at v4.18 24 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Macros for manipulating and testing page->flags 4 */ 5 6#ifndef PAGE_FLAGS_H 7#define PAGE_FLAGS_H 8 9#include <linux/types.h> 10#include <linux/bug.h> 11#include <linux/mmdebug.h> 12#ifndef __GENERATING_BOUNDS_H 13#include <linux/mm_types.h> 14#include <generated/bounds.h> 15#endif /* !__GENERATING_BOUNDS_H */ 16 17/* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages, which can never be swapped out. Some 21 * of them might not even exist... 22 * 23 * The PG_private bitflag is set on pagecache pages if they contain filesystem 24 * specific data (which is normally at page->private). It can be used by 25 * private allocations for its own usage. 26 * 27 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 28 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 29 * is set before writeback starts and cleared when it finishes. 30 * 31 * PG_locked also pins a page in pagecache, and blocks truncation of the file 32 * while it is held. 33 * 34 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 35 * to become unlocked. 36 * 37 * PG_uptodate tells whether the page's contents is valid. When a read 38 * completes, the page becomes uptodate, unless a disk I/O error happened. 39 * 40 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 41 * file-backed pagecache (see mm/vmscan.c). 42 * 43 * PG_error is set to indicate that an I/O error occurred on this page. 44 * 45 * PG_arch_1 is an architecture specific page state bit. The generic code 46 * guarantees that this bit is cleared for a page when it first is entered into 47 * the page cache. 48 * 49 * PG_hwpoison indicates that a page got corrupted in hardware and contains 50 * data with incorrect ECC bits that triggered a machine check. Accessing is 51 * not safe since it may cause another machine check. Don't touch! 52 */ 53 54/* 55 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 56 * locked- and dirty-page accounting. 57 * 58 * The page flags field is split into two parts, the main flags area 59 * which extends from the low bits upwards, and the fields area which 60 * extends from the high bits downwards. 61 * 62 * | FIELD | ... | FLAGS | 63 * N-1 ^ 0 64 * (NR_PAGEFLAGS) 65 * 66 * The fields area is reserved for fields mapping zone, node (for NUMA) and 67 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 68 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 69 */ 70enum pageflags { 71 PG_locked, /* Page is locked. Don't touch. */ 72 PG_error, 73 PG_referenced, 74 PG_uptodate, 75 PG_dirty, 76 PG_lru, 77 PG_active, 78 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 79 PG_slab, 80 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 81 PG_arch_1, 82 PG_reserved, 83 PG_private, /* If pagecache, has fs-private data */ 84 PG_private_2, /* If pagecache, has fs aux data */ 85 PG_writeback, /* Page is under writeback */ 86 PG_head, /* A head page */ 87 PG_mappedtodisk, /* Has blocks allocated on-disk */ 88 PG_reclaim, /* To be reclaimed asap */ 89 PG_swapbacked, /* Page is backed by RAM/swap */ 90 PG_unevictable, /* Page is "unevictable" */ 91#ifdef CONFIG_MMU 92 PG_mlocked, /* Page is vma mlocked */ 93#endif 94#ifdef CONFIG_ARCH_USES_PG_UNCACHED 95 PG_uncached, /* Page has been mapped as uncached */ 96#endif 97#ifdef CONFIG_MEMORY_FAILURE 98 PG_hwpoison, /* hardware poisoned page. Don't touch */ 99#endif 100#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 101 PG_young, 102 PG_idle, 103#endif 104 __NR_PAGEFLAGS, 105 106 /* Filesystems */ 107 PG_checked = PG_owner_priv_1, 108 109 /* SwapBacked */ 110 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 111 112 /* Two page bits are conscripted by FS-Cache to maintain local caching 113 * state. These bits are set on pages belonging to the netfs's inodes 114 * when those inodes are being locally cached. 