_del(&page->lru);
1116 pcp->count--;
1117
1118 if (bulkfree_pcp_prepare(page))
1119 continue;
1120
1121 list_add_tail(&page->lru, &head);
1122
1123 /*
1124 * We are going to put the page back to the global
1125 * pool, prefetch its buddy to speed up later access
1126 * under zone->lock. It is believed the overhead of
1127 * an additional test and calculating buddy_pfn here
1128 * can be offset by reduced memory latency later. To
1129 * avoid excessive prefetching due to large count, only
1130 * prefetch buddy for the first pcp->batch nr of pages.
1131 */
1132 if (prefetch_nr++ < pcp->batch)
1133 prefetch_buddy(page);
1134 } while (--count && --batch_free && !list_empty(list));
1135 }
1136
1137 spin_lock(&zone->lock);
1138 isolated_pageblocks = has_isolate_pageblock(zone);
1139
1140 /*
1141 * Use safe version since after __free_one_page(),
1142 * page->lru.next will not point to original list.
1143 */
1144 list_for_each_entry_safe(page, tmp, &head, lru) {
1145 int mt = get_pcppage_migratetype(page);
1146 /* MIGRATE_ISOLATE page should not go to pcplists */
1147 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1148 /* Pageblock could have been isolated meanwhile */
1149 if (unlikely(isolated_pageblocks))
1150 mt = get_pageblock_migratetype(page);
1151
1152 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1153 trace_mm_page_pcpu_drain(page, 0, mt);
1154 }
1155 spin_unlock(&zone->lock);
1156}
1157
1158static void free_one_page(struct zone *zone,
1159 struct page *page, unsigned long pfn,
1160 unsigned int order,
1161 int migratetype)
1162{
1163 spin_lock(&zone->lock);
1164 if (unlikely(has_isolate_pageblock(zone) ||
1165 is_migrate_isolate(migratetype))) {
1166 migratetype = get_pfnblock_migratetype(page, pfn);
1167 }
1168 __free_one_page(page, pfn, zone, order, migratetype);
1169 spin_unlock(&zone->lock);
1170}
1171
1172static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1173 unsigned long zone, int nid)
1174{
1175 mm_zero_struct_page(page);
1176 set_page_links(page, zone, nid, pfn);
1177 init_page_count(page);
1178 page_mapcount_reset(page);
1179 page_cpupid_reset_last(page);
1180
1181 INIT_LIST_HEAD(&page->lru);
1182#ifdef WANT_PAGE_VIRTUAL
1183 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1184 if (!is_highmem_idx(zone))
1185 set_page_address(page, __va(pfn << PAGE_SHIFT));
1186#endif
1187}
1188
1189#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1190static void __meminit init_reserved_page(unsigned long pfn)
1191{
1192 pg_data_t *pgdat;
1193 int nid, zid;
1194
1195 if (!early_page_uninitialised(pfn))
1196 return;
1197
1198 nid = early_pfn_to_nid(pfn);
1199 pgdat = NODE_DATA(nid);
1200
1201 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1202 struct zone *zone = &pgdat->node_zones[zid];
1203
1204 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1205 break;
1206 }
1207 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1208}
1209#else
1210static inline void init_reserved_page(unsigned long pfn)
1211{
1212}
1213#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1214
1215/*
1216 * Initialised pages do not have PageReserved set. This function is
1217 * called for each range allocated by the bootmem allocator and
1218 * marks the pages PageReserved. The remaining valid pages are later
1219 * sent to the buddy page allocator.
1220 */
1221void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1222{
1223 unsigned long start_pfn = PFN_DOWN(start);
1224 unsigned long end_pfn = PFN_UP(end);
1225
1226 for (; start_pfn < end_pfn; start_pfn++) {
1227 if (pfn_valid(start_pfn)) {
1228 struct page *page = pfn_to_page(start_pfn);
1229
1230 init_reserved_page(start_pfn);
1231
1232 /* Avoid false-positive PageTail() */
1233 INIT_LIST_HEAD(&page->lru);
1234
1235 SetPageReserved(page);
1236 }
1237 }
1238}
1239
1240static void __free_pages_ok(struct page *page, unsigned int order)
1241{
1242 unsigned long flags;
1243 int migratetype;
1244 unsigned long pfn = page_to_pfn(page);
1245
1246 if (!free_pages_prepare(page, order, true))
1247 return;
1248
1249 migratetype = get_pfnblock_migratetype(page, pfn);
1250 local_irq_save(flags);
1251 __count_vm_events(PGFREE, 1 << order);
1252 free_one_page(page_zone(page), page, pfn, order, migratetype);
1253 local_irq_restore(flags);
1254}
1255
1256static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1257{
1258 unsigned int nr_pages = 1 << order;
1259 struct page *p = page;
1260 unsigned int loop;
1261
1262 prefetchw(p);
1263 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1264 prefetchw(p + 1);
1265 __ClearPageReserved(p);
1266 set_page_count(p, 0);
1267 }
1268 __ClearPageReserved(p);
1269 set_page_count(p, 0);
1270
1271 page_zone(page)->managed_pages += nr_pages;
1272 set_page_refcounted(page);
1273 __free_pages(page, order);
1274}
1275
1276#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1277 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1278
1279static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1280
1281int __meminit early_pfn_to_nid(unsigned long pfn)
1282{
1283 static DEFINE_SPINLOCK(early_pfn_lock);
1284 int nid;
1285
1286 spin_lock(&early_pfn_lock);
1287 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1288 if (nid < 0)
1289 nid = first_online_node;
1290 spin_unlock(&early_pfn_lock);
1291
1292 return nid;
1293}
1294#endif
1295
1296#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1297static inline bool __meminit __maybe_unused
1298meminit_pfn_in_nid(unsigned long pfn, int node,
1299 struct mminit_pfnnid_cache *state)
1300{
1301 int nid;
1302
1303 nid = __early_pfn_to_nid(pfn, state);
1304 if (nid >= 0 && nid != node)
1305 return false;
1306 return true;
1307}
1308
1309/* Only safe to use early in boot when initialisation is single-threaded */
1310static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1311{
1312 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1313}
1314
1315#else
1316
1317static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1318{
1319 return true;
1320}
1321static inline bool __meminit __maybe_unused
1322meminit_pfn_in_nid(unsigned long pfn, int node,
1323 struct mminit_pfnnid_cache *state)
1324{
1325 return true;
1326}
1327#endif
1328
1329
1330void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1331 unsigned int order)
1332{
1333 if (early_page_uninitialised(pfn))
1334 return;
1335 return __free_pages_boot_core(page, order);
1336}
1337
1338/*
1339 * Check that the whole (or subset of) a pageblock given by the interval of
1340 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1341 * with the migration of free compaction scanner. The scanners then need to
1342 * use only pfn_valid_within() check for arches that allow holes within
1343 * pageblocks.
1344 *
1345 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1346 *
1347 * It's possible on some configurations to have a setup like node0 node1 node0
1348 * i.e. it's possible that all pages within a zones range of pages do not
1349 * belong to a single zone. We assume that a border between node0 and node1
1350 * can occur within a single pageblock, but not a node0 node1 node0
1351 * interleaving within a single pageblock. It is therefore sufficient to check
1352 * the first and last page of a pageblock and avoid checking each individual
1353 * page in a pageblock.
1354 */
1355struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1356 unsigned long end_pfn, struct zone *zone)
1357{
1358 struct page *start_page;
1359 struct page *end_page;
1360
1361 /* end_pfn is one past the range we are checking */
1362 end_pfn--;
1363
1364 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1365 return NULL;
1366
1367 start_page = pfn_to_online_page(start_pfn);
1368 if (!start_page)
1369 return NULL;
1370
1371 if (page_zone(start_page) != zone)
1372 return NULL;
1373
1374 end_page = pfn_to_page(end_pfn);
1375
1376 /* This gives a shorter code than deriving page_zone(end_page) */
1377 if (page_zone_id(start_page) != page_zone_id(end_page))
1378 return NULL;
1379
1380 return start_page;
1381}
1382
1383void set_zone_contiguous(struct zone *zone)
1384{
1385 unsigned long block_start_pfn = zone->zone_start_pfn;
1386 unsigned long block_end_pfn;
1387
1388 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1389 for (; block_start_pfn < zone_end_pfn(zone);
1390 block_start_pfn = block_end_pfn,
1391 block_end_pfn += pageblock_nr_pages) {
1392
1393 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1394
1395 if (!__pageblock_pfn_to_page(block_start_pfn,
1396 block_end_pfn, zone))
1397 return;
1398 }
1399
1400 /* We confirm that there is no hole */
1401 zone->contiguous = true;
1402}
1403
1404void clear_zone_contiguous(struct zone *zone)
1405{
1406 zone->contiguous = false;
1407}
1408
1409#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1410static void __init deferred_free_range(unsigned long pfn,
1411 unsigned long nr_pages)
1412{
1413 struct page *page;
1414 unsigned long i;
1415
1416 if (!nr_pages)
1417 return;
1418
1419 page = pfn_to_page(pfn);
1420
1421 /* Free a large naturally-aligned chunk if possible */
1422 if (nr_pages == pageblock_nr_pages &&
1423 (pfn & (pageblock_nr_pages - 1)) == 0) {
1424 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1425 __free_pages_boot_core(page, pageblock_order);
1426 return;
1427 }
1428
1429 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1430 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1431 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1432 __free_pages_boot_core(page, 0);
1433 }
1434}
1435
1436/* Completion tracking for deferred_init_memmap() threads */
1437static atomic_t pgdat_init_n_undone __initdata;
1438static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1439
1440static inline void __init pgdat_init_report_one_done(void)
1441{
1442 if (atomic_dec_and_test(&pgdat_init_n_undone))
1443 complete(&pgdat_init_all_done_comp);
1444}
1445
1446/*
1447 * Returns true if page needs to be initialized or freed to buddy allocator.
1448 *
1449 * First we check if pfn is valid on architectures where it is possible to have
1450 * holes within pageblock_nr_pages. On systems where it is not possible, this
1451 * function is optimized out.
1452 *
1453 * Then, we check if a current large page is valid by only checking the validity
1454 * of the head pfn.
1455 *
1456 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1457 * within a node: a pfn is between start and end of a node, but does not belong
1458 * to this memory node.
1459 */
1460static inline bool __init
1461deferred_pfn_valid(int nid, unsigned long pfn,
1462 struct mminit_pfnnid_cache *nid_init_state)
1463{
1464 if (!pfn_valid_within(pfn))
1465 return false;
1466 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1467 return false;
1468 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1469 return false;
1470 return true;
1471}
1472
1473/*
1474 * Free pages to buddy allocator. Try to free aligned pages in
1475 * pageblock_nr_pages sizes.
1476 */
1477static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1478 unsigned long end_pfn)
1479{
1480 struct mminit_pfnnid_cache nid_init_state = { };
1481 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1482 unsigned long nr_free = 0;
1483
1484 for (; pfn < end_pfn; pfn++) {
1485 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1486 deferred_free_range(pfn - nr_free, nr_free);
1487 nr_free = 0;
1488 } else if (!(pfn & nr_pgmask)) {
1489 deferred_free_range(pfn - nr_free, nr_free);
1490 nr_free = 1;
1491 touch_nmi_watchdog();
1492 } else {
1493 nr_free++;
1494 }
1495 }
1496 /* Free the last block of pages to allocator */
1497 deferred_free_range(pfn - nr_free, nr_free);
1498}
1499
1500/*
1501 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1502 * by performing it only once every pageblock_nr_pages.
1503 * Return number of pages initialized.
1504 */
1505static unsigned long __init deferred_init_pages(int nid, int zid,
1506 unsigned long pfn,
1507 unsigned long end_pfn)
1508{
1509 struct mminit_pfnnid_cache nid_init_state = { };
1510 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1511 unsigned long nr_pages = 0;
1512 struct page *page = NULL;
1513
1514 for (; pfn < end_pfn; pfn++) {
1515 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1516 page = NULL;
1517 continue;
1518 } else if (!page || !(pfn & nr_pgmask)) {
1519 page = pfn_to_page(pfn);
1520 touch_nmi_watchdog();
1521 } else {
1522 page++;
1523 }
1524 __init_single_page(page, pfn, zid, nid);
1525 nr_pages++;
1526 }
1527 return (nr_pages);
1528}
1529
1530/* Initialise remaining memory on a node */
1531static int __init deferred_init_memmap(void *data)
1532{
1533 pg_data_t *pgdat = data;
1534 int nid = pgdat->node_id;
1535 unsigned long start = jiffies;
1536 unsigned long nr_pages = 0;
1537 unsigned long spfn, epfn, first_init_pfn, flags;
1538 phys_addr_t spa, epa;
1539 int zid;
1540 struct zone *zone;
1541 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1542 u64 i;
1543
1544 /* Bind memory initialisation thread to a local node if possible */
1545 if (!cpumask_empty(cpumask))
1546 set_cpus_allowed_ptr(current, cpumask);
1547
1548 pgdat_resize_lock(pgdat, &flags);
1549 first_init_pfn = pgdat->first_deferred_pfn;
1550 if (first_init_pfn == ULONG_MAX) {
1551 pgdat_resize_unlock(pgdat, &flags);
1552 pgdat_init_report_one_done();
1553 return 0;
1554 }
1555
1556 /* Sanity check boundaries */
1557 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1558 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1559 pgdat->first_deferred_pfn = ULONG_MAX;
1560
1561 /* Only the highest zone is deferred so find it */
1562 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1563 zone = pgdat->node_zones + zid;
1564 if (first_init_pfn < zone_end_pfn(zone))
1565 break;
1566 }
1567 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1568
1569 /*
1570 * Initialize and free pages. We do it in two loops: first we initialize
1571 * struct page, than free to buddy allocator, because while we are
1572 * freeing pages we can access pages that are ahead (computing buddy
1573 * page in __free_one_page()).
1574 */
1575 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1576 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1577 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1578 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1579 }
1580 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1581 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1582 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1583 deferred_free_pages(nid, zid, spfn, epfn);
1584 }
1585 pgdat_resize_unlock(pgdat, &flags);
1586
1587 /* Sanity check that the next zone really is unpopulated */
1588 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1589
1590 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1591 jiffies_to_msecs(jiffies - start));
1592
1593 pgdat_init_report_one_done();
1594 return 0;
1595}
1596
1597/*
1598 * During boot we initialize deferred pages on-demand, as needed, but once
1599 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1600 * and we can permanently disable that path.
1601 */
1602static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1603
1604/*
1605 * If this zone has deferred pages, try to grow it by initializing enough
1606 * deferred pages to satisfy the allocation specified by order, rounded up to
1607 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1608 * of SECTION_SIZE bytes by initializing struct pages in increments of
1609 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1610 *
1611 * Return true when zone was grown, otherwise return false. We return true even
1612 * when we grow less than requested, to let the caller decide if there are
1613 * enough pages to satisfy the allocation.
1614 *
1615 * Note: We use noinline because this function is needed only during boot, and
1616 * it is called from a __ref function _deferred_grow_zone. This way we are
1617 * making sure that it is not inlined into permanent text section.
1618 */
1619static noinline bool __init
1620deferred_grow_zone(struct zone *zone, unsigned int order)
1621{
1622 int zid = zone_idx(zone);
1623 int nid = zone_to_nid(zone);
1624 pg_data_t *pgdat = NODE_DATA(nid);
1625 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1626 unsigned long nr_pages = 0;
1627 unsigned long first_init_pfn, spfn, epfn, t, flags;
1628 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1629 phys_addr_t spa, epa;
1630 u64 i;
1631
1632 /* Only the last zone may have deferred pages */
1633 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1634 return false;
1635
1636 pgdat_resize_lock(pgdat, &flags);
1637
1638 /*
1639 * If deferred pages have been initialized while we were waiting for
1640 * the lock, return true, as the zone was grown. The caller will retry
1641 * this zone. We won't return to this function since the caller also
1642 * has this static branch.
1643 */
1644 if (!static_branch_unlikely(&deferred_pages)) {
1645 pgdat_resize_unlock(pgdat, &flags);
1646 return true;
1647 }
1648
1649 /*
1650 * If someone grew this zone while we were waiting for spinlock, return
1651 * true, as there might be enough pages already.
1652 */
1653 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1654 pgdat_resize_unlock(pgdat, &flags);
1655 return true;
1656 }
1657
1658 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1659
1660 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1661 pgdat_resize_unlock(pgdat, &flags);
1662 return false;
1663 }
1664
1665 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1666 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1667 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1668
1669 while (spfn < epfn && nr_pages < nr_pages_needed) {
1670 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1671 first_deferred_pfn = min(t, epfn);
1672 nr_pages += deferred_init_pages(nid, zid, spfn,
1673 first_deferred_pfn);
1674 spfn = first_deferred_pfn;
1675 }
1676
1677 if (nr_pages >= nr_pages_needed)
1678 break;
1679 }
1680
1681 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1682 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1683 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1684 deferred_free_pages(nid, zid, spfn, epfn);
1685
1686 if (first_deferred_pfn == epfn)
1687 break;
1688 }
1689 pgdat->first_deferred_pfn = first_deferred_pfn;
1690 pgdat_resize_unlock(pgdat, &flags);
1691
1692 return nr_pages > 0;
1693}
1694
1695/*
1696 * deferred_grow_zone() is __init, but it is called from
1697 * get_page_from_freelist() during early boot until deferred_pages permanently
1698 * disables this call. This is why we have refdata wrapper to avoid warning,
1699 * and to ensure that the function body gets unloaded.
1700 */
1701static bool __ref
1702_deferred_grow_zone(struct zone *zone, unsigned int order)
1703{
1704 return deferred_grow_zone(zone, order);
1705}
1706
1707#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1708
1709void __init page_alloc_init_late(void)
1710{
1711 struct zone *zone;
1712
1713#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1714 int nid;
1715
1716 /* There will be num_node_state(N_MEMORY) threads */
1717 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1718 for_each_node_state(nid, N_MEMORY) {
1719 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1720 }
1721
1722 /* Block until all are initialised */
1723 wait_for_completion(&pgdat_init_all_done_comp);
1724
1725 /*
1726 * We initialized the rest of the deferred pages. Permanently disable
1727 * on-demand struct page initialization.
1728 */
1729 static_branch_disable(&deferred_pages);
1730
1731 /* Reinit limits that are based on free pages after the kernel is up */
1732 files_maxfiles_init();
1733#endif
1734#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1735 /* Discard memblock private memory */
1736 memblock_discard();
1737#endif
1738
1739 for_each_populated_zone(zone)
1740 set_zone_contiguous(zone);
1741}
1742
1743#ifdef CONFIG_CMA
1744/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1745void __init init_cma_reserved_pageblock(struct page *page)
1746{
1747 unsigned i = pageblock_nr_pages;
1748 struct page *p = page;
1749
1750 do {
1751 __ClearPageReserved(p);
1752 set_page_count(p, 0);
1753 } while (++p, --i);
1754
1755 set_pageblock_migratetype(page, MIGRATE_CMA);
1756
1757 if (pageblock_order >= MAX_ORDER) {
1758 i = pageblock_nr_pages;
1759 p = page;
1760 do {
1761 set_page_refcounted(p);
1762 __free_pages(p, MAX_ORDER - 1);
1763 p += MAX_ORDER_NR_PAGES;
1764 } while (i -= MAX_ORDER_NR_PAGES);
1765 } else {
1766 set_page_refcounted(page);
1767 __free_pages(page, pageblock_order);
1768 }
1769
1770 adjust_managed_page_count(page, pageblock_nr_pages);
1771}
1772#endif
1773
1774/*
1775 * The order of subdivision here is critical for the IO subsystem.
1776 * Please do not alter this order without good reasons and regression
1777 * testing. Specifically, as large blocks of memory are subdivided,
1778 * the order in which smaller blocks are delivered depends on the order
1779 * they're subdivided in this function. This is the primary factor
1780 * influencing the order in which pages are delivered to the IO
1781 * subsystem according to empirical testing, and this is also justified
1782 * by considering the behavior of a buddy system containing a single
1783 * large block of memory acted on by a series of small allocations.
1784 * This behavior is a critical factor in sglist merging's success.
1785 *
1786 * -- nyc
1787 */
1788static inline void expand(struct zone *zone, struct page *page,
1789 int low, int high, struct free_area *area,
1790 int migratetype)
1791{
1792 unsigned long size = 1 << high;
1793
1794 while (high > low) {
1795 area--;
1796 high--;
1797 size >>= 1;
1798 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1799
1800 /*
1801 * Mark as guard pages (or page), that will allow to
1802 * merge back to allocator when buddy will be freed.
1803 * Corresponding page table entries will not be touched,
1804 * pages will stay not present in virtual address space
1805 */
1806 if (set_page_guard(zone, &page[size], high, migratetype))
1807 continue;
1808
1809 list_add(&page[size].lru, &area->free_list[migratetype]);
1810 area->nr_free++;
1811 set_page_order(&page[size], high);
1812 }
1813}
1814
1815static void check_new_page_bad(struct page *page)
1816{
1817 const char *bad_reason = NULL;
1818 unsigned long bad_flags = 0;
1819
1820 if (unlikely(atomic_read(&page->_mapcount) != -1))
1821 bad_reason = "nonzero mapcount";
1822 if (unlikely(page->mapping != NULL))
1823 bad_reason = "non-NULL mapping";
1824 if (unlikely(page_ref_count(page) != 0))
1825 bad_reason = "nonzero _count";
1826 if (unlikely(page->flags & __PG_HWPOISON)) {
1827 bad_reason = "HWPoisoned (hardware-corrupted)";
1828 bad_flags = __PG_HWPOISON;
1829 /* Don't complain about hwpoisoned pages */
1830 page_mapcount_reset(page); /* remove PageBuddy */
1831 return;
1832 }
1833 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1834 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1835 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1836 }
1837#ifdef CONFIG_MEMCG
1838 if (unlikely(page->mem_cgroup))
1839 bad_reason = "page still charged to cgroup";
1840#endif
1841 bad_page(page, bad_reason, bad_flags);
1842}
1843
1844/*
1845 * This page is about to be returned from the page allocator
1846 */
1847static inline int check_new_page(struct page *page)
1848{
1849 if (likely(page_expected_state(page,
1850 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1851 return 0;
1852
1853 check_new_page_bad(page);
1854 return 1;
1855}
1856
1857static inline bool free_pages_prezeroed(void)
1858{
1859 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1860 page_poisoning_enabled();
1861}
1862
1863#ifdef CONFIG_DEBUG_VM
1864static bool check_pcp_refill(struct page *page)
1865{
1866 return false;
1867}
1868
1869static bool check_new_pcp(struct page *page)
1870{
1871 return check_new_page(page);
1872}
1873#else
1874static bool check_pcp_refill(struct page *page)
1875{
1876 return check_new_page(page);
1877}
1878static bool check_new_pcp(struct page *page)
1879{
1880 return false;
1881}
1882#endif /* CONFIG_DEBUG_VM */
1883
1884static bool check_new_pages(struct page *page, unsigned int order)
1885{
1886 int i;
1887 for (i = 0; i < (1 << order); i++) {
1888 struct page *p = page + i;
1889
1890 if (unlikely(check_new_page(p)))
1891 return true;
1892 }
1893
1894 return false;
1895}
1896
1897inline void post_alloc_hook(struct page *page, unsigned int order,
1898 gfp_t gfp_flags)
1899{
1900 set_page_private(page, 0);
1901 set_page_refcounted(page);
1902
1903 arch_alloc_page(page, order);
1904 kernel_map_pages(page, 1 << order, 1);
1905 kernel_poison_pages(page, 1 << order, 1);
1906 kasan_alloc_pages(page, order);
1907 set_page_owner(page, order, gfp_flags);
1908}
1909
1910static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1911 unsigned int alloc_flags)
1912{
1913 int i;
1914
1915 post_alloc_hook(page, order, gfp_flags);
1916
1917 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1918 for (i = 0; i < (1 << order); i++)
1919 clear_highpage(page + i);
1920
1921 if (order && (gfp_flags & __GFP_COMP))
1922 prep_compound_page(page, order);
1923
1924 /*
1925 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1926 * allocate the page. The expectation is that the caller is taking
1927 * steps that will free more memory. The caller should avoid the page
1928 * being used for !PFMEMALLOC purposes.
1929 */
1930 if (alloc_flags & ALLOC_NO_WATERMARKS)
1931 set_page_pfmemalloc(page);
1932 else
1933 clear_page_pfmemalloc(page);
1934}
1935
1936/*
1937 * Go through the free lists for the given migratetype and remove
1938 * the smallest available page from the freelists
1939 */
1940static __always_inline
1941struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1942 int migratetype)
1943{
1944 unsigned int current_order;
1945 struct free_area *area;
1946 struct page *page;
1947
1948 /* Find a page of the appropriate size in the preferred list */
1949 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1950 area = &(zone->free_area[current_order]);
1951 page = list_first_entry_or_null(&area->free_list[migratetype],
1952 struct page, lru);
1953 if (!page)
1954 continue;
1955 list_del(&page->lru);
1956 rmv_page_order(page);
1957 area->nr_free--;
1958 expand(zone, page, order, current_order, area, migratetype);
1959 set_pcppage_migratetype(page, migratetype);
1960 return page;
1961 }
1962
1963 return NULL;
1964}
1965
1966
1967/*
1968 * This array describes the order lists are fallen back to when
1969 * the free lists for the desirable migrate type are depleted
1970 */
1971static int fallbacks[MIGRATE_TYPES][4] = {
1972 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1973 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1974 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1975#ifdef CONFIG_CMA
1976 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1977#endif
1978#ifdef CONFIG_MEMORY_ISOLATION
1979 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1980#endif
1981};
1982
1983#ifdef CONFIG_CMA
1984static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1985 unsigned int order)
1986{
1987 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1988}
1989#else
1990static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1991 unsigned int order) { return NULL; }
1992#endif
1993
1994/*
1995 * Move the free pages in a range to the free lists of the requested type.
1996 * Note that start_page and end_pages are not aligned on a pageblock
1997 * boundary. If alignment is required, use move_freepages_block()
1998 */
1999static int move_freepages(struct zone *zone,
2000 struct page *start_page, struct page *end_page,
2001 int migratetype, int *num_movable)
2002{
2003 struct page *page;
2004 unsigned int order;
2005 int pages_moved = 0;
2006
2007#ifndef CONFIG_HOLES_IN_ZONE
2008 /*
2009 * page_zone is not safe to call in this context when
2010 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2011 * anyway as we check zone boundaries in move_freepages_block().
