Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Resizable, Scalable, Concurrent Hash Table
3 *
4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7 *
8 * Code partially derived from nft_hash
9 * Rewritten with rehash code from br_multicast plus single list
10 * pointer as suggested by Josh Triplett
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17#include <linux/atomic.h>
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/log2.h>
21#include <linux/sched.h>
22#include <linux/rculist.h>
23#include <linux/slab.h>
24#include <linux/vmalloc.h>
25#include <linux/mm.h>
26#include <linux/jhash.h>
27#include <linux/random.h>
28#include <linux/rhashtable.h>
29#include <linux/err.h>
30#include <linux/export.h>
31
32#define HASH_DEFAULT_SIZE 64UL
33#define HASH_MIN_SIZE 4U
34#define BUCKET_LOCKS_PER_CPU 32UL
35
36union nested_table {
37 union nested_table __rcu *table;
38 struct rhash_head __rcu *bucket;
39};
40
41static u32 head_hashfn(struct rhashtable *ht,
42 const struct bucket_table *tbl,
43 const struct rhash_head *he)
44{
45 return rht_head_hashfn(ht, tbl, he, ht->p);
46}
47
48#ifdef CONFIG_PROVE_LOCKING
49#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
50
51int lockdep_rht_mutex_is_held(struct rhashtable *ht)
52{
53 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
54}
55EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
56
57int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
58{
59 spinlock_t *lock = rht_bucket_lock(tbl, hash);
60
61 return (debug_locks) ? lockdep_is_held(lock) : 1;
62}
63EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
64#else
65#define ASSERT_RHT_MUTEX(HT)
66#endif
67
68static void nested_table_free(union nested_table *ntbl, unsigned int size)
69{
70 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
71 const unsigned int len = 1 << shift;
72 unsigned int i;
73
74 ntbl = rcu_dereference_raw(ntbl->table);
75 if (!ntbl)
76 return;
77
78 if (size > len) {
79 size >>= shift;
80 for (i = 0; i < len; i++)
81 nested_table_free(ntbl + i, size);
82 }
83
84 kfree(ntbl);
85}
86
87static void nested_bucket_table_free(const struct bucket_table *tbl)
88{
89 unsigned int size = tbl->size >> tbl->nest;
90 unsigned int len = 1 << tbl->nest;
91 union nested_table *ntbl;
92 unsigned int i;
93
94 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
95
96 for (i = 0; i < len; i++)
97 nested_table_free(ntbl + i, size);
98
99 kfree(ntbl);
100}
101
102static void bucket_table_free(const struct bucket_table *tbl)
103{
104 if (tbl->nest)
105 nested_bucket_table_free(tbl);
106
107 free_bucket_spinlocks(tbl->locks);
108 kvfree(tbl);
109}
110
111static void bucket_table_free_rcu(struct rcu_head *head)
112{
113 bucket_table_free(container_of(head, struct bucket_table, rcu));
114}
115
116static union nested_table *nested_table_alloc(struct rhashtable *ht,
117 union nested_table __rcu **prev,
118 unsigned int shifted,
119 unsigned int nhash)
120{
121 union nested_table *ntbl;
122 int i;
123
124 ntbl = rcu_dereference(*prev);
125 if (ntbl)
126 return ntbl;
127
128 ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
129
130 if (ntbl && shifted) {
131 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0].bucket); i++)
132 INIT_RHT_NULLS_HEAD(ntbl[i].bucket, ht,
133 (i << shifted) | nhash);
134 }
135
136 rcu_assign_pointer(*prev, ntbl);
137
138 return ntbl;
139}
140
141static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
142 size_t nbuckets,
143 gfp_t gfp)
144{
145 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
146 struct bucket_table *tbl;
147 size_t size;
148
149 if (nbuckets < (1 << (shift + 1)))
150 return NULL;
151
152 size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
153
154 tbl = kzalloc(size, gfp);
155 if (!tbl)
156 return NULL;
157
158 if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
159 0, 0)) {
160 kfree(tbl);
161 return NULL;
162 }
163
164 tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
165
166 return tbl;
167}
168
169static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
170 size_t nbuckets,
171 gfp_t gfp)
172{
173 struct bucket_table *tbl = NULL;
174 size_t size, max_locks;
175 int i;
176
177 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
178 if (gfp != GFP_KERNEL)