115 */ 116 PG_fscache = PG_private_2, /* page backed by cache */ 117 118 /* XEN */ 119 /* Pinned in Xen as a read-only pagetable page. */ 120 PG_pinned = PG_owner_priv_1, 121 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 122 PG_savepinned = PG_dirty, 123 /* Has a grant mapping of another (foreign) domain's page. */ 124 PG_foreign = PG_owner_priv_1, 125 126 /* SLOB */ 127 PG_slob_free = PG_private, 128 129 /* Compound pages. Stored in first tail page's flags */ 130 PG_double_map = PG_private_2, 131 132 /* non-lru isolated movable page */ 133 PG_isolated = PG_reclaim, 134}; 135 136#ifndef __GENERATING_BOUNDS_H 137 138struct page; /* forward declaration */ 139 140static inline struct page *compound_head(struct page *page) 141{ 142 unsigned long head = READ_ONCE(page->compound_head); 143 144 if (unlikely(head & 1)) 145 return (struct page *) (head - 1); 146 return page; 147} 148 149static __always_inline int PageTail(struct page *page) 150{ 151 return READ_ONCE(page->compound_head) & 1; 152} 153 154static __always_inline int PageCompound(struct page *page) 155{ 156 return test_bit(PG_head, &page->flags) || PageTail(page); 157} 158 159#define PAGE_POISON_PATTERN -1l 160static inline int PagePoisoned(const struct page *page) 161{ 162 return page->flags == PAGE_POISON_PATTERN; 163} 164 165/* 166 * Page flags policies wrt compound pages 167 * 168 * PF_POISONED_CHECK 169 * check if this struct page poisoned/uninitialized 170 * 171 * PF_ANY: 172 * the page flag is relevant for small, head and tail pages. 173 * 174 * PF_HEAD: 175 * for compound page all operations related to the page flag applied to 176 * head page. 177 * 178 * PF_ONLY_HEAD: 179 * for compound page, callers only ever operate on the head page. 180 * 181 * PF_NO_TAIL: 182 * modifications of the page flag must be done on small or head pages, 183 * checks can be done on tail pages too. 184 * 185 * PF_NO_COMPOUND: 186 * the page flag is not relevant for compound pages. 187 */ 188#define PF_POISONED_CHECK(page) ({ \ 189 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 190 page; }) 191#define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 192#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 193#define PF_ONLY_HEAD(page, enforce) ({ \ 194 VM_BUG_ON_PGFLAGS(PageTail(page), page); \ 195 PF_POISONED_CHECK(page); }) 196#define PF_NO_TAIL(page, enforce) ({ \ 197 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 198 PF_POISONED_CHECK(compound_head(page)); }) 199#define PF_NO_COMPOUND(page, enforce) ({ \ 200 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 201 PF_POISONED_CHECK(page); }) 202 203/* 204 * Macros to create function definitions for page flags 205 */ 206#define TESTPAGEFLAG(uname, lname, policy) \ 207static __always_inline int Page##uname(struct page *page) \ 208 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 209 210#define SETPAGEFLAG(uname, lname, policy) \ 211static __always_inline void SetPage##uname(struct page *page) \ 212 { set_bit(PG_##lname, &policy(page, 1)->flags); } 213 214#define CLEARPAGEFLAG(uname, lname, policy) \ 215static __always_inline void ClearPage##uname(struct page *page) \ 216 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 217 218#define __SETPAGEFLAG(uname, lname, policy) \ 219static __always_inline void __SetPage##uname(struct page *page) \ 220 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 221 222#define __CLEARPAGEFLAG(uname, lname, policy) \ 223static __always_inline void __ClearPage##uname(struct page *page) \ 224 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 225 226#define TESTSETFLAG(uname, lname, policy) \ 227static __always_inline int TestSetPage##uname(struct page *page) \ 228 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 229 230#define TESTCLEARFLAG(uname, lname, policy) \ 231static __always_inline int TestClearPage##uname(struct page *page) \ 232 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 233 234#define PAGEFLAG(uname, lname, policy) \ 235 TESTPAGEFLAG(uname, lname, policy) \ 236 SETPAGEFLAG(uname, lname, policy) \ 237 CLEARPAGEFLAG(uname, lname, policy) 238 239#define __PAGEFLAG(uname, lname, policy) \ 240 TESTPAGEFLAG(uname, lname, policy) \ 241 __SETPAGEFLAG(uname, lname, policy) \ 242 __CLEARPAGEFLAG(uname, lname, policy) 243 244#define TESTSCFLAG(uname, lname, policy) \ 245 TESTSETFLAG(uname, lname, policy) \ 246 TESTCLEARFLAG(uname, lname, policy) 247 248#define TESTPAGEFLAG_FALSE(uname) \ 249static inline int Page##uname(const struct page *page) { return 0; } 250 251#define SETPAGEFLAG_NOOP(uname) \ 252static inline void SetPage##uname(struct page *page) { } 253 254#define CLEARPAGEFLAG_NOOP(uname) \ 255static inline void ClearPage##uname(struct page *page) { } 256 257#define __CLEARPAGEFLAG_NOOP(uname) \ 