2012 * Remove at a later date when no bug reports exist related to
2013 * grouping pages by mobility
2014 */
2015 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2016 pfn_valid(page_to_pfn(end_page)) &&
2017 page_zone(start_page) != page_zone(end_page));
2018#endif
2019
2020 if (num_movable)
2021 *num_movable = 0;
2022
2023 for (page = start_page; page <= end_page;) {
2024 if (!pfn_valid_within(page_to_pfn(page))) {
2025 page++;
2026 continue;
2027 }
2028
2029 /* Make sure we are not inadvertently changing nodes */
2030 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2031
2032 if (!PageBuddy(page)) {
2033 /*
2034 * We assume that pages that could be isolated for
2035 * migration are movable. But we don't actually try
2036 * isolating, as that would be expensive.
2037 */
2038 if (num_movable &&
2039 (PageLRU(page) || __PageMovable(page)))
2040 (*num_movable)++;
2041
2042 page++;
2043 continue;
2044 }
2045
2046 order = page_order(page);
2047 list_move(&page->lru,
2048 &zone->free_area[order].free_list[migratetype]);
2049 page += 1 << order;
2050 pages_moved += 1 << order;
2051 }
2052
2053 return pages_moved;
2054}
2055
2056int move_freepages_block(struct zone *zone, struct page *page,
2057 int migratetype, int *num_movable)
2058{
2059 unsigned long start_pfn, end_pfn;
2060 struct page *start_page, *end_page;
2061
2062 start_pfn = page_to_pfn(page);
2063 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2064 start_page = pfn_to_page(start_pfn);
2065 end_page = start_page + pageblock_nr_pages - 1;
2066 end_pfn = start_pfn + pageblock_nr_pages - 1;
2067
2068 /* Do not cross zone boundaries */
2069 if (!zone_spans_pfn(zone, start_pfn))
2070 start_page = page;
2071 if (!zone_spans_pfn(zone, end_pfn))
2072 return 0;
2073
2074 return move_freepages(zone, start_page, end_page, migratetype,
2075 num_movable);
2076}
2077
2078static void change_pageblock_range(struct page *pageblock_page,
2079 int start_order, int migratetype)
2080{
2081 int nr_pageblocks = 1 << (start_order - pageblock_order);
2082
2083 while (nr_pageblocks--) {
2084 set_pageblock_migratetype(pageblock_page, migratetype);
2085 pageblock_page += pageblock_nr_pages;
2086 }
2087}
2088
2089/*
2090 * When we are falling back to another migratetype during allocation, try to
2091 * steal extra free pages from the same pageblocks to satisfy further
2092 * allocations, instead of polluting multiple pageblocks.
2093 *
2094 * If we are stealing a relatively large buddy page, it is likely there will
2095 * be more free pages in the pageblock, so try to steal them all. For
2096 * reclaimable and unmovable allocations, we steal regardless of page size,
2097 * as fragmentation caused by those allocations polluting movable pageblocks
2098 * is worse than movable allocations stealing from unmovable and reclaimable
2099 * pageblocks.
2100 */
2101static bool can_steal_fallback(unsigned int order, int start_mt)
2102{
2103 /*
2104 * Leaving this order check is intended, although there is
2105 * relaxed order check in next check. The reason is that
2106 * we can actually steal whole pageblock if this condition met,
2107 * but, below check doesn't guarantee it and that is just heuristic
2108 * so could be changed anytime.
2109 */
2110 if (order >= pageblock_order)
2111 return true;
2112
2113 if (order >= pageblock_order / 2 ||
2114 start_mt == MIGRATE_RECLAIMABLE ||
2115 start_mt == MIGRATE_UNMOVABLE ||
2116 page_group_by_mobility_disabled)
2117 return true;
2118
2119 return false;
2120}
2121
2122/*
2123 * This function implements actual steal behaviour. If order is large enough,
2124 * we can steal whole pageblock. If not, we first move freepages in this
2125 * pageblock to our migratetype and determine how many already-allocated pages
2126 * are there in the pageblock with a compatible migratetype. If at least half
2127 * of pages are free or compatible, we can change migratetype of the pageblock
2128 * itself, so pages freed in the future will be put on the correct free list.
2129 */
2130static void steal_suitable_fallback(struct zone *zone, struct page *page,
2131 int start_type, bool whole_block)
2132{
2133 unsigned int current_order = page_order(page);
2134 struct free_area *area;
2135 int free_pages, movable_pages, alike_pages;
2136 int old_block_type;
2137
2138 old_block_type = get_pageblock_migratetype(page);
2139
2140 /*
2141 * This can happen due to races and we want to prevent broken
2142 * highatomic accounting.
2143 */
2144 if (is_migrate_highatomic(old_block_type))
2145 goto single_page;
2146
2147 /* Take ownership for orders >= pageblock_order */
2148 if (current_order >= pageblock_order) {
2149 change_pageblock_range(page, current_order, start_type);
2150 goto single_page;
2151 }
2152
2153 /* We are not allowed to try stealing from the whole block */
2154 if (!whole_block)
2155 goto single_page;
2156
2157 free_pages = move_freepages_block(zone, page, start_type,
2158 &movable_pages);
2159 /*
2160 * Determine how many pages are compatible with our allocation.
2161 * For movable allocation, it's the number of movable pages which
2162 * we just obtained. For other types it's a bit more tricky.
2163 */
2164 if (start_type == MIGRATE_MOVABLE) {
2165 alike_pages = movable_pages;
2166 } else {
2167 /*
2168 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2169 * to MOVABLE pageblock, consider all non-movable pages as
2170 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2171 * vice versa, be conservative since we can't distinguish the
2172 * exact migratetype of non-movable pages.
2173 */
2174 if (old_block_type == MIGRATE_MOVABLE)
2175 alike_pages = pageblock_nr_pages
2176 - (free_pages + movable_pages);
2177 else
2178 alike_pages = 0;
2179 }
2180
2181 /* moving whole block can fail due to zone boundary conditions */
2182 if (!free_pages)
2183 goto single_page;
2184
2185 /*
2186 * If a sufficient number of pages in the block are either free or of
2187 * comparable migratability as our allocation, claim the whole block.
2188 */
2189 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2190 page_group_by_mobility_disabled)
2191 set_pageblock_migratetype(page, start_type);
2192
2193 return;
2194
2195single_page:
2196 area = &zone->free_area[current_order];
2197 list_move(&page->lru, &area->free_list[start_type]);
2198}
2199
2200/*
2201 * Check whether there is a suitable fallback freepage with requested order.
2202 * If only_stealable is true, this function returns fallback_mt only if
2203 * we can steal other freepages all together. This would help to reduce
2204 * fragmentation due to mixed migratetype pages in one pageblock.
2205 */
2206int find_suitable_fallback(struct free_area *area, unsigned int order,
2207 int migratetype, bool only_stealable, bool *can_steal)
2208{
2209 int i;
2210 int fallback_mt;
2211
2212 if (area->nr_free == 0)
2213 return -1;
2214
2215 *can_steal = false;
2216 for (i = 0;; i++) {
2217 fallback_mt = fallbacks[migratetype][i];
2218 if (fallback_mt == MIGRATE_TYPES)
2219 break;
2220
2221 if (list_empty(&area->free_list[fallback_mt]))
2222 continue;
2223
2224 if (can_steal_fallback(order, migratetype))
2225 *can_steal = true;
2226
2227 if (!only_stealable)
2228 return fallback_mt;
2229
2230 if (*can_steal)
2231 return fallback_mt;
2232 }
2233
2234 return -1;
2235}
2236
2237/*
2238 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2239 * there are no empty page blocks that contain a page with a suitable order
2240 */
2241static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2242 unsigned int alloc_order)
2243{
2244 int mt;
2245 unsigned long max_managed, flags;
2246
2247 /*
2248 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2249 * Check is race-prone but harmless.
2250 */
2251 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2252 if (zone->nr_reserved_highatomic >= max_managed)
2253 return;
2254
2255 spin_lock_irqsave(&zone->lock, flags);
2256
2257 /* Recheck the nr_reserved_highatomic limit under the lock */
2258 if (zone->nr_reserved_highatomic >= max_managed)
2259 goto out_unlock;
2260
2261 /* Yoink! */
2262 mt = get_pageblock_migratetype(page);
2263 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2264 && !is_migrate_cma(mt)) {
2265 zone->nr_reserved_highatomic += pageblock_nr_pages;
2266 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2267 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2268 }
2269
2270out_unlock:
2271 spin_unlock_irqrestore(&zone->lock, flags);
2272}
2273
2274/*
2275 * Used when an allocation is about to fail under memory pressure. This
2276 * potentially hurts the reliability of high-order allocations when under
2277 * intense memory pressure but failed atomic allocations should be easier
2278 * to recover from than an OOM.
2279 *
2280 * If @force is true, try to unreserve a pageblock even though highatomic
2281 * pageblock is exhausted.
2282 */
2283static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2284 bool force)
2285{
2286 struct zonelist *zonelist = ac->zonelist;
2287 unsigned long flags;
2288 struct zoneref *z;
2289 struct zone *zone;
2290 struct page *page;
2291 int order;
2292 bool ret;
2293
2294 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2295 ac->nodemask) {
2296 /*
2297 * Preserve at least one pageblock unless memory pressure
2298 * is really high.
2299 */
2300 if (!force && zone->nr_reserved_highatomic <=
2301 pageblock_nr_pages)
2302 continue;
2303
2304 spin_lock_irqsave(&zone->lock, flags);
2305 for (order = 0; order < MAX_ORDER; order++) {
2306 struct free_area *area = &(zone->free_area[order]);
2307
2308 page = list_first_entry_or_null(
2309 &area->free_list[MIGRATE_HIGHATOMIC],
2310 struct page, lru);
2311 if (!page)
2312 continue;
2313
2314 /*
2315 * In page freeing path, migratetype change is racy so
2316 * we can counter several free pages in a pageblock
2317 * in this loop althoug we changed the pageblock type
2318 * from highatomic to ac->migratetype. So we should
2319 * adjust the count once.
2320 */
2321 if (is_migrate_highatomic_page(page)) {
2322 /*
2323 * It should never happen but changes to
2324 * locking could inadvertently allow a per-cpu
2325 * drain to add pages to MIGRATE_HIGHATOMIC
2326 * while unreserving so be safe and watch for
2327 * underflows.
2328 */
2329 zone->nr_reserved_highatomic -= min(
2330 pageblock_nr_pages,
2331 zone->nr_reserved_highatomic);
2332 }
2333
2334 /*
2335 * Convert to ac->migratetype and avoid the normal
2336 * pageblock stealing heuristics. Minimally, the caller
2337 * is doing the work and needs the pages. More
2338 * importantly, if the block was always converted to
2339 * MIGRATE_UNMOVABLE or another type then the number
2340 * of pageblocks that cannot be completely freed
2341 * may increase.
2342 */
2343 set_pageblock_migratetype(page, ac->migratetype);
2344 ret = move_freepages_block(zone, page, ac->migratetype,
2345 NULL);
2346 if (ret) {
2347 spin_unlock_irqrestore(&zone->lock, flags);
2348 return ret;
2349 }
2350 }
2351 spin_unlock_irqrestore(&zone->lock, flags);
2352 }
2353
2354 return false;
2355}
2356
2357/*
2358 * Try finding a free buddy page on the fallback list and put it on the free
2359 * list of requested migratetype, possibly along with other pages from the same
2360 * block, depending on fragmentation avoidance heuristics. Returns true if
2361 * fallback was found so that __rmqueue_smallest() can grab it.
2362 *
2363 * The use of signed ints for order and current_order is a deliberate
2364 * deviation from the rest of this file, to make the for loop
2365 * condition simpler.
2366 */
2367static __always_inline bool
2368__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2369{
2370 struct free_area *area;
2371 int current_order;
2372 struct page *page;
2373 int fallback_mt;
2374 bool can_steal;
2375
2376 /*
2377 * Find the largest available free page in the other list. This roughly
2378 * approximates finding the pageblock with the most free pages, which
2379 * would be too costly to do exactly.
2380 */
2381 for (current_order = MAX_ORDER - 1; current_order >= order;
2382 --current_order) {
2383 area = &(zone->free_area[current_order]);
2384 fallback_mt = find_suitable_fallback(area, current_order,
2385 start_migratetype, false, &can_steal);
2386 if (fallback_mt == -1)
2387 continue;
2388
2389 /*
2390 * We cannot steal all free pages from the pageblock and the
2391 * requested migratetype is movable. In that case it's better to
2392 * steal and split the smallest available page instead of the
2393 * largest available page, because even if the next movable
2394 * allocation falls back into a different pageblock than this
2395 * one, it won't cause permanent fragmentation.
2396 */
2397 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2398 && current_order > order)
2399 goto find_smallest;
2400
2401 goto do_steal;
2402 }
2403
2404 return false;
2405
2406find_smallest:
2407 for (current_order = order; current_order < MAX_ORDER;
2408 current_order++) {
2409 area = &(zone->free_area[current_order]);
2410 fallback_mt = find_suitable_fallback(area, current_order,
2411 start_migratetype, false, &can_steal);
2412 if (fallback_mt != -1)
2413 break;
2414 }
2415
2416 /*
2417 * This should not happen - we already found a suitable fallback
2418 * when looking for the largest page.
2419 */
2420 VM_BUG_ON(current_order == MAX_ORDER);
2421
2422do_steal:
2423 page = list_first_entry(&area->free_list[fallback_mt],
2424 struct page, lru);
2425
2426 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2427
2428 trace_mm_page_alloc_extfrag(page, order, current_order,
2429 start_migratetype, fallback_mt);
2430
2431 return true;
2432
2433}
2434
2435/*
2436 * Do the hard work of removing an element from the buddy allocator.
2437 * Call me with the zone->lock already held.
2438 */
2439static __always_inline struct page *
2440__rmqueue(struct zone *zone, unsigned int order, int migratetype)
2441{
2442 struct page *page;
2443
2444retry:
2445 page = __rmqueue_smallest(zone, order, migratetype);
2446 if (unlikely(!page)) {
2447 if (migratetype == MIGRATE_MOVABLE)
2448 page = __rmqueue_cma_fallback(zone, order);
2449
2450 if (!page && __rmqueue_fallback(zone, order, migratetype))
2451 goto retry;
2452 }
2453
2454 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2455 return page;
2456}
2457
2458/*
2459 * Obtain a specified number of elements from the buddy allocator, all under
2460 * a single hold of the lock, for efficiency. Add them to the supplied list.
2461 * Returns the number of new pages which were placed at *list.
2462 */
2463static int rmqueue_bulk(struct zone *zone, unsigned int order,
2464 unsigned long count, struct list_head *list,
2465 int migratetype)
2466{
2467 int i, alloced = 0;
2468
2469 spin_lock(&zone->lock);
2470 for (i = 0; i < count; ++i) {
2471 struct page *page = __rmqueue(zone, order, migratetype);
2472 if (unlikely(page == NULL))
2473 break;
2474
2475 if (unlikely(check_pcp_refill(page)))
2476 continue;
2477
2478 /*
2479 * Split buddy pages returned by expand() are received here in
2480 * physical page order. The page is added to the tail of
2481 * caller's list. From the callers perspective, the linked list
2482 * is ordered by page number under some conditions. This is
2483 * useful for IO devices that can forward direction from the
2484 * head, thus also in the physical page order. This is useful
2485 * for IO devices that can merge IO requests if the physical
2486 * pages are ordered properly.
2487 */
2488 list_add_tail(&page->lru, list);
2489 alloced++;
2490 if (is_migrate_cma(get_pcppage_migratetype(page)))
2491 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2492 -(1 << order));
2493 }
2494
2495 /*
2496 * i pages were removed from the buddy list even if some leak due
2497 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2498 * on i. Do not confuse with 'alloced' which is the number of
2499 * pages added to the pcp list.
2500 */
2501 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2502 spin_unlock(&zone->lock);
2503 return alloced;
2504}
2505
2506#ifdef CONFIG_NUMA
2507/*
2508 * Called from the vmstat counter updater to drain pagesets of this
2509 * currently executing processor on remote nodes after they have
2510 * expired.
2511 *
2512 * Note that this function must be called with the thread pinned to
2513 * a single processor.
2514 */
2515void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2516{
2517 unsigned long flags;
2518 int to_drain, batch;
2519
2520 local_irq_save(flags);
2521 batch = READ_ONCE(pcp->batch);
2522 to_drain = min(pcp->count, batch);
2523 if (to_drain > 0)
2524 free_pcppages_bulk(zone, to_drain, pcp);
2525 local_irq_restore(flags);
2526}
2527#endif
2528
2529/*
2530 * Drain pcplists of the indicated processor and zone.
2531 *
2532 * The processor must either be the current processor and the
2533 * thread pinned to the current processor or a processor that
2534 * is not online.
2535 */
2536static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2537{
2538 unsigned long flags;
2539 struct per_cpu_pageset *pset;
2540 struct per_cpu_pages *pcp;
2541
2542 local_irq_save(flags);
2543 pset = per_cpu_ptr(zone->pageset, cpu);
2544
2545 pcp = &pset->pcp;
2546 if (pcp->count)
2547 free_pcppages_bulk(zone, pcp->count, pcp);
2548 local_irq_restore(flags);
2549}
2550
2551/*
2552 * Drain pcplists of all zones on the indicated processor.
2553 *
2554 * The processor must either be the current processor and the
2555 * thread pinned to the current processor or a processor that
2556 * is not online.
2557 */
2558static void drain_pages(unsigned int cpu)
2559{
2560 struct zone *zone;
2561
2562 for_each_populated_zone(zone) {
2563 drain_pages_zone(cpu, zone);
2564 }
2565}
2566
2567/*
2568 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2569 *
2570 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2571 * the single zone's pages.
2572 */
2573void drain_local_pages(struct zone *zone)
2574{
2575 int cpu = smp_processor_id();
2576
2577 if (zone)
2578 drain_pages_zone(cpu, zone);
2579 else
2580 drain_pages(cpu);
2581}
2582
2583static void drain_local_pages_wq(struct work_struct *work)
2584{
2585 /*
2586 * drain_all_pages doesn't use proper cpu hotplug protection so
2587 * we can race with cpu offline when the WQ can move this from
2588 * a cpu pinned worker to an unbound one. We can operate on a different
2589 * cpu which is allright but we also have to make sure to not move to
2590 * a different one.
2591 */
2592 preempt_disable();
2593 drain_local_pages(NULL);
2594 preempt_enable();
2595}
2596
2597/*
2598 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2599 *
2600 * When zone parameter is non-NULL, spill just the single zone's pages.
2601 *
2602 * Note that this can be extremely slow as the draining happens in a workqueue.
2603 */
2604void drain_all_pages(struct zone *zone)
2605{
2606 int cpu;
2607
2608 /*
2609 * Allocate in the BSS so we wont require allocation in
2610 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2611 */
2612 static cpumask_t cpus_with_pcps;
2613
2614 /*
2615 * Make sure nobody triggers this path before mm_percpu_wq is fully
2616 * initialized.
2617 */
2618 if (WARN_ON_ONCE(!mm_percpu_wq))
2619 return;
2620
2621 /*
2622 * Do not drain if one is already in progress unless it's specific to
2623 * a zone. Such callers are primarily CMA and memory hotplug and need
2624 * the drain to be complete when the call returns.
2625 */
2626 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2627 if (!zone)
2628 return;
2629 mutex_lock(&pcpu_drain_mutex);
2630 }
2631
2632 /*
2633 * We don't care about racing with CPU hotplug event
2634 * as offline notification will cause the notified
2635 * cpu to drain that CPU pcps and on_each_cpu_mask
2636 * disables preemption as part of its processing
2637 */
2638 for_each_online_cpu(cpu) {
2639 struct per_cpu_pageset *pcp;
2640 struct zone *z;
2641 bool has_pcps = false;
2642
2643 if (zone) {
2644 pcp = per_cpu_ptr(zone->pageset, cpu);
2645 if (pcp->pcp.count)
2646 has_pcps = true;
2647 } else {
2648 for_each_populated_zone(z) {
2649 pcp = per_cpu_ptr(z->pageset, cpu);
2650 if (pcp->pcp.count) {
2651 has_pcps = true;
2652 break;
2653 }
2654 }
2655 }
2656
2657 if (has_pcps)
2658 cpumask_set_cpu(cpu, &cpus_with_pcps);
2659 else
2660 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2661 }
2662
2663 for_each_cpu(cpu, &cpus_with_pcps) {
2664 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2665 INIT_WORK(work, drain_local_pages_wq);
2666 queue_work_on(cpu, mm_percpu_wq, work);
2667 }
2668 for_each_cpu(cpu, &cpus_with_pcps)
2669 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2670
2671 mutex_unlock(&pcpu_drain_mutex);
2672}
2673
2674#ifdef CONFIG_HIBERNATION
2675
2676/*
2677 * Touch the watchdog for every WD_PAGE_COUNT pages.
2678 */
2679#define WD_PAGE_COUNT (128*1024)
2680
2681void mark_free_pages(struct zone *zone)
2682{
2683 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2684 unsigned long flags;
2685 unsigned int order, t;
2686 struct page *page;
2687
2688 if (zone_is_empty(zone))
2689 return;
2690
2691 spin_lock_irqsave(&zone->lock, flags);
2692
2693 max_zone_pfn = zone_end_pfn(zone);
2694 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2695 if (pfn_valid(pfn)) {
2696 page = pfn_to_page(pfn);
2697
2698 if (!--page_count) {
2699 touch_nmi_watchdog();
2700 page_count = WD_PAGE_COUNT;
2701 }
2702
2703 if (page_zone(page) != zone)
2704 continue;
2705
2706 if (!swsusp_page_is_forbidden(page))
2707 swsusp_unset_page_free(page);
2708 }
2709
2710 for_each_migratetype_order(order, t) {
2711 list_for_each_entry(page,
2712 &zone->free_area[order].free_list[t], lru) {
2713 unsigned long i;
2714
2715 pfn = page_to_pfn(page);
2716 for (i = 0; i < (1UL << order); i++) {
2717 if (!--page_count) {
2718 touch_nmi_watchdog();
2719 page_count = WD_PAGE_COUNT;
2720 }
2721 swsusp_set_page_free(pfn_to_page(pfn + i));
2722 }
2723 }
2724 }
2725 spin_unlock_irqrestore(&zone->lock, flags);
2726}
2727#endif /* CONFIG_PM */
2728
2729static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2730{
2731 int migratetype;
2732
2733 if (!free_pcp_prepare(page))
2734 return false;
2735
2736 migratetype = get_pfnblock_migratetype(page, pfn);
2737 set_pcppage_migratetype(page, migratetype);
2738 return true;
2739}
2740
2741static void free_unref_page_commit(struct page *page, unsigned long pfn)
2742{
2743 struct zone *zone = page_zone(page);
2744 struct per_cpu_pages *pcp;
2745 int migratetype;
2746
2747 migratetype = get_pcppage_migratetype(page);
2748 __count_vm_event(PGFREE);
2749
2750 /*
2751 * We only track unmovable, reclaimable and movable on pcp lists.
2752 * Free ISOLATE pages back to the allocator because they are being
2753 * offlined but treat HIGHATOMIC as movable pages so we can get those
2754 * areas back if necessary. Otherwise, we may have to free
2755 * excessively into the page allocator
2756 */
2757 if (migratetype >= MIGRATE_PCPTYPES) {
2758 if (unlikely(is_migrate_isolate(migratetype))) {
2759 free_one_page(zone, page, pfn, 0, migratetype);
2760 return;
2761 }
2762 migratetype = MIGRATE_MOVABLE;
2763 }
2764
2765 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2766 list_add(&page->lru, &pcp->lists[migratetype]);
2767 pcp->count++;
2768 if (pcp->count >= pcp->high) {
2769 unsigned long batch = READ_ONCE(pcp->batch);
2770 free_pcppages_bulk(zone, batch, pcp);
2771 }
2772}
2773
2774/*
2775 * Free a 0-order page
2776 */
2777void free_unref_page(struct page *page)
2778{
2779 unsigned long flags;
2780 unsigned long pfn = page_to_pfn(page);
2781
2782 if (!free_unref_page_prepare(page, pfn))
2783 return;
2784
2785 local_irq_save(flags);
2786 free_unref_page_commit(page, pfn);
2787 local_irq_restore(flags);
2788}
2789
2790/*
2791 * Free a list of 0-order pages
2792 */
2793void free_unref_page_list(struct list_head *list)
2794{
2795 struct page *page, *next;
2796 unsigned long flags, pfn;
2797 int batch_count = 0;
2798
2799 /* Prepare pages for freeing */
2800 list_for_each_entry_safe(page, next, list, lru) {
2801 pfn = page_to_pfn(page);
2802 if (!free_unref_page_prepare(page, pfn))
2803 list_del(&page->lru);
2804 set_page_private(page, pfn);
2805 }
2806
2807 local_irq_save(flags);
2808 list_for_each_entry_safe(page, next, list, lru) {
2809 unsigned long pfn = page_private(page);
2810
2811 set_page_private(page, 0);
2812 trace_mm_page_free_batched(page);
2813 free_unref_page_commit(page, pfn);
2814
2815 /*
2816 * Guard against excessive IRQ disabled times when we get
2817 * a large list of pages to free.
2818 */
2819 if (++batch_count == SWAP_CLUSTER_MAX) {
2820 local_irq_restore(flags);
2821 batch_count = 0;
2822 local_irq_save(flags);
2823 }
2824 }
2825 local_irq_restore(flags);
2826}
2827
2828/*
2829 * split_page takes a non-compound higher-order page, and splits it into
2830 * n (1<<order) sub-pages: page[0..n]
2831 * Each sub-page must be freed individually.
2832 *
2833 * Note: this is probably too low level an operation for use in drivers.
2834 * Please consult with lkml before using this in your driver.
2835 */
2836void split_page(struct page *page, unsigned int order)
2837{
2838 int i;
2839
2840 VM_BUG_ON_PAGE(PageCompound(page), page);
2841 VM_BUG_ON_PAGE(!page_count(page), page);
2842
2843 for (i = 1; i < (1 << order); i++)
2844 set_page_refcounted(page + i);
2845 split_page_owner(page, order);
2846}
2847EXPORT_SYMBOL_GPL(split_page);
2848
2849int __isolate_free_page(struct page *page, unsigned int order)
2850{
2851 unsigned long watermark;
2852 struct zone *zone;
2853 int mt;
2854
2855 BUG_ON(!PageBuddy(page));
2856
2857 zone = page_zone(page);
2858 mt = get_pageblock_migratetype(page);
2859
2860 if (!is_migrate_isolate(mt)) {
2861 /*
2862 * Obey watermarks as if the page was being allocated. We can
2863 * emulate a high-order watermark check with a raised order-0
2864 * watermark, because we already know our high-order page
2865 * exists.
