at v4.18 144 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/timer.h> 29#include <linux/bug.h> 30#include <linux/delay.h> 31#include <linux/atomic.h> 32#include <linux/prefetch.h> 33#include <asm/cache.h> 34#include <asm/byteorder.h> 35 36#include <linux/percpu.h> 37#include <linux/rculist.h> 38#include <linux/workqueue.h> 39#include <linux/dynamic_queue_limits.h> 40 41#include <linux/ethtool.h> 42#include <net/net_namespace.h> 43#ifdef CONFIG_DCB 44#include <net/dcbnl.h> 45#endif 46#include <net/netprio_cgroup.h> 47#include <net/xdp.h> 48 49#include <linux/netdev_features.h> 50#include <linux/neighbour.h> 51#include <uapi/linux/netdevice.h> 52#include <uapi/linux/if_bonding.h> 53#include <uapi/linux/pkt_cls.h> 54#include <linux/hashtable.h> 55 56struct netpoll_info; 57struct device; 58struct phy_device; 59struct dsa_port; 60 61struct sfp_bus; 62/* 802.11 specific */ 63struct wireless_dev; 64/* 802.15.4 specific */ 65struct wpan_dev; 66struct mpls_dev; 67/* UDP Tunnel offloads */ 68struct udp_tunnel_info; 69struct bpf_prog; 70struct xdp_buff; 71 72void netdev_set_default_ethtool_ops(struct net_device *dev, 73 const struct ethtool_ops *ops); 74 75/* Backlog congestion levels */ 76#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 77#define NET_RX_DROP 1 /* packet dropped */ 78 79/* 80 * Transmit return codes: transmit return codes originate from three different 81 * namespaces: 82 * 83 * - qdisc return codes 84 * - driver transmit return codes 85 * - errno values 86 * 87 * Drivers are allowed to return any one of those in their hard_start_xmit() 88 * function. Real network devices commonly used with qdiscs should only return 89 * the driver transmit return codes though - when qdiscs are used, the actual 90 * transmission happens asynchronously, so the value is not propagated to 91 * higher layers. Virtual network devices transmit synchronously; in this case 92 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 93 * others are propagated to higher layers. 94 */ 95 96/* qdisc ->enqueue() return codes. */ 97#define NET_XMIT_SUCCESS 0x00 98#define NET_XMIT_DROP 0x01 /* skb dropped */ 99#define NET_XMIT_CN 0x02 /* congestion notification */ 100#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 101 102/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 103 * indicates that the device will soon be dropping packets, or already drops 104 * some packets of the same priority; prompting us to send less aggressively. */ 105#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 106#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 107 108/* Driver transmit return codes */ 109#define NETDEV_TX_MASK 0xf0 110 111enum netdev_tx { 112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 113 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 115}; 116typedef enum netdev_tx netdev_tx_t; 117 118/* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122static inline bool dev_xmit_complete(int rc) 123{ 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134} 135 136/* 137 * Compute the worst-case header length according to the protocols 138 * used. 139 */ 140 141#if defined(CONFIG_HYPERV_NET) 142# define LL_MAX_HEADER 128 143#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 144# if defined(CONFIG_MAC80211_MESH) 145# define LL_MAX_HEADER 128 146# else 147# define LL_MAX_HEADER 96 148# endif 149#else 150# define LL_MAX_HEADER 32 151#endif 152 153#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 155#define MAX_HEADER LL_MAX_HEADER 156#else 157#define MAX_HEADER (LL_MAX_HEADER + 48) 158#endif 159 160/* 161 * Old network device statistics. Fields are native words 162 * (unsigned long) so they can be read and written atomically. 163 */ 164 165struct net_device_stats { 166 unsigned long rx_packets; 167 unsigned long tx_packets; 168 unsigned long rx_bytes; 169 unsigned long tx_bytes; 170 unsigned long rx_errors; 171 unsigned long tx_errors; 172 unsigned long rx_dropped; 173 unsigned long tx_dropped; 174 unsigned long multicast; 175 unsigned long collisions; 176 unsigned long rx_length_errors; 177 unsigned long rx_over_errors; 178 unsigned long rx_crc_errors; 179 unsigned long rx_frame_errors; 180 unsigned long rx_fifo_errors; 181 unsigned long rx_missed_errors; 182 unsigned long tx_aborted_errors; 183 unsigned long tx_carrier_errors; 184 unsigned long tx_fifo_errors; 185 unsigned long tx_heartbeat_errors; 186 unsigned long tx_window_errors; 187 unsigned long rx_compressed; 188 unsigned long tx_compressed; 189}; 190 191 192#include <linux/cache.h> 193#include <linux/skbuff.h> 194 195#ifdef CONFIG_RPS 196#include <linux/static_key.h> 197extern struct static_key rps_needed; 198extern struct static_key rfs_needed; 199#endif 200 201struct neighbour; 202struct neigh_parms; 203struct sk_buff; 204 205struct netdev_hw_addr { 206 struct list_head list; 207 unsigned char addr[MAX_ADDR_LEN]; 208 unsigned char type; 209#define NETDEV_HW_ADDR_T_LAN 1 210#define NETDEV_HW_ADDR_T_SAN 2 211#define NETDEV_HW_ADDR_T_SLAVE 3 212#define NETDEV_HW_ADDR_T_UNICAST 4 213#define NETDEV_HW_ADDR_T_MULTICAST 5 214 bool global_use; 215 int sync_cnt; 216 int refcount; 217 int synced; 218 struct rcu_head rcu_head; 219}; 220 221struct netdev_hw_addr_list { 222 struct list_head list; 223 int count; 224}; 225 226#define netdev_hw_addr_list_count(l) ((l)->count) 227#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 228#define netdev_hw_addr_list_for_each(ha, l) \ 229 list_for_each_entry(ha, &(l)->list, list) 230 231#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 232#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 233#define netdev_for_each_uc_addr(ha, dev) \ 234 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 235 236#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 237#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 238#define netdev_for_each_mc_addr(ha, dev) \ 239 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 240 241struct hh_cache { 242 unsigned int hh_len; 243 seqlock_t hh_lock; 244 245 /* cached hardware header; allow for machine alignment needs. */ 246#define HH_DATA_MOD 16 247#define HH_DATA_OFF(__len) \ 248 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 249#define HH_DATA_ALIGN(__len) \ 250 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 251 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 252}; 253 254/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 255 * Alternative is: 256 * dev->hard_header_len ? (dev->hard_header_len + 257 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 258 * 259 * We could use other alignment values, but we must maintain the 260 * relationship HH alignment <= LL alignment. 261 */ 262#define LL_RESERVED_SPACE(dev) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 265 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 266 267struct header_ops { 268 int (*create) (struct sk_buff *skb, struct net_device *dev, 269 unsigned short type, const void *daddr, 270 const void *saddr, unsigned int len); 271 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 273 void (*cache_update)(struct hh_cache *hh, 274 const struct net_device *dev, 275 const unsigned char *haddr); 276 bool (*validate)(const char *ll_header, unsigned int len); 277}; 278 279/* These flag bits are private to the generic network queueing 280 * layer; they may not be explicitly referenced by any other 281 * code. 282 */ 283 284enum netdev_state_t { 285 __LINK_STATE_START, 286 __LINK_STATE_PRESENT, 287 __LINK_STATE_NOCARRIER, 288 __LINK_STATE_LINKWATCH_PENDING, 289 __LINK_STATE_DORMANT, 290}; 291 292 293/* 294 * This structure holds boot-time configured netdevice settings. They 295 * are then used in the device probing. 296 */ 297struct netdev_boot_setup { 298 char name[IFNAMSIZ]; 299 struct ifmap map; 300}; 301#define NETDEV_BOOT_SETUP_MAX 8 302 303int __init netdev_boot_setup(char *str); 304 305/* 306 * Structure for NAPI scheduling similar to tasklet but with weighting 307 */ 308struct napi_struct { 309 /* The poll_list must only be managed by the entity which 310 * changes the state of the NAPI_STATE_SCHED bit. This means 311 * whoever atomically sets that bit can add this napi_struct 312 * to the per-CPU poll_list, and whoever clears that bit 313 * can remove from the list right before clearing the bit. 314 */ 315 struct list_head poll_list; 316 317 unsigned long state; 318 int weight; 319 unsigned int gro_count; 320 int (*poll)(struct napi_struct *, int); 321#ifdef CONFIG_NETPOLL 322 int poll_owner; 323#endif 324 struct net_device *dev; 325 struct sk_buff *gro_list; 326 struct sk_buff *skb; 327 struct hrtimer timer; 328 struct list_head dev_list; 329 struct hlist_node napi_hash_node; 330 unsigned int napi_id; 331}; 332 333enum { 334 NAPI_STATE_SCHED, /* Poll is scheduled */ 335 NAPI_STATE_MISSED, /* reschedule a napi */ 336 NAPI_STATE_DISABLE, /* Disable pending */ 337 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 338 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 339 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 340 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 341}; 342 343enum { 344 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 345 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 346 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 347 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 348 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 349 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 350 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 351}; 352 353enum gro_result { 354 GRO_MERGED, 355 GRO_MERGED_FREE, 356 GRO_HELD, 357 GRO_NORMAL, 358 GRO_DROP, 359 GRO_CONSUMED, 360}; 361typedef enum gro_result gro_result_t; 362 363/* 364 * enum rx_handler_result - Possible return values for rx_handlers. 365 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 366 * further. 367 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 368 * case skb->dev was changed by rx_handler. 369 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 370 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 371 * 372 * rx_handlers are functions called from inside __netif_receive_skb(), to do 373 * special processing of the skb, prior to delivery to protocol handlers. 374 * 375 * Currently, a net_device can only have a single rx_handler registered. Trying 376 * to register a second rx_handler will return -EBUSY. 377 * 378 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 379 * To unregister a rx_handler on a net_device, use 380 * netdev_rx_handler_unregister(). 381 * 382 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 383 * do with the skb. 384 * 385 * If the rx_handler consumed the skb in some way, it should return 386 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 387 * the skb to be delivered in some other way. 388 * 389 * If the rx_handler changed skb->dev, to divert the skb to another 390 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 391 * new device will be called if it exists. 392 * 393 * If the rx_handler decides the skb should be ignored, it should return 394 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 395 * are registered on exact device (ptype->dev == skb->dev). 396 * 397 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 398 * delivered, it should return RX_HANDLER_PASS. 399 * 400 * A device without a registered rx_handler will behave as if rx_handler 401 * returned RX_HANDLER_PASS. 402 */ 403 404enum rx_handler_result { 405 RX_HANDLER_CONSUMED, 406 RX_HANDLER_ANOTHER, 407 RX_HANDLER_EXACT, 408 RX_HANDLER_PASS, 409}; 410typedef enum rx_handler_result rx_handler_result_t; 411typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 412 413void __napi_schedule(struct napi_struct *n); 414void __napi_schedule_irqoff(struct napi_struct *n); 415 416static inline bool napi_disable_pending(struct napi_struct *n) 417{ 418 return test_bit(NAPI_STATE_DISABLE, &n->state); 419} 420 421bool napi_schedule_prep(struct napi_struct *n); 422 423/** 424 * napi_schedule - schedule NAPI poll 425 * @n: NAPI context 426 * 427 * Schedule NAPI poll routine to be called if it is not already 428 * running. 