179 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
180 else
181 tbl = kvzalloc(size, gfp);
182
183 size = nbuckets;
184
185 if (tbl == NULL && gfp != GFP_KERNEL) {
186 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
187 nbuckets = 0;
188 }
189 if (tbl == NULL)
190 return NULL;
191
192 tbl->size = size;
193
194 max_locks = size >> 1;
195 if (tbl->nest)
196 max_locks = min_t(size_t, max_locks, 1U << tbl->nest);
197
198 if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks,
199 ht->p.locks_mul, gfp) < 0) {
200 bucket_table_free(tbl);
201 return NULL;
202 }
203
204 INIT_LIST_HEAD(&tbl->walkers);
205
206 tbl->hash_rnd = get_random_u32();
207
208 for (i = 0; i < nbuckets; i++)
209 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
210
211 return tbl;
212}
213
214static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
215 struct bucket_table *tbl)
216{
217 struct bucket_table *new_tbl;
218
219 do {
220 new_tbl = tbl;
221 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
222 } while (tbl);
223
224 return new_tbl;
225}
226
227static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
228{
229 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
230 struct bucket_table *new_tbl = rhashtable_last_table(ht,
231 rht_dereference_rcu(old_tbl->future_tbl, ht));
232 struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
233 int err = -EAGAIN;
234 struct rhash_head *head, *next, *entry;
235 spinlock_t *new_bucket_lock;
236 unsigned int new_hash;
237
238 if (new_tbl->nest)
239 goto out;
240
241 err = -ENOENT;
242
243 rht_for_each(entry, old_tbl, old_hash) {
244 err = 0;
245 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
246
247 if (rht_is_a_nulls(next))
248 break;
249
250 pprev = &entry->next;
251 }
252
253 if (err)
254 goto out;
255
256 new_hash = head_hashfn(ht, new_tbl, entry);
257
258 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
259
260 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
261 head = rht_dereference_bucket(new_tbl->buckets[new_hash],
262 new_tbl, new_hash);
263
264 RCU_INIT_POINTER(entry->next, head);
265
266 rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
267 spin_unlock(new_bucket_lock);
268
269 rcu_assign_pointer(*pprev, next);
270
271out:
272 return err;
273}
274
275static int rhashtable_rehash_chain(struct rhashtable *ht,
276 unsigned int old_hash)
277{
278 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
279 spinlock_t *old_bucket_lock;
280 int err;
281
282 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
283
284 spin_lock_bh(old_bucket_lock);
285 while (!(err = rhashtable_rehash_one(ht, old_hash)))
286 ;
287
288 if (err == -ENOENT) {
289 old_tbl->rehash++;
290 err = 0;
291 }
292 spin_unlock_bh(old_bucket_lock);
293
294 return err;
295}
296
297static int rhashtable_rehash_attach(struct rhashtable *ht,
298 struct bucket_table *old_tbl,
299 struct bucket_table *new_tbl)
300{
301 /* Protect future_tbl using the first bucket lock. */
302 spin_lock_bh(old_tbl->locks);
303
304 /* Did somebody beat us to it? */
305 if (rcu_access_pointer(old_tbl->future_tbl)) {
306 spin_unlock_bh(old_tbl->locks);
307 return -EEXIST;
308 }
309
310 /* Make insertions go into the new, empty table right away. Deletions
311 * and lookups will be attempted in both tables until we synchronize.
312 */
313 rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
314
315 spin_unlock_bh(old_tbl->locks);
316
317 return 0;
318}
319
320static int rhashtable_rehash_table(struct rhashtable *ht)
321{
322 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
323 struct bucket_table *new_tbl;
324 struct rhashtable_walker *walker;
325 unsigned int old_hash;
326 int err;
327
328 new_tbl = rht_dereference(old_tbl->future_tbl, ht);
329 if (!new_tbl)
330 return 0;
331
332 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
333 err = rhashtable_rehash_chain(ht, old_hash);
334 if (err)
335 return err;
336 cond_resched();
337 }
338
339 /* Publish the new table pointer. */
340 rcu_assign_pointer(ht->tbl, new_tbl);
341
342 spin_lock(&ht->lock);
343 list_for_each_entry(walker, &old_tbl->walkers, list)
344 walker->tbl = NULL;
345 spin_unlock(&ht->lock);
346
347 /* Wait for readers. All new readers will see the new
348 * table, and thus no references to the old table will
349 * remain.