2866 */
2867 watermark = min_wmark_pages(zone) + (1UL << order);
2868 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2869 return 0;
2870
2871 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2872 }
2873
2874 /* Remove page from free list */
2875 list_del(&page->lru);
2876 zone->free_area[order].nr_free--;
2877 rmv_page_order(page);
2878
2879 /*
2880 * Set the pageblock if the isolated page is at least half of a
2881 * pageblock
2882 */
2883 if (order >= pageblock_order - 1) {
2884 struct page *endpage = page + (1 << order) - 1;
2885 for (; page < endpage; page += pageblock_nr_pages) {
2886 int mt = get_pageblock_migratetype(page);
2887 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2888 && !is_migrate_highatomic(mt))
2889 set_pageblock_migratetype(page,
2890 MIGRATE_MOVABLE);
2891 }
2892 }
2893
2894
2895 return 1UL << order;
2896}
2897
2898/*
2899 * Update NUMA hit/miss statistics
2900 *
2901 * Must be called with interrupts disabled.
2902 */
2903static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2904{
2905#ifdef CONFIG_NUMA
2906 enum numa_stat_item local_stat = NUMA_LOCAL;
2907
2908 /* skip numa counters update if numa stats is disabled */
2909 if (!static_branch_likely(&vm_numa_stat_key))
2910 return;
2911
2912 if (zone_to_nid(z) != numa_node_id())
2913 local_stat = NUMA_OTHER;
2914
2915 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2916 __inc_numa_state(z, NUMA_HIT);
2917 else {
2918 __inc_numa_state(z, NUMA_MISS);
2919 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2920 }
2921 __inc_numa_state(z, local_stat);
2922#endif
2923}
2924
2925/* Remove page from the per-cpu list, caller must protect the list */
2926static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2927 struct per_cpu_pages *pcp,
2928 struct list_head *list)
2929{
2930 struct page *page;
2931
2932 do {
2933 if (list_empty(list)) {
2934 pcp->count += rmqueue_bulk(zone, 0,
2935 pcp->batch, list,
2936 migratetype);
2937 if (unlikely(list_empty(list)))
2938 return NULL;
2939 }
2940
2941 page = list_first_entry(list, struct page, lru);
2942 list_del(&page->lru);
2943 pcp->count--;
2944 } while (check_new_pcp(page));
2945
2946 return page;
2947}
2948
2949/* Lock and remove page from the per-cpu list */
2950static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2951 struct zone *zone, unsigned int order,
2952 gfp_t gfp_flags, int migratetype)
2953{
2954 struct per_cpu_pages *pcp;
2955 struct list_head *list;
2956 struct page *page;
2957 unsigned long flags;
2958
2959 local_irq_save(flags);
2960 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2961 list = &pcp->lists[migratetype];
2962 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2963 if (page) {
2964 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2965 zone_statistics(preferred_zone, zone);
2966 }
2967 local_irq_restore(flags);
2968 return page;
2969}
2970
2971/*
2972 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2973 */
2974static inline
2975struct page *rmqueue(struct zone *preferred_zone,
2976 struct zone *zone, unsigned int order,
2977 gfp_t gfp_flags, unsigned int alloc_flags,
2978 int migratetype)
2979{
2980 unsigned long flags;
2981 struct page *page;
2982
2983 if (likely(order == 0)) {
2984 page = rmqueue_pcplist(preferred_zone, zone, order,
2985 gfp_flags, migratetype);
2986 goto out;
2987 }
2988
2989 /*
2990 * We most definitely don't want callers attempting to
2991 * allocate greater than order-1 page units with __GFP_NOFAIL.
2992 */
2993 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2994 spin_lock_irqsave(&zone->lock, flags);
2995
2996 do {
2997 page = NULL;
2998 if (alloc_flags & ALLOC_HARDER) {
2999 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3000 if (page)
3001 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3002 }
3003 if (!page)
3004 page = __rmqueue(zone, order, migratetype);
3005 } while (page && check_new_pages(page, order));
3006 spin_unlock(&zone->lock);
3007 if (!page)
3008 goto failed;
3009 __mod_zone_freepage_state(zone, -(1 << order),
3010 get_pcppage_migratetype(page));
3011
3012 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3013 zone_statistics(preferred_zone, zone);
3014 local_irq_restore(flags);
3015
3016out:
3017 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3018 return page;
3019
3020failed:
3021 local_irq_restore(flags);
3022 return NULL;
3023}
3024
3025#ifdef CONFIG_FAIL_PAGE_ALLOC
3026
3027static struct {
3028 struct fault_attr attr;
3029
3030 bool ignore_gfp_highmem;
3031 bool ignore_gfp_reclaim;
3032 u32 min_order;
3033} fail_page_alloc = {
3034 .attr = FAULT_ATTR_INITIALIZER,
3035 .ignore_gfp_reclaim = true,
3036 .ignore_gfp_highmem = true,
3037 .min_order = 1,
3038};
3039
3040static int __init setup_fail_page_alloc(char *str)
3041{
3042 return setup_fault_attr(&fail_page_alloc.attr, str);
3043}
3044__setup("fail_page_alloc=", setup_fail_page_alloc);
3045
3046static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3047{
3048 if (order < fail_page_alloc.min_order)
3049 return false;
3050 if (gfp_mask & __GFP_NOFAIL)
3051 return false;
3052 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3053 return false;
3054 if (fail_page_alloc.ignore_gfp_reclaim &&
3055 (gfp_mask & __GFP_DIRECT_RECLAIM))
3056 return false;
3057
3058 return should_fail(&fail_page_alloc.attr, 1 << order);
3059}
3060
3061#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3062
3063static int __init fail_page_alloc_debugfs(void)
3064{
3065 umode_t mode = S_IFREG | 0600;
3066 struct dentry *dir;
3067
3068 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3069 &fail_page_alloc.attr);
3070 if (IS_ERR(dir))
3071 return PTR_ERR(dir);
3072
3073 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3074 &fail_page_alloc.ignore_gfp_reclaim))
3075 goto fail;
3076 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3077 &fail_page_alloc.ignore_gfp_highmem))
3078 goto fail;
3079 if (!debugfs_create_u32("min-order", mode, dir,
3080 &fail_page_alloc.min_order))
3081 goto fail;
3082
3083 return 0;
3084fail:
3085 debugfs_remove_recursive(dir);
3086
3087 return -ENOMEM;
3088}
3089
3090late_initcall(fail_page_alloc_debugfs);
3091
3092#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3093
3094#else /* CONFIG_FAIL_PAGE_ALLOC */
3095
3096static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3097{
3098 return false;
3099}
3100
3101#endif /* CONFIG_FAIL_PAGE_ALLOC */
3102
3103/*
3104 * Return true if free base pages are above 'mark'. For high-order checks it
3105 * will return true of the order-0 watermark is reached and there is at least
3106 * one free page of a suitable size. Checking now avoids taking the zone lock
3107 * to check in the allocation paths if no pages are free.
3108 */
3109bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3110 int classzone_idx, unsigned int alloc_flags,
3111 long free_pages)
3112{
3113 long min = mark;
3114 int o;
3115 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3116
3117 /* free_pages may go negative - that's OK */
3118 free_pages -= (1 << order) - 1;
3119
3120 if (alloc_flags & ALLOC_HIGH)
3121 min -= min / 2;
3122
3123 /*
3124 * If the caller does not have rights to ALLOC_HARDER then subtract
3125 * the high-atomic reserves. This will over-estimate the size of the
3126 * atomic reserve but it avoids a search.
3127 */
3128 if (likely(!alloc_harder)) {
3129 free_pages -= z->nr_reserved_highatomic;
3130 } else {
3131 /*
3132 * OOM victims can try even harder than normal ALLOC_HARDER
3133 * users on the grounds that it's definitely going to be in
3134 * the exit path shortly and free memory. Any allocation it
3135 * makes during the free path will be small and short-lived.
3136 */
3137 if (alloc_flags & ALLOC_OOM)
3138 min -= min / 2;
3139 else
3140 min -= min / 4;
3141 }
3142
3143
3144#ifdef CONFIG_CMA
3145 /* If allocation can't use CMA areas don't use free CMA pages */
3146 if (!(alloc_flags & ALLOC_CMA))
3147 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3148#endif
3149
3150 /*
3151 * Check watermarks for an order-0 allocation request. If these
3152 * are not met, then a high-order request also cannot go ahead
3153 * even if a suitable page happened to be free.
3154 */
3155 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3156 return false;
3157
3158 /* If this is an order-0 request then the watermark is fine */
3159 if (!order)
3160 return true;
3161
3162 /* For a high-order request, check at least one suitable page is free */
3163 for (o = order; o < MAX_ORDER; o++) {
3164 struct free_area *area = &z->free_area[o];
3165 int mt;
3166
3167 if (!area->nr_free)
3168 continue;
3169
3170 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3171 if (!list_empty(&area->free_list[mt]))
3172 return true;
3173 }
3174
3175#ifdef CONFIG_CMA
3176 if ((alloc_flags & ALLOC_CMA) &&
3177 !list_empty(&area->free_list[MIGRATE_CMA])) {
3178 return true;
3179 }
3180#endif
3181 if (alloc_harder &&
3182 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3183 return true;
3184 }
3185 return false;
3186}
3187
3188bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3189 int classzone_idx, unsigned int alloc_flags)
3190{
3191 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3192 zone_page_state(z, NR_FREE_PAGES));
3193}
3194
3195static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3196 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3197{
3198 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3199 long cma_pages = 0;
3200
3201#ifdef CONFIG_CMA
3202 /* If allocation can't use CMA areas don't use free CMA pages */
3203 if (!(alloc_flags & ALLOC_CMA))
3204 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3205#endif
3206
3207 /*
3208 * Fast check for order-0 only. If this fails then the reserves
3209 * need to be calculated. There is a corner case where the check
3210 * passes but only the high-order atomic reserve are free. If
3211 * the caller is !atomic then it'll uselessly search the free
3212 * list. That corner case is then slower but it is harmless.
3213 */
3214 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3215 return true;
3216
3217 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3218 free_pages);
3219}
3220
3221bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3222 unsigned long mark, int classzone_idx)
3223{
3224 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3225
3226 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3227 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3228
3229 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3230 free_pages);
3231}
3232
3233#ifdef CONFIG_NUMA
3234static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3235{
3236 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3237 RECLAIM_DISTANCE;
3238}
3239#else /* CONFIG_NUMA */
3240static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3241{
3242 return true;
3243}
3244#endif /* CONFIG_NUMA */
3245
3246/*
3247 * get_page_from_freelist goes through the zonelist trying to allocate
3248 * a page.
3249 */
3250static struct page *
3251get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3252 const struct alloc_context *ac)
3253{
3254 struct zoneref *z = ac->preferred_zoneref;
3255 struct zone *zone;
3256 struct pglist_data *last_pgdat_dirty_limit = NULL;
3257
3258 /*
3259 * Scan zonelist, looking for a zone with enough free.
3260 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3261 */
3262 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3263 ac->nodemask) {
3264 struct page *page;
3265 unsigned long mark;
3266
3267 if (cpusets_enabled() &&
3268 (alloc_flags & ALLOC_CPUSET) &&
3269 !__cpuset_zone_allowed(zone, gfp_mask))
3270 continue;
3271 /*
3272 * When allocating a page cache page for writing, we
3273 * want to get it from a node that is within its dirty
3274 * limit, such that no single node holds more than its
3275 * proportional share of globally allowed dirty pages.
3276 * The dirty limits take into account the node's
3277 * lowmem reserves and high watermark so that kswapd
3278 * should be able to balance it without having to
3279 * write pages from its LRU list.
3280 *
3281 * XXX: For now, allow allocations to potentially
3282 * exceed the per-node dirty limit in the slowpath
3283 * (spread_dirty_pages unset) before going into reclaim,
3284 * which is important when on a NUMA setup the allowed
3285 * nodes are together not big enough to reach the
3286 * global limit. The proper fix for these situations
3287 * will require awareness of nodes in the
3288 * dirty-throttling and the flusher threads.
3289 */
3290 if (ac->spread_dirty_pages) {
3291 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3292 continue;
3293
3294 if (!node_dirty_ok(zone->zone_pgdat)) {
3295 last_pgdat_dirty_limit = zone->zone_pgdat;
3296 continue;
3297 }
3298 }
3299
3300 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3301 if (!zone_watermark_fast(zone, order, mark,
3302 ac_classzone_idx(ac), alloc_flags)) {
3303 int ret;
3304
3305#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3306 /*
3307 * Watermark failed for this zone, but see if we can
3308 * grow this zone if it contains deferred pages.
3309 */
3310 if (static_branch_unlikely(&deferred_pages)) {
3311 if (_deferred_grow_zone(zone, order))
3312 goto try_this_zone;
3313 }
3314#endif
3315 /* Checked here to keep the fast path fast */
3316 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3317 if (alloc_flags & ALLOC_NO_WATERMARKS)
3318 goto try_this_zone;
3319
3320 if (node_reclaim_mode == 0 ||
3321 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3322 continue;
3323
3324 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3325 switch (ret) {
3326 case NODE_RECLAIM_NOSCAN:
3327 /* did not scan */
3328 continue;
3329 case NODE_RECLAIM_FULL:
3330 /* scanned but unreclaimable */
3331 continue;
3332 default:
3333 /* did we reclaim enough */
3334 if (zone_watermark_ok(zone, order, mark,
3335 ac_classzone_idx(ac), alloc_flags))
3336 goto try_this_zone;
3337
3338 continue;
3339 }
3340 }
3341
3342try_this_zone:
3343 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3344 gfp_mask, alloc_flags, ac->migratetype);
3345 if (page) {
3346 prep_new_page(page, order, gfp_mask, alloc_flags);
3347
3348 /*
3349 * If this is a high-order atomic allocation then check
3350 * if the pageblock should be reserved for the future
3351 */
3352 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3353 reserve_highatomic_pageblock(page, zone, order);
3354
3355 return page;
3356 } else {
3357#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3358 /* Try again if zone has deferred pages */
3359 if (static_branch_unlikely(&deferred_pages)) {
3360 if (_deferred_grow_zone(zone, order))
3361 goto try_this_zone;
3362 }
3363#endif
3364 }
3365 }
3366
3367 return NULL;
3368}
3369
3370/*
3371 * Large machines with many possible nodes should not always dump per-node
3372 * meminfo in irq context.
3373 */
3374static inline bool should_suppress_show_mem(void)
3375{
3376 bool ret = false;
3377
3378#if NODES_SHIFT > 8
3379 ret = in_interrupt();
3380#endif
3381 return ret;
3382}
3383
3384static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3385{
3386 unsigned int filter = SHOW_MEM_FILTER_NODES;
3387 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3388
3389 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3390 return;
3391
3392 /*
3393 * This documents exceptions given to allocations in certain
3394 * contexts that are allowed to allocate outside current's set
3395 * of allowed nodes.
3396 */
3397 if (!(gfp_mask & __GFP_NOMEMALLOC))
3398 if (tsk_is_oom_victim(current) ||
3399 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3400 filter &= ~SHOW_MEM_FILTER_NODES;
3401 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3402 filter &= ~SHOW_MEM_FILTER_NODES;
3403
3404 show_mem(filter, nodemask);
3405}
3406
3407void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3408{
3409 struct va_format vaf;
3410 va_list args;
3411 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3412 DEFAULT_RATELIMIT_BURST);
3413
3414 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3415 return;
3416
3417 va_start(args, fmt);
3418 vaf.fmt = fmt;
3419 vaf.va = &args;
3420 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3421 current->comm, &vaf, gfp_mask, &gfp_mask,
3422 nodemask_pr_args(nodemask));
3423 va_end(args);
3424
3425 cpuset_print_current_mems_allowed();
3426
3427 dump_stack();
3428 warn_alloc_show_mem(gfp_mask, nodemask);
3429}
3430
3431static inline struct page *
3432__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3433 unsigned int alloc_flags,
3434 const struct alloc_context *ac)
3435{
3436 struct page *page;
3437
3438 page = get_page_from_freelist(gfp_mask, order,
3439 alloc_flags|ALLOC_CPUSET, ac);
3440 /*
3441 * fallback to ignore cpuset restriction if our nodes
3442 * are depleted
3443 */
3444 if (!page)
3445 page = get_page_from_freelist(gfp_mask, order,
3446 alloc_flags, ac);
3447
3448 return page;
3449}
3450
3451static inline struct page *
3452__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3453 const struct alloc_context *ac, unsigned long *did_some_progress)
3454{
3455 struct oom_control oc = {
3456 .zonelist = ac->zonelist,
3457 .nodemask = ac->nodemask,
3458 .memcg = NULL,
3459 .gfp_mask = gfp_mask,
3460 .order = order,
3461 };
3462 struct page *page;
3463
3464 *did_some_progress = 0;
3465
3466 /*
3467 * Acquire the oom lock. If that fails, somebody else is
3468 * making progress for us.
3469 */
3470 if (!mutex_trylock(&oom_lock)) {
3471 *did_some_progress = 1;
3472 schedule_timeout_uninterruptible(1);
3473 return NULL;
3474 }
3475
3476 /*
3477 * Go through the zonelist yet one more time, keep very high watermark
3478 * here, this is only to catch a parallel oom killing, we must fail if
3479 * we're still under heavy pressure. But make sure that this reclaim
3480 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3481 * allocation which will never fail due to oom_lock already held.
3482 */
3483 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3484 ~__GFP_DIRECT_RECLAIM, order,
3485 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3486 if (page)
3487 goto out;
3488
3489 /* Coredumps can quickly deplete all memory reserves */
3490 if (current->flags & PF_DUMPCORE)
3491 goto out;
3492 /* The OOM killer will not help higher order allocs */
3493 if (order > PAGE_ALLOC_COSTLY_ORDER)
3494 goto out;
3495 /*
3496 * We have already exhausted all our reclaim opportunities without any
3497 * success so it is time to admit defeat. We will skip the OOM killer
3498 * because it is very likely that the caller has a more reasonable
3499 * fallback than shooting a random task.
3500 */
3501 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3502 goto out;
3503 /* The OOM killer does not needlessly kill tasks for lowmem */
3504 if (ac->high_zoneidx < ZONE_NORMAL)
3505 goto out;
3506 if (pm_suspended_storage())
3507 goto out;
3508 /*
3509 * XXX: GFP_NOFS allocations should rather fail than rely on
3510 * other request to make a forward progress.
3511 * We are in an unfortunate situation where out_of_memory cannot
3512 * do much for this context but let's try it to at least get
3513 * access to memory reserved if the current task is killed (see
3514 * out_of_memory). Once filesystems are ready to handle allocation
3515 * failures more gracefully we should just bail out here.
3516 */
3517
3518 /* The OOM killer may not free memory on a specific node */
3519 if (gfp_mask & __GFP_THISNODE)
3520 goto out;
3521
3522 /* Exhausted what can be done so it's blame time */
3523 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3524 *did_some_progress = 1;
3525
3526 /*
3527 * Help non-failing allocations by giving them access to memory
3528 * reserves
3529 */
3530 if (gfp_mask & __GFP_NOFAIL)
3531 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3532 ALLOC_NO_WATERMARKS, ac);
3533 }
3534out:
3535 mutex_unlock(&oom_lock);
3536 return page;
3537}
3538
3539/*
3540 * Maximum number of compaction retries wit a progress before OOM
3541 * killer is consider as the only way to move forward.
3542 */
3543#define MAX_COMPACT_RETRIES 16
3544
3545#ifdef CONFIG_COMPACTION
3546/* Try memory compaction for high-order allocations before reclaim */
3547static struct page *
3548__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3549 unsigned int alloc_flags, const struct alloc_context *ac,
3550 enum compact_priority prio, enum compact_result *compact_result)
3551{
3552 struct page *page;
3553 unsigned int noreclaim_flag;
3554
3555 if (!order)
3556 return NULL;
3557
3558 noreclaim_flag = memalloc_noreclaim_save();
3559 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3560 prio);
3561 memalloc_noreclaim_restore(noreclaim_flag);
3562
3563 if (*compact_result <= COMPACT_INACTIVE)
3564 return NULL;
3565
3566 /*
3567 * At least in one zone compaction wasn't deferred or skipped, so let's
3568 * count a compaction stall
3569 */
3570 count_vm_event(COMPACTSTALL);
3571
3572 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3573
3574 if (page) {
3575 struct zone *zone = page_zone(page);
3576
3577 zone->compact_blockskip_flush = false;
3578 compaction_defer_reset(zone, order, true);
3579 count_vm_event(COMPACTSUCCESS);
3580 return page;
3581 }
3582
3583 /*
3584 * It's bad if compaction run occurs and fails. The most likely reason
3585 * is that pages exist, but not enough to satisfy watermarks.
3586 */
3587 count_vm_event(COMPACTFAIL);
3588
3589 cond_resched();
3590
3591 return NULL;
3592}
3593
3594static inline bool
3595should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3596 enum compact_result compact_result,
3597 enum compact_priority *compact_priority,
3598 int *compaction_retries)
3599{
3600 int max_retries = MAX_COMPACT_RETRIES;
3601 int min_priority;
3602 bool ret = false;
3603 int retries = *compaction_retries;
3604 enum compact_priority priority = *compact_priority;
3605
3606 if (!order)
3607 return false;
3608
3609 if (compaction_made_progress(compact_result))
3610 (*compaction_retries)++;
3611
3612 /*
3613 * compaction considers all the zone as desperately out of memory
3614 * so it doesn't really make much sense to retry except when the
3615 * failure could be caused by insufficient priority
3616 */
3617 if (compaction_failed(compact_result))
3618 goto check_priority;
3619
3620 /*
3621 * make sure the compaction wasn't deferred or didn't bail out early
3622 * due to locks contention before we declare that we should give up.
3623 * But do not retry if the given zonelist is not suitable for
3624 * compaction.
3625 */
3626 if (compaction_withdrawn(compact_result)) {
3627 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3628 goto out;
3629 }
3630
3631 /*
3632 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3633 * costly ones because they are de facto nofail and invoke OOM
3634 * killer to move on while costly can fail and users are ready
3635 * to cope with that. 1/4 retries is rather arbitrary but we
3636 * would need much more detailed feedback from compaction to
3637 * make a better decision.
3638 */
3639 if (order > PAGE_ALLOC_COSTLY_ORDER)
3640 max_retries /= 4;
3641 if (*compaction_retries <= max_retries) {
3642 ret = true;
3643 goto out;
3644 }
3645
3646 /*
3647 * Make sure there are attempts at the highest priority if we exhausted
3648 * all retries or failed at the lower priorities.
3649 */
3650check_priority:
3651 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3652 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3653
3654 if (*compact_priority > min_priority) {
3655 (*compact_priority)--;
3656 *compaction_retries = 0;
3657 ret = true;
3658 }
3659out:
3660 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3661 return ret;
3662}
3663#else
3664static inline struct page *
3665__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3666 unsigned int alloc_flags, const struct alloc_context *ac,
3667 enum compact_priority prio, enum compact_result *compact_result)
3668{
3669 *compact_result = COMPACT_SKIPPED;
3670 return NULL;
3671}
3672
3673static inline bool
3674should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3675 enum compact_result compact_result,
3676 enum compact_priority *compact_priority,
3677 int *compaction_retries)
3678{
3679 struct zone *zone;
3680 struct zoneref *z;
3681
3682 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3683 return false;
3684
3685 /*
3686 * There are setups with compaction disabled which would prefer to loop
3687 * inside the allocator rather than hit the oom killer prematurely.
3688 * Let's give them a good hope and keep retrying while the order-0
3689 * watermarks are OK.
3690 */
3691 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3692 ac->nodemask) {
3693 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3694 ac_classzone_idx(ac), alloc_flags))
3695 return true;
3696 }
3697 return false;
3698}
3699#endif /* CONFIG_COMPACTION */
3700
3701#ifdef CONFIG_LOCKDEP
3702static struct lockdep_map __fs_reclaim_map =
3703 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3704
3705static bool __need_fs_reclaim(gfp_t gfp_mask)
3706{
3707 gfp_mask = current_gfp_context(gfp_mask);
3708
3709 /* no reclaim without waiting on it */
3710 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3711 return false;
3712
3713 /* this guy won't enter reclaim */
3714 if (current->flags & PF_MEMALLOC)
3715 return false;
3716
3717 /* We're only interested __GFP_FS allocations for now */
3718 if (!(gfp_mask & __GFP_FS))
3719 return false;
3720
3721 if (gfp_mask & __GFP_NOLOCKDEP)
3722 return false;
3723
3724 return true;
3725}
3726
3727void __fs_reclaim_acquire(void)
3728{
3729 lock_map_acquire(&__fs_reclaim_map);
3730}
3731
3732void __fs_reclaim_release(void)
3733{
3734 lock_map_release(&__fs_reclaim_map);
3735}
3736
3737void fs_reclaim_acquire(gfp_t gfp_mask)
3738{
3739 if (__need_fs_reclaim(gfp_mask))
3740 __fs_reclaim_acquire();
3741}
3742EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3743
3744void fs_reclaim_release(gfp_t gfp_mask)
3745{
3746 if (__need_fs_reclaim(gfp_mask))
3747 __fs_reclaim_release();
3748}
3749EXPORT_SYMBOL_GPL(fs_reclaim_release);
3750#endif
3751
3752/* Perform direct synchronous page reclaim */
3753static int
3754__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3755 const struct alloc_context *ac)
3756{
3757 struct reclaim_state reclaim_state;
3758 int progress;
3759 unsigned int noreclaim_flag;
3760
3761 cond_resched();
3762
3763 /* We now go into synchronous reclaim */
3764 cpuset_memory_pressure_bump();
3765 fs_reclaim_acquire(gfp_mask);
3766 noreclaim_flag = memalloc_noreclaim_save();
3767 reclaim_state.reclaimed_slab = 0;
3768 current->reclaim_state = &reclaim_state;
3769
3770 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3771 ac->nodemask);
3772
3773 current->reclaim_state = NULL;
3774 memalloc_noreclaim_restore(noreclaim_flag);
3775 fs_reclaim_release(gfp_mask);
3776
3777 cond_resched();
3778
3779 return progress;
3780}
3781
3782/* The really slow allocator path where we enter direct reclaim */
3783static inline struct page *
3784__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3785 unsigned int alloc_flags, const struct alloc_context *ac,
3786 unsigned long *did_some_progress)
3787{
3788 struct page *page = NULL;
3789 bool drained = false;
3790
3791 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3792 if (unlikely(!(*did_some_progress)))
3793 return NULL;
3794
3795retry:
3796 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3797
3798 /*
3799 * If an allocation failed after direct reclaim, it could be because
3800 * pages are pinned on the per-cpu lists or in high alloc reserves.