429 */ 430static inline void napi_schedule(struct napi_struct *n) 431{ 432 if (napi_schedule_prep(n)) 433 __napi_schedule(n); 434} 435 436/** 437 * napi_schedule_irqoff - schedule NAPI poll 438 * @n: NAPI context 439 * 440 * Variant of napi_schedule(), assuming hard irqs are masked. 441 */ 442static inline void napi_schedule_irqoff(struct napi_struct *n) 443{ 444 if (napi_schedule_prep(n)) 445 __napi_schedule_irqoff(n); 446} 447 448/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 449static inline bool napi_reschedule(struct napi_struct *napi) 450{ 451 if (napi_schedule_prep(napi)) { 452 __napi_schedule(napi); 453 return true; 454 } 455 return false; 456} 457 458bool napi_complete_done(struct napi_struct *n, int work_done); 459/** 460 * napi_complete - NAPI processing complete 461 * @n: NAPI context 462 * 463 * Mark NAPI processing as complete. 464 * Consider using napi_complete_done() instead. 465 * Return false if device should avoid rearming interrupts. 466 */ 467static inline bool napi_complete(struct napi_struct *n) 468{ 469 return napi_complete_done(n, 0); 470} 471 472/** 473 * napi_hash_del - remove a NAPI from global table 474 * @napi: NAPI context 475 * 476 * Warning: caller must observe RCU grace period 477 * before freeing memory containing @napi, if 478 * this function returns true. 479 * Note: core networking stack automatically calls it 480 * from netif_napi_del(). 481 * Drivers might want to call this helper to combine all 482 * the needed RCU grace periods into a single one. 483 */ 484bool napi_hash_del(struct napi_struct *napi); 485 486/** 487 * napi_disable - prevent NAPI from scheduling 488 * @n: NAPI context 489 * 490 * Stop NAPI from being scheduled on this context. 491 * Waits till any outstanding processing completes. 492 */ 493void napi_disable(struct napi_struct *n); 494 495/** 496 * napi_enable - enable NAPI scheduling 497 * @n: NAPI context 498 * 499 * Resume NAPI from being scheduled on this context. 500 * Must be paired with napi_disable. 501 */ 502static inline void napi_enable(struct napi_struct *n) 503{ 504 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 505 smp_mb__before_atomic(); 506 clear_bit(NAPI_STATE_SCHED, &n->state); 507 clear_bit(NAPI_STATE_NPSVC, &n->state); 508} 509 510/** 511 * napi_synchronize - wait until NAPI is not running 512 * @n: NAPI context 513 * 514 * Wait until NAPI is done being scheduled on this context. 515 * Waits till any outstanding processing completes but 516 * does not disable future activations. 517 */ 518static inline void napi_synchronize(const struct napi_struct *n) 519{ 520 if (IS_ENABLED(CONFIG_SMP)) 521 while (test_bit(NAPI_STATE_SCHED, &n->state)) 522 msleep(1); 523 else 524 barrier(); 525} 526 527enum netdev_queue_state_t { 528 __QUEUE_STATE_DRV_XOFF, 529 __QUEUE_STATE_STACK_XOFF, 530 __QUEUE_STATE_FROZEN, 531}; 532 533#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 534#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 535#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 536 537#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 538#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 539 QUEUE_STATE_FROZEN) 540#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 541 QUEUE_STATE_FROZEN) 542 543/* 544 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 545 * netif_tx_* functions below are used to manipulate this flag. The 546 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 547 * queue independently. The netif_xmit_*stopped functions below are called 548 * to check if the queue has been stopped by the driver or stack (either 549 * of the XOFF bits are set in the state). Drivers should not need to call 550 * netif_xmit*stopped functions, they should only be using netif_tx_*. 551 */ 552 553struct netdev_queue { 554/* 555 * read-mostly part 556 */ 557 struct net_device *dev; 558 struct Qdisc __rcu *qdisc; 559 struct Qdisc *qdisc_sleeping; 560#ifdef CONFIG_SYSFS 561 struct kobject kobj; 562#endif 563#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 564 int numa_node; 565#endif 566 unsigned long tx_maxrate; 567 /* 568 * Number of TX timeouts for this queue 569 * (/sys/class/net/DEV/Q/trans_timeout) 570 */ 571 unsigned long trans_timeout; 572/* 573 * write-mostly part 574 */ 575 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 576 int xmit_lock_owner; 577 /* 578 * Time (in jiffies) of last Tx 579 */ 580 unsigned long trans_start; 581 582 unsigned long state; 583 584#ifdef CONFIG_BQL 585 struct dql dql; 586#endif 587} ____cacheline_aligned_in_smp; 588 589extern int sysctl_fb_tunnels_only_for_init_net; 590 591static inline bool net_has_fallback_tunnels(const struct net *net) 592{ 593 return net == &init_net || 594 !IS_ENABLED(CONFIG_SYSCTL) || 595 !sysctl_fb_tunnels_only_for_init_net; 596} 597 598static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 599{ 600#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 601 return q->numa_node; 602#else 603 return NUMA_NO_NODE; 604#endif 605} 606 607static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 608{ 609#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 610 q->numa_node = node; 611#endif 612} 613 614#ifdef CONFIG_RPS 615/* 616 * This structure holds an RPS map which can be of variable length. The 617 * map is an array of CPUs. 618 */ 619struct rps_map { 620 unsigned int len; 621 struct rcu_head rcu; 622 u16 cpus[0]; 623}; 624#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 625 626/* 627 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 628 * tail pointer for that CPU's input queue at the time of last enqueue, and 629 * a hardware filter index. 630 */ 631struct rps_dev_flow { 632 u16 cpu; 633 u16 filter; 634 unsigned int last_qtail; 635}; 636#define RPS_NO_FILTER 0xffff 637 638/* 639 * The rps_dev_flow_table structure contains a table of flow mappings. 640 */ 641struct rps_dev_flow_table { 642 unsigned int mask; 643 struct rcu_head rcu; 644 struct rps_dev_flow flows[0]; 645}; 646#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 647 ((_num) * sizeof(struct rps_dev_flow))) 648 649/* 650 * The rps_sock_flow_table contains mappings of flows to the last CPU 651 * on which they were processed by the application (set in recvmsg). 652 * Each entry is a 32bit value. Upper part is the high-order bits 653 * of flow hash, lower part is CPU number. 654 * rps_cpu_mask is used to partition the space, depending on number of 655 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 656 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 657 * meaning we use 32-6=26 bits for the hash. 658 */ 659struct rps_sock_flow_table { 660 u32 mask; 661 662 u32 ents[0] ____cacheline_aligned_in_smp; 663}; 664#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 665 666#define RPS_NO_CPU 0xffff 667 668extern u32 rps_cpu_mask; 669extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 670 671static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 672 u32 hash) 673{ 674 if (table && hash) { 675 unsigned int index = hash & table->mask; 676 u32 val = hash & ~rps_cpu_mask; 677 678 /* We only give a hint, preemption can change CPU under us */ 679 val |= raw_smp_processor_id(); 680 681 if (table->ents[index] != val) 682 table->ents[index] = val; 683 } 684} 685 686#ifdef CONFIG_RFS_ACCEL 687bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 688 u16 filter_id); 689#endif 690#endif /* CONFIG_RPS */ 691 692/* This structure contains an instance of an RX queue. */ 693struct netdev_rx_queue { 694#ifdef CONFIG_RPS 695 struct rps_map __rcu *rps_map; 696 struct rps_dev_flow_table __rcu *rps_flow_table; 697#endif 698 struct kobject kobj; 699 struct net_device *dev; 700 struct xdp_rxq_info xdp_rxq; 701} ____cacheline_aligned_in_smp; 702 703/* 704 * RX queue sysfs structures and functions. 705 */ 706struct rx_queue_attribute { 707 struct attribute attr; 708 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 709 ssize_t (*store)(struct netdev_rx_queue *queue, 710 const char *buf, size_t len); 711}; 712 713#ifdef CONFIG_XPS 714/* 715 * This structure holds an XPS map which can be of variable length. The 716 * map is an array of queues. 717 */ 718struct xps_map { 719 unsigned int len; 720 unsigned int alloc_len; 721 struct rcu_head rcu; 722 u16 queues[0]; 723}; 724#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 725#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 726 - sizeof(struct xps_map)) / sizeof(u16)) 727 728/* 729 * This structure holds all XPS maps for device. Maps are indexed by CPU. 730 */ 731struct xps_dev_maps { 732 struct rcu_head rcu; 733 struct xps_map __rcu *cpu_map[0]; 734}; 735#define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 736 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 737#endif /* CONFIG_XPS */ 738 739#define TC_MAX_QUEUE 16 740#define TC_BITMASK 15 741/* HW offloaded queuing disciplines txq count and offset maps */ 742struct netdev_tc_txq { 743 u16 count; 744 u16 offset; 745}; 746 747#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 748/* 749 * This structure is to hold information about the device 750 * configured to run FCoE protocol stack. 751 */ 752struct netdev_fcoe_hbainfo { 753 char manufacturer[64]; 754 char serial_number[64]; 755 char hardware_version[64]; 756 char driver_version[64]; 757 char optionrom_version[64]; 758 char firmware_version[64]; 759 char model[256]; 760 char model_description[256]; 761}; 762#endif 763 764#define MAX_PHYS_ITEM_ID_LEN 32 765 766/* This structure holds a unique identifier to identify some 767 * physical item (port for example) used by a netdevice. 768 */ 769struct netdev_phys_item_id { 770 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 771 unsigned char id_len; 772}; 773 774static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 775 struct netdev_phys_item_id *b) 776{ 777 return a->id_len == b->id_len && 778 memcmp(a->id, b->id, a->id_len) == 0; 779} 780 781typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 782 struct sk_buff *skb); 783 784enum tc_setup_type { 785 TC_SETUP_QDISC_MQPRIO, 786 TC_SETUP_CLSU32, 787 TC_SETUP_CLSFLOWER, 788 TC_SETUP_CLSMATCHALL, 789 TC_SETUP_CLSBPF, 790 TC_SETUP_BLOCK, 791 TC_SETUP_QDISC_CBS, 792 TC_SETUP_QDISC_RED, 793 TC_SETUP_QDISC_PRIO, 794 TC_SETUP_QDISC_MQ, 795}; 796 797/* These structures hold the attributes of bpf state that are being passed 798 * to the netdevice through the bpf op. 799 */ 800enum bpf_netdev_command { 801 /* Set or clear a bpf program used in the earliest stages of packet 802 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 803 * is responsible for calling bpf_prog_put on any old progs that are 804 * stored. In case of error, the callee need not release the new prog 805 * reference, but on success it takes ownership and must bpf_prog_put 806 * when it is no longer used. 807 */ 808 XDP_SETUP_PROG, 809 XDP_SETUP_PROG_HW, 810 /* Check if a bpf program is set on the device. The callee should 811 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true" 812 * is equivalent to XDP_ATTACHED_DRV. 813 */ 814 XDP_QUERY_PROG, 815 /* BPF program for offload callbacks, invoked at program load time. */ 816 BPF_OFFLOAD_VERIFIER_PREP, 817 BPF_OFFLOAD_TRANSLATE, 818 BPF_OFFLOAD_DESTROY, 819 BPF_OFFLOAD_MAP_ALLOC, 820 BPF_OFFLOAD_MAP_FREE, 821 XDP_QUERY_XSK_UMEM, 822 XDP_SETUP_XSK_UMEM, 823}; 824 825struct bpf_prog_offload_ops; 826struct netlink_ext_ack; 827struct xdp_umem; 828 829struct netdev_bpf { 830 enum bpf_netdev_command command; 831 union { 832 /* XDP_SETUP_PROG */ 833 struct { 834 u32 flags; 835 struct bpf_prog *prog; 836 struct netlink_ext_ack *extack; 837 }; 838 /* XDP_QUERY_PROG */ 839 struct { 840 u8 prog_attached; 841 u32 prog_id; 842 /* flags with which program was installed */ 843 u32 prog_flags; 844 }; 845 /* BPF_OFFLOAD_VERIFIER_PREP */ 846 struct { 847 struct bpf_prog *prog; 848 const struct bpf_prog_offload_ops *ops; /* callee set */ 849 } verifier; 850 /* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */ 851 struct { 852 struct bpf_prog *prog; 853 } offload; 854 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 855 struct { 856 struct bpf_offloaded_map *offmap; 857 }; 858 /* XDP_SETUP_XSK_UMEM */ 859 struct { 860 struct xdp_umem *umem; 861 u16 queue_id; 862 } xsk; 863 }; 864}; 865 866#ifdef CONFIG_XFRM_OFFLOAD 867struct xfrmdev_ops { 868 int (*xdo_dev_state_add) (struct xfrm_state *x); 869 void (*xdo_dev_state_delete) (struct xfrm_state *x); 870 void (*xdo_dev_state_free) (struct xfrm_state *x); 871 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 872 struct xfrm_state *x); 873 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 874}; 875#endif 876 877#if IS_ENABLED(CONFIG_TLS_DEVICE) 878enum tls_offload_ctx_dir { 879 TLS_OFFLOAD_CTX_DIR_RX, 880 TLS_OFFLOAD_CTX_DIR_TX, 881}; 882 883struct tls_crypto_info; 884struct tls_context; 885 886struct tlsdev_ops { 887 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 888 enum tls_offload_ctx_dir direction, 889 struct tls_crypto_info *crypto_info, 890 u32 start_offload_tcp_sn); 891 void (*tls_dev_del)(struct net_device *netdev, 892 struct tls_context *ctx, 893 enum tls_offload_ctx_dir direction); 894}; 895#endif 896 897struct dev_ifalias { 898 struct rcu_head rcuhead; 899 char ifalias[]; 900}; 901 902/* 903 * This structure defines the management hooks for network devices. 