350 */
351 call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
352
353 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
354}
355
356static int rhashtable_rehash_alloc(struct rhashtable *ht,
357 struct bucket_table *old_tbl,
358 unsigned int size)
359{
360 struct bucket_table *new_tbl;
361 int err;
362
363 ASSERT_RHT_MUTEX(ht);
364
365 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
366 if (new_tbl == NULL)
367 return -ENOMEM;
368
369 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
370 if (err)
371 bucket_table_free(new_tbl);
372
373 return err;
374}
375
376/**
377 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
378 * @ht: the hash table to shrink
379 *
380 * This function shrinks the hash table to fit, i.e., the smallest
381 * size would not cause it to expand right away automatically.
382 *
383 * The caller must ensure that no concurrent resizing occurs by holding
384 * ht->mutex.
385 *
386 * The caller must ensure that no concurrent table mutations take place.
387 * It is however valid to have concurrent lookups if they are RCU protected.
388 *
389 * It is valid to have concurrent insertions and deletions protected by per
390 * bucket locks or concurrent RCU protected lookups and traversals.
391 */
392static int rhashtable_shrink(struct rhashtable *ht)
393{
394 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
395 unsigned int nelems = atomic_read(&ht->nelems);
396 unsigned int size = 0;
397
398 if (nelems)
399 size = roundup_pow_of_two(nelems * 3 / 2);
400 if (size < ht->p.min_size)
401 size = ht->p.min_size;
402
403 if (old_tbl->size <= size)
404 return 0;
405
406 if (rht_dereference(old_tbl->future_tbl, ht))
407 return -EEXIST;
408
409 return rhashtable_rehash_alloc(ht, old_tbl, size);
410}
411
412static void rht_deferred_worker(struct work_struct *work)
413{
414 struct rhashtable *ht;
415 struct bucket_table *tbl;
416 int err = 0;
417
418 ht = container_of(work, struct rhashtable, run_work);
419 mutex_lock(&ht->mutex);
420
421 tbl = rht_dereference(ht->tbl, ht);
422 tbl = rhashtable_last_table(ht, tbl);
423
424 if (rht_grow_above_75(ht, tbl))
425 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
426 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
427 err = rhashtable_shrink(ht);
428 else if (tbl->nest)
429 err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
430
431 if (!err)
432 err = rhashtable_rehash_table(ht);
433
434 mutex_unlock(&ht->mutex);
435
436 if (err)
437 schedule_work(&ht->run_work);
438}
439
440static int rhashtable_insert_rehash(struct rhashtable *ht,
441 struct bucket_table *tbl)
442{
443 struct bucket_table *old_tbl;
444 struct bucket_table *new_tbl;
445 unsigned int size;
446 int err;
447
448 old_tbl = rht_dereference_rcu(ht->tbl, ht);
449
450 size = tbl->size;
451
452 err = -EBUSY;
453
454 if (rht_grow_above_75(ht, tbl))
455 size *= 2;
456 /* Do not schedule more than one rehash */
457 else if (old_tbl != tbl)
458 goto fail;
459
460 err = -ENOMEM;
461
462 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
463 if (new_tbl == NULL)
464 goto fail;
465
466 err = rhashtable_rehash_attach(ht, tbl, new_tbl);
467 if (err) {
468 bucket_table_free(new_tbl);
469 if (err == -EEXIST)
470 err = 0;
471 } else
472 schedule_work(&ht->run_work);
473
474 return err;
475
476fail:
477 /* Do not fail the insert if someone else did a rehash. */
478 if (likely(rcu_dereference_raw(tbl->future_tbl)))
479 return 0;
480
481 /* Schedule async rehash to retry allocation in process context. */
482 if (err == -ENOMEM)
483 schedule_work(&ht->run_work);
484
485 return err;
486}
487
488static void *rhashtable_lookup_one(struct rhashtable *ht,
489 struct bucket_table *tbl, unsigned int hash,
490 const void *key, struct rhash_head *obj)
491{
492 struct rhashtable_compare_arg arg = {
493 .ht = ht,
494 .key = key,
495 };
496 struct rhash_head __rcu **pprev;
497 struct rhash_head *head;
498 int elasticity;
499
500 elasticity = RHT_ELASTICITY;
501 pprev = rht_bucket_var(tbl, hash);
502 rht_for_each_continue(head, *pprev, tbl, hash) {
503 struct rhlist_head *list;
504 struct rhlist_head *plist;
505
506 elasticity--;
507 if (!key ||
508 (ht->p.obj_cmpfn ?