3801 * Shrink them them and try again
3802 */
3803 if (!page && !drained) {
3804 unreserve_highatomic_pageblock(ac, false);
3805 drain_all_pages(NULL);
3806 drained = true;
3807 goto retry;
3808 }
3809
3810 return page;
3811}
3812
3813static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3814 const struct alloc_context *ac)
3815{
3816 struct zoneref *z;
3817 struct zone *zone;
3818 pg_data_t *last_pgdat = NULL;
3819 enum zone_type high_zoneidx = ac->high_zoneidx;
3820
3821 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3822 ac->nodemask) {
3823 if (last_pgdat != zone->zone_pgdat)
3824 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3825 last_pgdat = zone->zone_pgdat;
3826 }
3827}
3828
3829static inline unsigned int
3830gfp_to_alloc_flags(gfp_t gfp_mask)
3831{
3832 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3833
3834 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3835 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3836
3837 /*
3838 * The caller may dip into page reserves a bit more if the caller
3839 * cannot run direct reclaim, or if the caller has realtime scheduling
3840 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3841 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3842 */
3843 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3844
3845 if (gfp_mask & __GFP_ATOMIC) {
3846 /*
3847 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3848 * if it can't schedule.
3849 */
3850 if (!(gfp_mask & __GFP_NOMEMALLOC))
3851 alloc_flags |= ALLOC_HARDER;
3852 /*
3853 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3854 * comment for __cpuset_node_allowed().
3855 */
3856 alloc_flags &= ~ALLOC_CPUSET;
3857 } else if (unlikely(rt_task(current)) && !in_interrupt())
3858 alloc_flags |= ALLOC_HARDER;
3859
3860#ifdef CONFIG_CMA
3861 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3862 alloc_flags |= ALLOC_CMA;
3863#endif
3864 return alloc_flags;
3865}
3866
3867static bool oom_reserves_allowed(struct task_struct *tsk)
3868{
3869 if (!tsk_is_oom_victim(tsk))
3870 return false;
3871
3872 /*
3873 * !MMU doesn't have oom reaper so give access to memory reserves
3874 * only to the thread with TIF_MEMDIE set
3875 */
3876 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3877 return false;
3878
3879 return true;
3880}
3881
3882/*
3883 * Distinguish requests which really need access to full memory
3884 * reserves from oom victims which can live with a portion of it
3885 */
3886static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3887{
3888 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3889 return 0;
3890 if (gfp_mask & __GFP_MEMALLOC)
3891 return ALLOC_NO_WATERMARKS;
3892 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3893 return ALLOC_NO_WATERMARKS;
3894 if (!in_interrupt()) {
3895 if (current->flags & PF_MEMALLOC)
3896 return ALLOC_NO_WATERMARKS;
3897 else if (oom_reserves_allowed(current))
3898 return ALLOC_OOM;
3899 }
3900
3901 return 0;
3902}
3903
3904bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3905{
3906 return !!__gfp_pfmemalloc_flags(gfp_mask);
3907}
3908
3909/*
3910 * Checks whether it makes sense to retry the reclaim to make a forward progress
3911 * for the given allocation request.
3912 *
3913 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3914 * without success, or when we couldn't even meet the watermark if we
3915 * reclaimed all remaining pages on the LRU lists.
3916 *
3917 * Returns true if a retry is viable or false to enter the oom path.
3918 */
3919static inline bool
3920should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3921 struct alloc_context *ac, int alloc_flags,
3922 bool did_some_progress, int *no_progress_loops)
3923{
3924 struct zone *zone;
3925 struct zoneref *z;
3926
3927 /*
3928 * Costly allocations might have made a progress but this doesn't mean
3929 * their order will become available due to high fragmentation so
3930 * always increment the no progress counter for them
3931 */
3932 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3933 *no_progress_loops = 0;
3934 else
3935 (*no_progress_loops)++;
3936
3937 /*
3938 * Make sure we converge to OOM if we cannot make any progress
3939 * several times in the row.
3940 */
3941 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3942 /* Before OOM, exhaust highatomic_reserve */
3943 return unreserve_highatomic_pageblock(ac, true);
3944 }
3945
3946 /*
3947 * Keep reclaiming pages while there is a chance this will lead
3948 * somewhere. If none of the target zones can satisfy our allocation
3949 * request even if all reclaimable pages are considered then we are
3950 * screwed and have to go OOM.
3951 */
3952 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3953 ac->nodemask) {
3954 unsigned long available;
3955 unsigned long reclaimable;
3956 unsigned long min_wmark = min_wmark_pages(zone);
3957 bool wmark;
3958
3959 available = reclaimable = zone_reclaimable_pages(zone);
3960 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3961
3962 /*
3963 * Would the allocation succeed if we reclaimed all
3964 * reclaimable pages?
3965 */
3966 wmark = __zone_watermark_ok(zone, order, min_wmark,
3967 ac_classzone_idx(ac), alloc_flags, available);
3968 trace_reclaim_retry_zone(z, order, reclaimable,
3969 available, min_wmark, *no_progress_loops, wmark);
3970 if (wmark) {
3971 /*
3972 * If we didn't make any progress and have a lot of
3973 * dirty + writeback pages then we should wait for
3974 * an IO to complete to slow down the reclaim and
3975 * prevent from pre mature OOM
3976 */
3977 if (!did_some_progress) {
3978 unsigned long write_pending;
3979
3980 write_pending = zone_page_state_snapshot(zone,
3981 NR_ZONE_WRITE_PENDING);
3982
3983 if (2 * write_pending > reclaimable) {
3984 congestion_wait(BLK_RW_ASYNC, HZ/10);
3985 return true;
3986 }
3987 }
3988
3989 /*
3990 * Memory allocation/reclaim might be called from a WQ
3991 * context and the current implementation of the WQ
3992 * concurrency control doesn't recognize that
3993 * a particular WQ is congested if the worker thread is
3994 * looping without ever sleeping. Therefore we have to
3995 * do a short sleep here rather than calling
3996 * cond_resched().
3997 */
3998 if (current->flags & PF_WQ_WORKER)
3999 schedule_timeout_uninterruptible(1);
4000 else
4001 cond_resched();
4002
4003 return true;
4004 }
4005 }
4006
4007 return false;
4008}
4009
4010static inline bool
4011check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4012{
4013 /*
4014 * It's possible that cpuset's mems_allowed and the nodemask from
4015 * mempolicy don't intersect. This should be normally dealt with by
4016 * policy_nodemask(), but it's possible to race with cpuset update in
4017 * such a way the check therein was true, and then it became false
4018 * before we got our cpuset_mems_cookie here.
4019 * This assumes that for all allocations, ac->nodemask can come only
4020 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4021 * when it does not intersect with the cpuset restrictions) or the
4022 * caller can deal with a violated nodemask.
4023 */
4024 if (cpusets_enabled() && ac->nodemask &&
4025 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4026 ac->nodemask = NULL;
4027 return true;
4028 }
4029
4030 /*
4031 * When updating a task's mems_allowed or mempolicy nodemask, it is
4032 * possible to race with parallel threads in such a way that our
4033 * allocation can fail while the mask is being updated. If we are about
4034 * to fail, check if the cpuset changed during allocation and if so,
4035 * retry.
4036 */
4037 if (read_mems_allowed_retry(cpuset_mems_cookie))
4038 return true;
4039
4040 return false;
4041}
4042
4043static inline struct page *
4044__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4045 struct alloc_context *ac)
4046{
4047 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4048 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4049 struct page *page = NULL;
4050 unsigned int alloc_flags;
4051 unsigned long did_some_progress;
4052 enum compact_priority compact_priority;
4053 enum compact_result compact_result;
4054 int compaction_retries;
4055 int no_progress_loops;
4056 unsigned int cpuset_mems_cookie;
4057 int reserve_flags;
4058
4059 /*
4060 * In the slowpath, we sanity check order to avoid ever trying to
4061 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4062 * be using allocators in order of preference for an area that is
4063 * too large.
4064 */
4065 if (order >= MAX_ORDER) {
4066 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4067 return NULL;
4068 }
4069
4070 /*
4071 * We also sanity check to catch abuse of atomic reserves being used by
4072 * callers that are not in atomic context.
4073 */
4074 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4075 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4076 gfp_mask &= ~__GFP_ATOMIC;
4077
4078retry_cpuset:
4079 compaction_retries = 0;
4080 no_progress_loops = 0;
4081 compact_priority = DEF_COMPACT_PRIORITY;
4082 cpuset_mems_cookie = read_mems_allowed_begin();
4083
4084 /*
4085 * The fast path uses conservative alloc_flags to succeed only until
4086 * kswapd needs to be woken up, and to avoid the cost of setting up
4087 * alloc_flags precisely. So we do that now.
4088 */
4089 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4090
4091 /*
4092 * We need to recalculate the starting point for the zonelist iterator
4093 * because we might have used different nodemask in the fast path, or
4094 * there was a cpuset modification and we are retrying - otherwise we
4095 * could end up iterating over non-eligible zones endlessly.
4096 */
4097 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4098 ac->high_zoneidx, ac->nodemask);
4099 if (!ac->preferred_zoneref->zone)
4100 goto nopage;
4101
4102 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4103 wake_all_kswapds(order, gfp_mask, ac);
4104
4105 /*
4106 * The adjusted alloc_flags might result in immediate success, so try
4107 * that first
4108 */
4109 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4110 if (page)
4111 goto got_pg;
4112
4113 /*
4114 * For costly allocations, try direct compaction first, as it's likely
4115 * that we have enough base pages and don't need to reclaim. For non-
4116 * movable high-order allocations, do that as well, as compaction will
4117 * try prevent permanent fragmentation by migrating from blocks of the
4118 * same migratetype.
4119 * Don't try this for allocations that are allowed to ignore
4120 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4121 */
4122 if (can_direct_reclaim &&
4123 (costly_order ||
4124 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4125 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4126 page = __alloc_pages_direct_compact(gfp_mask, order,
4127 alloc_flags, ac,
4128 INIT_COMPACT_PRIORITY,
4129 &compact_result);
4130 if (page)
4131 goto got_pg;
4132
4133 /*
4134 * Checks for costly allocations with __GFP_NORETRY, which
4135 * includes THP page fault allocations
4136 */
4137 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4138 /*
4139 * If compaction is deferred for high-order allocations,
4140 * it is because sync compaction recently failed. If
4141 * this is the case and the caller requested a THP
4142 * allocation, we do not want to heavily disrupt the
4143 * system, so we fail the allocation instead of entering
4144 * direct reclaim.
4145 */
4146 if (compact_result == COMPACT_DEFERRED)
4147 goto nopage;
4148
4149 /*
4150 * Looks like reclaim/compaction is worth trying, but
4151 * sync compaction could be very expensive, so keep
4152 * using async compaction.
4153 */
4154 compact_priority = INIT_COMPACT_PRIORITY;
4155 }
4156 }
4157
4158retry:
4159 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4160 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4161 wake_all_kswapds(order, gfp_mask, ac);
4162
4163 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4164 if (reserve_flags)
4165 alloc_flags = reserve_flags;
4166
4167 /*
4168 * Reset the nodemask and zonelist iterators if memory policies can be
4169 * ignored. These allocations are high priority and system rather than
4170 * user oriented.
4171 */
4172 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4173 ac->nodemask = NULL;
4174 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4175 ac->high_zoneidx, ac->nodemask);
4176 }
4177
4178 /* Attempt with potentially adjusted zonelist and alloc_flags */
4179 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4180 if (page)
4181 goto got_pg;
4182
4183 /* Caller is not willing to reclaim, we can't balance anything */
4184 if (!can_direct_reclaim)
4185 goto nopage;
4186
4187 /* Avoid recursion of direct reclaim */
4188 if (current->flags & PF_MEMALLOC)
4189 goto nopage;
4190
4191 /* Try direct reclaim and then allocating */
4192 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4193 &did_some_progress);
4194 if (page)
4195 goto got_pg;
4196
4197 /* Try direct compaction and then allocating */
4198 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4199 compact_priority, &compact_result);
4200 if (page)
4201 goto got_pg;
4202
4203 /* Do not loop if specifically requested */
4204 if (gfp_mask & __GFP_NORETRY)
4205 goto nopage;
4206
4207 /*
4208 * Do not retry costly high order allocations unless they are
4209 * __GFP_RETRY_MAYFAIL
4210 */
4211 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4212 goto nopage;
4213
4214 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4215 did_some_progress > 0, &no_progress_loops))
4216 goto retry;
4217
4218 /*
4219 * It doesn't make any sense to retry for the compaction if the order-0
4220 * reclaim is not able to make any progress because the current
4221 * implementation of the compaction depends on the sufficient amount
4222 * of free memory (see __compaction_suitable)
4223 */
4224 if (did_some_progress > 0 &&
4225 should_compact_retry(ac, order, alloc_flags,
4226 compact_result, &compact_priority,
4227 &compaction_retries))
4228 goto retry;
4229
4230
4231 /* Deal with possible cpuset update races before we start OOM killing */
4232 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4233 goto retry_cpuset;
4234
4235 /* Reclaim has failed us, start killing things */
4236 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4237 if (page)
4238 goto got_pg;
4239
4240 /* Avoid allocations with no watermarks from looping endlessly */
4241 if (tsk_is_oom_victim(current) &&
4242 (alloc_flags == ALLOC_OOM ||
4243 (gfp_mask & __GFP_NOMEMALLOC)))
4244 goto nopage;
4245
4246 /* Retry as long as the OOM killer is making progress */
4247 if (did_some_progress) {
4248 no_progress_loops = 0;
4249 goto retry;
4250 }
4251
4252nopage:
4253 /* Deal with possible cpuset update races before we fail */
4254 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4255 goto retry_cpuset;
4256
4257 /*
4258 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4259 * we always retry
4260 */
4261 if (gfp_mask & __GFP_NOFAIL) {
4262 /*
4263 * All existing users of the __GFP_NOFAIL are blockable, so warn
4264 * of any new users that actually require GFP_NOWAIT
4265 */
4266 if (WARN_ON_ONCE(!can_direct_reclaim))
4267 goto fail;
4268
4269 /*
4270 * PF_MEMALLOC request from this context is rather bizarre
4271 * because we cannot reclaim anything and only can loop waiting
4272 * for somebody to do a work for us
4273 */
4274 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4275
4276 /*
4277 * non failing costly orders are a hard requirement which we
4278 * are not prepared for much so let's warn about these users
4279 * so that we can identify them and convert them to something
4280 * else.
4281 */
4282 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4283
4284 /*
4285 * Help non-failing allocations by giving them access to memory
4286 * reserves but do not use ALLOC_NO_WATERMARKS because this
4287 * could deplete whole memory reserves which would just make
4288 * the situation worse
4289 */
4290 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4291 if (page)
4292 goto got_pg;
4293
4294 cond_resched();
4295 goto retry;
4296 }
4297fail:
4298 warn_alloc(gfp_mask, ac->nodemask,
4299 "page allocation failure: order:%u", order);
4300got_pg:
4301 return page;
4302}
4303
4304static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4305 int preferred_nid, nodemask_t *nodemask,
4306 struct alloc_context *ac, gfp_t *alloc_mask,
4307 unsigned int *alloc_flags)
4308{
4309 ac->high_zoneidx = gfp_zone(gfp_mask);
4310 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4311 ac->nodemask = nodemask;
4312 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4313
4314 if (cpusets_enabled()) {
4315 *alloc_mask |= __GFP_HARDWALL;
4316 if (!ac->nodemask)
4317 ac->nodemask = &cpuset_current_mems_allowed;
4318 else
4319 *alloc_flags |= ALLOC_CPUSET;
4320 }
4321
4322 fs_reclaim_acquire(gfp_mask);
4323 fs_reclaim_release(gfp_mask);
4324
4325 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4326
4327 if (should_fail_alloc_page(gfp_mask, order))
4328 return false;
4329
4330 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4331 *alloc_flags |= ALLOC_CMA;
4332
4333 return true;
4334}
4335
4336/* Determine whether to spread dirty pages and what the first usable zone */
4337static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4338{
4339 /* Dirty zone balancing only done in the fast path */
4340 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4341
4342 /*
4343 * The preferred zone is used for statistics but crucially it is
4344 * also used as the starting point for the zonelist iterator. It
4345 * may get reset for allocations that ignore memory policies.
4346 */
4347 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4348 ac->high_zoneidx, ac->nodemask);
4349}
4350
4351/*
4352 * This is the 'heart' of the zoned buddy allocator.
4353 */
4354struct page *
4355__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4356 nodemask_t *nodemask)
4357{
4358 struct page *page;
4359 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4360 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4361 struct alloc_context ac = { };
4362
4363 gfp_mask &= gfp_allowed_mask;
4364 alloc_mask = gfp_mask;
4365 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4366 return NULL;
4367
4368 finalise_ac(gfp_mask, &ac);
4369
4370 /* First allocation attempt */
4371 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4372 if (likely(page))
4373 goto out;
4374
4375 /*
4376 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4377 * resp. GFP_NOIO which has to be inherited for all allocation requests
4378 * from a particular context which has been marked by
4379 * memalloc_no{fs,io}_{save,restore}.
4380 */
4381 alloc_mask = current_gfp_context(gfp_mask);
4382 ac.spread_dirty_pages = false;
4383
4384 /*
4385 * Restore the original nodemask if it was potentially replaced with
4386 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4387 */
4388 if (unlikely(ac.nodemask != nodemask))
4389 ac.nodemask = nodemask;
4390
4391 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4392
4393out:
4394 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4395 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4396 __free_pages(page, order);
4397 page = NULL;
4398 }
4399
4400 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4401
4402 return page;
4403}
4404EXPORT_SYMBOL(__alloc_pages_nodemask);
4405
4406/*
4407 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4408 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4409 * you need to access high mem.
4410 */
4411unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4412{
4413 struct page *page;
4414
4415 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4416 if (!page)
4417 return 0;
4418 return (unsigned long) page_address(page);
4419}
4420EXPORT_SYMBOL(__get_free_pages);
4421
4422unsigned long get_zeroed_page(gfp_t gfp_mask)
4423{
4424 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4425}
4426EXPORT_SYMBOL(get_zeroed_page);
4427
4428void __free_pages(struct page *page, unsigned int order)
4429{
4430 if (put_page_testzero(page)) {
4431 if (order == 0)
4432 free_unref_page(page);
4433 else
4434 __free_pages_ok(page, order);
4435 }
4436}
4437
4438EXPORT_SYMBOL(__free_pages);
4439
4440void free_pages(unsigned long addr, unsigned int order)
4441{
4442 if (addr != 0) {
4443 VM_BUG_ON(!virt_addr_valid((void *)addr));
4444 __free_pages(virt_to_page((void *)addr), order);
4445 }
4446}
4447
4448EXPORT_SYMBOL(free_pages);
4449
4450/*
4451 * Page Fragment:
4452 * An arbitrary-length arbitrary-offset area of memory which resides
4453 * within a 0 or higher order page. Multiple fragments within that page
4454 * are individually refcounted, in the page's reference counter.
4455 *
4456 * The page_frag functions below provide a simple allocation framework for
4457 * page fragments. This is used by the network stack and network device
4458 * drivers to provide a backing region of memory for use as either an
4459 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4460 */
4461static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4462 gfp_t gfp_mask)
4463{
4464 struct page *page = NULL;
4465 gfp_t gfp = gfp_mask;
4466
4467#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4468 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4469 __GFP_NOMEMALLOC;
4470 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4471 PAGE_FRAG_CACHE_MAX_ORDER);
4472 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4473#endif
4474 if (unlikely(!page))
4475 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4476
4477 nc->va = page ? page_address(page) : NULL;
4478
4479 return page;
4480}
4481
4482void __page_frag_cache_drain(struct page *page, unsigned int count)
4483{
4484 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4485
4486 if (page_ref_sub_and_test(page, count)) {
4487 unsigned int order = compound_order(page);
4488
4489 if (order == 0)
4490 free_unref_page(page);
4491 else
4492 __free_pages_ok(page, order);
4493 }
4494}
4495EXPORT_SYMBOL(__page_frag_cache_drain);
4496
4497void *page_frag_alloc(struct page_frag_cache *nc,
4498 unsigned int fragsz, gfp_t gfp_mask)
4499{
4500 unsigned int size = PAGE_SIZE;
4501 struct page *page;
4502 int offset;
4503
4504 if (unlikely(!nc->va)) {
4505refill:
4506 page = __page_frag_cache_refill(nc, gfp_mask);
4507 if (!page)
4508 return NULL;
4509
4510#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4511 /* if size can vary use size else just use PAGE_SIZE */
4512 size = nc->size;
4513#endif
4514 /* Even if we own the page, we do not use atomic_set().
4515 * This would break get_page_unless_zero() users.
4516 */
4517 page_ref_add(page, size - 1);
4518
4519 /* reset page count bias and offset to start of new frag */
4520 nc->pfmemalloc = page_is_pfmemalloc(page);
4521 nc->pagecnt_bias = size;
4522 nc->offset = size;
4523 }
4524
4525 offset = nc->offset - fragsz;
4526 if (unlikely(offset < 0)) {
4527 page = virt_to_page(nc->va);
4528
4529 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4530 goto refill;
4531
4532#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4533 /* if size can vary use size else just use PAGE_SIZE */
4534 size = nc->size;
4535#endif
4536 /* OK, page count is 0, we can safely set it */
4537 set_page_count(page, size);
4538
4539 /* reset page count bias and offset to start of new frag */
4540 nc->pagecnt_bias = size;
4541 offset = size - fragsz;
4542 }
4543
4544 nc->pagecnt_bias--;
4545 nc->offset = offset;
4546
4547 return nc->va + offset;
4548}
4549EXPORT_SYMBOL(page_frag_alloc);
4550
4551/*
4552 * Frees a page fragment allocated out of either a compound or order 0 page.
4553 */
4554void page_frag_free(void *addr)
4555{
4556 struct page *page = virt_to_head_page(addr);
4557
4558 if (unlikely(put_page_testzero(page)))
4559 __free_pages_ok(page, compound_order(page));
4560}
4561EXPORT_SYMBOL(page_frag_free);
4562
4563static void *make_alloc_exact(unsigned long addr, unsigned int order,
4564 size_t size)
4565{
4566 if (addr) {
4567 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4568 unsigned long used = addr + PAGE_ALIGN(size);
4569
4570 split_page(virt_to_page((void *)addr), order);
4571 while (used < alloc_end) {
4572 free_page(used);
4573 used += PAGE_SIZE;
4574 }
4575 }
4576 return (void *)addr;
4577}
4578
4579/**
4580 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4581 * @size: the number of bytes to allocate
4582 * @gfp_mask: GFP flags for the allocation
4583 *
4584 * This function is similar to alloc_pages(), except that it allocates the
4585 * minimum number of pages to satisfy the request. alloc_pages() can only
4586 * allocate memory in power-of-two pages.
4587 *
4588 * This function is also limited by MAX_ORDER.
4589 *
4590 * Memory allocated by this function must be released by free_pages_exact().
4591 */
4592void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4593{
4594 unsigned int order = get_order(size);
4595 unsigned long addr;
4596
4597 addr = __get_free_pages(gfp_mask, order);
4598 return make_alloc_exact(addr, order, size);
4599}
4600EXPORT_SYMBOL(alloc_pages_exact);
4601
4602/**
4603 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4604 * pages on a node.
4605 * @nid: the preferred node ID where memory should be allocated
4606 * @size: the number of bytes to allocate
4607 * @gfp_mask: GFP flags for the allocation
4608 *
4609 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4610 * back.
4611 */
4612void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4613{
4614 unsigned int order = get_order(size);
4615 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4616 if (!p)
4617 return NULL;
4618 return make_alloc_exact((unsigned long)page_address(p), order, size);
4619}
4620
4621/**
4622 * free_pages_exact - release memory allocated via alloc_pages_exact()
4623 * @virt: the value returned by alloc_pages_exact.
4624 * @size: size of allocation, same value as passed to alloc_pages_exact().
4625 *
4626 * Release the memory allocated by a previous call to alloc_pages_exact.
4627 */
4628void free_pages_exact(void *virt, size_t size)
4629{
4630 unsigned long addr = (unsigned long)virt;
4631 unsigned long end = addr + PAGE_ALIGN(size);
4632
4633 while (addr < end) {
4634 free_page(addr);
4635 addr += PAGE_SIZE;
4636 }
4637}
4638EXPORT_SYMBOL(free_pages_exact);
4639
4640/**
4641 * nr_free_zone_pages - count number of pages beyond high watermark
4642 * @offset: The zone index of the highest zone
4643 *
4644 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4645 * high watermark within all zones at or below a given zone index. For each
4646 * zone, the number of pages is calculated as:
4647 *
4648 * nr_free_zone_pages = managed_pages - high_pages
4649 */
4650static unsigned long nr_free_zone_pages(int offset)
4651{
4652 struct zoneref *z;
4653 struct zone *zone;
4654
4655 /* Just pick one node, since fallback list is circular */
4656 unsigned long sum = 0;
4657
4658 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4659
4660 for_each_zone_zonelist(zone, z, zonelist, offset) {
4661 unsigned long size = zone->managed_pages;
4662 unsigned long high = high_wmark_pages(zone);
4663 if (size > high)
4664 sum += size - high;
4665 }
4666
4667 return sum;
4668}
4669
4670/**
4671 * nr_free_buffer_pages - count number of pages beyond high watermark
4672 *
4673 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4674 * watermark within ZONE_DMA and ZONE_NORMAL.
4675 */
4676unsigned long nr_free_buffer_pages(void)
4677{
4678 return nr_free_zone_pages(gfp_zone(GFP_USER));
4679}
4680EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4681
4682/**
4683 * nr_free_pagecache_pages - count number of pages beyond high watermark
4684 *
4685 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4686 * high watermark within all zones.