904 * The following hooks can be defined; unless noted otherwise, they are 905 * optional and can be filled with a null pointer. 906 * 907 * int (*ndo_init)(struct net_device *dev); 908 * This function is called once when a network device is registered. 909 * The network device can use this for any late stage initialization 910 * or semantic validation. It can fail with an error code which will 911 * be propagated back to register_netdev. 912 * 913 * void (*ndo_uninit)(struct net_device *dev); 914 * This function is called when device is unregistered or when registration 915 * fails. It is not called if init fails. 916 * 917 * int (*ndo_open)(struct net_device *dev); 918 * This function is called when a network device transitions to the up 919 * state. 920 * 921 * int (*ndo_stop)(struct net_device *dev); 922 * This function is called when a network device transitions to the down 923 * state. 924 * 925 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 926 * struct net_device *dev); 927 * Called when a packet needs to be transmitted. 928 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 929 * the queue before that can happen; it's for obsolete devices and weird 930 * corner cases, but the stack really does a non-trivial amount 931 * of useless work if you return NETDEV_TX_BUSY. 932 * Required; cannot be NULL. 933 * 934 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 935 * struct net_device *dev 936 * netdev_features_t features); 937 * Called by core transmit path to determine if device is capable of 938 * performing offload operations on a given packet. This is to give 939 * the device an opportunity to implement any restrictions that cannot 940 * be otherwise expressed by feature flags. The check is called with 941 * the set of features that the stack has calculated and it returns 942 * those the driver believes to be appropriate. 943 * 944 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 945 * void *accel_priv, select_queue_fallback_t fallback); 946 * Called to decide which queue to use when device supports multiple 947 * transmit queues. 948 * 949 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 950 * This function is called to allow device receiver to make 951 * changes to configuration when multicast or promiscuous is enabled. 952 * 953 * void (*ndo_set_rx_mode)(struct net_device *dev); 954 * This function is called device changes address list filtering. 955 * If driver handles unicast address filtering, it should set 956 * IFF_UNICAST_FLT in its priv_flags. 957 * 958 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 959 * This function is called when the Media Access Control address 960 * needs to be changed. If this interface is not defined, the 961 * MAC address can not be changed. 962 * 963 * int (*ndo_validate_addr)(struct net_device *dev); 964 * Test if Media Access Control address is valid for the device. 965 * 966 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 967 * Called when a user requests an ioctl which can't be handled by 968 * the generic interface code. If not defined ioctls return 969 * not supported error code. 970 * 971 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 972 * Used to set network devices bus interface parameters. This interface 973 * is retained for legacy reasons; new devices should use the bus 974 * interface (PCI) for low level management. 975 * 976 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 977 * Called when a user wants to change the Maximum Transfer Unit 978 * of a device. 979 * 980 * void (*ndo_tx_timeout)(struct net_device *dev); 981 * Callback used when the transmitter has not made any progress 982 * for dev->watchdog ticks. 983 * 984 * void (*ndo_get_stats64)(struct net_device *dev, 985 * struct rtnl_link_stats64 *storage); 986 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 987 * Called when a user wants to get the network device usage 988 * statistics. Drivers must do one of the following: 989 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 990 * rtnl_link_stats64 structure passed by the caller. 991 * 2. Define @ndo_get_stats to update a net_device_stats structure 992 * (which should normally be dev->stats) and return a pointer to 993 * it. The structure may be changed asynchronously only if each 994 * field is written atomically. 995 * 3. Update dev->stats asynchronously and atomically, and define 996 * neither operation. 997 * 998 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 999 * Return true if this device supports offload stats of this attr_id. 1000 * 1001 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1002 * void *attr_data) 1003 * Get statistics for offload operations by attr_id. Write it into the 1004 * attr_data pointer. 1005 * 1006 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1007 * If device supports VLAN filtering this function is called when a 1008 * VLAN id is registered. 1009 * 1010 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1011 * If device supports VLAN filtering this function is called when a 1012 * VLAN id is unregistered. 1013 * 1014 * void (*ndo_poll_controller)(struct net_device *dev); 1015 * 1016 * SR-IOV management functions. 1017 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1018 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1019 * u8 qos, __be16 proto); 1020 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1021 * int max_tx_rate); 1022 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1023 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1024 * int (*ndo_get_vf_config)(struct net_device *dev, 1025 * int vf, struct ifla_vf_info *ivf); 1026 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1027 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1028 * struct nlattr *port[]); 1029 * 1030 * Enable or disable the VF ability to query its RSS Redirection Table and 1031 * Hash Key. This is needed since on some devices VF share this information 1032 * with PF and querying it may introduce a theoretical security risk. 1033 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1034 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1035 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1036 * void *type_data); 1037 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1038 * This is always called from the stack with the rtnl lock held and netif 1039 * tx queues stopped. This allows the netdevice to perform queue 1040 * management safely. 1041 * 1042 * Fiber Channel over Ethernet (FCoE) offload functions. 1043 * int (*ndo_fcoe_enable)(struct net_device *dev); 1044 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1045 * so the underlying device can perform whatever needed configuration or 1046 * initialization to support acceleration of FCoE traffic. 1047 * 1048 * int (*ndo_fcoe_disable)(struct net_device *dev); 1049 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1050 * so the underlying device can perform whatever needed clean-ups to 1051 * stop supporting acceleration of FCoE traffic. 1052 * 1053 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1054 * struct scatterlist *sgl, unsigned int sgc); 1055 * Called when the FCoE Initiator wants to initialize an I/O that 1056 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1057 * perform necessary setup and returns 1 to indicate the device is set up 1058 * successfully to perform DDP on this I/O, otherwise this returns 0. 1059 * 1060 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1061 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1062 * indicated by the FC exchange id 'xid', so the underlying device can 1063 * clean up and reuse resources for later DDP requests. 1064 * 1065 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1066 * struct scatterlist *sgl, unsigned int sgc); 1067 * Called when the FCoE Target wants to initialize an I/O that 1068 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1069 * perform necessary setup and returns 1 to indicate the device is set up 1070 * successfully to perform DDP on this I/O, otherwise this returns 0. 1071 * 1072 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1073 * struct netdev_fcoe_hbainfo *hbainfo); 1074 * Called when the FCoE Protocol stack wants information on the underlying 1075 * device. This information is utilized by the FCoE protocol stack to 1076 * register attributes with Fiber Channel management service as per the 1077 * FC-GS Fabric Device Management Information(FDMI) specification. 1078 * 1079 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1080 * Called when the underlying device wants to override default World Wide 1081 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1082 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1083 * protocol stack to use. 1084 * 1085 * RFS acceleration. 1086 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1087 * u16 rxq_index, u32 flow_id); 1088 * Set hardware filter for RFS. rxq_index is the target queue index; 1089 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1090 * Return the filter ID on success, or a negative error code. 1091 * 1092 * Slave management functions (for bridge, bonding, etc). 1093 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1094 * Called to make another netdev an underling. 1095 * 1096 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1097 * Called to release previously enslaved netdev. 1098 * 1099 * Feature/offload setting functions. 1100 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1101 * netdev_features_t features); 1102 * Adjusts the requested feature flags according to device-specific 1103 * constraints, and returns the resulting flags. Must not modify 1104 * the device state. 1105 * 1106 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1107 * Called to update device configuration to new features. Passed 1108 * feature set might be less than what was returned by ndo_fix_features()). 1109 * Must return >0 or -errno if it changed dev->features itself. 