509 ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
510 rhashtable_compare(&arg, rht_obj(ht, head)))) {
511 pprev = &head->next;
512 continue;
513 }
514
515 if (!ht->rhlist)
516 return rht_obj(ht, head);
517
518 list = container_of(obj, struct rhlist_head, rhead);
519 plist = container_of(head, struct rhlist_head, rhead);
520
521 RCU_INIT_POINTER(list->next, plist);
522 head = rht_dereference_bucket(head->next, tbl, hash);
523 RCU_INIT_POINTER(list->rhead.next, head);
524 rcu_assign_pointer(*pprev, obj);
525
526 return NULL;
527 }
528
529 if (elasticity <= 0)
530 return ERR_PTR(-EAGAIN);
531
532 return ERR_PTR(-ENOENT);
533}
534
535static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
536 struct bucket_table *tbl,
537 unsigned int hash,
538 struct rhash_head *obj,
539 void *data)
540{
541 struct rhash_head __rcu **pprev;
542 struct bucket_table *new_tbl;
543 struct rhash_head *head;
544
545 if (!IS_ERR_OR_NULL(data))
546 return ERR_PTR(-EEXIST);
547
548 if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
549 return ERR_CAST(data);
550
551 new_tbl = rcu_dereference(tbl->future_tbl);
552 if (new_tbl)
553 return new_tbl;
554
555 if (PTR_ERR(data) != -ENOENT)
556 return ERR_CAST(data);
557
558 if (unlikely(rht_grow_above_max(ht, tbl)))
559 return ERR_PTR(-E2BIG);
560
561 if (unlikely(rht_grow_above_100(ht, tbl)))
562 return ERR_PTR(-EAGAIN);
563
564 pprev = rht_bucket_insert(ht, tbl, hash);
565 if (!pprev)
566 return ERR_PTR(-ENOMEM);
567
568 head = rht_dereference_bucket(*pprev, tbl, hash);
569
570 RCU_INIT_POINTER(obj->next, head);
571 if (ht->rhlist) {
572 struct rhlist_head *list;
573
574 list = container_of(obj, struct rhlist_head, rhead);
575 RCU_INIT_POINTER(list->next, NULL);
576 }
577
578 rcu_assign_pointer(*pprev, obj);
579
580 atomic_inc(&ht->nelems);
581 if (rht_grow_above_75(ht, tbl))
582 schedule_work(&ht->run_work);
583
584 return NULL;
585}
586
587static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
588 struct rhash_head *obj)
589{
590 struct bucket_table *new_tbl;
591 struct bucket_table *tbl;
592 unsigned int hash;
593 spinlock_t *lock;
594 void *data;
595
596 tbl = rcu_dereference(ht->tbl);
597
598 /* All insertions must grab the oldest table containing
599 * the hashed bucket that is yet to be rehashed.
600 */
601 for (;;) {
602 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
603 lock = rht_bucket_lock(tbl, hash);
604 spin_lock_bh(lock);
605
606 if (tbl->rehash <= hash)
607 break;
608
609 spin_unlock_bh(lock);
610 tbl = rcu_dereference(tbl->future_tbl);
611 }
612
613 data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
614 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
615 if (PTR_ERR(new_tbl) != -EEXIST)
616 data = ERR_CAST(new_tbl);
617
618 while (!IS_ERR_OR_NULL(new_tbl)) {
619 tbl = new_tbl;
620 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
621 spin_lock_nested(rht_bucket_lock(tbl, hash),
622 SINGLE_DEPTH_NESTING);
623
624 data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
625 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
626 if (PTR_ERR(new_tbl) != -EEXIST)
627 data = ERR_CAST(new_tbl);
628
629 spin_unlock(rht_bucket_lock(tbl, hash));
630 }
631
632 spin_unlock_bh(lock);
633
634 if (PTR_ERR(data) == -EAGAIN)
635 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
636 -EAGAIN);
637
638 return data;
639}
640
641void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
642 struct rhash_head *obj)
643{
644 void *data;
645
646 do {
647 rcu_read_lock();
648 data = rhashtable_try_insert(ht, key, obj);
649 rcu_read_unlock();
650 } while (PTR_ERR(data) == -EAGAIN);
651
652 return data;
653}
654EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
655
656/**
657 * rhashtable_walk_enter - Initialise an iterator
658 * @ht: Table to walk over
659 * @iter: Hash table Iterator
660 *
661 * This function prepares a hash table walk.
662 *
663 * Note that if you restart a walk after rhashtable_walk_stop you
664 * may see the same object twice. Also, you may miss objects if
665 * there are removals in between rhashtable_walk_stop and the next
666 * call to rhashtable_walk_start.