4687 */
4688unsigned long nr_free_pagecache_pages(void)
4689{
4690 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4691}
4692
4693static inline void show_node(struct zone *zone)
4694{
4695 if (IS_ENABLED(CONFIG_NUMA))
4696 printk("Node %d ", zone_to_nid(zone));
4697}
4698
4699long si_mem_available(void)
4700{
4701 long available;
4702 unsigned long pagecache;
4703 unsigned long wmark_low = 0;
4704 unsigned long pages[NR_LRU_LISTS];
4705 struct zone *zone;
4706 int lru;
4707
4708 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4709 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4710
4711 for_each_zone(zone)
4712 wmark_low += zone->watermark[WMARK_LOW];
4713
4714 /*
4715 * Estimate the amount of memory available for userspace allocations,
4716 * without causing swapping.
4717 */
4718 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4719
4720 /*
4721 * Not all the page cache can be freed, otherwise the system will
4722 * start swapping. Assume at least half of the page cache, or the
4723 * low watermark worth of cache, needs to stay.
4724 */
4725 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4726 pagecache -= min(pagecache / 2, wmark_low);
4727 available += pagecache;
4728
4729 /*
4730 * Part of the reclaimable slab consists of items that are in use,
4731 * and cannot be freed. Cap this estimate at the low watermark.
4732 */
4733 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4734 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4735 wmark_low);
4736
4737 /*
4738 * Part of the kernel memory, which can be released under memory
4739 * pressure.
4740 */
4741 available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4742 PAGE_SHIFT;
4743
4744 if (available < 0)
4745 available = 0;
4746 return available;
4747}
4748EXPORT_SYMBOL_GPL(si_mem_available);
4749
4750void si_meminfo(struct sysinfo *val)
4751{
4752 val->totalram = totalram_pages;
4753 val->sharedram = global_node_page_state(NR_SHMEM);
4754 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4755 val->bufferram = nr_blockdev_pages();
4756 val->totalhigh = totalhigh_pages;
4757 val->freehigh = nr_free_highpages();
4758 val->mem_unit = PAGE_SIZE;
4759}
4760
4761EXPORT_SYMBOL(si_meminfo);
4762
4763#ifdef CONFIG_NUMA
4764void si_meminfo_node(struct sysinfo *val, int nid)
4765{
4766 int zone_type; /* needs to be signed */
4767 unsigned long managed_pages = 0;
4768 unsigned long managed_highpages = 0;
4769 unsigned long free_highpages = 0;
4770 pg_data_t *pgdat = NODE_DATA(nid);
4771
4772 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4773 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4774 val->totalram = managed_pages;
4775 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4776 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4777#ifdef CONFIG_HIGHMEM
4778 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4779 struct zone *zone = &pgdat->node_zones[zone_type];
4780
4781 if (is_highmem(zone)) {
4782 managed_highpages += zone->managed_pages;
4783 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4784 }
4785 }
4786 val->totalhigh = managed_highpages;
4787 val->freehigh = free_highpages;
4788#else
4789 val->totalhigh = managed_highpages;
4790 val->freehigh = free_highpages;
4791#endif
4792 val->mem_unit = PAGE_SIZE;
4793}
4794#endif
4795
4796/*
4797 * Determine whether the node should be displayed or not, depending on whether
4798 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4799 */
4800static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4801{
4802 if (!(flags & SHOW_MEM_FILTER_NODES))
4803 return false;
4804
4805 /*
4806 * no node mask - aka implicit memory numa policy. Do not bother with
4807 * the synchronization - read_mems_allowed_begin - because we do not
4808 * have to be precise here.
4809 */
4810 if (!nodemask)
4811 nodemask = &cpuset_current_mems_allowed;
4812
4813 return !node_isset(nid, *nodemask);
4814}
4815
4816#define K(x) ((x) << (PAGE_SHIFT-10))
4817
4818static void show_migration_types(unsigned char type)
4819{
4820 static const char types[MIGRATE_TYPES] = {
4821 [MIGRATE_UNMOVABLE] = 'U',
4822 [MIGRATE_MOVABLE] = 'M',
4823 [MIGRATE_RECLAIMABLE] = 'E',
4824 [MIGRATE_HIGHATOMIC] = 'H',
4825#ifdef CONFIG_CMA
4826 [MIGRATE_CMA] = 'C',
4827#endif
4828#ifdef CONFIG_MEMORY_ISOLATION
4829 [MIGRATE_ISOLATE] = 'I',
4830#endif
4831 };
4832 char tmp[MIGRATE_TYPES + 1];
4833 char *p = tmp;
4834 int i;
4835
4836 for (i = 0; i < MIGRATE_TYPES; i++) {
4837 if (type & (1 << i))
4838 *p++ = types[i];
4839 }
4840
4841 *p = '\0';
4842 printk(KERN_CONT "(%s) ", tmp);
4843}
4844
4845/*
4846 * Show free area list (used inside shift_scroll-lock stuff)
4847 * We also calculate the percentage fragmentation. We do this by counting the
4848 * memory on each free list with the exception of the first item on the list.
4849 *
4850 * Bits in @filter:
4851 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4852 * cpuset.
4853 */
4854void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4855{
4856 unsigned long free_pcp = 0;
4857 int cpu;
4858 struct zone *zone;
4859 pg_data_t *pgdat;
4860
4861 for_each_populated_zone(zone) {
4862 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4863 continue;
4864
4865 for_each_online_cpu(cpu)
4866 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4867 }
4868
4869 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4870 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4871 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4872 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4873 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4874 " free:%lu free_pcp:%lu free_cma:%lu\n",
4875 global_node_page_state(NR_ACTIVE_ANON),
4876 global_node_page_state(NR_INACTIVE_ANON),
4877 global_node_page_state(NR_ISOLATED_ANON),
4878 global_node_page_state(NR_ACTIVE_FILE),
4879 global_node_page_state(NR_INACTIVE_FILE),
4880 global_node_page_state(NR_ISOLATED_FILE),
4881 global_node_page_state(NR_UNEVICTABLE),
4882 global_node_page_state(NR_FILE_DIRTY),
4883 global_node_page_state(NR_WRITEBACK),
4884 global_node_page_state(NR_UNSTABLE_NFS),
4885 global_node_page_state(NR_SLAB_RECLAIMABLE),
4886 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4887 global_node_page_state(NR_FILE_MAPPED),
4888 global_node_page_state(NR_SHMEM),
4889 global_zone_page_state(NR_PAGETABLE),
4890 global_zone_page_state(NR_BOUNCE),
4891 global_zone_page_state(NR_FREE_PAGES),
4892 free_pcp,
4893 global_zone_page_state(NR_FREE_CMA_PAGES));
4894
4895 for_each_online_pgdat(pgdat) {
4896 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4897 continue;
4898
4899 printk("Node %d"
4900 " active_anon:%lukB"
4901 " inactive_anon:%lukB"
4902 " active_file:%lukB"
4903 " inactive_file:%lukB"
4904 " unevictable:%lukB"
4905 " isolated(anon):%lukB"
4906 " isolated(file):%lukB"
4907 " mapped:%lukB"
4908 " dirty:%lukB"
4909 " writeback:%lukB"
4910 " shmem:%lukB"
4911#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4912 " shmem_thp: %lukB"
4913 " shmem_pmdmapped: %lukB"
4914 " anon_thp: %lukB"
4915#endif
4916 " writeback_tmp:%lukB"
4917 " unstable:%lukB"
4918 " all_unreclaimable? %s"
4919 "\n",
4920 pgdat->node_id,
4921 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4922 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4923 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4924 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4925 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4926 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4927 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4928 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4929 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4930 K(node_page_state(pgdat, NR_WRITEBACK)),
4931 K(node_page_state(pgdat, NR_SHMEM)),
4932#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4933 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4934 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4935 * HPAGE_PMD_NR),
4936 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4937#endif
4938 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4939 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4940 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4941 "yes" : "no");
4942 }
4943
4944 for_each_populated_zone(zone) {
4945 int i;
4946
4947 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4948 continue;
4949
4950 free_pcp = 0;
4951 for_each_online_cpu(cpu)
4952 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4953
4954 show_node(zone);
4955 printk(KERN_CONT
4956 "%s"
4957 " free:%lukB"
4958 " min:%lukB"
4959 " low:%lukB"
4960 " high:%lukB"
4961 " active_anon:%lukB"
4962 " inactive_anon:%lukB"
4963 " active_file:%lukB"
4964 " inactive_file:%lukB"
4965 " unevictable:%lukB"
4966 " writepending:%lukB"
4967 " present:%lukB"
4968 " managed:%lukB"
4969 " mlocked:%lukB"
4970 " kernel_stack:%lukB"
4971 " pagetables:%lukB"
4972 " bounce:%lukB"
4973 " free_pcp:%lukB"
4974 " local_pcp:%ukB"
4975 " free_cma:%lukB"
4976 "\n",
4977 zone->name,
4978 K(zone_page_state(zone, NR_FREE_PAGES)),
4979 K(min_wmark_pages(zone)),
4980 K(low_wmark_pages(zone)),
4981 K(high_wmark_pages(zone)),
4982 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4983 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4984 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4985 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4986 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4987 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4988 K(zone->present_pages),
4989 K(zone->managed_pages),
4990 K(zone_page_state(zone, NR_MLOCK)),
4991 zone_page_state(zone, NR_KERNEL_STACK_KB),
4992 K(zone_page_state(zone, NR_PAGETABLE)),
4993 K(zone_page_state(zone, NR_BOUNCE)),
4994 K(free_pcp),
4995 K(this_cpu_read(zone->pageset->pcp.count)),
4996 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4997 printk("lowmem_reserve[]:");
4998 for (i = 0; i < MAX_NR_ZONES; i++)
4999 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5000 printk(KERN_CONT "\n");
5001 }
5002
5003 for_each_populated_zone(zone) {
5004 unsigned int order;
5005 unsigned long nr[MAX_ORDER], flags, total = 0;
5006 unsigned char types[MAX_ORDER];
5007
5008 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5009 continue;
5010 show_node(zone);
5011 printk(KERN_CONT "%s: ", zone->name);
5012
5013 spin_lock_irqsave(&zone->lock, flags);
5014 for (order = 0; order < MAX_ORDER; order++) {
5015 struct free_area *area = &zone->free_area[order];
5016 int type;
5017
5018 nr[order] = area->nr_free;
5019 total += nr[order] << order;
5020
5021 types[order] = 0;
5022 for (type = 0; type < MIGRATE_TYPES; type++) {
5023 if (!list_empty(&area->free_list[type]))
5024 types[order] |= 1 << type;
5025 }
5026 }
5027 spin_unlock_irqrestore(&zone->lock, flags);
5028 for (order = 0; order < MAX_ORDER; order++) {
5029 printk(KERN_CONT "%lu*%lukB ",
5030 nr[order], K(1UL) << order);
5031 if (nr[order])
5032 show_migration_types(types[order]);
5033 }
5034 printk(KERN_CONT "= %lukB\n", K(total));
5035 }
5036
5037 hugetlb_show_meminfo();
5038
5039 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5040
5041 show_swap_cache_info();
5042}
5043
5044static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5045{
5046 zoneref->zone = zone;
5047 zoneref->zone_idx = zone_idx(zone);
5048}
5049
5050/*
5051 * Builds allocation fallback zone lists.
5052 *
5053 * Add all populated zones of a node to the zonelist.
5054 */
5055static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5056{
5057 struct zone *zone;
5058 enum zone_type zone_type = MAX_NR_ZONES;
5059 int nr_zones = 0;
5060
5061 do {
5062 zone_type--;
5063 zone = pgdat->node_zones + zone_type;
5064 if (managed_zone(zone)) {
5065 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5066 check_highest_zone(zone_type);
5067 }
5068 } while (zone_type);
5069
5070 return nr_zones;
5071}
5072
5073#ifdef CONFIG_NUMA
5074
5075static int __parse_numa_zonelist_order(char *s)
5076{
5077 /*
5078 * We used to support different zonlists modes but they turned
5079 * out to be just not useful. Let's keep the warning in place
5080 * if somebody still use the cmd line parameter so that we do
5081 * not fail it silently
5082 */
5083 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5084 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5085 return -EINVAL;
5086 }
5087 return 0;
5088}
5089
5090static __init int setup_numa_zonelist_order(char *s)
5091{
5092 if (!s)
5093 return 0;
5094
5095 return __parse_numa_zonelist_order(s);
5096}
5097early_param("numa_zonelist_order", setup_numa_zonelist_order);
5098
5099char numa_zonelist_order[] = "Node";
5100
5101/*
5102 * sysctl handler for numa_zonelist_order
5103 */
5104int numa_zonelist_order_handler(struct ctl_table *table, int write,
5105 void __user *buffer, size_t *length,
5106 loff_t *ppos)
5107{
5108 char *str;
5109 int ret;
5110
5111 if (!write)
5112 return proc_dostring(table, write, buffer, length, ppos);
5113 str = memdup_user_nul(buffer, 16);
5114 if (IS_ERR(str))
5115 return PTR_ERR(str);
5116
5117 ret = __parse_numa_zonelist_order(str);
5118 kfree(str);
5119 return ret;
5120}
5121
5122
5123#define MAX_NODE_LOAD (nr_online_nodes)
5124static int node_load[MAX_NUMNODES];
5125
5126/**
5127 * find_next_best_node - find the next node that should appear in a given node's fallback list
5128 * @node: node whose fallback list we're appending
5129 * @used_node_mask: nodemask_t of already used nodes
5130 *
5131 * We use a number of factors to determine which is the next node that should
5132 * appear on a given node's fallback list. The node should not have appeared
5133 * already in @node's fallback list, and it should be the next closest node
5134 * according to the distance array (which contains arbitrary distance values
5135 * from each node to each node in the system), and should also prefer nodes
5136 * with no CPUs, since presumably they'll have very little allocation pressure
5137 * on them otherwise.
5138 * It returns -1 if no node is found.
5139 */
5140static int find_next_best_node(int node, nodemask_t *used_node_mask)
5141{
5142 int n, val;
5143 int min_val = INT_MAX;
5144 int best_node = NUMA_NO_NODE;
5145 const struct cpumask *tmp = cpumask_of_node(0);
5146
5147 /* Use the local node if we haven't already */
5148 if (!node_isset(node, *used_node_mask)) {
5149 node_set(node, *used_node_mask);
5150 return node;
5151 }
5152
5153 for_each_node_state(n, N_MEMORY) {
5154
5155 /* Don't want a node to appear more than once */
5156 if (node_isset(n, *used_node_mask))
5157 continue;
5158
5159 /* Use the distance array to find the distance */
5160 val = node_distance(node, n);
5161
5162 /* Penalize nodes under us ("prefer the next node") */
5163 val += (n < node);
5164
5165 /* Give preference to headless and unused nodes */
5166 tmp = cpumask_of_node(n);
5167 if (!cpumask_empty(tmp))
5168 val += PENALTY_FOR_NODE_WITH_CPUS;
5169
5170 /* Slight preference for less loaded node */
5171 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5172 val += node_load[n];
5173
5174 if (val < min_val) {
5175 min_val = val;
5176 best_node = n;
5177 }
5178 }
5179
5180 if (best_node >= 0)
5181 node_set(best_node, *used_node_mask);
5182
5183 return best_node;
5184}
5185
5186
5187/*
5188 * Build zonelists ordered by node and zones within node.
5189 * This results in maximum locality--normal zone overflows into local
5190 * DMA zone, if any--but risks exhausting DMA zone.
5191 */
5192static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5193 unsigned nr_nodes)
5194{
5195 struct zoneref *zonerefs;
5196 int i;
5197
5198 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5199
5200 for (i = 0; i < nr_nodes; i++) {
5201 int nr_zones;
5202
5203 pg_data_t *node = NODE_DATA(node_order[i]);
5204
5205 nr_zones = build_zonerefs_node(node, zonerefs);
5206 zonerefs += nr_zones;
5207 }
5208 zonerefs->zone = NULL;
5209 zonerefs->zone_idx = 0;
5210}
5211
5212/*
5213 * Build gfp_thisnode zonelists
5214 */
5215static void build_thisnode_zonelists(pg_data_t *pgdat)
5216{
5217 struct zoneref *zonerefs;
5218 int nr_zones;
5219
5220 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5221 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5222 zonerefs += nr_zones;
5223 zonerefs->zone = NULL;
5224 zonerefs->zone_idx = 0;
5225}
5226
5227/*
5228 * Build zonelists ordered by zone and nodes within zones.
5229 * This results in conserving DMA zone[s] until all Normal memory is
5230 * exhausted, but results in overflowing to remote node while memory
5231 * may still exist in local DMA zone.
5232 */
5233
5234static void build_zonelists(pg_data_t *pgdat)
5235{
5236 static int node_order[MAX_NUMNODES];
5237 int node, load, nr_nodes = 0;
5238 nodemask_t used_mask;
5239 int local_node, prev_node;
5240
5241 /* NUMA-aware ordering of nodes */
5242 local_node = pgdat->node_id;
5243 load = nr_online_nodes;
5244 prev_node = local_node;
5245 nodes_clear(used_mask);
5246
5247 memset(node_order, 0, sizeof(node_order));
5248 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5249 /*
5250 * We don't want to pressure a particular node.
5251 * So adding penalty to the first node in same
5252 * distance group to make it round-robin.
5253 */
5254 if (node_distance(local_node, node) !=
5255 node_distance(local_node, prev_node))
5256 node_load[node] = load;
5257
5258 node_order[nr_nodes++] = node;
5259 prev_node = node;
5260 load--;
5261 }
5262
5263 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5264 build_thisnode_zonelists(pgdat);
5265}
5266
5267#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5268/*
5269 * Return node id of node used for "local" allocations.
5270 * I.e., first node id of first zone in arg node's generic zonelist.
5271 * Used for initializing percpu 'numa_mem', which is used primarily
5272 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5273 */
5274int local_memory_node(int node)
5275{
5276 struct zoneref *z;
5277
5278 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5279 gfp_zone(GFP_KERNEL),
5280 NULL);
5281 return zone_to_nid(z->zone);
5282}
5283#endif
5284
5285static void setup_min_unmapped_ratio(void);
5286static void setup_min_slab_ratio(void);
5287#else /* CONFIG_NUMA */
5288
5289static void build_zonelists(pg_data_t *pgdat)
5290{
5291 int node, local_node;
5292 struct zoneref *zonerefs;
5293 int nr_zones;
5294
5295 local_node = pgdat->node_id;
5296
5297 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5298 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5299 zonerefs += nr_zones;
5300
5301 /*
5302 * Now we build the zonelist so that it contains the zones
5303 * of all the other nodes.
5304 * We don't want to pressure a particular node, so when
5305 * building the zones for node N, we make sure that the
5306 * zones coming right after the local ones are those from
5307 * node N+1 (modulo N)
5308 */
5309 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5310 if (!node_online(node))
5311 continue;
5312 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5313 zonerefs += nr_zones;
5314 }
5315 for (node = 0; node < local_node; node++) {
5316 if (!node_online(node))
5317 continue;
5318 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5319 zonerefs += nr_zones;
5320 }
5321
5322 zonerefs->zone = NULL;
5323 zonerefs->zone_idx = 0;
5324}
5325
5326#endif /* CONFIG_NUMA */
5327
5328/*
5329 * Boot pageset table. One per cpu which is going to be used for all
5330 * zones and all nodes. The parameters will be set in such a way
5331 * that an item put on a list will immediately be handed over to
5332 * the buddy list. This is safe since pageset manipulation is done
5333 * with interrupts disabled.
5334 *
5335 * The boot_pagesets must be kept even after bootup is complete for
5336 * unused processors and/or zones. They do play a role for bootstrapping
5337 * hotplugged processors.
5338 *
5339 * zoneinfo_show() and maybe other functions do
5340 * not check if the processor is online before following the pageset pointer.
5341 * Other parts of the kernel may not check if the zone is available.
5342 */
5343static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5344static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5345static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5346
5347static void __build_all_zonelists(void *data)
5348{
5349 int nid;
5350 int __maybe_unused cpu;
5351 pg_data_t *self = data;
5352 static DEFINE_SPINLOCK(lock);
5353
5354 spin_lock(&lock);
5355
5356#ifdef CONFIG_NUMA
5357 memset(node_load, 0, sizeof(node_load));
5358#endif
5359
5360 /*
5361 * This node is hotadded and no memory is yet present. So just
5362 * building zonelists is fine - no need to touch other nodes.
5363 */
5364 if (self && !node_online(self->node_id)) {
5365 build_zonelists(self);
5366 } else {
5367 for_each_online_node(nid) {
5368 pg_data_t *pgdat = NODE_DATA(nid);
5369
5370 build_zonelists(pgdat);
5371 }
5372
5373#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5374 /*
5375 * We now know the "local memory node" for each node--
5376 * i.e., the node of the first zone in the generic zonelist.
5377 * Set up numa_mem percpu variable for on-line cpus. During
5378 * boot, only the boot cpu should be on-line; we'll init the
5379 * secondary cpus' numa_mem as they come on-line. During
5380 * node/memory hotplug, we'll fixup all on-line cpus.
5381 */
5382 for_each_online_cpu(cpu)
5383 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5384#endif
5385 }
5386
5387 spin_unlock(&lock);
5388}
5389
5390static noinline void __init
5391build_all_zonelists_init(void)
5392{
5393 int cpu;
5394
5395 __build_all_zonelists(NULL);
5396
5397 /*
5398 * Initialize the boot_pagesets that are going to be used
5399 * for bootstrapping processors. The real pagesets for
5400 * each zone will be allocated later when the per cpu
5401 * allocator is available.
5402 *
5403 * boot_pagesets are used also for bootstrapping offline
5404 * cpus if the system is already booted because the pagesets
5405 * are needed to initialize allocators on a specific cpu too.
5406 * F.e. the percpu allocator needs the page allocator which
5407 * needs the percpu allocator in order to allocate its pagesets
5408 * (a chicken-egg dilemma).
5409 */
5410 for_each_possible_cpu(cpu)
5411 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5412
5413 mminit_verify_zonelist();
5414 cpuset_init_current_mems_allowed();
5415}
5416
5417/*
5418 * unless system_state == SYSTEM_BOOTING.
5419 *
5420 * __ref due to call of __init annotated helper build_all_zonelists_init
5421 * [protected by SYSTEM_BOOTING].
5422 */
5423void __ref build_all_zonelists(pg_data_t *pgdat)
5424{
5425 if (system_state == SYSTEM_BOOTING) {
5426 build_all_zonelists_init();
5427 } else {
5428 __build_all_zonelists(pgdat);
5429 /* cpuset refresh routine should be here */
5430 }
5431 vm_total_pages = nr_free_pagecache_pages();
5432 /*
5433 * Disable grouping by mobility if the number of pages in the
5434 * system is too low to allow the mechanism to work. It would be
5435 * more accurate, but expensive to check per-zone. This check is
5436 * made on memory-hotadd so a system can start with mobility
5437 * disabled and enable it later
5438 */
5439 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5440 page_group_by_mobility_disabled = 1;
5441 else
5442 page_group_by_mobility_disabled = 0;
5443
5444 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5445 nr_online_nodes,
5446 page_group_by_mobility_disabled ? "off" : "on",
5447 vm_total_pages);
5448#ifdef CONFIG_NUMA
5449 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5450#endif
5451}
5452
5453/*
5454 * Initially all pages are reserved - free ones are freed
5455 * up by free_all_bootmem() once the early boot process is
5456 * done. Non-atomic initialization, single-pass.
5457 */
5458void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5459 unsigned long start_pfn, enum memmap_context context,
5460 struct vmem_altmap *altmap)
5461{
5462 unsigned long end_pfn = start_pfn + size;
5463 pg_data_t *pgdat = NODE_DATA(nid);
5464 unsigned long pfn;
5465 unsigned long nr_initialised = 0;
5466 struct page *page;
5467#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5468 struct memblock_region *r = NULL, *tmp;
5469#endif
5470
5471 if (highest_memmap_pfn < end_pfn - 1)
5472 highest_memmap_pfn = end_pfn - 1;
5473
5474 /*
5475 * Honor reservation requested by the driver for this ZONE_DEVICE
5476 * memory
5477 */
5478 if (altmap && start_pfn == altmap->base_pfn)
5479 start_pfn += altmap->reserve;
5480
5481 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5482 /*
5483 * There can be holes in boot-time mem_map[]s handed to this
5484 * function. They do not exist on hotplugged memory.
5485 */
5486 if (context != MEMMAP_EARLY)
5487 goto not_early;
5488
5489 if (!early_pfn_valid(pfn))
5490 continue;
5491 if (!early_pfn_in_nid(pfn, nid))
5492 continue;
5493 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5494 break;
5495
5496#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5497 /*
5498 * Check given memblock attribute by firmware which can affect
5499 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5500 * mirrored, it's an overlapped memmap init. skip it.
5501 */
5502 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5503 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5504 for_each_memblock(memory, tmp)
5505 if (pfn < memblock_region_memory_end_pfn(tmp))
5506 break;
5507 r = tmp;
5508 }
5509 if (pfn >= memblock_region_memory_base_pfn(r) &&
5510 memblock_is_mirror(r)) {
5511 /* already initialized as NORMAL */
5512 pfn = memblock_region_memory_end_pfn(r);
5513 continue;
5514 }
5515 }
5516#endif
5517
5518not_early:
5519 page = pfn_to_page(pfn);
5520 __init_single_page(page, pfn, zone, nid);
5521 if (context == MEMMAP_HOTPLUG)
5522 SetPageReserved(page);
5523
5524 /*
5525 * Mark the block movable so that blocks are reserved for
5526 * movable at startup. This will force kernel allocations
5527 * to reserve their blocks rather than leaking throughout
5528 * the address space during boot when many long-lived
5529 * kernel allocations are made.
5530 *
5531 * bitmap is created for zone's valid pfn range. but memmap
5532 * can be created for invalid pages (for alignment)
5533 * check here not to call set_pageblock_migratetype() against
5534 * pfn out of zone.