258static inline void __ClearPage##uname(struct page *page) { } 259 260#define TESTSETFLAG_FALSE(uname) \ 261static inline int TestSetPage##uname(struct page *page) { return 0; } 262 263#define TESTCLEARFLAG_FALSE(uname) \ 264static inline int TestClearPage##uname(struct page *page) { return 0; } 265 266#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 267 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 268 269#define TESTSCFLAG_FALSE(uname) \ 270 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 271 272__PAGEFLAG(Locked, locked, PF_NO_TAIL) 273PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) 274PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND) 275PAGEFLAG(Referenced, referenced, PF_HEAD) 276 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 277 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 278PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 279 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 280PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 281PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 282 TESTCLEARFLAG(Active, active, PF_HEAD) 283__PAGEFLAG(Slab, slab, PF_NO_TAIL) 284__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 285PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 286 287/* Xen */ 288PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 289 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 290PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 291PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 292 293PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 294 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 295PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 296 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 297 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 298 299/* 300 * Private page markings that may be used by the filesystem that owns the page 301 * for its own purposes. 302 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 303 */ 304PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) 305 __CLEARPAGEFLAG(Private, private, PF_ANY) 306PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 307PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 308 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 309 310/* 311 * Only test-and-set exist for PG_writeback. The unconditional operators are 312 * risky: they bypass page accounting. 313 */ 314TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 315 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 316PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 317 318/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 319PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 320 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 321PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) 322 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) 323 324#ifdef CONFIG_HIGHMEM 325/* 326 * Must use a macro here due to header dependency issues. page_zone() is not 327 * available at this point. 328 */ 329#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 330#else 331PAGEFLAG_FALSE(HighMem) 332#endif 333 334#ifdef CONFIG_SWAP 335static __always_inline int PageSwapCache(struct page *page) 336{ 337#ifdef CONFIG_THP_SWAP 338 page = compound_head(page); 339#endif 340 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags); 341 342} 343SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 344CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 345#else 346PAGEFLAG_FALSE(SwapCache) 347#endif 348 349PAGEFLAG(Unevictable, unevictable, PF_HEAD) 350 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 351 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 352 353#ifdef CONFIG_MMU 354PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 355 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 356 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 357#else 358PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 359 TESTSCFLAG_FALSE(Mlocked) 360#endif 361 362#ifdef CONFIG_ARCH_USES_PG_UNCACHED 363PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 364#else 365PAGEFLAG_FALSE(Uncached) 366#endif 367 368#ifdef CONFIG_MEMORY_FAILURE 369PAGEFLAG(HWPoison, hwpoison, PF_ANY) 370TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 