1110 * 1111 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1112 * struct net_device *dev, 1113 * const unsigned char *addr, u16 vid, u16 flags) 1114 * Adds an FDB entry to dev for addr. 1115 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1116 * struct net_device *dev, 1117 * const unsigned char *addr, u16 vid) 1118 * Deletes the FDB entry from dev coresponding to addr. 1119 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1120 * struct net_device *dev, struct net_device *filter_dev, 1121 * int *idx) 1122 * Used to add FDB entries to dump requests. Implementers should add 1123 * entries to skb and update idx with the number of entries. 1124 * 1125 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1126 * u16 flags) 1127 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1128 * struct net_device *dev, u32 filter_mask, 1129 * int nlflags) 1130 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1131 * u16 flags); 1132 * 1133 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1134 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1135 * which do not represent real hardware may define this to allow their 1136 * userspace components to manage their virtual carrier state. Devices 1137 * that determine carrier state from physical hardware properties (eg 1138 * network cables) or protocol-dependent mechanisms (eg 1139 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1140 * 1141 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1142 * struct netdev_phys_item_id *ppid); 1143 * Called to get ID of physical port of this device. If driver does 1144 * not implement this, it is assumed that the hw is not able to have 1145 * multiple net devices on single physical port. 1146 * 1147 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1148 * struct udp_tunnel_info *ti); 1149 * Called by UDP tunnel to notify a driver about the UDP port and socket 1150 * address family that a UDP tunnel is listnening to. It is called only 1151 * when a new port starts listening. The operation is protected by the 1152 * RTNL. 1153 * 1154 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1155 * struct udp_tunnel_info *ti); 1156 * Called by UDP tunnel to notify the driver about a UDP port and socket 1157 * address family that the UDP tunnel is not listening to anymore. The 1158 * operation is protected by the RTNL. 1159 * 1160 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1161 * struct net_device *dev) 1162 * Called by upper layer devices to accelerate switching or other 1163 * station functionality into hardware. 'pdev is the lowerdev 1164 * to use for the offload and 'dev' is the net device that will 1165 * back the offload. Returns a pointer to the private structure 1166 * the upper layer will maintain. 1167 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1168 * Called by upper layer device to delete the station created 1169 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1170 * the station and priv is the structure returned by the add 1171 * operation. 1172 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1173 * int queue_index, u32 maxrate); 1174 * Called when a user wants to set a max-rate limitation of specific 1175 * TX queue. 1176 * int (*ndo_get_iflink)(const struct net_device *dev); 1177 * Called to get the iflink value of this device. 1178 * void (*ndo_change_proto_down)(struct net_device *dev, 1179 * bool proto_down); 1180 * This function is used to pass protocol port error state information 1181 * to the switch driver. The switch driver can react to the proto_down 1182 * by doing a phys down on the associated switch port. 1183 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1184 * This function is used to get egress tunnel information for given skb. 1185 * This is useful for retrieving outer tunnel header parameters while 1186 * sampling packet. 1187 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1188 * This function is used to specify the headroom that the skb must 1189 * consider when allocation skb during packet reception. Setting 1190 * appropriate rx headroom value allows avoiding skb head copy on 1191 * forward. Setting a negative value resets the rx headroom to the 1192 * default value. 1193 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1194 * This function is used to set or query state related to XDP on the 1195 * netdevice and manage BPF offload. See definition of 1196 * enum bpf_netdev_command for details. 1197 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1198 * u32 flags); 1199 * This function is used to submit @n XDP packets for transmit on a 1200 * netdevice. Returns number of frames successfully transmitted, frames 1201 * that got dropped are freed/returned via xdp_return_frame(). 1202 * Returns negative number, means general error invoking ndo, meaning 1203 * no frames were xmit'ed and core-caller will free all frames. 1204 */ 1205struct net_device_ops { 1206 int (*ndo_init)(struct net_device *dev); 1207 void (*ndo_uninit)(struct net_device *dev); 1208 int (*ndo_open)(struct net_device *dev); 1209 int (*ndo_stop)(struct net_device *dev); 1210 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1211 struct net_device *dev); 1212 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1213 struct net_device *dev, 1214 netdev_features_t features); 1215 u16 (*ndo_select_queue)(struct net_device *dev, 1216 struct sk_buff *skb, 1217 void *accel_priv, 1218 select_queue_fallback_t fallback); 1219 void (*ndo_change_rx_flags)(struct net_device *dev, 1220 int flags); 1221 void (*ndo_set_rx_mode)(struct net_device *dev); 1222 int (*ndo_set_mac_address)(struct net_device *dev, 1223 void *addr); 1224 int (*ndo_validate_addr)(struct net_device *dev); 1225 int (*ndo_do_ioctl)(struct net_device *dev, 1226 struct ifreq *ifr, int cmd); 1227 int (*ndo_set_config)(struct net_device *dev, 1228 struct ifmap *map); 1229 int (*ndo_change_mtu)(struct net_device *dev, 1230 int new_mtu); 1231 int (*ndo_neigh_setup)(struct net_device *dev, 1232 struct neigh_parms *); 1233 void (*ndo_tx_timeout) (struct net_device *dev); 1234 1235 void (*ndo_get_stats64)(struct net_device *dev, 1236 struct rtnl_link_stats64 *storage); 1237 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1238 int (*ndo_get_offload_stats)(int attr_id, 1239 const struct net_device *dev, 1240 void *attr_data); 1241 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1242 1243 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1244 __be16 proto, u16 vid); 1245 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1246 __be16 proto, u16 vid); 1247#ifdef CONFIG_NET_POLL_CONTROLLER 1248 void (*ndo_poll_controller)(struct net_device *dev); 1249 int (*ndo_netpoll_setup)(struct net_device *dev, 1250 struct netpoll_info *info); 1251 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1252#endif 1253 int (*ndo_set_vf_mac)(struct net_device *dev, 1254 int queue, u8 *mac); 1255 int (*ndo_set_vf_vlan)(struct net_device *dev, 1256 int queue, u16 vlan, 1257 u8 qos, __be16 proto); 1258 int (*ndo_set_vf_rate)(struct net_device *dev, 1259 int vf, int min_tx_rate, 1260 int max_tx_rate); 1261 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1262 int vf, bool setting); 1263 int (*ndo_set_vf_trust)(struct net_device *dev, 1264 int vf, bool setting); 1265 int (*ndo_get_vf_config)(struct net_device *dev, 1266 int vf, 1267 struct ifla_vf_info *ivf); 1268 int (*ndo_set_vf_link_state)(struct net_device *dev, 1269 int vf, int link_state); 1270 int (*ndo_get_vf_stats)(struct net_device *dev, 1271 int vf, 1272 struct ifla_vf_stats 1273 *vf_stats); 1274 int (*ndo_set_vf_port)(struct net_device *dev, 1275 int vf, 1276 struct nlattr *port[]); 1277 int (*ndo_get_vf_port)(struct net_device *dev, 1278 int vf, struct sk_buff *skb); 1279 int (*ndo_set_vf_guid)(struct net_device *dev, 1280 int vf, u64 guid, 1281 int guid_type); 1282 int (*ndo_set_vf_rss_query_en)( 1283 struct net_device *dev, 1284 int vf, bool setting); 1285 int (*ndo_setup_tc)(struct net_device *dev, 1286 enum tc_setup_type type, 1287 void *type_data); 1288#if IS_ENABLED(CONFIG_FCOE) 1289 int (*ndo_fcoe_enable)(struct net_device *dev); 1290 int (*ndo_fcoe_disable)(struct net_device *dev); 1291 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1292 u16 xid, 1293 struct scatterlist *sgl, 1294 unsigned int sgc); 1295 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1296 u16 xid); 1297 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1298 u16 xid, 1299 struct scatterlist *sgl, 1300 unsigned int sgc); 1301 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1302 struct netdev_fcoe_hbainfo *hbainfo); 1303#endif 1304 1305#if IS_ENABLED(CONFIG_LIBFCOE) 1306#define NETDEV_FCOE_WWNN 0 1307#define NETDEV_FCOE_WWPN 1 1308 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1309 u64 *wwn, int type); 1310#endif 1311 1312#ifdef CONFIG_RFS_ACCEL 1313 int (*ndo_rx_flow_steer)(struct net_device *dev, 1314 const struct sk_buff *skb, 1315 u16 rxq_index, 1316 u32 flow_id); 1317#endif 1318 int (*ndo_add_slave)(struct net_device *dev, 1319 struct net_device *slave_dev, 1320 struct netlink_ext_ack *extack); 1321 int (*ndo_del_slave)(struct net_device *dev, 1322 struct net_device *slave_dev); 1323 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1324 netdev_features_t features); 1325 int (*ndo_set_features)(struct net_device *dev, 1326 netdev_features_t features); 1327 int (*ndo_neigh_construct)(struct net_device *dev, 1328 struct neighbour *n); 1329 void (*ndo_neigh_destroy)(struct net_device *dev, 1330 struct neighbour *n); 1331 1332 int (*ndo_fdb_add)(struct ndmsg *ndm, 1333 struct nlattr *tb[], 1334 struct net_device *dev, 1335 const unsigned char *addr, 1336 u16 vid, 1337 u16 flags); 1338 int (*ndo_fdb_del)(struct ndmsg *ndm, 1339 struct nlattr *tb[], 1340 struct net_device *dev, 1341 const unsigned char *addr, 1342 u16 vid); 1343 int (*ndo_fdb_dump)(struct sk_buff *skb, 1344 struct netlink_callback *cb, 1345 struct net_device *dev, 1346 struct net_device *filter_dev, 1347 int *idx); 1348 1349 int (*ndo_bridge_setlink)(struct net_device *dev, 1350 struct nlmsghdr *nlh, 1351 u16 flags); 1352 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1353 u32 pid, u32 seq, 1354 struct net_device *dev, 1355 u32 filter_mask, 1356 int nlflags); 1357 int (*ndo_bridge_dellink)(struct net_device *dev, 1358 struct nlmsghdr *nlh, 1359 u16 flags); 1360 int (*ndo_change_carrier)(struct net_device *dev, 1361 bool new_carrier); 1362 int (*ndo_get_phys_port_id)(struct net_device *dev, 1363 struct netdev_phys_item_id *ppid); 1364 int (*ndo_get_phys_port_name)(struct net_device *dev, 1365 char *name, size_t len); 1366 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1367 struct udp_tunnel_info *ti); 1368 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1369 struct udp_tunnel_info *ti); 1370 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1371 struct net_device *dev); 1372 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1373 void *priv); 1374 1375 int (*ndo_get_lock_subclass)(struct net_device *dev); 1376 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1377 int queue_index, 1378 u32 maxrate); 1379 int (*ndo_get_iflink)(const struct net_device *dev); 1380 int (*ndo_change_proto_down)(struct net_device *dev, 1381 bool proto_down); 1382 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1383 struct sk_buff *skb); 1384 void (*ndo_set_rx_headroom)(struct net_device *dev, 1385 int needed_headroom); 1386 int (*ndo_bpf)(struct net_device *dev, 1387 struct netdev_bpf *bpf); 1388 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1389 struct xdp_frame **xdp, 1390 u32 flags); 1391 int (*ndo_xsk_async_xmit)(struct net_device *dev, 1392 u32 queue_id); 1393}; 1394 1395/** 1396 * enum net_device_priv_flags - &struct net_device priv_flags 1397 * 1398 * These are the &struct net_device, they are only set internally 1399 * by drivers and used in the kernel. These flags are invisible to 1400 * userspace; this means that the order of these flags can change 1401 * during any kernel release. 1402 * 1403 * You should have a pretty good reason to be extending these flags. 