5535 *
5536 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5537 * because this is done early in sparse_add_one_section
5538 */
5539 if (!(pfn & (pageblock_nr_pages - 1))) {
5540 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5541 cond_resched();
5542 }
5543 }
5544}
5545
5546static void __meminit zone_init_free_lists(struct zone *zone)
5547{
5548 unsigned int order, t;
5549 for_each_migratetype_order(order, t) {
5550 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5551 zone->free_area[order].nr_free = 0;
5552 }
5553}
5554
5555#ifndef __HAVE_ARCH_MEMMAP_INIT
5556#define memmap_init(size, nid, zone, start_pfn) \
5557 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5558#endif
5559
5560static int zone_batchsize(struct zone *zone)
5561{
5562#ifdef CONFIG_MMU
5563 int batch;
5564
5565 /*
5566 * The per-cpu-pages pools are set to around 1000th of the
5567 * size of the zone.
5568 */
5569 batch = zone->managed_pages / 1024;
5570 /* But no more than a meg. */
5571 if (batch * PAGE_SIZE > 1024 * 1024)
5572 batch = (1024 * 1024) / PAGE_SIZE;
5573 batch /= 4; /* We effectively *= 4 below */
5574 if (batch < 1)
5575 batch = 1;
5576
5577 /*
5578 * Clamp the batch to a 2^n - 1 value. Having a power
5579 * of 2 value was found to be more likely to have
5580 * suboptimal cache aliasing properties in some cases.
5581 *
5582 * For example if 2 tasks are alternately allocating
5583 * batches of pages, one task can end up with a lot
5584 * of pages of one half of the possible page colors
5585 * and the other with pages of the other colors.
5586 */
5587 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5588
5589 return batch;
5590
5591#else
5592 /* The deferral and batching of frees should be suppressed under NOMMU
5593 * conditions.
5594 *
5595 * The problem is that NOMMU needs to be able to allocate large chunks
5596 * of contiguous memory as there's no hardware page translation to
5597 * assemble apparent contiguous memory from discontiguous pages.
5598 *
5599 * Queueing large contiguous runs of pages for batching, however,
5600 * causes the pages to actually be freed in smaller chunks. As there
5601 * can be a significant delay between the individual batches being
5602 * recycled, this leads to the once large chunks of space being
5603 * fragmented and becoming unavailable for high-order allocations.
5604 */
5605 return 0;
5606#endif
5607}
5608
5609/*
5610 * pcp->high and pcp->batch values are related and dependent on one another:
5611 * ->batch must never be higher then ->high.
5612 * The following function updates them in a safe manner without read side
5613 * locking.
5614 *
5615 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5616 * those fields changing asynchronously (acording the the above rule).
5617 *
5618 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5619 * outside of boot time (or some other assurance that no concurrent updaters
5620 * exist).
5621 */
5622static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5623 unsigned long batch)
5624{
5625 /* start with a fail safe value for batch */
5626 pcp->batch = 1;
5627 smp_wmb();
5628
5629 /* Update high, then batch, in order */
5630 pcp->high = high;
5631 smp_wmb();
5632
5633 pcp->batch = batch;
5634}
5635
5636/* a companion to pageset_set_high() */
5637static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5638{
5639 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5640}
5641
5642static void pageset_init(struct per_cpu_pageset *p)
5643{
5644 struct per_cpu_pages *pcp;
5645 int migratetype;
5646
5647 memset(p, 0, sizeof(*p));
5648
5649 pcp = &p->pcp;
5650 pcp->count = 0;
5651 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5652 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5653}
5654
5655static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5656{
5657 pageset_init(p);
5658 pageset_set_batch(p, batch);
5659}
5660
5661/*
5662 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5663 * to the value high for the pageset p.
5664 */
5665static void pageset_set_high(struct per_cpu_pageset *p,
5666 unsigned long high)
5667{
5668 unsigned long batch = max(1UL, high / 4);
5669 if ((high / 4) > (PAGE_SHIFT * 8))
5670 batch = PAGE_SHIFT * 8;
5671
5672 pageset_update(&p->pcp, high, batch);
5673}
5674
5675static void pageset_set_high_and_batch(struct zone *zone,
5676 struct per_cpu_pageset *pcp)
5677{
5678 if (percpu_pagelist_fraction)
5679 pageset_set_high(pcp,
5680 (zone->managed_pages /
5681 percpu_pagelist_fraction));
5682 else
5683 pageset_set_batch(pcp, zone_batchsize(zone));
5684}
5685
5686static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5687{
5688 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5689
5690 pageset_init(pcp);
5691 pageset_set_high_and_batch(zone, pcp);
5692}
5693
5694void __meminit setup_zone_pageset(struct zone *zone)
5695{
5696 int cpu;
5697 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5698 for_each_possible_cpu(cpu)
5699 zone_pageset_init(zone, cpu);
5700}
5701
5702/*
5703 * Allocate per cpu pagesets and initialize them.
5704 * Before this call only boot pagesets were available.
5705 */
5706void __init setup_per_cpu_pageset(void)
5707{
5708 struct pglist_data *pgdat;
5709 struct zone *zone;
5710
5711 for_each_populated_zone(zone)
5712 setup_zone_pageset(zone);
5713
5714 for_each_online_pgdat(pgdat)
5715 pgdat->per_cpu_nodestats =
5716 alloc_percpu(struct per_cpu_nodestat);
5717}
5718
5719static __meminit void zone_pcp_init(struct zone *zone)
5720{
5721 /*
5722 * per cpu subsystem is not up at this point. The following code
5723 * relies on the ability of the linker to provide the
5724 * offset of a (static) per cpu variable into the per cpu area.
5725 */
5726 zone->pageset = &boot_pageset;
5727
5728 if (populated_zone(zone))
5729 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5730 zone->name, zone->present_pages,
5731 zone_batchsize(zone));
5732}
5733
5734void __meminit init_currently_empty_zone(struct zone *zone,
5735 unsigned long zone_start_pfn,
5736 unsigned long size)
5737{
5738 struct pglist_data *pgdat = zone->zone_pgdat;
5739
5740 pgdat->nr_zones = zone_idx(zone) + 1;
5741
5742 zone->zone_start_pfn = zone_start_pfn;
5743
5744 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5745 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5746 pgdat->node_id,
5747 (unsigned long)zone_idx(zone),
5748 zone_start_pfn, (zone_start_pfn + size));
5749
5750 zone_init_free_lists(zone);
5751 zone->initialized = 1;
5752}
5753
5754#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5755#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5756
5757/*
5758 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5759 */
5760int __meminit __early_pfn_to_nid(unsigned long pfn,
5761 struct mminit_pfnnid_cache *state)
5762{
5763 unsigned long start_pfn, end_pfn;
5764 int nid;
5765
5766 if (state->last_start <= pfn && pfn < state->last_end)
5767 return state->last_nid;
5768
5769 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5770 if (nid != -1) {
5771 state->last_start = start_pfn;
5772 state->last_end = end_pfn;
5773 state->last_nid = nid;
5774 }
5775
5776 return nid;
5777}
5778#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5779
5780/**
5781 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5782 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5783 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5784 *
5785 * If an architecture guarantees that all ranges registered contain no holes
5786 * and may be freed, this this function may be used instead of calling
5787 * memblock_free_early_nid() manually.
5788 */
5789void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5790{
5791 unsigned long start_pfn, end_pfn;
5792 int i, this_nid;
5793
5794 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5795 start_pfn = min(start_pfn, max_low_pfn);
5796 end_pfn = min(end_pfn, max_low_pfn);
5797
5798 if (start_pfn < end_pfn)
5799 memblock_free_early_nid(PFN_PHYS(start_pfn),
5800 (end_pfn - start_pfn) << PAGE_SHIFT,
5801 this_nid);
5802 }
5803}
5804
5805/**
5806 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5807 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5808 *
5809 * If an architecture guarantees that all ranges registered contain no holes and may
5810 * be freed, this function may be used instead of calling memory_present() manually.
5811 */
5812void __init sparse_memory_present_with_active_regions(int nid)
5813{
5814 unsigned long start_pfn, end_pfn;
5815 int i, this_nid;
5816
5817 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5818 memory_present(this_nid, start_pfn, end_pfn);
5819}
5820
5821/**
5822 * get_pfn_range_for_nid - Return the start and end page frames for a node
5823 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5824 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5825 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5826 *
5827 * It returns the start and end page frame of a node based on information
5828 * provided by memblock_set_node(). If called for a node
5829 * with no available memory, a warning is printed and the start and end
5830 * PFNs will be 0.
5831 */
5832void __meminit get_pfn_range_for_nid(unsigned int nid,
5833 unsigned long *start_pfn, unsigned long *end_pfn)
5834{
5835 unsigned long this_start_pfn, this_end_pfn;
5836 int i;
5837
5838 *start_pfn = -1UL;
5839 *end_pfn = 0;
5840
5841 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5842 *start_pfn = min(*start_pfn, this_start_pfn);
5843 *end_pfn = max(*end_pfn, this_end_pfn);
5844 }
5845
5846 if (*start_pfn == -1UL)
5847 *start_pfn = 0;
5848}
5849
5850/*
5851 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5852 * assumption is made that zones within a node are ordered in monotonic
5853 * increasing memory addresses so that the "highest" populated zone is used
5854 */
5855static void __init find_usable_zone_for_movable(void)
5856{
5857 int zone_index;
5858 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5859 if (zone_index == ZONE_MOVABLE)
5860 continue;
5861
5862 if (arch_zone_highest_possible_pfn[zone_index] >
5863 arch_zone_lowest_possible_pfn[zone_index])
5864 break;
5865 }
5866
5867 VM_BUG_ON(zone_index == -1);
5868 movable_zone = zone_index;
5869}
5870
5871/*
5872 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5873 * because it is sized independent of architecture. Unlike the other zones,
5874 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5875 * in each node depending on the size of each node and how evenly kernelcore
5876 * is distributed. This helper function adjusts the zone ranges
5877 * provided by the architecture for a given node by using the end of the
5878 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5879 * zones within a node are in order of monotonic increases memory addresses
5880 */
5881static void __meminit adjust_zone_range_for_zone_movable(int nid,
5882 unsigned long zone_type,
5883 unsigned long node_start_pfn,
5884 unsigned long node_end_pfn,
5885 unsigned long *zone_start_pfn,
5886 unsigned long *zone_end_pfn)
5887{
5888 /* Only adjust if ZONE_MOVABLE is on this node */
5889 if (zone_movable_pfn[nid]) {
5890 /* Size ZONE_MOVABLE */
5891 if (zone_type == ZONE_MOVABLE) {
5892 *zone_start_pfn = zone_movable_pfn[nid];
5893 *zone_end_pfn = min(node_end_pfn,
5894 arch_zone_highest_possible_pfn[movable_zone]);
5895
5896 /* Adjust for ZONE_MOVABLE starting within this range */
5897 } else if (!mirrored_kernelcore &&
5898 *zone_start_pfn < zone_movable_pfn[nid] &&
5899 *zone_end_pfn > zone_movable_pfn[nid]) {
5900 *zone_end_pfn = zone_movable_pfn[nid];
5901
5902 /* Check if this whole range is within ZONE_MOVABLE */
5903 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5904 *zone_start_pfn = *zone_end_pfn;
5905 }
5906}
5907
5908/*
5909 * Return the number of pages a zone spans in a node, including holes
5910 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5911 */
5912static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5913 unsigned long zone_type,
5914 unsigned long node_start_pfn,
5915 unsigned long node_end_pfn,
5916 unsigned long *zone_start_pfn,
5917 unsigned long *zone_end_pfn,
5918 unsigned long *ignored)
5919{
5920 /* When hotadd a new node from cpu_up(), the node should be empty */
5921 if (!node_start_pfn && !node_end_pfn)
5922 return 0;
5923
5924 /* Get the start and end of the zone */
5925 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5926 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5927 adjust_zone_range_for_zone_movable(nid, zone_type,
5928 node_start_pfn, node_end_pfn,
5929 zone_start_pfn, zone_end_pfn);
5930
5931 /* Check that this node has pages within the zone's required range */
5932 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5933 return 0;
5934
5935 /* Move the zone boundaries inside the node if necessary */
5936 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5937 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5938
5939 /* Return the spanned pages */
5940 return *zone_end_pfn - *zone_start_pfn;
5941}
5942
5943/*
5944 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5945 * then all holes in the requested range will be accounted for.
5946 */
5947unsigned long __meminit __absent_pages_in_range(int nid,
5948 unsigned long range_start_pfn,
5949 unsigned long range_end_pfn)
5950{
5951 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5952 unsigned long start_pfn, end_pfn;
5953 int i;
5954
5955 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5956 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5957 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5958 nr_absent -= end_pfn - start_pfn;
5959 }
5960 return nr_absent;
5961}
5962
5963/**
5964 * absent_pages_in_range - Return number of page frames in holes within a range
5965 * @start_pfn: The start PFN to start searching for holes
5966 * @end_pfn: The end PFN to stop searching for holes
5967 *
5968 * It returns the number of pages frames in memory holes within a range.
5969 */
5970unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5971 unsigned long end_pfn)
5972{
5973 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5974}
5975
5976/* Return the number of page frames in holes in a zone on a node */
5977static unsigned long __meminit zone_absent_pages_in_node(int nid,
5978 unsigned long zone_type,
5979 unsigned long node_start_pfn,
5980 unsigned long node_end_pfn,
5981 unsigned long *ignored)
5982{
5983 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5984 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5985 unsigned long zone_start_pfn, zone_end_pfn;
5986 unsigned long nr_absent;
5987
5988 /* When hotadd a new node from cpu_up(), the node should be empty */
5989 if (!node_start_pfn && !node_end_pfn)
5990 return 0;
5991
5992 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5993 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5994
5995 adjust_zone_range_for_zone_movable(nid, zone_type,
5996 node_start_pfn, node_end_pfn,
5997 &zone_start_pfn, &zone_end_pfn);
5998 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5999
6000 /*
6001 * ZONE_MOVABLE handling.
6002 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6003 * and vice versa.
6004 */
6005 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6006 unsigned long start_pfn, end_pfn;
6007 struct memblock_region *r;
6008
6009 for_each_memblock(memory, r) {
6010 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6011 zone_start_pfn, zone_end_pfn);
6012 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6013 zone_start_pfn, zone_end_pfn);
6014
6015 if (zone_type == ZONE_MOVABLE &&
6016 memblock_is_mirror(r))
6017 nr_absent += end_pfn - start_pfn;
6018
6019 if (zone_type == ZONE_NORMAL &&
6020 !memblock_is_mirror(r))
6021 nr_absent += end_pfn - start_pfn;
6022 }
6023 }
6024
6025 return nr_absent;
6026}
6027
6028#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6029static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6030 unsigned long zone_type,
6031 unsigned long node_start_pfn,
6032 unsigned long node_end_pfn,
6033 unsigned long *zone_start_pfn,
6034 unsigned long *zone_end_pfn,
6035 unsigned long *zones_size)
6036{
6037 unsigned int zone;
6038
6039 *zone_start_pfn = node_start_pfn;
6040 for (zone = 0; zone < zone_type; zone++)
6041 *zone_start_pfn += zones_size[zone];
6042
6043 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6044
6045 return zones_size[zone_type];
6046}
6047
6048static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6049 unsigned long zone_type,
6050 unsigned long node_start_pfn,
6051 unsigned long node_end_pfn,
6052 unsigned long *zholes_size)
6053{
6054 if (!zholes_size)
6055 return 0;
6056
6057 return zholes_size[zone_type];
6058}
6059
6060#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6061
6062static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6063 unsigned long node_start_pfn,
6064 unsigned long node_end_pfn,
6065 unsigned long *zones_size,
6066 unsigned long *zholes_size)
6067{
6068 unsigned long realtotalpages = 0, totalpages = 0;
6069 enum zone_type i;
6070
6071 for (i = 0; i < MAX_NR_ZONES; i++) {
6072 struct zone *zone = pgdat->node_zones + i;
6073 unsigned long zone_start_pfn, zone_end_pfn;
6074 unsigned long size, real_size;
6075
6076 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6077 node_start_pfn,
6078 node_end_pfn,
6079 &zone_start_pfn,
6080 &zone_end_pfn,
6081 zones_size);
6082 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6083 node_start_pfn, node_end_pfn,
6084 zholes_size);
6085 if (size)
6086 zone->zone_start_pfn = zone_start_pfn;
6087 else
6088 zone->zone_start_pfn = 0;
6089 zone->spanned_pages = size;
6090 zone->present_pages = real_size;
6091
6092 totalpages += size;
6093 realtotalpages += real_size;
6094 }
6095
6096 pgdat->node_spanned_pages = totalpages;
6097 pgdat->node_present_pages = realtotalpages;
6098 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6099 realtotalpages);
6100}
6101
6102#ifndef CONFIG_SPARSEMEM
6103/*
6104 * Calculate the size of the zone->blockflags rounded to an unsigned long
6105 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6106 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6107 * round what is now in bits to nearest long in bits, then return it in
6108 * bytes.
6109 */
6110static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6111{
6112 unsigned long usemapsize;
6113
6114 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6115 usemapsize = roundup(zonesize, pageblock_nr_pages);
6116 usemapsize = usemapsize >> pageblock_order;
6117 usemapsize *= NR_PAGEBLOCK_BITS;
6118 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6119
6120 return usemapsize / 8;
6121}
6122
6123static void __ref setup_usemap(struct pglist_data *pgdat,
6124 struct zone *zone,
6125 unsigned long zone_start_pfn,
6126 unsigned long zonesize)
6127{
6128 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6129 zone->pageblock_flags = NULL;
6130 if (usemapsize)
6131 zone->pageblock_flags =
6132 memblock_virt_alloc_node_nopanic(usemapsize,
6133 pgdat->node_id);
6134}
6135#else
6136static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6137 unsigned long zone_start_pfn, unsigned long zonesize) {}
6138#endif /* CONFIG_SPARSEMEM */
6139
6140#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6141
6142/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6143void __init set_pageblock_order(void)
6144{
6145 unsigned int order;
6146
6147 /* Check that pageblock_nr_pages has not already been setup */
6148 if (pageblock_order)
6149 return;
6150
6151 if (HPAGE_SHIFT > PAGE_SHIFT)
6152 order = HUGETLB_PAGE_ORDER;
6153 else
6154 order = MAX_ORDER - 1;
6155
6156 /*
6157 * Assume the largest contiguous order of interest is a huge page.
6158 * This value may be variable depending on boot parameters on IA64 and
6159 * powerpc.
6160 */
6161 pageblock_order = order;
6162}
6163#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6164
6165/*
6166 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6167 * is unused as pageblock_order is set at compile-time. See
6168 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6169 * the kernel config
6170 */
6171void __init set_pageblock_order(void)
6172{
6173}
6174
6175#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6176
6177static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6178 unsigned long present_pages)
6179{
6180 unsigned long pages = spanned_pages;
6181
6182 /*
6183 * Provide a more accurate estimation if there are holes within
6184 * the zone and SPARSEMEM is in use. If there are holes within the
6185 * zone, each populated memory region may cost us one or two extra
6186 * memmap pages due to alignment because memmap pages for each
6187 * populated regions may not be naturally aligned on page boundary.
6188 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6189 */
6190 if (spanned_pages > present_pages + (present_pages >> 4) &&
6191 IS_ENABLED(CONFIG_SPARSEMEM))
6192 pages = present_pages;
6193
6194 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6195}
6196
6197#ifdef CONFIG_NUMA_BALANCING
6198static void pgdat_init_numabalancing(struct pglist_data *pgdat)
6199{
6200 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6201 pgdat->numabalancing_migrate_nr_pages = 0;
6202 pgdat->numabalancing_migrate_next_window = jiffies;
6203}
6204#else
6205static void pgdat_init_numabalancing(struct pglist_data *pgdat) {}
6206#endif
6207
6208#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6209static void pgdat_init_split_queue(struct pglist_data *pgdat)
6210{
6211 spin_lock_init(&pgdat->split_queue_lock);
6212 INIT_LIST_HEAD(&pgdat->split_queue);
6213 pgdat->split_queue_len = 0;
6214}
6215#else
6216static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6217#endif
6218
6219#ifdef CONFIG_COMPACTION
6220static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6221{
6222 init_waitqueue_head(&pgdat->kcompactd_wait);
6223}
6224#else
6225static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6226#endif
6227
6228static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6229{
6230 pgdat_resize_init(pgdat);
6231
6232 pgdat_init_numabalancing(pgdat);
6233 pgdat_init_split_queue(pgdat);
6234 pgdat_init_kcompactd(pgdat);
6235
6236 init_waitqueue_head(&pgdat->kswapd_wait);
6237 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6238
6239 pgdat_page_ext_init(pgdat);
6240 spin_lock_init(&pgdat->lru_lock);
6241 lruvec_init(node_lruvec(pgdat));
6242}
6243
6244static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6245 unsigned long remaining_pages)
6246{
6247 zone->managed_pages = remaining_pages;
6248 zone_set_nid(zone, nid);
6249 zone->name = zone_names[idx];
6250 zone->zone_pgdat = NODE_DATA(nid);
6251 spin_lock_init(&zone->lock);
6252 zone_seqlock_init(zone);
6253 zone_pcp_init(zone);
6254}
6255
6256/*
6257 * Set up the zone data structures
6258 * - init pgdat internals
6259 * - init all zones belonging to this node
6260 *
6261 * NOTE: this function is only called during memory hotplug
6262 */
6263#ifdef CONFIG_MEMORY_HOTPLUG
6264void __ref free_area_init_core_hotplug(int nid)
6265{
6266 enum zone_type z;
6267 pg_data_t *pgdat = NODE_DATA(nid);
6268
6269 pgdat_init_internals(pgdat);
6270 for (z = 0; z < MAX_NR_ZONES; z++)
6271 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6272}
6273#endif
6274
6275/*
6276 * Set up the zone data structures:
6277 * - mark all pages reserved
6278 * - mark all memory queues empty
6279 * - clear the memory bitmaps
6280 *
6281 * NOTE: pgdat should get zeroed by caller.
6282 * NOTE: this function is only called during early init.
6283 */
6284static void __init free_area_init_core(struct pglist_data *pgdat)
6285{
6286 enum zone_type j;
6287 int nid = pgdat->node_id;
6288
6289 pgdat_init_internals(pgdat);
6290 pgdat->per_cpu_nodestats = &boot_nodestats;
6291
6292 for (j = 0; j < MAX_NR_ZONES; j++) {
6293 struct zone *zone = pgdat->node_zones + j;
6294 unsigned long size, freesize, memmap_pages;
6295 unsigned long zone_start_pfn = zone->zone_start_pfn;
6296
6297 size = zone->spanned_pages;
6298 freesize = zone->present_pages;
6299
6300 /*
6301 * Adjust freesize so that it accounts for how much memory
6302 * is used by this zone for memmap. This affects the watermark
6303 * and per-cpu initialisations
6304 */
6305 memmap_pages = calc_memmap_size(size, freesize);
6306 if (!is_highmem_idx(j)) {
6307 if (freesize >= memmap_pages) {
6308 freesize -= memmap_pages;
6309 if (memmap_pages)
6310 printk(KERN_DEBUG
6311 " %s zone: %lu pages used for memmap\n",
6312 zone_names[j], memmap_pages);
6313 } else
6314 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6315 zone_names[j], memmap_pages, freesize);
6316 }
6317
6318 /* Account for reserved pages */
6319 if (j == 0 && freesize > dma_reserve) {
6320 freesize -= dma_reserve;
6321 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6322 zone_names[0], dma_reserve);
6323 }
6324
6325 if (!is_highmem_idx(j))
6326 nr_kernel_pages += freesize;
6327 /* Charge for highmem memmap if there are enough kernel pages */
6328 else if (nr_kernel_pages > memmap_pages * 2)
6329 nr_kernel_pages -= memmap_pages;
6330 nr_all_pages += freesize;
6331
6332 /*
6333 * Set an approximate value for lowmem here, it will be adjusted
6334 * when the bootmem allocator frees pages into the buddy system.
6335 * And all highmem pages will be managed by the buddy system.
6336 */
6337 zone_init_internals(zone, j, nid, freesize);
6338
6339 if (!size)
6340 continue;
6341
6342 set_pageblock_order();
6343 setup_usemap(pgdat, zone, zone_start_pfn, size);
6344 init_currently_empty_zone(zone, zone_start_pfn, size);
6345 memmap_init(size, nid, j, zone_start_pfn);
6346 }
6347}
6348
6349#ifdef CONFIG_FLAT_NODE_MEM_MAP
6350static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6351{
6352 unsigned long __maybe_unused start = 0;
6353 unsigned long __maybe_unused offset = 0;
6354
6355 /* Skip empty nodes */
6356 if (!pgdat->node_spanned_pages)
6357 return;
6358
6359 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6360 offset = pgdat->node_start_pfn - start;
6361 /* ia64 gets its own node_mem_map, before this, without bootmem */
6362 if (!pgdat->node_mem_map) {
6363 unsigned long size, end;
6364 struct page *map;
6365
6366 /*
6367 * The zone's endpoints aren't required to be MAX_ORDER
6368 * aligned but the node_mem_map endpoints must be in order
6369 * for the buddy allocator to function correctly.
6370 */
6371 end = pgdat_end_pfn(pgdat);
6372 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6373 size = (end - start) * sizeof(struct page);
6374 map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
6375 pgdat->node_mem_map = map + offset;
6376 }
6377 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6378 __func__, pgdat->node_id, (unsigned long)pgdat,
6379 (unsigned long)pgdat->node_mem_map);
6380#ifndef CONFIG_NEED_MULTIPLE_NODES
6381 /*
6382 * With no DISCONTIG, the global mem_map is just set as node 0's
6383 */
6384 if (pgdat == NODE_DATA(0)) {
6385 mem_map = NODE_DATA(0)->node_mem_map;
6386#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6387 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6388 mem_map -= offset;
6389#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6390 }
6391#endif
6392}
6393#else
6394static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6395#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6396
6397#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6398static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6399{
6400 /*
6401 * We start only with one section of pages, more pages are added as
6402 * needed until the rest of deferred pages are initialized.