371#define __PG_HWPOISON (1UL << PG_hwpoison) 372#else 373PAGEFLAG_FALSE(HWPoison) 374#define __PG_HWPOISON 0 375#endif 376 377#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 378TESTPAGEFLAG(Young, young, PF_ANY) 379SETPAGEFLAG(Young, young, PF_ANY) 380TESTCLEARFLAG(Young, young, PF_ANY) 381PAGEFLAG(Idle, idle, PF_ANY) 382#endif 383 384/* 385 * On an anonymous page mapped into a user virtual memory area, 386 * page->mapping points to its anon_vma, not to a struct address_space; 387 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 388 * 389 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 390 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 391 * bit; and then page->mapping points, not to an anon_vma, but to a private 392 * structure which KSM associates with that merged page. See ksm.h. 393 * 394 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 395 * page and then page->mapping points a struct address_space. 396 * 397 * Please note that, confusingly, "page_mapping" refers to the inode 398 * address_space which maps the page from disk; whereas "page_mapped" 399 * refers to user virtual address space into which the page is mapped. 400 */ 401#define PAGE_MAPPING_ANON 0x1 402#define PAGE_MAPPING_MOVABLE 0x2 403#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 404#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 405 406static __always_inline int PageMappingFlags(struct page *page) 407{ 408 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 409} 410 411static __always_inline int PageAnon(struct page *page) 412{ 413 page = compound_head(page); 414 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 415} 416 417static __always_inline int __PageMovable(struct page *page) 418{ 419 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 420 PAGE_MAPPING_MOVABLE; 421} 422 423#ifdef CONFIG_KSM 424/* 425 * A KSM page is one of those write-protected "shared pages" or "merged pages" 426 * which KSM maps into multiple mms, wherever identical anonymous page content 427 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 428 * anon_vma, but to that page's node of the stable tree. 429 */ 430static __always_inline int PageKsm(struct page *page) 431{ 432 page = compound_head(page); 433 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 434 PAGE_MAPPING_KSM; 435} 436#else 437TESTPAGEFLAG_FALSE(Ksm) 438#endif 439 440u64 stable_page_flags(struct page *page); 441 442static inline int PageUptodate(struct page *page) 443{ 444 int ret; 445 page = compound_head(page); 446 ret = test_bit(PG_uptodate, &(page)->flags); 447 /* 448 * Must ensure that the data we read out of the page is loaded 449 * _after_ we've loaded page->flags to check for PageUptodate. 450 * We can skip the barrier if the page is not uptodate, because 451 * we wouldn't be reading anything from it. 452 * 453 * See SetPageUptodate() for the other side of the story. 454 */ 455 if (ret) 456 smp_rmb(); 457 458 return ret; 459} 460 461static __always_inline void __SetPageUptodate(struct page *page) 462{ 463 VM_BUG_ON_PAGE(PageTail(page), page); 464 smp_wmb(); 465 __set_bit(PG_uptodate, &page->flags); 466} 467 468static __always_inline void SetPageUptodate(struct page *page) 469{ 470 VM_BUG_ON_PAGE(PageTail(page), page); 471 /* 472 * Memory barrier must be issued before setting the PG_uptodate bit, 473 * so that all previous stores issued in order to bring the page 474 * uptodate are actually visible before PageUptodate becomes true. 475 */ 476 smp_wmb(); 477 set_bit(PG_uptodate, &page->flags); 478} 479 480CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 481 482int test_clear_page_writeback(struct page *page); 483int __test_set_page_writeback(struct page *page, bool keep_write); 484 485#define test_set_page_writeback(page) \ 486 __test_set_page_writeback(page, false) 487#define test_set_page_writeback_keepwrite(page) \ 488 __test_set_page_writeback(page, true) 489 490static inline void set_page_writeback(struct page *page) 491{ 492 test_set_page_writeback(page); 493} 494 495static inline void set_page_writeback_keepwrite(struct page *page) 496{ 497 test_set_page_writeback_keepwrite(page); 498} 499 500__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 501 502static __always_inline void set_compound_head(struct page *page, struct page *head) 