1404 * 1405 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1406 * @IFF_EBRIDGE: Ethernet bridging device 1407 * @IFF_BONDING: bonding master or slave 1408 * @IFF_ISATAP: ISATAP interface (RFC4214) 1409 * @IFF_WAN_HDLC: WAN HDLC device 1410 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1411 * release skb->dst 1412 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1413 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1414 * @IFF_MACVLAN_PORT: device used as macvlan port 1415 * @IFF_BRIDGE_PORT: device used as bridge port 1416 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1417 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1418 * @IFF_UNICAST_FLT: Supports unicast filtering 1419 * @IFF_TEAM_PORT: device used as team port 1420 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1421 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1422 * change when it's running 1423 * @IFF_MACVLAN: Macvlan device 1424 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1425 * underlying stacked devices 1426 * @IFF_L3MDEV_MASTER: device is an L3 master device 1427 * @IFF_NO_QUEUE: device can run without qdisc attached 1428 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1429 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1430 * @IFF_TEAM: device is a team device 1431 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1432 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1433 * entity (i.e. the master device for bridged veth) 1434 * @IFF_MACSEC: device is a MACsec device 1435 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1436 * @IFF_FAILOVER: device is a failover master device 1437 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1438 */ 1439enum netdev_priv_flags { 1440 IFF_802_1Q_VLAN = 1<<0, 1441 IFF_EBRIDGE = 1<<1, 1442 IFF_BONDING = 1<<2, 1443 IFF_ISATAP = 1<<3, 1444 IFF_WAN_HDLC = 1<<4, 1445 IFF_XMIT_DST_RELEASE = 1<<5, 1446 IFF_DONT_BRIDGE = 1<<6, 1447 IFF_DISABLE_NETPOLL = 1<<7, 1448 IFF_MACVLAN_PORT = 1<<8, 1449 IFF_BRIDGE_PORT = 1<<9, 1450 IFF_OVS_DATAPATH = 1<<10, 1451 IFF_TX_SKB_SHARING = 1<<11, 1452 IFF_UNICAST_FLT = 1<<12, 1453 IFF_TEAM_PORT = 1<<13, 1454 IFF_SUPP_NOFCS = 1<<14, 1455 IFF_LIVE_ADDR_CHANGE = 1<<15, 1456 IFF_MACVLAN = 1<<16, 1457 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1458 IFF_L3MDEV_MASTER = 1<<18, 1459 IFF_NO_QUEUE = 1<<19, 1460 IFF_OPENVSWITCH = 1<<20, 1461 IFF_L3MDEV_SLAVE = 1<<21, 1462 IFF_TEAM = 1<<22, 1463 IFF_RXFH_CONFIGURED = 1<<23, 1464 IFF_PHONY_HEADROOM = 1<<24, 1465 IFF_MACSEC = 1<<25, 1466 IFF_NO_RX_HANDLER = 1<<26, 1467 IFF_FAILOVER = 1<<27, 1468 IFF_FAILOVER_SLAVE = 1<<28, 1469}; 1470 1471#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1472#define IFF_EBRIDGE IFF_EBRIDGE 1473#define IFF_BONDING IFF_BONDING 1474#define IFF_ISATAP IFF_ISATAP 1475#define IFF_WAN_HDLC IFF_WAN_HDLC 1476#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1477#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1478#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1479#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1480#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1481#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1482#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1483#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1484#define IFF_TEAM_PORT IFF_TEAM_PORT 1485#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1486#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1487#define IFF_MACVLAN IFF_MACVLAN 1488#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1489#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1490#define IFF_NO_QUEUE IFF_NO_QUEUE 1491#define IFF_OPENVSWITCH IFF_OPENVSWITCH 1492#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1493#define IFF_TEAM IFF_TEAM 1494#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1495#define IFF_MACSEC IFF_MACSEC 1496#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1497#define IFF_FAILOVER IFF_FAILOVER 1498#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1499 1500/** 1501 * struct net_device - The DEVICE structure. 1502 * 1503 * Actually, this whole structure is a big mistake. It mixes I/O 1504 * data with strictly "high-level" data, and it has to know about 1505 * almost every data structure used in the INET module. 1506 * 1507 * @name: This is the first field of the "visible" part of this structure 1508 * (i.e. as seen by users in the "Space.c" file). It is the name 1509 * of the interface. 1510 * 1511 * @name_hlist: Device name hash chain, please keep it close to name[] 1512 * @ifalias: SNMP alias 1513 * @mem_end: Shared memory end 1514 * @mem_start: Shared memory start 1515 * @base_addr: Device I/O address 1516 * @irq: Device IRQ number 1517 * 1518 * @state: Generic network queuing layer state, see netdev_state_t 1519 * @dev_list: The global list of network devices 1520 * @napi_list: List entry used for polling NAPI devices 1521 * @unreg_list: List entry when we are unregistering the 1522 * device; see the function unregister_netdev 1523 * @close_list: List entry used when we are closing the device 1524 * @ptype_all: Device-specific packet handlers for all protocols 1525 * @ptype_specific: Device-specific, protocol-specific packet handlers 1526 * 1527 * @adj_list: Directly linked devices, like slaves for bonding 1528 * @features: Currently active device features 1529 * @hw_features: User-changeable features 1530 * 1531 * @wanted_features: User-requested features 1532 * @vlan_features: Mask of features inheritable by VLAN devices 1533 * 1534 * @hw_enc_features: Mask of features inherited by encapsulating devices 1535 * This field indicates what encapsulation 1536 * offloads the hardware is capable of doing, 1537 * and drivers will need to set them appropriately. 1538 * 1539 * @mpls_features: Mask of features inheritable by MPLS 1540 * 1541 * @ifindex: interface index 1542 * @group: The group the device belongs to 1543 * 1544 * @stats: Statistics struct, which was left as a legacy, use 1545 * rtnl_link_stats64 instead 1546 * 1547 * @rx_dropped: Dropped packets by core network, 1548 * do not use this in drivers 1549 * @tx_dropped: Dropped packets by core network, 1550 * do not use this in drivers 1551 * @rx_nohandler: nohandler dropped packets by core network on 1552 * inactive devices, do not use this in drivers 1553 * @carrier_up_count: Number of times the carrier has been up 1554 * @carrier_down_count: Number of times the carrier has been down 1555 * 1556 * @wireless_handlers: List of functions to handle Wireless Extensions, 1557 * instead of ioctl, 1558 * see <net/iw_handler.h> for details. 1559 * @wireless_data: Instance data managed by the core of wireless extensions 1560 * 1561 * @netdev_ops: Includes several pointers to callbacks, 1562 * if one wants to override the ndo_*() functions 1563 * @ethtool_ops: Management operations 1564 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1565 * discovery handling. Necessary for e.g. 6LoWPAN. 1566 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1567 * of Layer 2 headers. 1568 * 1569 * @flags: Interface flags (a la BSD) 1570 * @priv_flags: Like 'flags' but invisible to userspace, 1571 * see if.h for the definitions 1572 * @gflags: Global flags ( kept as legacy ) 1573 * @padded: How much padding added by alloc_netdev() 1574 * @operstate: RFC2863 operstate 1575 * @link_mode: Mapping policy to operstate 1576 * @if_port: Selectable AUI, TP, ... 1577 * @dma: DMA channel 1578 * @mtu: Interface MTU value 1579 * @min_mtu: Interface Minimum MTU value 1580 * @max_mtu: Interface Maximum MTU value 1581 * @type: Interface hardware type 1582 * @hard_header_len: Maximum hardware header length. 1583 * @min_header_len: Minimum hardware header length 1584 * 1585 * @needed_headroom: Extra headroom the hardware may need, but not in all 1586 * cases can this be guaranteed 1587 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1588 * cases can this be guaranteed. Some cases also use 1589 * LL_MAX_HEADER instead to allocate the skb 1590 * 1591 * interface address info: 1592 * 1593 * @perm_addr: Permanent hw address 1594 * @addr_assign_type: Hw address assignment type 1595 * @addr_len: Hardware address length 1596 * @neigh_priv_len: Used in neigh_alloc() 1597 * @dev_id: Used to differentiate devices that share 1598 * the same link layer address 1599 * @dev_port: Used to differentiate devices that share 1600 * the same function 1601 * @addr_list_lock: XXX: need comments on this one 1602 * @uc_promisc: Counter that indicates promiscuous mode 1603 * has been enabled due to the need to listen to 1604 * additional unicast addresses in a device that 1605 * does not implement ndo_set_rx_mode() 1606 * @uc: unicast mac addresses 1607 * @mc: multicast mac addresses 1608 * @dev_addrs: list of device hw addresses 1609 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1610 * @promiscuity: Number of times the NIC is told to work in 1611 * promiscuous mode; if it becomes 0 the NIC will 1612 * exit promiscuous mode 1613 * @allmulti: Counter, enables or disables allmulticast mode 1614 * 1615 * @vlan_info: VLAN info 1616 * @dsa_ptr: dsa specific data 1617 * @tipc_ptr: TIPC specific data 1618 * @atalk_ptr: AppleTalk link 1619 * @ip_ptr: IPv4 specific data 1620 * @dn_ptr: DECnet specific data 1621 * @ip6_ptr: IPv6 specific data 1622 * @ax25_ptr: AX.25 specific data 1623 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1624 * 1625 * @dev_addr: Hw address (before bcast, 1626 * because most packets are unicast) 1627 * 1628 * @_rx: Array of RX queues 1629 * @num_rx_queues: Number of RX queues 1630 * allocated at register_netdev() time 1631 * @real_num_rx_queues: Number of RX queues currently active in device 1632 * 1633 * @rx_handler: handler for received packets 1634 * @rx_handler_data: XXX: need comments on this one 1635 * @miniq_ingress: ingress/clsact qdisc specific data for 1636 * ingress processing 1637 * @ingress_queue: XXX: need comments on this one 1638 * @broadcast: hw bcast address 1639 * 1640 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1641 * indexed by RX queue number. Assigned by driver. 1642 * This must only be set if the ndo_rx_flow_steer 1643 * operation is defined 1644 * @index_hlist: Device index hash chain 1645 * 1646 * @_tx: Array of TX queues 1647 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1648 * @real_num_tx_queues: Number of TX queues currently active in device 1649 * @qdisc: Root qdisc from userspace point of view 1650 * @tx_queue_len: Max frames per queue allowed 1651 * @tx_global_lock: XXX: need comments on this one 1652 * 1653 * @xps_maps: XXX: need comments on this one 1654 * @miniq_egress: clsact qdisc specific data for 1655 * egress processing 1656 * @watchdog_timeo: Represents the timeout that is used by 1657 * the watchdog (see dev_watchdog()) 1658 * @watchdog_timer: List of timers 1659 * 1660 * @pcpu_refcnt: Number of references to this device 1661 * @todo_list: Delayed register/unregister 1662 * @link_watch_list: XXX: need comments on this one 1663 * 1664 * @reg_state: Register/unregister state machine 1665 * @dismantle: Device is going to be freed 1666 * @rtnl_link_state: This enum represents the phases of creating 1667 * a new link 1668 * 1669 * @needs_free_netdev: Should unregister perform free_netdev? 1670 * @priv_destructor: Called from unregister 1671 * @npinfo: XXX: need comments on this one 1672 * @nd_net: Network namespace this network device is inside 1673 * 1674 * @ml_priv: Mid-layer private 1675 * @lstats: Loopback statistics 1676 * @tstats: Tunnel statistics 1677 * @dstats: Dummy statistics 1678 * @vstats: Virtual ethernet statistics 1679 * 1680 * @garp_port: GARP 1681 * @mrp_port: MRP 1682 * 1683 * @dev: Class/net/name entry 1684 * @sysfs_groups: Space for optional device, statistics and wireless 1685 * sysfs groups 1686 * 1687 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1688 * @rtnl_link_ops: Rtnl_link_ops 1689 * 1690 * @gso_max_size: Maximum size of generic segmentation offload 1691 * @gso_max_segs: Maximum number of segments that can be passed to the 1692 * NIC for GSO 1693 * 1694 * @dcbnl_ops: Data Center Bridging netlink ops 1695 * @num_tc: Number of traffic classes in the net device 1696 * @tc_to_txq: XXX: need comments on this one 1697 * @prio_tc_map: XXX: need comments on this one 1698 * 1699 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1700 * 1701 * @priomap: XXX: need comments on this one 1702 * @phydev: Physical device may attach itself 1703 * for hardware timestamping 1704 * @sfp_bus: attached &struct sfp_bus structure. 