667 *
668 * For a completely stable walk you should construct your own data
669 * structure outside the hash table.
670 *
671 * This function may be called from any process context, including
672 * non-preemptable context, but cannot be called from softirq or
673 * hardirq context.
674 *
675 * You must call rhashtable_walk_exit after this function returns.
676 */
677void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
678{
679 iter->ht = ht;
680 iter->p = NULL;
681 iter->slot = 0;
682 iter->skip = 0;
683 iter->end_of_table = 0;
684
685 spin_lock(&ht->lock);
686 iter->walker.tbl =
687 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
688 list_add(&iter->walker.list, &iter->walker.tbl->walkers);
689 spin_unlock(&ht->lock);
690}
691EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
692
693/**
694 * rhashtable_walk_exit - Free an iterator
695 * @iter: Hash table Iterator
696 *
697 * This function frees resources allocated by rhashtable_walk_init.
698 */
699void rhashtable_walk_exit(struct rhashtable_iter *iter)
700{
701 spin_lock(&iter->ht->lock);
702 if (iter->walker.tbl)
703 list_del(&iter->walker.list);
704 spin_unlock(&iter->ht->lock);
705}
706EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
707
708/**
709 * rhashtable_walk_start_check - Start a hash table walk
710 * @iter: Hash table iterator
711 *
712 * Start a hash table walk at the current iterator position. Note that we take
713 * the RCU lock in all cases including when we return an error. So you must
714 * always call rhashtable_walk_stop to clean up.
715 *
716 * Returns zero if successful.
717 *
718 * Returns -EAGAIN if resize event occured. Note that the iterator
719 * will rewind back to the beginning and you may use it immediately
720 * by calling rhashtable_walk_next.
721 *
722 * rhashtable_walk_start is defined as an inline variant that returns
723 * void. This is preferred in cases where the caller would ignore
724 * resize events and always continue.
725 */
726int rhashtable_walk_start_check(struct rhashtable_iter *iter)
727 __acquires(RCU)
728{
729 struct rhashtable *ht = iter->ht;
730 bool rhlist = ht->rhlist;
731
732 rcu_read_lock();
733
734 spin_lock(&ht->lock);
735 if (iter->walker.tbl)
736 list_del(&iter->walker.list);
737 spin_unlock(&ht->lock);
738
739 if (iter->end_of_table)
740 return 0;
741 if (!iter->walker.tbl) {
742 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
743 iter->slot = 0;
744 iter->skip = 0;
745 return -EAGAIN;
746 }
747
748 if (iter->p && !rhlist) {
749 /*
750 * We need to validate that 'p' is still in the table, and
751 * if so, update 'skip'
752 */
753 struct rhash_head *p;
754 int skip = 0;
755 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
756 skip++;
757 if (p == iter->p) {
758 iter->skip = skip;
759 goto found;
760 }
761 }
762 iter->p = NULL;
763 } else if (iter->p && rhlist) {
764 /* Need to validate that 'list' is still in the table, and
765 * if so, update 'skip' and 'p'.
766 */
767 struct rhash_head *p;
768 struct rhlist_head *list;
769 int skip = 0;
770 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
771 for (list = container_of(p, struct rhlist_head, rhead);
772 list;
773 list = rcu_dereference(list->next)) {
774 skip++;
775 if (list == iter->list) {
776 iter->p = p;
777 iter->skip = skip;
778 goto found;
779 }
780 }
781 }
782 iter->p = NULL;
783 }
784found:
785 return 0;
786}
787EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
788
789/**
790 * __rhashtable_walk_find_next - Find the next element in a table (or the first
791 * one in case of a new walk).
792 *
793 * @iter: Hash table iterator
794 *
795 * Returns the found object or NULL when the end of the table is reached.
796 *
797 * Returns -EAGAIN if resize event occurred.