503{ 504 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 505} 506 507static __always_inline void clear_compound_head(struct page *page) 508{ 509 WRITE_ONCE(page->compound_head, 0); 510} 511 512#ifdef CONFIG_TRANSPARENT_HUGEPAGE 513static inline void ClearPageCompound(struct page *page) 514{ 515 BUG_ON(!PageHead(page)); 516 ClearPageHead(page); 517} 518#endif 519 520#define PG_head_mask ((1UL << PG_head)) 521 522#ifdef CONFIG_HUGETLB_PAGE 523int PageHuge(struct page *page); 524int PageHeadHuge(struct page *page); 525bool page_huge_active(struct page *page); 526#else 527TESTPAGEFLAG_FALSE(Huge) 528TESTPAGEFLAG_FALSE(HeadHuge) 529 530static inline bool page_huge_active(struct page *page) 531{ 532 return 0; 533} 534#endif 535 536 537#ifdef CONFIG_TRANSPARENT_HUGEPAGE 538/* 539 * PageHuge() only returns true for hugetlbfs pages, but not for 540 * normal or transparent huge pages. 541 * 542 * PageTransHuge() returns true for both transparent huge and 543 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 544 * called only in the core VM paths where hugetlbfs pages can't exist. 545 */ 546static inline int PageTransHuge(struct page *page) 547{ 548 VM_BUG_ON_PAGE(PageTail(page), page); 549 return PageHead(page); 550} 551 552/* 553 * PageTransCompound returns true for both transparent huge pages 554 * and hugetlbfs pages, so it should only be called when it's known 555 * that hugetlbfs pages aren't involved. 556 */ 557static inline int PageTransCompound(struct page *page) 558{ 559 return PageCompound(page); 560} 561 562/* 563 * PageTransCompoundMap is the same as PageTransCompound, but it also 564 * guarantees the primary MMU has the entire compound page mapped 565 * through pmd_trans_huge, which in turn guarantees the secondary MMUs 566 * can also map the entire compound page. This allows the secondary 567 * MMUs to call get_user_pages() only once for each compound page and 568 * to immediately map the entire compound page with a single secondary 569 * MMU fault. If there will be a pmd split later, the secondary MMUs 570 * will get an update through the MMU notifier invalidation through 571 * split_huge_pmd(). 572 * 573 * Unlike PageTransCompound, this is safe to be called only while 574 * split_huge_pmd() cannot run from under us, like if protected by the 575 * MMU notifier, otherwise it may result in page->_mapcount < 0 false 576 * positives. 577 */ 578static inline int PageTransCompoundMap(struct page *page) 579{ 580 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0; 581} 582 583/* 584 * PageTransTail returns true for both transparent huge pages 585 * and hugetlbfs pages, so it should only be called when it's known 586 * that hugetlbfs pages aren't involved. 587 */ 588static inline int PageTransTail(struct page *page) 589{ 590 return PageTail(page); 591} 592 593/* 594 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 595 * as PMDs. 596 * 597 * This is required for optimization of rmap operations for THP: we can postpone 598 * per small page mapcount accounting (and its overhead from atomic operations) 599 * until the first PMD split. 600 * 601 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 602 * by one. This reference will go away with last compound_mapcount. 603 * 604 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 605 */ 606static inline int PageDoubleMap(struct page *page) 607{ 608 return PageHead(page) && test_bit(PG_double_map, &page[1].flags); 609} 610 611static inline void SetPageDoubleMap(struct page *page) 612{ 613 VM_BUG_ON_PAGE(!PageHead(page), page); 614 set_bit(PG_double_map, &page[1].flags); 615} 616 617static inline void ClearPageDoubleMap(struct page *page) 618{ 619 VM_BUG_ON_PAGE(!PageHead(page), page); 620 clear_bit(PG_double_map, &page[1].flags); 621} 622static inline int TestSetPageDoubleMap(struct page *page) 623{ 624 VM_BUG_ON_PAGE(!PageHead(page), page); 625 return test_and_set_bit(PG_double_map, &page[1].flags); 626} 627 628static inline int TestClearPageDoubleMap(struct page *page) 629{ 630 VM_BUG_ON_PAGE(!PageHead(page), page); 631 return test_and_clear_bit(PG_double_map, &page[1].flags); 632} 633 634#else 635TESTPAGEFLAG_FALSE(TransHuge) 636TESTPAGEFLAG_FALSE(TransCompound) 637TESTPAGEFLAG_FALSE(TransCompoundMap) 638TESTPAGEFLAG_FALSE(TransTail) 639PAGEFLAG_FALSE(DoubleMap) 640 TESTSETFLAG_FALSE(DoubleMap) 641 TESTCLEARFLAG_FALSE(DoubleMap) 642#endif 643 644/* 645 * For pages that are never mapped to userspace (and aren't PageSlab), 646 * page_type may be used. Because it is initialised to -1, we invert the 647 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and 648 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and 649 * low bits so that an underflow or overflow of page_mapcount() won't be 650 * mistaken for a page type value. 