1705 * 1706 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1707 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1708 * 1709 * @proto_down: protocol port state information can be sent to the 1710 * switch driver and used to set the phys state of the 1711 * switch port. 1712 * 1713 * FIXME: cleanup struct net_device such that network protocol info 1714 * moves out. 1715 */ 1716 1717struct net_device { 1718 char name[IFNAMSIZ]; 1719 struct hlist_node name_hlist; 1720 struct dev_ifalias __rcu *ifalias; 1721 /* 1722 * I/O specific fields 1723 * FIXME: Merge these and struct ifmap into one 1724 */ 1725 unsigned long mem_end; 1726 unsigned long mem_start; 1727 unsigned long base_addr; 1728 int irq; 1729 1730 /* 1731 * Some hardware also needs these fields (state,dev_list, 1732 * napi_list,unreg_list,close_list) but they are not 1733 * part of the usual set specified in Space.c. 1734 */ 1735 1736 unsigned long state; 1737 1738 struct list_head dev_list; 1739 struct list_head napi_list; 1740 struct list_head unreg_list; 1741 struct list_head close_list; 1742 struct list_head ptype_all; 1743 struct list_head ptype_specific; 1744 1745 struct { 1746 struct list_head upper; 1747 struct list_head lower; 1748 } adj_list; 1749 1750 netdev_features_t features; 1751 netdev_features_t hw_features; 1752 netdev_features_t wanted_features; 1753 netdev_features_t vlan_features; 1754 netdev_features_t hw_enc_features; 1755 netdev_features_t mpls_features; 1756 netdev_features_t gso_partial_features; 1757 1758 int ifindex; 1759 int group; 1760 1761 struct net_device_stats stats; 1762 1763 atomic_long_t rx_dropped; 1764 atomic_long_t tx_dropped; 1765 atomic_long_t rx_nohandler; 1766 1767 /* Stats to monitor link on/off, flapping */ 1768 atomic_t carrier_up_count; 1769 atomic_t carrier_down_count; 1770 1771#ifdef CONFIG_WIRELESS_EXT 1772 const struct iw_handler_def *wireless_handlers; 1773 struct iw_public_data *wireless_data; 1774#endif 1775 const struct net_device_ops *netdev_ops; 1776 const struct ethtool_ops *ethtool_ops; 1777#ifdef CONFIG_NET_SWITCHDEV 1778 const struct switchdev_ops *switchdev_ops; 1779#endif 1780#ifdef CONFIG_NET_L3_MASTER_DEV 1781 const struct l3mdev_ops *l3mdev_ops; 1782#endif 1783#if IS_ENABLED(CONFIG_IPV6) 1784 const struct ndisc_ops *ndisc_ops; 1785#endif 1786 1787#ifdef CONFIG_XFRM_OFFLOAD 1788 const struct xfrmdev_ops *xfrmdev_ops; 1789#endif 1790 1791#if IS_ENABLED(CONFIG_TLS_DEVICE) 1792 const struct tlsdev_ops *tlsdev_ops; 1793#endif 1794 1795 const struct header_ops *header_ops; 1796 1797 unsigned int flags; 1798 unsigned int priv_flags; 1799 1800 unsigned short gflags; 1801 unsigned short padded; 1802 1803 unsigned char operstate; 1804 unsigned char link_mode; 1805 1806 unsigned char if_port; 1807 unsigned char dma; 1808 1809 unsigned int mtu; 1810 unsigned int min_mtu; 1811 unsigned int max_mtu; 1812 unsigned short type; 1813 unsigned short hard_header_len; 1814 unsigned char min_header_len; 1815 1816 unsigned short needed_headroom; 1817 unsigned short needed_tailroom; 1818 1819 /* Interface address info. */ 1820 unsigned char perm_addr[MAX_ADDR_LEN]; 1821 unsigned char addr_assign_type; 1822 unsigned char addr_len; 1823 unsigned short neigh_priv_len; 1824 unsigned short dev_id; 1825 unsigned short dev_port; 1826 spinlock_t addr_list_lock; 1827 unsigned char name_assign_type; 1828 bool uc_promisc; 1829 struct netdev_hw_addr_list uc; 1830 struct netdev_hw_addr_list mc; 1831 struct netdev_hw_addr_list dev_addrs; 1832 1833#ifdef CONFIG_SYSFS 1834 struct kset *queues_kset; 1835#endif 1836 unsigned int promiscuity; 1837 unsigned int allmulti; 1838 1839 1840 /* Protocol-specific pointers */ 1841 1842#if IS_ENABLED(CONFIG_VLAN_8021Q) 1843 struct vlan_info __rcu *vlan_info; 1844#endif 1845#if IS_ENABLED(CONFIG_NET_DSA) 1846 struct dsa_port *dsa_ptr; 1847#endif 1848#if IS_ENABLED(CONFIG_TIPC) 1849 struct tipc_bearer __rcu *tipc_ptr; 1850#endif 1851#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1852 void *atalk_ptr; 1853#endif 1854 struct in_device __rcu *ip_ptr; 1855#if IS_ENABLED(CONFIG_DECNET) 1856 struct dn_dev __rcu *dn_ptr; 1857#endif 1858 struct inet6_dev __rcu *ip6_ptr; 1859#if IS_ENABLED(CONFIG_AX25) 1860 void *ax25_ptr; 1861#endif 1862 struct wireless_dev *ieee80211_ptr; 1863 struct wpan_dev *ieee802154_ptr; 1864#if IS_ENABLED(CONFIG_MPLS_ROUTING) 1865 struct mpls_dev __rcu *mpls_ptr; 1866#endif 1867 1868/* 1869 * Cache lines mostly used on receive path (including eth_type_trans()) 1870 */ 1871 /* Interface address info used in eth_type_trans() */ 1872 unsigned char *dev_addr; 1873 1874 struct netdev_rx_queue *_rx; 1875 unsigned int num_rx_queues; 1876 unsigned int real_num_rx_queues; 1877 1878 struct bpf_prog __rcu *xdp_prog; 1879 unsigned long gro_flush_timeout; 1880 rx_handler_func_t __rcu *rx_handler; 1881 void __rcu *rx_handler_data; 1882 1883#ifdef CONFIG_NET_CLS_ACT 1884 struct mini_Qdisc __rcu *miniq_ingress; 1885#endif 1886 struct netdev_queue __rcu *ingress_queue; 1887#ifdef CONFIG_NETFILTER_INGRESS 1888 struct nf_hook_entries __rcu *nf_hooks_ingress; 1889#endif 1890 1891 unsigned char broadcast[MAX_ADDR_LEN]; 1892#ifdef CONFIG_RFS_ACCEL 1893 struct cpu_rmap *rx_cpu_rmap; 1894#endif 1895 struct hlist_node index_hlist; 1896 1897/* 1898 * Cache lines mostly used on transmit path 1899 */ 1900 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1901 unsigned int num_tx_queues; 1902 unsigned int real_num_tx_queues; 1903 struct Qdisc *qdisc; 1904#ifdef CONFIG_NET_SCHED 1905 DECLARE_HASHTABLE (qdisc_hash, 4); 1906#endif 1907 unsigned int tx_queue_len; 1908 spinlock_t tx_global_lock; 1909 int watchdog_timeo; 1910 1911#ifdef CONFIG_XPS 1912 struct xps_dev_maps __rcu *xps_maps; 1913#endif 1914#ifdef CONFIG_NET_CLS_ACT 1915 struct mini_Qdisc __rcu *miniq_egress; 1916#endif 1917 1918 /* These may be needed for future network-power-down code. */ 1919 struct timer_list watchdog_timer; 1920 1921 int __percpu *pcpu_refcnt; 1922 struct list_head todo_list; 1923 1924 struct list_head link_watch_list; 1925 1926 enum { NETREG_UNINITIALIZED=0, 1927 NETREG_REGISTERED, /* completed register_netdevice */ 1928 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1929 NETREG_UNREGISTERED, /* completed unregister todo */ 1930 NETREG_RELEASED, /* called free_netdev */ 1931 NETREG_DUMMY, /* dummy device for NAPI poll */ 1932 } reg_state:8; 1933 1934 bool dismantle; 1935 1936 enum { 1937 RTNL_LINK_INITIALIZED, 1938 RTNL_LINK_INITIALIZING, 1939 } rtnl_link_state:16; 1940 1941 bool needs_free_netdev; 1942 void (*priv_destructor)(struct net_device *dev); 1943 1944#ifdef CONFIG_NETPOLL 1945 struct netpoll_info __rcu *npinfo; 1946#endif 1947 1948 possible_net_t nd_net; 1949 1950 /* mid-layer private */ 1951 union { 1952 void *ml_priv; 1953 struct pcpu_lstats __percpu *lstats; 1954 struct pcpu_sw_netstats __percpu *tstats; 1955 struct pcpu_dstats __percpu *dstats; 1956 struct pcpu_vstats __percpu *vstats; 1957 }; 1958 1959#if IS_ENABLED(CONFIG_GARP) 1960 struct garp_port __rcu *garp_port; 1961#endif 1962#if IS_ENABLED(CONFIG_MRP) 1963 struct mrp_port __rcu *mrp_port; 1964#endif 1965 1966 struct device dev; 1967 const struct attribute_group *sysfs_groups[4]; 1968 const struct attribute_group *sysfs_rx_queue_group; 1969 1970 const struct rtnl_link_ops *rtnl_link_ops; 1971 1972 /* for setting kernel sock attribute on TCP connection setup */ 1973#define GSO_MAX_SIZE 65536 1974 unsigned int gso_max_size; 1975#define GSO_MAX_SEGS 65535 1976 u16 gso_max_segs; 1977 1978#ifdef CONFIG_DCB 1979 const struct dcbnl_rtnl_ops *dcbnl_ops; 1980#endif 1981 u8 num_tc; 1982 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1983 u8 prio_tc_map[TC_BITMASK + 1]; 1984 1985#if IS_ENABLED(CONFIG_FCOE) 1986 unsigned int fcoe_ddp_xid; 1987#endif 1988#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1989 struct netprio_map __rcu *priomap; 1990#endif 1991 struct phy_device *phydev; 1992 struct sfp_bus *sfp_bus; 1993 struct lock_class_key *qdisc_tx_busylock; 1994 struct lock_class_key *qdisc_running_key; 1995 bool proto_down; 1996}; 1997#define to_net_dev(d) container_of(d, struct net_device, dev) 1998 1999static inline bool netif_elide_gro(const struct net_device *dev) 2000{ 2001 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2002 return true; 2003 return false; 2004} 2005 2006#define NETDEV_ALIGN 32 2007 2008static inline 2009int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2010{ 2011 return dev->prio_tc_map[prio & TC_BITMASK]; 2012} 2013 2014static inline 2015int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2016{ 2017 if (tc >= dev->num_tc) 2018 return -EINVAL; 2019 2020 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2021 return 0; 2022} 2023 2024int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2025void netdev_reset_tc(struct net_device *dev); 2026int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2027int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2028 2029static inline 2030int netdev_get_num_tc(struct net_device *dev) 2031{ 2032 return dev->num_tc; 2033} 2034 2035static inline 2036struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2037 unsigned int index) 2038{ 2039 return &dev->_tx[index]; 2040} 2041 2042static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2043 const struct sk_buff *skb) 2044{ 2045 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2046} 2047 2048static inline void netdev_for_each_tx_queue(struct net_device *dev, 2049 void (*f)(struct net_device *, 2050 struct netdev_queue *, 2051 void *), 2052 void *arg) 2053{ 2054 unsigned int i; 2055 2056 for (i = 0; i < dev->num_tx_queues; i++) 2057 f(dev, &dev->_tx[i], arg); 2058} 2059 2060#define netdev_lockdep_set_classes(dev) \ 2061{ \ 2062 static struct lock_class_key qdisc_tx_busylock_key; \ 2063 static struct lock_class_key qdisc_running_key; \ 2064 static struct lock_class_key qdisc_xmit_lock_key; \ 2065 static struct lock_class_key dev_addr_list_lock_key; \ 2066 unsigned int i; \ 2067 \ 2068 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2069 (dev)->qdisc_running_key = &qdisc_running_key; \ 2070 lockdep_set_class(&(dev)->addr_list_lock, \ 2071 &dev_addr_list_lock_key); \ 2072 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2073 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2074 &qdisc_xmit_lock_key); \ 2075} 2076 2077struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2078 struct sk_buff *skb, 2079 void *accel_priv); 2080 2081/* returns the headroom that the master device needs to take in account 2082 * when forwarding to this dev 2083 */ 2084static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2085{ 2086 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2087} 2088 2089static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2090{ 2091 if (dev->netdev_ops->ndo_set_rx_headroom) 2092 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2093} 2094 2095/* set the device rx headroom to the dev's default */ 2096static inline void netdev_reset_rx_headroom(struct net_device *dev) 2097{ 2098 netdev_set_rx_headroom(dev, -1); 2099} 2100 2101/* 2102 * Net namespace inlines 2103 */ 2104static inline 2105struct net *dev_net(const struct net_device *dev) 2106{ 2107 return read_pnet(&dev->nd_net); 2108} 2109 2110static inline 2111void dev_net_set(struct net_device *dev, struct net *net) 2112{ 2113 write_pnet(&dev->nd_net, net); 2114} 2115 2116/** 2117 * netdev_priv - access network device private data 2118 * @dev: network device 2119 * 2120 * Get network device private data 2121 */ 2122static inline void *netdev_priv(const struct net_device *dev) 2123{ 2124 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2125} 2126 2127/* Set the sysfs physical device reference for the network logical device 2128 * if set prior to registration will cause a symlink during initialization. 