6403 */
6404 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6405 pgdat->node_spanned_pages);
6406 pgdat->first_deferred_pfn = ULONG_MAX;
6407}
6408#else
6409static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6410#endif
6411
6412void __init free_area_init_node(int nid, unsigned long *zones_size,
6413 unsigned long node_start_pfn,
6414 unsigned long *zholes_size)
6415{
6416 pg_data_t *pgdat = NODE_DATA(nid);
6417 unsigned long start_pfn = 0;
6418 unsigned long end_pfn = 0;
6419
6420 /* pg_data_t should be reset to zero when it's allocated */
6421 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6422
6423 pgdat->node_id = nid;
6424 pgdat->node_start_pfn = node_start_pfn;
6425 pgdat->per_cpu_nodestats = NULL;
6426#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6427 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6428 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6429 (u64)start_pfn << PAGE_SHIFT,
6430 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6431#else
6432 start_pfn = node_start_pfn;
6433#endif
6434 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6435 zones_size, zholes_size);
6436
6437 alloc_node_mem_map(pgdat);
6438 pgdat_set_deferred_range(pgdat);
6439
6440 free_area_init_core(pgdat);
6441}
6442
6443#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6444/*
6445 * Only struct pages that are backed by physical memory are zeroed and
6446 * initialized by going through __init_single_page(). But, there are some
6447 * struct pages which are reserved in memblock allocator and their fields
6448 * may be accessed (for example page_to_pfn() on some configuration accesses
6449 * flags). We must explicitly zero those struct pages.
6450 */
6451void __init zero_resv_unavail(void)
6452{
6453 phys_addr_t start, end;
6454 unsigned long pfn;
6455 u64 i, pgcnt;
6456
6457 /*
6458 * Loop through ranges that are reserved, but do not have reported
6459 * physical memory backing.
6460 */
6461 pgcnt = 0;
6462 for_each_resv_unavail_range(i, &start, &end) {
6463 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6464 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6465 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6466 + pageblock_nr_pages - 1;
6467 continue;
6468 }
6469 mm_zero_struct_page(pfn_to_page(pfn));
6470 pgcnt++;
6471 }
6472 }
6473
6474 /*
6475 * Struct pages that do not have backing memory. This could be because
6476 * firmware is using some of this memory, or for some other reasons.
6477 * Once memblock is changed so such behaviour is not allowed: i.e.
6478 * list of "reserved" memory must be a subset of list of "memory", then
6479 * this code can be removed.
6480 */
6481 if (pgcnt)
6482 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6483}
6484#endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6485
6486#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6487
6488#if MAX_NUMNODES > 1
6489/*
6490 * Figure out the number of possible node ids.
6491 */
6492void __init setup_nr_node_ids(void)
6493{
6494 unsigned int highest;
6495
6496 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6497 nr_node_ids = highest + 1;
6498}
6499#endif
6500
6501/**
6502 * node_map_pfn_alignment - determine the maximum internode alignment
6503 *
6504 * This function should be called after node map is populated and sorted.
6505 * It calculates the maximum power of two alignment which can distinguish
6506 * all the nodes.
6507 *
6508 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6509 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6510 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6511 * shifted, 1GiB is enough and this function will indicate so.
6512 *
6513 * This is used to test whether pfn -> nid mapping of the chosen memory
6514 * model has fine enough granularity to avoid incorrect mapping for the
6515 * populated node map.
6516 *
6517 * Returns the determined alignment in pfn's. 0 if there is no alignment
6518 * requirement (single node).
6519 */
6520unsigned long __init node_map_pfn_alignment(void)
6521{
6522 unsigned long accl_mask = 0, last_end = 0;
6523 unsigned long start, end, mask;
6524 int last_nid = -1;
6525 int i, nid;
6526
6527 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6528 if (!start || last_nid < 0 || last_nid == nid) {
6529 last_nid = nid;
6530 last_end = end;
6531 continue;
6532 }
6533
6534 /*
6535 * Start with a mask granular enough to pin-point to the
6536 * start pfn and tick off bits one-by-one until it becomes
6537 * too coarse to separate the current node from the last.
6538 */
6539 mask = ~((1 << __ffs(start)) - 1);
6540 while (mask && last_end <= (start & (mask << 1)))
6541 mask <<= 1;
6542
6543 /* accumulate all internode masks */
6544 accl_mask |= mask;
6545 }
6546
6547 /* convert mask to number of pages */
6548 return ~accl_mask + 1;
6549}
6550
6551/* Find the lowest pfn for a node */
6552static unsigned long __init find_min_pfn_for_node(int nid)
6553{
6554 unsigned long min_pfn = ULONG_MAX;
6555 unsigned long start_pfn;
6556 int i;
6557
6558 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6559 min_pfn = min(min_pfn, start_pfn);
6560
6561 if (min_pfn == ULONG_MAX) {
6562 pr_warn("Could not find start_pfn for node %d\n", nid);
6563 return 0;
6564 }
6565
6566 return min_pfn;
6567}
6568
6569/**
6570 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6571 *
6572 * It returns the minimum PFN based on information provided via
6573 * memblock_set_node().
6574 */
6575unsigned long __init find_min_pfn_with_active_regions(void)
6576{
6577 return find_min_pfn_for_node(MAX_NUMNODES);
6578}
6579
6580/*
6581 * early_calculate_totalpages()
6582 * Sum pages in active regions for movable zone.
6583 * Populate N_MEMORY for calculating usable_nodes.
6584 */
6585static unsigned long __init early_calculate_totalpages(void)
6586{
6587 unsigned long totalpages = 0;
6588 unsigned long start_pfn, end_pfn;
6589 int i, nid;
6590
6591 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6592 unsigned long pages = end_pfn - start_pfn;
6593
6594 totalpages += pages;
6595 if (pages)
6596 node_set_state(nid, N_MEMORY);
6597 }
6598 return totalpages;
6599}
6600
6601/*
6602 * Find the PFN the Movable zone begins in each node. Kernel memory
6603 * is spread evenly between nodes as long as the nodes have enough
6604 * memory. When they don't, some nodes will have more kernelcore than
6605 * others
6606 */
6607static void __init find_zone_movable_pfns_for_nodes(void)
6608{
6609 int i, nid;
6610 unsigned long usable_startpfn;
6611 unsigned long kernelcore_node, kernelcore_remaining;
6612 /* save the state before borrow the nodemask */
6613 nodemask_t saved_node_state = node_states[N_MEMORY];
6614 unsigned long totalpages = early_calculate_totalpages();
6615 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6616 struct memblock_region *r;
6617
6618 /* Need to find movable_zone earlier when movable_node is specified. */
6619 find_usable_zone_for_movable();
6620
6621 /*
6622 * If movable_node is specified, ignore kernelcore and movablecore
6623 * options.
6624 */
6625 if (movable_node_is_enabled()) {
6626 for_each_memblock(memory, r) {
6627 if (!memblock_is_hotpluggable(r))
6628 continue;
6629
6630 nid = r->nid;
6631
6632 usable_startpfn = PFN_DOWN(r->base);
6633 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6634 min(usable_startpfn, zone_movable_pfn[nid]) :
6635 usable_startpfn;
6636 }
6637
6638 goto out2;
6639 }
6640
6641 /*
6642 * If kernelcore=mirror is specified, ignore movablecore option
6643 */
6644 if (mirrored_kernelcore) {
6645 bool mem_below_4gb_not_mirrored = false;
6646
6647 for_each_memblock(memory, r) {
6648 if (memblock_is_mirror(r))
6649 continue;
6650
6651 nid = r->nid;
6652
6653 usable_startpfn = memblock_region_memory_base_pfn(r);
6654
6655 if (usable_startpfn < 0x100000) {
6656 mem_below_4gb_not_mirrored = true;
6657 continue;
6658 }
6659
6660 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6661 min(usable_startpfn, zone_movable_pfn[nid]) :
6662 usable_startpfn;
6663 }
6664
6665 if (mem_below_4gb_not_mirrored)
6666 pr_warn("This configuration results in unmirrored kernel memory.");
6667
6668 goto out2;
6669 }
6670
6671 /*
6672 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6673 * amount of necessary memory.
6674 */
6675 if (required_kernelcore_percent)
6676 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6677 10000UL;
6678 if (required_movablecore_percent)
6679 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6680 10000UL;
6681
6682 /*
6683 * If movablecore= was specified, calculate what size of
6684 * kernelcore that corresponds so that memory usable for
6685 * any allocation type is evenly spread. If both kernelcore
6686 * and movablecore are specified, then the value of kernelcore
6687 * will be used for required_kernelcore if it's greater than
6688 * what movablecore would have allowed.
6689 */
6690 if (required_movablecore) {
6691 unsigned long corepages;
6692
6693 /*
6694 * Round-up so that ZONE_MOVABLE is at least as large as what
6695 * was requested by the user
6696 */
6697 required_movablecore =
6698 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6699 required_movablecore = min(totalpages, required_movablecore);
6700 corepages = totalpages - required_movablecore;
6701
6702 required_kernelcore = max(required_kernelcore, corepages);
6703 }
6704
6705 /*
6706 * If kernelcore was not specified or kernelcore size is larger
6707 * than totalpages, there is no ZONE_MOVABLE.
6708 */
6709 if (!required_kernelcore || required_kernelcore >= totalpages)
6710 goto out;
6711
6712 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6713 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6714
6715restart:
6716 /* Spread kernelcore memory as evenly as possible throughout nodes */
6717 kernelcore_node = required_kernelcore / usable_nodes;
6718 for_each_node_state(nid, N_MEMORY) {
6719 unsigned long start_pfn, end_pfn;
6720
6721 /*
6722 * Recalculate kernelcore_node if the division per node
6723 * now exceeds what is necessary to satisfy the requested
6724 * amount of memory for the kernel
6725 */
6726 if (required_kernelcore < kernelcore_node)
6727 kernelcore_node = required_kernelcore / usable_nodes;
6728
6729 /*
6730 * As the map is walked, we track how much memory is usable
6731 * by the kernel using kernelcore_remaining. When it is
6732 * 0, the rest of the node is usable by ZONE_MOVABLE
6733 */
6734 kernelcore_remaining = kernelcore_node;
6735
6736 /* Go through each range of PFNs within this node */
6737 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6738 unsigned long size_pages;
6739
6740 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6741 if (start_pfn >= end_pfn)
6742 continue;
6743
6744 /* Account for what is only usable for kernelcore */
6745 if (start_pfn < usable_startpfn) {
6746 unsigned long kernel_pages;
6747 kernel_pages = min(end_pfn, usable_startpfn)
6748 - start_pfn;
6749
6750 kernelcore_remaining -= min(kernel_pages,
6751 kernelcore_remaining);
6752 required_kernelcore -= min(kernel_pages,
6753 required_kernelcore);
6754
6755 /* Continue if range is now fully accounted */
6756 if (end_pfn <= usable_startpfn) {
6757
6758 /*
6759 * Push zone_movable_pfn to the end so
6760 * that if we have to rebalance
6761 * kernelcore across nodes, we will
6762 * not double account here
6763 */
6764 zone_movable_pfn[nid] = end_pfn;
6765 continue;
6766 }
6767 start_pfn = usable_startpfn;
6768 }
6769
6770 /*
6771 * The usable PFN range for ZONE_MOVABLE is from
6772 * start_pfn->end_pfn. Calculate size_pages as the
6773 * number of pages used as kernelcore
6774 */
6775 size_pages = end_pfn - start_pfn;
6776 if (size_pages > kernelcore_remaining)
6777 size_pages = kernelcore_remaining;
6778 zone_movable_pfn[nid] = start_pfn + size_pages;
6779
6780 /*
6781 * Some kernelcore has been met, update counts and
6782 * break if the kernelcore for this node has been
6783 * satisfied
6784 */
6785 required_kernelcore -= min(required_kernelcore,
6786 size_pages);
6787 kernelcore_remaining -= size_pages;
6788 if (!kernelcore_remaining)
6789 break;
6790 }
6791 }
6792
6793 /*
6794 * If there is still required_kernelcore, we do another pass with one
6795 * less node in the count. This will push zone_movable_pfn[nid] further
6796 * along on the nodes that still have memory until kernelcore is
6797 * satisfied
6798 */
6799 usable_nodes--;
6800 if (usable_nodes && required_kernelcore > usable_nodes)
6801 goto restart;
6802
6803out2:
6804 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6805 for (nid = 0; nid < MAX_NUMNODES; nid++)
6806 zone_movable_pfn[nid] =
6807 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6808
6809out:
6810 /* restore the node_state */
6811 node_states[N_MEMORY] = saved_node_state;
6812}
6813
6814/* Any regular or high memory on that node ? */
6815static void check_for_memory(pg_data_t *pgdat, int nid)
6816{
6817 enum zone_type zone_type;
6818
6819 if (N_MEMORY == N_NORMAL_MEMORY)
6820 return;
6821
6822 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6823 struct zone *zone = &pgdat->node_zones[zone_type];
6824 if (populated_zone(zone)) {
6825 node_set_state(nid, N_HIGH_MEMORY);
6826 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6827 zone_type <= ZONE_NORMAL)
6828 node_set_state(nid, N_NORMAL_MEMORY);
6829 break;
6830 }
6831 }
6832}
6833
6834/**
6835 * free_area_init_nodes - Initialise all pg_data_t and zone data
6836 * @max_zone_pfn: an array of max PFNs for each zone
6837 *
6838 * This will call free_area_init_node() for each active node in the system.
6839 * Using the page ranges provided by memblock_set_node(), the size of each
6840 * zone in each node and their holes is calculated. If the maximum PFN
6841 * between two adjacent zones match, it is assumed that the zone is empty.
6842 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6843 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6844 * starts where the previous one ended. For example, ZONE_DMA32 starts
6845 * at arch_max_dma_pfn.
6846 */
6847void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6848{
6849 unsigned long start_pfn, end_pfn;
6850 int i, nid;
6851
6852 /* Record where the zone boundaries are */
6853 memset(arch_zone_lowest_possible_pfn, 0,
6854 sizeof(arch_zone_lowest_possible_pfn));
6855 memset(arch_zone_highest_possible_pfn, 0,
6856 sizeof(arch_zone_highest_possible_pfn));
6857
6858 start_pfn = find_min_pfn_with_active_regions();
6859
6860 for (i = 0; i < MAX_NR_ZONES; i++) {
6861 if (i == ZONE_MOVABLE)
6862 continue;
6863
6864 end_pfn = max(max_zone_pfn[i], start_pfn);
6865 arch_zone_lowest_possible_pfn[i] = start_pfn;
6866 arch_zone_highest_possible_pfn[i] = end_pfn;
6867
6868 start_pfn = end_pfn;
6869 }
6870
6871 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6872 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6873 find_zone_movable_pfns_for_nodes();
6874
6875 /* Print out the zone ranges */
6876 pr_info("Zone ranges:\n");
6877 for (i = 0; i < MAX_NR_ZONES; i++) {
6878 if (i == ZONE_MOVABLE)
6879 continue;
6880 pr_info(" %-8s ", zone_names[i]);
6881 if (arch_zone_lowest_possible_pfn[i] ==
6882 arch_zone_highest_possible_pfn[i])
6883 pr_cont("empty\n");
6884 else
6885 pr_cont("[mem %#018Lx-%#018Lx]\n",
6886 (u64)arch_zone_lowest_possible_pfn[i]
6887 << PAGE_SHIFT,
6888 ((u64)arch_zone_highest_possible_pfn[i]
6889 << PAGE_SHIFT) - 1);
6890 }
6891
6892 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6893 pr_info("Movable zone start for each node\n");
6894 for (i = 0; i < MAX_NUMNODES; i++) {
6895 if (zone_movable_pfn[i])
6896 pr_info(" Node %d: %#018Lx\n", i,
6897 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6898 }
6899
6900 /* Print out the early node map */
6901 pr_info("Early memory node ranges\n");
6902 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6903 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6904 (u64)start_pfn << PAGE_SHIFT,
6905 ((u64)end_pfn << PAGE_SHIFT) - 1);
6906
6907 /* Initialise every node */
6908 mminit_verify_pageflags_layout();
6909 setup_nr_node_ids();
6910 zero_resv_unavail();
6911 for_each_online_node(nid) {
6912 pg_data_t *pgdat = NODE_DATA(nid);
6913 free_area_init_node(nid, NULL,
6914 find_min_pfn_for_node(nid), NULL);
6915
6916 /* Any memory on that node */
6917 if (pgdat->node_present_pages)
6918 node_set_state(nid, N_MEMORY);
6919 check_for_memory(pgdat, nid);
6920 }
6921}
6922
6923static int __init cmdline_parse_core(char *p, unsigned long *core,
6924 unsigned long *percent)
6925{
6926 unsigned long long coremem;
6927 char *endptr;
6928
6929 if (!p)
6930 return -EINVAL;
6931
6932 /* Value may be a percentage of total memory, otherwise bytes */
6933 coremem = simple_strtoull(p, &endptr, 0);
6934 if (*endptr == '%') {
6935 /* Paranoid check for percent values greater than 100 */
6936 WARN_ON(coremem > 100);
6937
6938 *percent = coremem;
6939 } else {
6940 coremem = memparse(p, &p);
6941 /* Paranoid check that UL is enough for the coremem value */
6942 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6943
6944 *core = coremem >> PAGE_SHIFT;
6945 *percent = 0UL;
6946 }
6947 return 0;
6948}
6949
6950/*
6951 * kernelcore=size sets the amount of memory for use for allocations that
6952 * cannot be reclaimed or migrated.
6953 */
6954static int __init cmdline_parse_kernelcore(char *p)
6955{
6956 /* parse kernelcore=mirror */
6957 if (parse_option_str(p, "mirror")) {
6958 mirrored_kernelcore = true;
6959 return 0;
6960 }
6961
6962 return cmdline_parse_core(p, &required_kernelcore,
6963 &required_kernelcore_percent);
6964}
6965
6966/*
6967 * movablecore=size sets the amount of memory for use for allocations that
6968 * can be reclaimed or migrated.
6969 */
6970static int __init cmdline_parse_movablecore(char *p)
6971{
6972 return cmdline_parse_core(p, &required_movablecore,
6973 &required_movablecore_percent);
6974}
6975
6976early_param("kernelcore", cmdline_parse_kernelcore);
6977early_param("movablecore", cmdline_parse_movablecore);
6978
6979#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6980
6981void adjust_managed_page_count(struct page *page, long count)
6982{
6983 spin_lock(&managed_page_count_lock);
6984 page_zone(page)->managed_pages += count;
6985 totalram_pages += count;
6986#ifdef CONFIG_HIGHMEM
6987 if (PageHighMem(page))
6988 totalhigh_pages += count;
6989#endif
6990 spin_unlock(&managed_page_count_lock);
6991}
6992EXPORT_SYMBOL(adjust_managed_page_count);
6993
6994unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6995{
6996 void *pos;
6997 unsigned long pages = 0;
6998
6999 start = (void *)PAGE_ALIGN((unsigned long)start);
7000 end = (void *)((unsigned long)end & PAGE_MASK);
7001 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7002 struct page *page = virt_to_page(pos);
7003 void *direct_map_addr;
7004
7005 /*
7006 * 'direct_map_addr' might be different from 'pos'
7007 * because some architectures' virt_to_page()
7008 * work with aliases. Getting the direct map
7009 * address ensures that we get a _writeable_
7010 * alias for the memset().
7011 */
7012 direct_map_addr = page_address(page);
7013 if ((unsigned int)poison <= 0xFF)
7014 memset(direct_map_addr, poison, PAGE_SIZE);
7015
7016 free_reserved_page(page);
7017 }
7018
7019 if (pages && s)
7020 pr_info("Freeing %s memory: %ldK\n",
7021 s, pages << (PAGE_SHIFT - 10));
7022
7023 return pages;
7024}
7025EXPORT_SYMBOL(free_reserved_area);
7026
7027#ifdef CONFIG_HIGHMEM
7028void free_highmem_page(struct page *page)
7029{
7030 __free_reserved_page(page);
7031 totalram_pages++;
7032 page_zone(page)->managed_pages++;
7033 totalhigh_pages++;
7034}
7035#endif
7036
7037
7038void __init mem_init_print_info(const char *str)
7039{
7040 unsigned long physpages, codesize, datasize, rosize, bss_size;
7041 unsigned long init_code_size, init_data_size;
7042
7043 physpages = get_num_physpages();
7044 codesize = _etext - _stext;
7045 datasize = _edata - _sdata;
7046 rosize = __end_rodata - __start_rodata;
7047 bss_size = __bss_stop - __bss_start;
7048 init_data_size = __init_end - __init_begin;
7049 init_code_size = _einittext - _sinittext;
7050
7051 /*
7052 * Detect special cases and adjust section sizes accordingly:
7053 * 1) .init.* may be embedded into .data sections
7054 * 2) .init.text.* may be out of [__init_begin, __init_end],
7055 * please refer to arch/tile/kernel/vmlinux.lds.S.
7056 * 3) .rodata.* may be embedded into .text or .data sections.
7057 */
7058#define adj_init_size(start, end, size, pos, adj) \
7059 do { \
7060 if (start <= pos && pos < end && size > adj) \
7061 size -= adj; \
7062 } while (0)
7063
7064 adj_init_size(__init_begin, __init_end, init_data_size,
7065 _sinittext, init_code_size);
7066 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7067 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7068 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7069 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7070
7071#undef adj_init_size
7072
7073 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7074#ifdef CONFIG_HIGHMEM
7075 ", %luK highmem"
7076#endif
7077 "%s%s)\n",
7078 nr_free_pages() << (PAGE_SHIFT - 10),
7079 physpages << (PAGE_SHIFT - 10),
7080 codesize >> 10, datasize >> 10, rosize >> 10,
7081 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7082 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7083 totalcma_pages << (PAGE_SHIFT - 10),
7084#ifdef CONFIG_HIGHMEM
7085 totalhigh_pages << (PAGE_SHIFT - 10),
7086#endif
7087 str ? ", " : "", str ? str : "");
7088}
7089
7090/**
7091 * set_dma_reserve - set the specified number of pages reserved in the first zone
7092 * @new_dma_reserve: The number of pages to mark reserved
7093 *
7094 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7095 * In the DMA zone, a significant percentage may be consumed by kernel image
7096 * and other unfreeable allocations which can skew the watermarks badly. This
7097 * function may optionally be used to account for unfreeable pages in the
7098 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7099 * smaller per-cpu batchsize.
7100 */
7101void __init set_dma_reserve(unsigned long new_dma_reserve)
7102{
7103 dma_reserve = new_dma_reserve;
7104}
7105
7106void __init free_area_init(unsigned long *zones_size)
7107{
7108 zero_resv_unavail();
7109 free_area_init_node(0, zones_size,
7110 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7111}
7112
7113static int page_alloc_cpu_dead(unsigned int cpu)
7114{
7115
7116 lru_add_drain_cpu(cpu);
7117 drain_pages(cpu);
7118
7119 /*
7120 * Spill the event counters of the dead processor
7121 * into the current processors event counters.
7122 * This artificially elevates the count of the current
7123 * processor.
7124 */
7125 vm_events_fold_cpu(cpu);
7126
7127 /*
7128 * Zero the differential counters of the dead processor
7129 * so that the vm statistics are consistent.
7130 *
7131 * This is only okay since the processor is dead and cannot
7132 * race with what we are doing.
7133 */
7134 cpu_vm_stats_fold(cpu);
7135 return 0;
7136}
7137
7138void __init page_alloc_init(void)
7139{
7140 int ret;
7141
7142 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7143 "mm/page_alloc:dead", NULL,
7144 page_alloc_cpu_dead);
7145 WARN_ON(ret < 0);
7146}
7147
7148/*
7149 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7150 * or min_free_kbytes changes.
7151 */
7152static void calculate_totalreserve_pages(void)
7153{
7154 struct pglist_data *pgdat;
7155 unsigned long reserve_pages = 0;
7156 enum zone_type i, j;
7157
7158 for_each_online_pgdat(pgdat) {
7159
7160 pgdat->totalreserve_pages = 0;
7161
7162 for (i = 0; i < MAX_NR_ZONES; i++) {
7163 struct zone *zone = pgdat->node_zones + i;
7164 long max = 0;
7165
7166 /* Find valid and maximum lowmem_reserve in the zone */
7167 for (j = i; j < MAX_NR_ZONES; j++) {
7168 if (zone->lowmem_reserve[j] > max)
7169 max = zone->lowmem_reserve[j];
7170 }
7171
7172 /* we treat the high watermark as reserved pages. */
7173 max += high_wmark_pages(zone);
7174
7175 if (max > zone->managed_pages)
7176 max = zone->managed_pages;
7177
7178 pgdat->totalreserve_pages += max;
7179
7180 reserve_pages += max;
7181 }
7182 }
7183 totalreserve_pages = reserve_pages;
7184}
7185
7186/*
7187 * setup_per_zone_lowmem_reserve - called whenever
7188 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7189 * has a correct pages reserved value, so an adequate number of
7190 * pages are left in the zone after a successful __alloc_pages().
7191 */
7192static void setup_per_zone_lowmem_reserve(void)
7193{
7194 struct pglist_data *pgdat;
7195 enum zone_type j, idx;
7196
7197 for_each_online_pgdat(pgdat) {
7198 for (j = 0; j < MAX_NR_ZONES; j++) {
7199 struct zone *zone = pgdat->node_zones + j;
7200 unsigned long managed_pages = zone->managed_pages;
7201
7202 zone->lowmem_reserve[j] = 0;
7203
7204 idx = j;
7205 while (idx) {
7206 struct zone *lower_zone;
7207
7208 idx--;
7209 lower_zone = pgdat->node_zones + idx;
7210
7211 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7212 sysctl_lowmem_reserve_ratio[idx] = 0;
7213 lower_zone->lowmem_reserve[j] = 0;
7214 } else {
7215 lower_zone->lowmem_reserve[j] =
7216 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7217 }
7218 managed_pages += lower_zone->managed_pages;
7219 }
7220 }
7221 }
7222
7223 /* update totalreserve_pages */
7224 calculate_totalreserve_pages();
7225}
7226
7227static void __setup_per_zone_wmarks(void)
7228{
7229 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7230 unsigned long lowmem_pages = 0;
7231 struct zone *zone;
7232 unsigned long flags;
7233
7234 /* Calculate total number of !ZONE_HIGHMEM pages */
7235 for_each_zone(zone) {
7236 if (!is_highmem(zone))
7237 lowmem_pages += zone->managed_pages;
7238 }
7239
7240 for_each_zone(zone) {
7241 u64 tmp;
7242
7243 spin_lock_irqsave(&zone->lock, flags);
7244 tmp = (u64)pages_min * zone->managed_pages;
7245 do_div(tmp, lowmem_pages);
7246 if (is_highmem(zone)) {
7247 /*
7248 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7249 * need highmem pages, so cap pages_min to a small
7250 * value here.
7251 *
7252 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7253 * deltas control asynch page reclaim, and so should
7254 * not be capped for highmem.