798 */
799static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
800{
801 struct bucket_table *tbl = iter->walker.tbl;
802 struct rhlist_head *list = iter->list;
803 struct rhashtable *ht = iter->ht;
804 struct rhash_head *p = iter->p;
805 bool rhlist = ht->rhlist;
806
807 if (!tbl)
808 return NULL;
809
810 for (; iter->slot < tbl->size; iter->slot++) {
811 int skip = iter->skip;
812
813 rht_for_each_rcu(p, tbl, iter->slot) {
814 if (rhlist) {
815 list = container_of(p, struct rhlist_head,
816 rhead);
817 do {
818 if (!skip)
819 goto next;
820 skip--;
821 list = rcu_dereference(list->next);
822 } while (list);
823
824 continue;
825 }
826 if (!skip)
827 break;
828 skip--;
829 }
830
831next:
832 if (!rht_is_a_nulls(p)) {
833 iter->skip++;
834 iter->p = p;
835 iter->list = list;
836 return rht_obj(ht, rhlist ? &list->rhead : p);
837 }
838
839 iter->skip = 0;
840 }
841
842 iter->p = NULL;
843
844 /* Ensure we see any new tables. */
845 smp_rmb();
846
847 iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
848 if (iter->walker.tbl) {
849 iter->slot = 0;
850 iter->skip = 0;
851 return ERR_PTR(-EAGAIN);
852 } else {
853 iter->end_of_table = true;
854 }
855
856 return NULL;
857}
858
859/**
860 * rhashtable_walk_next - Return the next object and advance the iterator
861 * @iter: Hash table iterator
862 *
863 * Note that you must call rhashtable_walk_stop when you are finished
864 * with the walk.
865 *
866 * Returns the next object or NULL when the end of the table is reached.
867 *
868 * Returns -EAGAIN if resize event occurred. Note that the iterator
869 * will rewind back to the beginning and you may continue to use it.
870 */
871void *rhashtable_walk_next(struct rhashtable_iter *iter)
872{
873 struct rhlist_head *list = iter->list;
874 struct rhashtable *ht = iter->ht;
875 struct rhash_head *p = iter->p;
876 bool rhlist = ht->rhlist;
877
878 if (p) {
879 if (!rhlist || !(list = rcu_dereference(list->next))) {
880 p = rcu_dereference(p->next);
881 list = container_of(p, struct rhlist_head, rhead);
882 }
883 if (!rht_is_a_nulls(p)) {
884 iter->skip++;
885 iter->p = p;
886 iter->list = list;
887 return rht_obj(ht, rhlist ? &list->rhead : p);
888 }
889
890 /* At the end of this slot, switch to next one and then find
891 * next entry from that point.
892 */
893 iter->skip = 0;
894 iter->slot++;
895 }
896
897 return __rhashtable_walk_find_next(iter);
898}
899EXPORT_SYMBOL_GPL(rhashtable_walk_next);
900
901/**
902 * rhashtable_walk_peek - Return the next object but don't advance the iterator
903 * @iter: Hash table iterator
904 *
905 * Returns the next object or NULL when the end of the table is reached.
906 *
907 * Returns -EAGAIN if resize event occurred. Note that the iterator
908 * will rewind back to the beginning and you may continue to use it.
909 */
910void *rhashtable_walk_peek(struct rhashtable_iter *iter)
911{
912 struct rhlist_head *list = iter->list;
913 struct rhashtable *ht = iter->ht;
914 struct rhash_head *p = iter->p;
915
916 if (p)
917 return rht_obj(ht, ht->rhlist ? &list->rhead : p);
918
919 /* No object found in current iter, find next one in the table. */
920
921 if (iter->skip) {
922 /* A nonzero skip value points to the next entry in the table
923 * beyond that last one that was found. Decrement skip so
924 * we find the current value. __rhashtable_walk_find_next
925 * will restore the original value of skip assuming that
926 * the table hasn't changed.
927 */
928 iter->skip--;
929 }
930
931 return __rhashtable_walk_find_next(iter);
932}
933EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
934
935/**
936 * rhashtable_walk_stop - Finish a hash table walk
937 * @iter: Hash table iterator
938 *
939 * Finish a hash table walk. Does not reset the iterator to the start of the
940 * hash table.