2129 */ 2130#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2131 2132/* Set the sysfs device type for the network logical device to allow 2133 * fine-grained identification of different network device types. For 2134 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2135 */ 2136#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2137 2138/* Default NAPI poll() weight 2139 * Device drivers are strongly advised to not use bigger value 2140 */ 2141#define NAPI_POLL_WEIGHT 64 2142 2143/** 2144 * netif_napi_add - initialize a NAPI context 2145 * @dev: network device 2146 * @napi: NAPI context 2147 * @poll: polling function 2148 * @weight: default weight 2149 * 2150 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2151 * *any* of the other NAPI-related functions. 2152 */ 2153void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2154 int (*poll)(struct napi_struct *, int), int weight); 2155 2156/** 2157 * netif_tx_napi_add - initialize a NAPI context 2158 * @dev: network device 2159 * @napi: NAPI context 2160 * @poll: polling function 2161 * @weight: default weight 2162 * 2163 * This variant of netif_napi_add() should be used from drivers using NAPI 2164 * to exclusively poll a TX queue. 2165 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2166 */ 2167static inline void netif_tx_napi_add(struct net_device *dev, 2168 struct napi_struct *napi, 2169 int (*poll)(struct napi_struct *, int), 2170 int weight) 2171{ 2172 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2173 netif_napi_add(dev, napi, poll, weight); 2174} 2175 2176/** 2177 * netif_napi_del - remove a NAPI context 2178 * @napi: NAPI context 2179 * 2180 * netif_napi_del() removes a NAPI context from the network device NAPI list 2181 */ 2182void netif_napi_del(struct napi_struct *napi); 2183 2184struct napi_gro_cb { 2185 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2186 void *frag0; 2187 2188 /* Length of frag0. */ 2189 unsigned int frag0_len; 2190 2191 /* This indicates where we are processing relative to skb->data. */ 2192 int data_offset; 2193 2194 /* This is non-zero if the packet cannot be merged with the new skb. */ 2195 u16 flush; 2196 2197 /* Save the IP ID here and check when we get to the transport layer */ 2198 u16 flush_id; 2199 2200 /* Number of segments aggregated. */ 2201 u16 count; 2202 2203 /* Start offset for remote checksum offload */ 2204 u16 gro_remcsum_start; 2205 2206 /* jiffies when first packet was created/queued */ 2207 unsigned long age; 2208 2209 /* Used in ipv6_gro_receive() and foo-over-udp */ 2210 u16 proto; 2211 2212 /* This is non-zero if the packet may be of the same flow. */ 2213 u8 same_flow:1; 2214 2215 /* Used in tunnel GRO receive */ 2216 u8 encap_mark:1; 2217 2218 /* GRO checksum is valid */ 2219 u8 csum_valid:1; 2220 2221 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2222 u8 csum_cnt:3; 2223 2224 /* Free the skb? */ 2225 u8 free:2; 2226#define NAPI_GRO_FREE 1 2227#define NAPI_GRO_FREE_STOLEN_HEAD 2 2228 2229 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2230 u8 is_ipv6:1; 2231 2232 /* Used in GRE, set in fou/gue_gro_receive */ 2233 u8 is_fou:1; 2234 2235 /* Used to determine if flush_id can be ignored */ 2236 u8 is_atomic:1; 2237 2238 /* Number of gro_receive callbacks this packet already went through */ 2239 u8 recursion_counter:4; 2240 2241 /* 1 bit hole */ 2242 2243 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2244 __wsum csum; 2245 2246 /* used in skb_gro_receive() slow path */ 2247 struct sk_buff *last; 2248}; 2249 2250#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2251 2252#define GRO_RECURSION_LIMIT 15 2253static inline int gro_recursion_inc_test(struct sk_buff *skb) 2254{ 2255 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2256} 2257 2258typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2259static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2260 struct sk_buff **head, 2261 struct sk_buff *skb) 2262{ 2263 if (unlikely(gro_recursion_inc_test(skb))) { 2264 NAPI_GRO_CB(skb)->flush |= 1; 2265 return NULL; 2266 } 2267 2268 return cb(head, skb); 2269} 2270 2271typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2272 struct sk_buff *); 2273static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2274 struct sock *sk, 2275 struct sk_buff **head, 2276 struct sk_buff *skb) 2277{ 2278 if (unlikely(gro_recursion_inc_test(skb))) { 2279 NAPI_GRO_CB(skb)->flush |= 1; 2280 return NULL; 2281 } 2282 2283 return cb(sk, head, skb); 2284} 2285 2286struct packet_type { 2287 __be16 type; /* This is really htons(ether_type). */ 2288 struct net_device *dev; /* NULL is wildcarded here */ 2289 int (*func) (struct sk_buff *, 2290 struct net_device *, 2291 struct packet_type *, 2292 struct net_device *); 2293 bool (*id_match)(struct packet_type *ptype, 2294 struct sock *sk); 2295 void *af_packet_priv; 2296 struct list_head list; 2297}; 2298 2299struct offload_callbacks { 2300 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2301 netdev_features_t features); 2302 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2303 struct sk_buff *skb); 2304 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2305}; 2306 2307struct packet_offload { 2308 __be16 type; /* This is really htons(ether_type). */ 2309 u16 priority; 2310 struct offload_callbacks callbacks; 2311 struct list_head list; 2312}; 2313 2314/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2315struct pcpu_sw_netstats { 2316 u64 rx_packets; 2317 u64 rx_bytes; 2318 u64 tx_packets; 2319 u64 tx_bytes; 2320 struct u64_stats_sync syncp; 2321}; 2322 2323#define __netdev_alloc_pcpu_stats(type, gfp) \ 2324({ \ 2325 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2326 if (pcpu_stats) { \ 2327 int __cpu; \ 2328 for_each_possible_cpu(__cpu) { \ 2329 typeof(type) *stat; \ 2330 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2331 u64_stats_init(&stat->syncp); \ 2332 } \ 2333 } \ 2334 pcpu_stats; \ 2335}) 2336 2337#define netdev_alloc_pcpu_stats(type) \ 2338 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2339 2340enum netdev_lag_tx_type { 2341 NETDEV_LAG_TX_TYPE_UNKNOWN, 2342 NETDEV_LAG_TX_TYPE_RANDOM, 2343 NETDEV_LAG_TX_TYPE_BROADCAST, 2344 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2345 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2346 NETDEV_LAG_TX_TYPE_HASH, 2347}; 2348 2349enum netdev_lag_hash { 2350 NETDEV_LAG_HASH_NONE, 2351 NETDEV_LAG_HASH_L2, 2352 NETDEV_LAG_HASH_L34, 2353 NETDEV_LAG_HASH_L23, 2354 NETDEV_LAG_HASH_E23, 2355 NETDEV_LAG_HASH_E34, 2356 NETDEV_LAG_HASH_UNKNOWN, 2357}; 2358 2359struct netdev_lag_upper_info { 2360 enum netdev_lag_tx_type tx_type; 2361 enum netdev_lag_hash hash_type; 2362}; 2363 2364struct netdev_lag_lower_state_info { 2365 u8 link_up : 1, 2366 tx_enabled : 1; 2367}; 2368 2369#include <linux/notifier.h> 2370 2371/* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2372 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2373 * adding new types. 2374 */ 2375enum netdev_cmd { 2376 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2377 NETDEV_DOWN, 2378 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2379 detected a hardware crash and restarted 2380 - we can use this eg to kick tcp sessions 2381 once done */ 2382 NETDEV_CHANGE, /* Notify device state change */ 2383 NETDEV_REGISTER, 2384 NETDEV_UNREGISTER, 2385 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2386 NETDEV_CHANGEADDR, 2387 NETDEV_GOING_DOWN, 2388 NETDEV_CHANGENAME, 2389 NETDEV_FEAT_CHANGE, 2390 NETDEV_BONDING_FAILOVER, 2391 NETDEV_PRE_UP, 2392 NETDEV_PRE_TYPE_CHANGE, 2393 NETDEV_POST_TYPE_CHANGE, 2394 NETDEV_POST_INIT, 2395 NETDEV_RELEASE, 2396 NETDEV_NOTIFY_PEERS, 2397 NETDEV_JOIN, 2398 NETDEV_CHANGEUPPER, 2399 NETDEV_RESEND_IGMP, 2400 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2401 NETDEV_CHANGEINFODATA, 2402 NETDEV_BONDING_INFO, 2403 NETDEV_PRECHANGEUPPER, 2404 NETDEV_CHANGELOWERSTATE, 2405 NETDEV_UDP_TUNNEL_PUSH_INFO, 2406 NETDEV_UDP_TUNNEL_DROP_INFO, 2407 NETDEV_CHANGE_TX_QUEUE_LEN, 2408 NETDEV_CVLAN_FILTER_PUSH_INFO, 2409 NETDEV_CVLAN_FILTER_DROP_INFO, 2410 NETDEV_SVLAN_FILTER_PUSH_INFO, 2411 NETDEV_SVLAN_FILTER_DROP_INFO, 2412}; 2413const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2414 2415int register_netdevice_notifier(struct notifier_block *nb); 2416int unregister_netdevice_notifier(struct notifier_block *nb); 2417 2418struct netdev_notifier_info { 2419 struct net_device *dev; 2420 struct netlink_ext_ack *extack; 2421}; 2422 2423struct netdev_notifier_change_info { 2424 struct netdev_notifier_info info; /* must be first */ 2425 unsigned int flags_changed; 2426}; 2427 2428struct netdev_notifier_changeupper_info { 2429 struct netdev_notifier_info info; /* must be first */ 2430 struct net_device *upper_dev; /* new upper dev */ 2431 bool master; /* is upper dev master */ 2432 bool linking; /* is the notification for link or unlink */ 2433 void *upper_info; /* upper dev info */ 2434}; 2435 2436struct netdev_notifier_changelowerstate_info { 2437 struct netdev_notifier_info info; /* must be first */ 2438 void *lower_state_info; /* is lower dev state */ 2439}; 2440 2441static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2442 struct net_device *dev) 2443{ 2444 info->dev = dev; 2445 info->extack = NULL; 2446} 2447 2448static inline struct net_device * 2449netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2450{ 2451 return info->dev; 2452} 2453 2454static inline struct netlink_ext_ack * 2455netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2456{ 2457 return info->extack; 2458} 2459 2460int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2461 2462 2463extern rwlock_t dev_base_lock; /* Device list lock */ 2464 2465#define for_each_netdev(net, d) \ 2466 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2467#define for_each_netdev_reverse(net, d) \ 2468 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2469#define for_each_netdev_rcu(net, d) \ 2470 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2471#define for_each_netdev_safe(net, d, n) \ 2472 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2473#define for_each_netdev_continue(net, d) \ 2474 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2475#define for_each_netdev_continue_rcu(net, d) \ 2476 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2477#define for_each_netdev_in_bond_rcu(bond, slave) \ 2478 for_each_netdev_rcu(&init_net, slave) \ 2479 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2480#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2481 2482static inline struct net_device *next_net_device(struct net_device *dev) 2483{ 2484 struct list_head *lh; 2485 struct net *net; 2486 2487 net = dev_net(dev); 2488 lh = dev->dev_list.next; 2489 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2490} 2491 2492static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2493{ 2494 struct list_head *lh; 2495 struct net *net; 2496 2497 net = dev_net(dev); 2498 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2499 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2500} 2501 2502static inline struct net_device *first_net_device(struct net *net) 2503{ 2504 return list_empty(&net->dev_base_head) ? NULL : 2505 net_device_entry(net->dev_base_head.next); 2506} 2507 2508static inline struct net_device *first_net_device_rcu(struct net *net) 2509{ 2510 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2511 