7255 */
7256 unsigned long min_pages;
7257
7258 min_pages = zone->managed_pages / 1024;
7259 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7260 zone->watermark[WMARK_MIN] = min_pages;
7261 } else {
7262 /*
7263 * If it's a lowmem zone, reserve a number of pages
7264 * proportionate to the zone's size.
7265 */
7266 zone->watermark[WMARK_MIN] = tmp;
7267 }
7268
7269 /*
7270 * Set the kswapd watermarks distance according to the
7271 * scale factor in proportion to available memory, but
7272 * ensure a minimum size on small systems.
7273 */
7274 tmp = max_t(u64, tmp >> 2,
7275 mult_frac(zone->managed_pages,
7276 watermark_scale_factor, 10000));
7277
7278 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7279 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7280
7281 spin_unlock_irqrestore(&zone->lock, flags);
7282 }
7283
7284 /* update totalreserve_pages */
7285 calculate_totalreserve_pages();
7286}
7287
7288/**
7289 * setup_per_zone_wmarks - called when min_free_kbytes changes
7290 * or when memory is hot-{added|removed}
7291 *
7292 * Ensures that the watermark[min,low,high] values for each zone are set
7293 * correctly with respect to min_free_kbytes.
7294 */
7295void setup_per_zone_wmarks(void)
7296{
7297 static DEFINE_SPINLOCK(lock);
7298
7299 spin_lock(&lock);
7300 __setup_per_zone_wmarks();
7301 spin_unlock(&lock);
7302}
7303
7304/*
7305 * Initialise min_free_kbytes.
7306 *
7307 * For small machines we want it small (128k min). For large machines
7308 * we want it large (64MB max). But it is not linear, because network
7309 * bandwidth does not increase linearly with machine size. We use
7310 *
7311 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7312 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7313 *
7314 * which yields
7315 *
7316 * 16MB: 512k
7317 * 32MB: 724k
7318 * 64MB: 1024k
7319 * 128MB: 1448k
7320 * 256MB: 2048k
7321 * 512MB: 2896k
7322 * 1024MB: 4096k
7323 * 2048MB: 5792k
7324 * 4096MB: 8192k
7325 * 8192MB: 11584k
7326 * 16384MB: 16384k
7327 */
7328int __meminit init_per_zone_wmark_min(void)
7329{
7330 unsigned long lowmem_kbytes;
7331 int new_min_free_kbytes;
7332
7333 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7334 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7335
7336 if (new_min_free_kbytes > user_min_free_kbytes) {
7337 min_free_kbytes = new_min_free_kbytes;
7338 if (min_free_kbytes < 128)
7339 min_free_kbytes = 128;
7340 if (min_free_kbytes > 65536)
7341 min_free_kbytes = 65536;
7342 } else {
7343 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7344 new_min_free_kbytes, user_min_free_kbytes);
7345 }
7346 setup_per_zone_wmarks();
7347 refresh_zone_stat_thresholds();
7348 setup_per_zone_lowmem_reserve();
7349
7350#ifdef CONFIG_NUMA
7351 setup_min_unmapped_ratio();
7352 setup_min_slab_ratio();
7353#endif
7354
7355 return 0;
7356}
7357core_initcall(init_per_zone_wmark_min)
7358
7359/*
7360 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7361 * that we can call two helper functions whenever min_free_kbytes
7362 * changes.
7363 */
7364int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7365 void __user *buffer, size_t *length, loff_t *ppos)
7366{
7367 int rc;
7368
7369 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7370 if (rc)
7371 return rc;
7372
7373 if (write) {
7374 user_min_free_kbytes = min_free_kbytes;
7375 setup_per_zone_wmarks();
7376 }
7377 return 0;
7378}
7379
7380int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7381 void __user *buffer, size_t *length, loff_t *ppos)
7382{
7383 int rc;
7384
7385 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7386 if (rc)
7387 return rc;
7388
7389 if (write)
7390 setup_per_zone_wmarks();
7391
7392 return 0;
7393}
7394
7395#ifdef CONFIG_NUMA
7396static void setup_min_unmapped_ratio(void)
7397{
7398 pg_data_t *pgdat;
7399 struct zone *zone;
7400
7401 for_each_online_pgdat(pgdat)
7402 pgdat->min_unmapped_pages = 0;
7403
7404 for_each_zone(zone)
7405 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7406 sysctl_min_unmapped_ratio) / 100;
7407}
7408
7409
7410int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7411 void __user *buffer, size_t *length, loff_t *ppos)
7412{
7413 int rc;
7414
7415 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7416 if (rc)
7417 return rc;
7418
7419 setup_min_unmapped_ratio();
7420
7421 return 0;
7422}
7423
7424static void setup_min_slab_ratio(void)
7425{
7426 pg_data_t *pgdat;
7427 struct zone *zone;
7428
7429 for_each_online_pgdat(pgdat)
7430 pgdat->min_slab_pages = 0;
7431
7432 for_each_zone(zone)
7433 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7434 sysctl_min_slab_ratio) / 100;
7435}
7436
7437int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7438 void __user *buffer, size_t *length, loff_t *ppos)
7439{
7440 int rc;
7441
7442 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7443 if (rc)
7444 return rc;
7445
7446 setup_min_slab_ratio();
7447
7448 return 0;
7449}
7450#endif
7451
7452/*
7453 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7454 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7455 * whenever sysctl_lowmem_reserve_ratio changes.
7456 *
7457 * The reserve ratio obviously has absolutely no relation with the
7458 * minimum watermarks. The lowmem reserve ratio can only make sense
7459 * if in function of the boot time zone sizes.
7460 */
7461int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7462 void __user *buffer, size_t *length, loff_t *ppos)
7463{
7464 proc_dointvec_minmax(table, write, buffer, length, ppos);
7465 setup_per_zone_lowmem_reserve();
7466 return 0;
7467}
7468
7469/*
7470 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7471 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7472 * pagelist can have before it gets flushed back to buddy allocator.
7473 */
7474int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7475 void __user *buffer, size_t *length, loff_t *ppos)
7476{
7477 struct zone *zone;
7478 int old_percpu_pagelist_fraction;
7479 int ret;
7480
7481 mutex_lock(&pcp_batch_high_lock);
7482 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7483
7484 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7485 if (!write || ret < 0)
7486 goto out;
7487
7488 /* Sanity checking to avoid pcp imbalance */
7489 if (percpu_pagelist_fraction &&
7490 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7491 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7492 ret = -EINVAL;
7493 goto out;
7494 }
7495
7496 /* No change? */
7497 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7498 goto out;
7499
7500 for_each_populated_zone(zone) {
7501 unsigned int cpu;
7502
7503 for_each_possible_cpu(cpu)
7504 pageset_set_high_and_batch(zone,
7505 per_cpu_ptr(zone->pageset, cpu));
7506 }
7507out:
7508 mutex_unlock(&pcp_batch_high_lock);
7509 return ret;
7510}
7511
7512#ifdef CONFIG_NUMA
7513int hashdist = HASHDIST_DEFAULT;
7514
7515static int __init set_hashdist(char *str)
7516{
7517 if (!str)
7518 return 0;
7519 hashdist = simple_strtoul(str, &str, 0);
7520 return 1;
7521}
7522__setup("hashdist=", set_hashdist);
7523#endif
7524
7525#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7526/*
7527 * Returns the number of pages that arch has reserved but
7528 * is not known to alloc_large_system_hash().
7529 */
7530static unsigned long __init arch_reserved_kernel_pages(void)
7531{
7532 return 0;
7533}
7534#endif
7535
7536/*
7537 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7538 * machines. As memory size is increased the scale is also increased but at
7539 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7540 * quadruples the scale is increased by one, which means the size of hash table
7541 * only doubles, instead of quadrupling as well.
7542 * Because 32-bit systems cannot have large physical memory, where this scaling
7543 * makes sense, it is disabled on such platforms.
7544 */
7545#if __BITS_PER_LONG > 32
7546#define ADAPT_SCALE_BASE (64ul << 30)
7547#define ADAPT_SCALE_SHIFT 2
7548#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7549#endif
7550
7551/*
7552 * allocate a large system hash table from bootmem
7553 * - it is assumed that the hash table must contain an exact power-of-2
7554 * quantity of entries
7555 * - limit is the number of hash buckets, not the total allocation size
7556 */
7557void *__init alloc_large_system_hash(const char *tablename,
7558 unsigned long bucketsize,
7559 unsigned long numentries,
7560 int scale,
7561 int flags,
7562 unsigned int *_hash_shift,
7563 unsigned int *_hash_mask,
7564 unsigned long low_limit,
7565 unsigned long high_limit)
7566{
7567 unsigned long long max = high_limit;
7568 unsigned long log2qty, size;
7569 void *table = NULL;
7570 gfp_t gfp_flags;
7571
7572 /* allow the kernel cmdline to have a say */
7573 if (!numentries) {
7574 /* round applicable memory size up to nearest megabyte */
7575 numentries = nr_kernel_pages;
7576 numentries -= arch_reserved_kernel_pages();
7577
7578 /* It isn't necessary when PAGE_SIZE >= 1MB */
7579 if (PAGE_SHIFT < 20)
7580 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7581
7582#if __BITS_PER_LONG > 32
7583 if (!high_limit) {
7584 unsigned long adapt;
7585
7586 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7587 adapt <<= ADAPT_SCALE_SHIFT)
7588 scale++;
7589 }
7590#endif
7591
7592 /* limit to 1 bucket per 2^scale bytes of low memory */
7593 if (scale > PAGE_SHIFT)
7594 numentries >>= (scale - PAGE_SHIFT);
7595 else
7596 numentries <<= (PAGE_SHIFT - scale);
7597
7598 /* Make sure we've got at least a 0-order allocation.. */
7599 if (unlikely(flags & HASH_SMALL)) {
7600 /* Makes no sense without HASH_EARLY */
7601 WARN_ON(!(flags & HASH_EARLY));
7602 if (!(numentries >> *_hash_shift)) {
7603 numentries = 1UL << *_hash_shift;
7604 BUG_ON(!numentries);
7605 }
7606 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7607 numentries = PAGE_SIZE / bucketsize;
7608 }
7609 numentries = roundup_pow_of_two(numentries);
7610
7611 /* limit allocation size to 1/16 total memory by default */
7612 if (max == 0) {
7613 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7614 do_div(max, bucketsize);
7615 }
7616 max = min(max, 0x80000000ULL);
7617
7618 if (numentries < low_limit)
7619 numentries = low_limit;
7620 if (numentries > max)
7621 numentries = max;
7622
7623 log2qty = ilog2(numentries);
7624
7625 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7626 do {
7627 size = bucketsize << log2qty;
7628 if (flags & HASH_EARLY) {
7629 if (flags & HASH_ZERO)
7630 table = memblock_virt_alloc_nopanic(size, 0);
7631 else
7632 table = memblock_virt_alloc_raw(size, 0);
7633 } else if (hashdist) {
7634 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7635 } else {
7636 /*
7637 * If bucketsize is not a power-of-two, we may free
7638 * some pages at the end of hash table which
7639 * alloc_pages_exact() automatically does
7640 */
7641 if (get_order(size) < MAX_ORDER) {
7642 table = alloc_pages_exact(size, gfp_flags);
7643 kmemleak_alloc(table, size, 1, gfp_flags);
7644 }
7645 }
7646 } while (!table && size > PAGE_SIZE && --log2qty);
7647
7648 if (!table)
7649 panic("Failed to allocate %s hash table\n", tablename);
7650
7651 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7652 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7653
7654 if (_hash_shift)
7655 *_hash_shift = log2qty;
7656 if (_hash_mask)
7657 *_hash_mask = (1 << log2qty) - 1;
7658
7659 return table;
7660}
7661
7662/*
7663 * This function checks whether pageblock includes unmovable pages or not.
7664 * If @count is not zero, it is okay to include less @count unmovable pages
7665 *
7666 * PageLRU check without isolation or lru_lock could race so that
7667 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7668 * check without lock_page also may miss some movable non-lru pages at
7669 * race condition. So you can't expect this function should be exact.
7670 */
7671bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7672 int migratetype,
7673 bool skip_hwpoisoned_pages)
7674{
7675 unsigned long pfn, iter, found;
7676
7677 /*
7678 * TODO we could make this much more efficient by not checking every
7679 * page in the range if we know all of them are in MOVABLE_ZONE and
7680 * that the movable zone guarantees that pages are migratable but
7681 * the later is not the case right now unfortunatelly. E.g. movablecore
7682 * can still lead to having bootmem allocations in zone_movable.
7683 */
7684
7685 /*
7686 * CMA allocations (alloc_contig_range) really need to mark isolate
7687 * CMA pageblocks even when they are not movable in fact so consider
7688 * them movable here.
7689 */
7690 if (is_migrate_cma(migratetype) &&
7691 is_migrate_cma(get_pageblock_migratetype(page)))
7692 return false;
7693
7694 pfn = page_to_pfn(page);
7695 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7696 unsigned long check = pfn + iter;
7697
7698 if (!pfn_valid_within(check))
7699 continue;
7700
7701 page = pfn_to_page(check);
7702
7703 if (PageReserved(page))
7704 goto unmovable;
7705
7706 /*
7707 * Hugepages are not in LRU lists, but they're movable.
7708 * We need not scan over tail pages bacause we don't
7709 * handle each tail page individually in migration.
7710 */
7711 if (PageHuge(page)) {
7712 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7713 continue;
7714 }
7715
7716 /*
7717 * We can't use page_count without pin a page
7718 * because another CPU can free compound page.
7719 * This check already skips compound tails of THP
7720 * because their page->_refcount is zero at all time.
7721 */
7722 if (!page_ref_count(page)) {
7723 if (PageBuddy(page))
7724 iter += (1 << page_order(page)) - 1;
7725 continue;
7726 }
7727
7728 /*
7729 * The HWPoisoned page may be not in buddy system, and
7730 * page_count() is not 0.
7731 */
7732 if (skip_hwpoisoned_pages && PageHWPoison(page))
7733 continue;
7734
7735 if (__PageMovable(page))
7736 continue;
7737
7738 if (!PageLRU(page))
7739 found++;
7740 /*
7741 * If there are RECLAIMABLE pages, we need to check
7742 * it. But now, memory offline itself doesn't call
7743 * shrink_node_slabs() and it still to be fixed.
7744 */
7745 /*
7746 * If the page is not RAM, page_count()should be 0.
7747 * we don't need more check. This is an _used_ not-movable page.
7748 *
7749 * The problematic thing here is PG_reserved pages. PG_reserved
7750 * is set to both of a memory hole page and a _used_ kernel
7751 * page at boot.
7752 */
7753 if (found > count)
7754 goto unmovable;
7755 }
7756 return false;
7757unmovable:
7758 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7759 return true;
7760}
7761
7762#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7763
7764static unsigned long pfn_max_align_down(unsigned long pfn)
7765{
7766 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7767 pageblock_nr_pages) - 1);
7768}
7769
7770static unsigned long pfn_max_align_up(unsigned long pfn)
7771{
7772 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7773 pageblock_nr_pages));
7774}
7775
7776/* [start, end) must belong to a single zone. */
7777static int __alloc_contig_migrate_range(struct compact_control *cc,
7778 unsigned long start, unsigned long end)
7779{
7780 /* This function is based on compact_zone() from compaction.c. */
7781 unsigned long nr_reclaimed;
7782 unsigned long pfn = start;
7783 unsigned int tries = 0;
7784 int ret = 0;
7785
7786 migrate_prep();
7787
7788 while (pfn < end || !list_empty(&cc->migratepages)) {
7789 if (fatal_signal_pending(current)) {
7790 ret = -EINTR;
7791 break;
7792 }
7793
7794 if (list_empty(&cc->migratepages)) {
7795 cc->nr_migratepages = 0;
7796 pfn = isolate_migratepages_range(cc, pfn, end);
7797 if (!pfn) {
7798 ret = -EINTR;
7799 break;
7800 }
7801 tries = 0;
7802 } else if (++tries == 5) {
7803 ret = ret < 0 ? ret : -EBUSY;
7804 break;
7805 }
7806
7807 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7808 &cc->migratepages);
7809 cc->nr_migratepages -= nr_reclaimed;
7810
7811 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7812 NULL, 0, cc->mode, MR_CONTIG_RANGE);
7813 }
7814 if (ret < 0) {
7815 putback_movable_pages(&cc->migratepages);
7816 return ret;
7817 }
7818 return 0;
7819}
7820
7821/**
7822 * alloc_contig_range() -- tries to allocate given range of pages
7823 * @start: start PFN to allocate
7824 * @end: one-past-the-last PFN to allocate
7825 * @migratetype: migratetype of the underlaying pageblocks (either
7826 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7827 * in range must have the same migratetype and it must
7828 * be either of the two.
7829 * @gfp_mask: GFP mask to use during compaction
7830 *
7831 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7832 * aligned. The PFN range must belong to a single zone.
7833 *
7834 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7835 * pageblocks in the range. Once isolated, the pageblocks should not
7836 * be modified by others.
7837 *
7838 * Returns zero on success or negative error code. On success all
7839 * pages which PFN is in [start, end) are allocated for the caller and
7840 * need to be freed with free_contig_range().
7841 */
7842int alloc_contig_range(unsigned long start, unsigned long end,
7843 unsigned migratetype, gfp_t gfp_mask)
7844{
7845 unsigned long outer_start, outer_end;
7846 unsigned int order;
7847 int ret = 0;
7848
7849 struct compact_control cc = {
7850 .nr_migratepages = 0,
7851 .order = -1,
7852 .zone = page_zone(pfn_to_page(start)),
7853 .mode = MIGRATE_SYNC,
7854 .ignore_skip_hint = true,
7855 .no_set_skip_hint = true,
7856 .gfp_mask = current_gfp_context(gfp_mask),
7857 };
7858 INIT_LIST_HEAD(&cc.migratepages);
7859
7860 /*
7861 * What we do here is we mark all pageblocks in range as
7862 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7863 * have different sizes, and due to the way page allocator
7864 * work, we align the range to biggest of the two pages so
7865 * that page allocator won't try to merge buddies from
7866 * different pageblocks and change MIGRATE_ISOLATE to some
7867 * other migration type.
7868 *
7869 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7870 * migrate the pages from an unaligned range (ie. pages that
7871 * we are interested in). This will put all the pages in
7872 * range back to page allocator as MIGRATE_ISOLATE.
7873 *
7874 * When this is done, we take the pages in range from page
7875 * allocator removing them from the buddy system. This way
7876 * page allocator will never consider using them.
7877 *
7878 * This lets us mark the pageblocks back as
7879 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7880 * aligned range but not in the unaligned, original range are
7881 * put back to page allocator so that buddy can use them.
7882 */
7883
7884 ret = start_isolate_page_range(pfn_max_align_down(start),
7885 pfn_max_align_up(end), migratetype,
7886 false);
7887 if (ret)
7888 return ret;
7889
7890 /*
7891 * In case of -EBUSY, we'd like to know which page causes problem.
7892 * So, just fall through. test_pages_isolated() has a tracepoint
7893 * which will report the busy page.
7894 *
7895 * It is possible that busy pages could become available before
7896 * the call to test_pages_isolated, and the range will actually be
7897 * allocated. So, if we fall through be sure to clear ret so that
7898 * -EBUSY is not accidentally used or returned to caller.
7899 */
7900 ret = __alloc_contig_migrate_range(&cc, start, end);
7901 if (ret && ret != -EBUSY)
7902 goto done;
7903 ret =0;
7904
7905 /*
7906 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7907 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7908 * more, all pages in [start, end) are free in page allocator.
7909 * What we are going to do is to allocate all pages from
7910 * [start, end) (that is remove them from page allocator).
7911 *
7912 * The only problem is that pages at the beginning and at the
7913 * end of interesting range may be not aligned with pages that
7914 * page allocator holds, ie. they can be part of higher order
7915 * pages. Because of this, we reserve the bigger range and
7916 * once this is done free the pages we are not interested in.
7917 *
7918 * We don't have to hold zone->lock here because the pages are
7919 * isolated thus they won't get removed from buddy.
7920 */
7921
7922 lru_add_drain_all();
7923 drain_all_pages(cc.zone);
7924
7925 order = 0;
7926 outer_start = start;
7927 while (!PageBuddy(pfn_to_page(outer_start))) {
7928 if (++order >= MAX_ORDER) {
7929 outer_start = start;
7930 break;
7931 }
7932 outer_start &= ~0UL << order;
7933 }
7934
7935 if (outer_start != start) {
7936 order = page_order(pfn_to_page(outer_start));
7937
7938 /*
7939 * outer_start page could be small order buddy page and
7940 * it doesn't include start page. Adjust outer_start
7941 * in this case to report failed page properly
7942 * on tracepoint in test_pages_isolated()
7943 */
7944 if (outer_start + (1UL << order) <= start)
7945 outer_start = start;
7946 }
7947
7948 /* Make sure the range is really isolated. */
7949 if (test_pages_isolated(outer_start, end, false)) {
7950 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7951 __func__, outer_start, end);
7952 ret = -EBUSY;
7953 goto done;
7954 }
7955
7956 /* Grab isolated pages from freelists. */
7957 outer_end = isolate_freepages_range(&cc, outer_start, end);
7958 if (!outer_end) {
7959 ret = -EBUSY;
7960 goto done;
7961 }
7962
7963 /* Free head and tail (if any) */
7964 if (start != outer_start)
7965 free_contig_range(outer_start, start - outer_start);
7966 if (end != outer_end)
7967 free_contig_range(end, outer_end - end);
7968
7969done:
7970 undo_isolate_page_range(pfn_max_align_down(start),
7971 pfn_max_align_up(end), migratetype);
7972 return ret;
7973}
7974
7975void free_contig_range(unsigned long pfn, unsigned nr_pages)
7976{
7977 unsigned int count = 0;
7978
7979 for (; nr_pages--; pfn++) {
7980 struct page *page = pfn_to_page(pfn);
7981
7982 count += page_count(page) != 1;
7983 __free_page(page);
7984 }
7985 WARN(count != 0, "%d pages are still in use!\n", count);
7986}
7987#endif
7988
7989#ifdef CONFIG_MEMORY_HOTPLUG
7990/*
7991 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7992 * page high values need to be recalulated.
7993 */
7994void __meminit zone_pcp_update(struct zone *zone)
7995{
7996 unsigned cpu;
7997 mutex_lock(&pcp_batch_high_lock);
7998 for_each_possible_cpu(cpu)
7999 pageset_set_high_and_batch(zone,
8000 per_cpu_ptr(zone->pageset, cpu));
8001 mutex_unlock(&pcp_batch_high_lock);
8002}
8003#endif
8004
8005void zone_pcp_reset(struct zone *zone)
8006{
8007 unsigned long flags;
8008 int cpu;
8009 struct per_cpu_pageset *pset;
8010
8011 /* avoid races with drain_pages() */
8012 local_irq_save(flags);
8013 if (zone->pageset != &boot_pageset) {
8014 for_each_online_cpu(cpu) {
8015 pset = per_cpu_ptr(zone->pageset, cpu);
8016 drain_zonestat(zone, pset);
8017 }
8018 free_percpu(zone->pageset);
8019 zone->pageset = &boot_pageset;
8020 }
8021 local_irq_restore(flags);
8022}
8023
8024#ifdef CONFIG_MEMORY_HOTREMOVE
8025/*
8026 * All pages in the range must be in a single zone and isolated
8027 * before calling this.
8028 */
8029void
8030__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8031{
8032 struct page *page;
8033 struct zone *zone;
8034 unsigned int order, i;
8035 unsigned long pfn;
8036 unsigned long flags;
8037 /* find the first valid pfn */
8038 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8039 if (pfn_valid(pfn))
8040 break;
8041 if (pfn == end_pfn)
8042 return;
8043 offline_mem_sections(pfn, end_pfn);
8044 zone = page_zone(pfn_to_page(pfn));
8045 spin_lock_irqsave(&zone->lock, flags);
8046 pfn = start_pfn;
8047 while (pfn < end_pfn) {
8048 if (!pfn_valid(pfn)) {
8049 pfn++;
8050 continue;
8051 }
8052 page = pfn_to_page(pfn);
8053 /*
8054 * The HWPoisoned page may be not in buddy system, and
8055 * page_count() is not 0.
8056 */
8057 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8058 pfn++;
8059 SetPageReserved(page);
8060 continue;
8061 }
8062
8063 BUG_ON(page_count(page));
8064 BUG_ON(!PageBuddy(page));
8065 order = page_order(page);
8066#ifdef CONFIG_DEBUG_VM
8067 pr_info("remove from free list %lx %d %lx\n",
8068 pfn, 1 << order, end_pfn);
8069#endif
8070 list_del(&page->lru);
8071 rmv_page_order(page);
8072 zone->free_area[order].nr_free--;
8073 for (i = 0; i < (1 << order); i++)
8074 SetPageReserved((page+i));
8075 pfn += (1 << order);
8076 }
8077 spin_unlock_irqrestore(&zone->lock, flags);
8078}
8079#endif
8080
8081bool is_free_buddy_page(struct page *page)
8082{
8083 struct zone *zone = page_zone(page);
8084 unsigned long pfn = page_to_pfn(page);
8085 unsigned long flags;
8086 unsigned int order;
8087
8088 spin_lock_irqsave(&zone->lock, flags);
8089 for (order = 0; order < MAX_ORDER; order++) {
8090 struct page *page_head = page - (pfn & ((1 << order) - 1));
8091
8092 if (PageBuddy(page_head) && page_order(page_head) >= order)
8093 break;
8094 }
8095 spin_unlock_irqrestore(&zone->lock, flags);
8096
8097 return order < MAX_ORDER;
8098}
8099
8100#ifdef CONFIG_MEMORY_FAILURE
8101/*
8102 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8103 * test is performed under the zone lock to prevent a race against page
8104 * allocation.
8105 */
8106bool set_hwpoison_free_buddy_page(struct page *page)
8107{
8108 struct zone *zone = page_zone(page);
8109 unsigned long pfn = page_to_pfn(page);
8110 unsigned long flags;
8111 unsigned int order;
8112 bool hwpoisoned = false;
8113
8114 spin_lock_irqsave(&zone->lock, flags);
8115 for (order = 0; order < MAX_ORDER; order++) {
8116 struct page *page_head = page - (pfn & ((1 << order) - 1));
8117
8118 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8119 if (!TestSetPageHWPoison(page))
8120 hwpoisoned = true;
8121 break;
8122 }
8123 }
8124 spin_unlock_irqrestore(&zone->lock, flags);
8125
8126 return hwpoisoned;
8127}
8128#endif