941 */
942void rhashtable_walk_stop(struct rhashtable_iter *iter)
943 __releases(RCU)
944{
945 struct rhashtable *ht;
946 struct bucket_table *tbl = iter->walker.tbl;
947
948 if (!tbl)
949 goto out;
950
951 ht = iter->ht;
952
953 spin_lock(&ht->lock);
954 if (tbl->rehash < tbl->size)
955 list_add(&iter->walker.list, &tbl->walkers);
956 else
957 iter->walker.tbl = NULL;
958 spin_unlock(&ht->lock);
959
960out:
961 rcu_read_unlock();
962}
963EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
964
965static size_t rounded_hashtable_size(const struct rhashtable_params *params)
966{
967 size_t retsize;
968
969 if (params->nelem_hint)
970 retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
971 (unsigned long)params->min_size);
972 else
973 retsize = max(HASH_DEFAULT_SIZE,
974 (unsigned long)params->min_size);
975
976 return retsize;
977}
978
979static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
980{
981 return jhash2(key, length, seed);
982}
983
984/**
985 * rhashtable_init - initialize a new hash table
986 * @ht: hash table to be initialized
987 * @params: configuration parameters
988 *
989 * Initializes a new hash table based on the provided configuration
990 * parameters. A table can be configured either with a variable or
991 * fixed length key:
992 *
993 * Configuration Example 1: Fixed length keys
994 * struct test_obj {
995 * int key;
996 * void * my_member;
997 * struct rhash_head node;
998 * };
999 *
1000 * struct rhashtable_params params = {
1001 * .head_offset = offsetof(struct test_obj, node),
1002 * .key_offset = offsetof(struct test_obj, key),
1003 * .key_len = sizeof(int),
1004 * .hashfn = jhash,
1005 * .nulls_base = (1U << RHT_BASE_SHIFT),
1006 * };
1007 *
1008 * Configuration Example 2: Variable length keys
1009 * struct test_obj {
1010 * [...]
1011 * struct rhash_head node;
1012 * };
1013 *
1014 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
1015 * {
1016 * struct test_obj *obj = data;
1017 *
1018 * return [... hash ...];
1019 * }
1020 *
1021 * struct rhashtable_params params = {
1022 * .head_offset = offsetof(struct test_obj, node),
1023 * .hashfn = jhash,
1024 * .obj_hashfn = my_hash_fn,
1025 * };
1026 */
1027int rhashtable_init(struct rhashtable *ht,
1028 const struct rhashtable_params *params)
1029{
1030 struct bucket_table *tbl;
1031 size_t size;
1032
1033 if ((!params->key_len && !params->obj_hashfn) ||
1034 (params->obj_hashfn && !params->obj_cmpfn))
1035 return -EINVAL;
1036
1037 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
1038 return -EINVAL;
1039
1040 memset(ht, 0, sizeof(*ht));
1041 mutex_init(&ht->mutex);
1042 spin_lock_init(&ht->lock);
1043 memcpy(&ht->p, params, sizeof(*params));
1044
1045 if (params->min_size)
1046 ht->p.min_size = roundup_pow_of_two(params->min_size);
1047
1048 /* Cap total entries at 2^31 to avoid nelems overflow. */
1049 ht->max_elems = 1u << 31;
1050
1051 if (params->max_size) {
1052 ht->p.max_size = rounddown_pow_of_two(params->max_size);
1053 if (ht->p.max_size < ht->max_elems / 2)
1054 ht->max_elems = ht->p.max_size * 2;
1055 }
1056
1057 ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1058
1059 size = rounded_hashtable_size(&ht->p);
1060
1061 if (params->locks_mul)
1062 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1063 else
1064 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1065
1066 ht->key_len = ht->p.key_len;
1067 if (!params->hashfn) {
1068 ht->p.hashfn = jhash;
1069
1070 if (!(ht->key_len & (sizeof(u32) - 1))) {
1071 ht->key_len /= sizeof(u32);
1072 ht->p.hashfn = rhashtable_jhash2;
1073 }
1074 }
1075
1076 tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1077 if (tbl == NULL)
1078 return -ENOMEM;
1079
1080 atomic_set(&ht->nelems, 0);
1081
1082 RCU_INIT_POINTER(ht->tbl, tbl);
1083
1084 INIT_WORK(&ht->run_work, rht_deferred_worker);
1085
1086 return 0;
1087}
1088EXPORT_SYMBOL_GPL(rhashtable_init);
1089
1090/**
1091 * rhltable_init - initialize a new hash list table
1092 * @hlt: hash list table to be initialized
1093 * @params: configuration parameters
1094 *
1095 * Initializes a new hash list table.
1096 *
1097 * See documentation for rhashtable_init.