651 */ 652 653#define PAGE_TYPE_BASE 0xf0000000 654/* Reserve 0x0000007f to catch underflows of page_mapcount */ 655#define PG_buddy 0x00000080 656#define PG_balloon 0x00000100 657#define PG_kmemcg 0x00000200 658#define PG_table 0x00000400 659 660#define PageType(page, flag) \ 661 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) 662 663#define PAGE_TYPE_OPS(uname, lname) \ 664static __always_inline int Page##uname(struct page *page) \ 665{ \ 666 return PageType(page, PG_##lname); \ 667} \ 668static __always_inline void __SetPage##uname(struct page *page) \ 669{ \ 670 VM_BUG_ON_PAGE(!PageType(page, 0), page); \ 671 page->page_type &= ~PG_##lname; \ 672} \ 673static __always_inline void __ClearPage##uname(struct page *page) \ 674{ \ 675 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 676 page->page_type |= PG_##lname; \ 677} 678 679/* 680 * PageBuddy() indicates that the page is free and in the buddy system 681 * (see mm/page_alloc.c). 682 */ 683PAGE_TYPE_OPS(Buddy, buddy) 684 685/* 686 * PageBalloon() is true for pages that are on the balloon page list 687 * (see mm/balloon_compaction.c). 688 */ 689PAGE_TYPE_OPS(Balloon, balloon) 690 691/* 692 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on 693 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free. 694 */ 695PAGE_TYPE_OPS(Kmemcg, kmemcg) 696 697/* 698 * Marks pages in use as page tables. 699 */ 700PAGE_TYPE_OPS(Table, table) 701 702extern bool is_free_buddy_page(struct page *page); 703 704__PAGEFLAG(Isolated, isolated, PF_ANY); 705 706/* 707 * If network-based swap is enabled, sl*b must keep track of whether pages 708 * were allocated from pfmemalloc reserves. 709 */ 710static inline int PageSlabPfmemalloc(struct page *page) 711{ 712 VM_BUG_ON_PAGE(!PageSlab(page), page); 713 return PageActive(page); 714} 715 716static inline void SetPageSlabPfmemalloc(struct page *page) 717{ 718 VM_BUG_ON_PAGE(!PageSlab(page), page); 719 SetPageActive(page); 720} 721 722static inline void __ClearPageSlabPfmemalloc(struct page *page) 723{ 724 VM_BUG_ON_PAGE(!PageSlab(page), page); 725 __ClearPageActive(page); 726} 727 728static inline void ClearPageSlabPfmemalloc(struct page *page) 729{ 730 VM_BUG_ON_PAGE(!PageSlab(page), page); 731 ClearPageActive(page); 732} 733 734#ifdef CONFIG_MMU 735#define __PG_MLOCKED (1UL << PG_mlocked) 736#else 737#define __PG_MLOCKED 0 738#endif 739 740/* 741 * Flags checked when a page is freed. Pages being freed should not have 742 * these flags set. It they are, there is a problem. 743 */ 744#define PAGE_FLAGS_CHECK_AT_FREE \ 745 (1UL << PG_lru | 1UL << PG_locked | \ 746 1UL << PG_private | 1UL << PG_private_2 | \ 747 1UL << PG_writeback | 1UL << PG_reserved | \ 748 1UL << PG_slab | 1UL << PG_active | \ 749 1UL << PG_unevictable | __PG_MLOCKED) 750 751/* 752 * Flags checked when a page is prepped for return by the page allocator. 753 * Pages being prepped should not have these flags set. It they are set, 754 * there has been a kernel bug or struct page corruption. 755 * 756 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 757 * alloc-free cycle to prevent from reusing the page. 758 */ 759#define PAGE_FLAGS_CHECK_AT_PREP \ 760 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 761 762#define PAGE_FLAGS_PRIVATE \ 763 (1UL << PG_private | 1UL << PG_private_2) 764/** 765 * page_has_private - Determine if page has private stuff 766 * @page: The page to be checked 767 * 768 * Determine if a page has private stuff, indicating that release routines 769 * should be invoked upon it. 770 */ 771static inline int page_has_private(struct page *page) 772{ 773 return !!(page->flags & PAGE_FLAGS_PRIVATE); 774} 775 776#undef PF_ANY 777#undef PF_HEAD 778#undef PF_ONLY_HEAD 779#undef PF_NO_TAIL 780#undef PF_NO_COMPOUND 781#endif /* !__GENERATING_BOUNDS_H */ 782 783#endif /* PAGE_FLAGS_H */