1098 */
1099int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1100{
1101 int err;
1102
1103 /* No rhlist NULLs marking for now. */
1104 if (params->nulls_base)
1105 return -EINVAL;
1106
1107 err = rhashtable_init(&hlt->ht, params);
1108 hlt->ht.rhlist = true;
1109 return err;
1110}
1111EXPORT_SYMBOL_GPL(rhltable_init);
1112
1113static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1114 void (*free_fn)(void *ptr, void *arg),
1115 void *arg)
1116{
1117 struct rhlist_head *list;
1118
1119 if (!ht->rhlist) {
1120 free_fn(rht_obj(ht, obj), arg);
1121 return;
1122 }
1123
1124 list = container_of(obj, struct rhlist_head, rhead);
1125 do {
1126 obj = &list->rhead;
1127 list = rht_dereference(list->next, ht);
1128 free_fn(rht_obj(ht, obj), arg);
1129 } while (list);
1130}
1131
1132/**
1133 * rhashtable_free_and_destroy - free elements and destroy hash table
1134 * @ht: the hash table to destroy
1135 * @free_fn: callback to release resources of element
1136 * @arg: pointer passed to free_fn
1137 *
1138 * Stops an eventual async resize. If defined, invokes free_fn for each
1139 * element to releasal resources. Please note that RCU protected
1140 * readers may still be accessing the elements. Releasing of resources
1141 * must occur in a compatible manner. Then frees the bucket array.
1142 *
1143 * This function will eventually sleep to wait for an async resize
1144 * to complete. The caller is responsible that no further write operations
1145 * occurs in parallel.
1146 */
1147void rhashtable_free_and_destroy(struct rhashtable *ht,
1148 void (*free_fn)(void *ptr, void *arg),
1149 void *arg)
1150{
1151 struct bucket_table *tbl, *next_tbl;
1152 unsigned int i;
1153
1154 cancel_work_sync(&ht->run_work);
1155
1156 mutex_lock(&ht->mutex);
1157 tbl = rht_dereference(ht->tbl, ht);
1158restart:
1159 if (free_fn) {
1160 for (i = 0; i < tbl->size; i++) {
1161 struct rhash_head *pos, *next;
1162
1163 cond_resched();
1164 for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1165 next = !rht_is_a_nulls(pos) ?
1166 rht_dereference(pos->next, ht) : NULL;
1167 !rht_is_a_nulls(pos);
1168 pos = next,
1169 next = !rht_is_a_nulls(pos) ?
1170 rht_dereference(pos->next, ht) : NULL)
1171 rhashtable_free_one(ht, pos, free_fn, arg);
1172 }
1173 }
1174
1175 next_tbl = rht_dereference(tbl->future_tbl, ht);
1176 bucket_table_free(tbl);
1177 if (next_tbl) {
1178 tbl = next_tbl;
1179 goto restart;
1180 }
1181 mutex_unlock(&ht->mutex);
1182}
1183EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1184
1185void rhashtable_destroy(struct rhashtable *ht)
1186{
1187 return rhashtable_free_and_destroy(ht, NULL, NULL);
1188}
1189EXPORT_SYMBOL_GPL(rhashtable_destroy);
1190
1191struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1192 unsigned int hash)
1193{
1194 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1195 static struct rhash_head __rcu *rhnull =
1196 (struct rhash_head __rcu *)NULLS_MARKER(0);
1197 unsigned int index = hash & ((1 << tbl->nest) - 1);
1198 unsigned int size = tbl->size >> tbl->nest;
1199 unsigned int subhash = hash;
1200 union nested_table *ntbl;
1201
1202 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1203 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1204 subhash >>= tbl->nest;
1205
1206 while (ntbl && size > (1 << shift)) {
1207 index = subhash & ((1 << shift) - 1);
1208 ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1209 tbl, hash);
1210 size >>= shift;
1211 subhash >>= shift;
1212 }
1213
1214 if (!ntbl)
1215 return &rhnull;
1216
1217 return &ntbl[subhash].bucket;
1218
1219}
1220EXPORT_SYMBOL_GPL(rht_bucket_nested);
1221
1222struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1223 struct bucket_table *tbl,
1224 unsigned int hash)
1225{
1226 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1227 unsigned int index = hash & ((1 << tbl->nest) - 1);
1228 unsigned int size = tbl->size >> tbl->nest;
1229 union nested_table *ntbl;
1230 unsigned int shifted;
1231 unsigned int nhash;
1232
1233 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1234 hash >>= tbl->nest;
1235 nhash = index;
1236 shifted = tbl->nest;
1237 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1238 size <= (1 << shift) ? shifted : 0, nhash);
1239
1240 while (ntbl && size > (1 << shift)) {
1241 index = hash & ((1 << shift) - 1);
1242 size >>= shift;
1243 hash >>= shift;
1244 nhash |= index << shifted;
1245 shifted += shift;
1246 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1247 size <= (1 << shift) ? shifted : 0,
1248 nhash);
1249 }
1250
1251 if (!ntbl)
1252 return NULL;
1253
1254 return &ntbl[hash].bucket;
1255
1256}
1257EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);