2512 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2513} 2514 2515int netdev_boot_setup_check(struct net_device *dev); 2516unsigned long netdev_boot_base(const char *prefix, int unit); 2517struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2518 const char *hwaddr); 2519struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2520struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2521void dev_add_pack(struct packet_type *pt); 2522void dev_remove_pack(struct packet_type *pt); 2523void __dev_remove_pack(struct packet_type *pt); 2524void dev_add_offload(struct packet_offload *po); 2525void dev_remove_offload(struct packet_offload *po); 2526 2527int dev_get_iflink(const struct net_device *dev); 2528int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2529struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2530 unsigned short mask); 2531struct net_device *dev_get_by_name(struct net *net, const char *name); 2532struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2533struct net_device *__dev_get_by_name(struct net *net, const char *name); 2534int dev_alloc_name(struct net_device *dev, const char *name); 2535int dev_open(struct net_device *dev); 2536void dev_close(struct net_device *dev); 2537void dev_close_many(struct list_head *head, bool unlink); 2538void dev_disable_lro(struct net_device *dev); 2539int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2540int dev_queue_xmit(struct sk_buff *skb); 2541int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2542int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2543int register_netdevice(struct net_device *dev); 2544void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2545void unregister_netdevice_many(struct list_head *head); 2546static inline void unregister_netdevice(struct net_device *dev) 2547{ 2548 unregister_netdevice_queue(dev, NULL); 2549} 2550 2551int netdev_refcnt_read(const struct net_device *dev); 2552void free_netdev(struct net_device *dev); 2553void netdev_freemem(struct net_device *dev); 2554void synchronize_net(void); 2555int init_dummy_netdev(struct net_device *dev); 2556 2557DECLARE_PER_CPU(int, xmit_recursion); 2558#define XMIT_RECURSION_LIMIT 10 2559 2560static inline int dev_recursion_level(void) 2561{ 2562 return this_cpu_read(xmit_recursion); 2563} 2564 2565struct net_device *dev_get_by_index(struct net *net, int ifindex); 2566struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2567struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2568struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2569int netdev_get_name(struct net *net, char *name, int ifindex); 2570int dev_restart(struct net_device *dev); 2571int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2572 2573static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2574{ 2575 return NAPI_GRO_CB(skb)->data_offset; 2576} 2577 2578static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2579{ 2580 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2581} 2582 2583static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2584{ 2585 NAPI_GRO_CB(skb)->data_offset += len; 2586} 2587 2588static inline void *skb_gro_header_fast(struct sk_buff *skb, 2589 unsigned int offset) 2590{ 2591 return NAPI_GRO_CB(skb)->frag0 + offset; 2592} 2593 2594static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2595{ 2596 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2597} 2598 2599static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2600{ 2601 NAPI_GRO_CB(skb)->frag0 = NULL; 2602 NAPI_GRO_CB(skb)->frag0_len = 0; 2603} 2604 2605static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2606 unsigned int offset) 2607{ 2608 if (!pskb_may_pull(skb, hlen)) 2609 return NULL; 2610 2611 skb_gro_frag0_invalidate(skb); 2612 return skb->data + offset; 2613} 2614 2615static inline void *skb_gro_network_header(struct sk_buff *skb) 2616{ 2617 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2618 skb_network_offset(skb); 2619} 2620 2621static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2622 const void *start, unsigned int len) 2623{ 2624 if (NAPI_GRO_CB(skb)->csum_valid) 2625 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2626 csum_partial(start, len, 0)); 2627} 2628 2629/* GRO checksum functions. These are logical equivalents of the normal 2630 * checksum functions (in skbuff.h) except that they operate on the GRO 2631 * offsets and fields in sk_buff. 2632 */ 2633 2634__sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2635 2636static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2637{ 2638 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2639} 2640 2641static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2642 bool zero_okay, 2643 __sum16 check) 2644{ 2645 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2646 skb_checksum_start_offset(skb) < 2647 skb_gro_offset(skb)) && 2648 !skb_at_gro_remcsum_start(skb) && 2649 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2650 (!zero_okay || check)); 2651} 2652 2653static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2654 __wsum psum) 2655{ 2656 if (NAPI_GRO_CB(skb)->csum_valid && 2657 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2658 return 0; 2659 2660 NAPI_GRO_CB(skb)->csum = psum; 2661 2662 return __skb_gro_checksum_complete(skb); 2663} 2664 2665static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2666{ 2667 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2668 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2669 NAPI_GRO_CB(skb)->csum_cnt--; 2670 } else { 2671 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2672 * verified a new top level checksum or an encapsulated one 2673 * during GRO. This saves work if we fallback to normal path. 2674 */ 2675 __skb_incr_checksum_unnecessary(skb); 2676 } 2677} 2678 2679#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2680 compute_pseudo) \ 2681({ \ 2682 __sum16 __ret = 0; \ 2683 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2684 __ret = __skb_gro_checksum_validate_complete(skb, \ 2685 compute_pseudo(skb, proto)); \ 2686 if (!__ret) \ 2687 skb_gro_incr_csum_unnecessary(skb); \ 2688 __ret; \ 2689}) 2690 2691#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2692 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2693 2694#define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2695 compute_pseudo) \ 2696 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2697 2698#define skb_gro_checksum_simple_validate(skb) \ 2699 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2700 2701static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2702{ 2703 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2704 !NAPI_GRO_CB(skb)->csum_valid); 2705} 2706 2707static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2708 __sum16 check, __wsum pseudo) 2709{ 2710 NAPI_GRO_CB(skb)->csum = ~pseudo; 2711 NAPI_GRO_CB(skb)->csum_valid = 1; 2712} 2713 2714#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2715do { \ 2716 if (__skb_gro_checksum_convert_check(skb)) \ 2717 __skb_gro_checksum_convert(skb, check, \ 2718 compute_pseudo(skb, proto)); \ 2719} while (0) 2720 2721struct gro_remcsum { 2722 int offset; 2723 __wsum delta; 2724}; 2725 2726static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2727{ 2728 grc->offset = 0; 2729 grc->delta = 0; 2730} 2731 2732static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2733 unsigned int off, size_t hdrlen, 2734 int start, int offset, 2735 struct gro_remcsum *grc, 2736 bool nopartial) 2737{ 2738 __wsum delta; 2739 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2740 2741 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2742 2743 if (!nopartial) { 2744 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2745 return ptr; 2746 } 2747 2748 ptr = skb_gro_header_fast(skb, off); 2749 if (skb_gro_header_hard(skb, off + plen)) { 2750 ptr = skb_gro_header_slow(skb, off + plen, off); 2751 if (!ptr) 2752 return NULL; 2753 } 2754 2755 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2756 start, offset); 2757 2758 /* Adjust skb->csum since we changed the packet */ 2759 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2760 2761 grc->offset = off + hdrlen + offset; 2762 grc->delta = delta; 2763 2764 return ptr; 2765} 2766 2767static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2768 struct gro_remcsum *grc) 2769{ 2770 void *ptr; 2771 size_t plen = grc->offset + sizeof(u16); 2772 2773 if (!grc->delta) 2774 return; 2775 2776 ptr = skb_gro_header_fast(skb, grc->offset); 2777 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2778 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2779 if (!ptr) 2780 return; 2781 } 2782 2783 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2784} 2785 2786#ifdef CONFIG_XFRM_OFFLOAD 2787static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2788{ 2789 if (PTR_ERR(pp) != -EINPROGRESS) 2790 NAPI_GRO_CB(skb)->flush |= flush; 2791} 2792static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2793 struct sk_buff **pp, 2794 int flush, 2795 struct gro_remcsum *grc) 2796{ 2797 if (PTR_ERR(pp) != -EINPROGRESS) { 2798 NAPI_GRO_CB(skb)->flush |= flush; 2799 skb_gro_remcsum_cleanup(skb, grc); 2800 skb->remcsum_offload = 0; 2801 } 2802} 2803#else 2804static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2805{ 2806 NAPI_GRO_CB(skb)->flush |= flush; 2807} 2808static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2809 struct sk_buff **pp, 2810 int flush, 2811 struct gro_remcsum *grc) 2812{ 2813 NAPI_GRO_CB(skb)->flush |= flush; 2814 skb_gro_remcsum_cleanup(skb, grc); 2815 skb->remcsum_offload = 0; 2816} 2817#endif 2818 2819static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2820 unsigned short type, 2821 const void *daddr, const void *saddr, 2822 unsigned int len) 2823{ 2824 if (!dev->header_ops || !dev->header_ops->create) 2825 return 0; 2826 2827 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2828} 2829 2830static inline int dev_parse_header(const struct sk_buff *skb, 2831 unsigned char *haddr) 2832{ 2833 const struct net_device *dev = skb->dev; 2834 2835 if (!dev->header_ops || !dev->header_ops->parse) 2836 return 0; 2837 return dev->header_ops->parse(skb, haddr); 2838} 2839 2840/* ll_header must have at least hard_header_len allocated */ 2841static inline bool dev_validate_header(const struct net_device *dev, 2842 char *ll_header, int len) 2843{ 2844 if (likely(len >= dev->hard_header_len)) 2845 return true; 2846 if (len < dev->min_header_len) 2847 return false; 2848 2849 if (capable(CAP_SYS_RAWIO)) { 2850 memset(ll_header + len, 0, dev->hard_header_len - len); 2851 return true; 2852 } 2853 2854 if (dev->header_ops && dev->header_ops->validate) 2855 return dev->header_ops->validate(ll_header, len); 2856 2857 return false; 2858} 2859 2860typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2861 int len, int size); 2862int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2863static inline int unregister_gifconf(unsigned int family) 2864{ 2865 return register_gifconf(family, NULL); 2866} 2867 2868#ifdef CONFIG_NET_FLOW_LIMIT 2869#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2870struct sd_flow_limit { 2871 u64 count; 2872 unsigned int num_buckets; 2873 unsigned int history_head; 2874 u16 history[FLOW_LIMIT_HISTORY]; 2875 u8 buckets[]; 2876}; 2877 2878extern int netdev_flow_limit_table_len; 2879#endif /* CONFIG_NET_FLOW_LIMIT */ 2880 2881/* 2882 * Incoming packets are placed on per-CPU queues 2883 */ 2884struct softnet_data { 2885 struct list_head poll_list; 2886 struct sk_buff_head process_queue; 2887 2888 /* stats */ 2889 unsigned int processed; 2890 unsigned int time_squeeze; 2891 unsigned int received_rps; 2892#ifdef CONFIG_RPS 2893 struct softnet_data *rps_ipi_list; 2894#endif 2895#ifdef CONFIG_NET_FLOW_LIMIT 2896 struct sd_flow_limit __rcu *flow_limit; 2897#endif 2898 struct Qdisc *output_queue; 2899 struct Qdisc **output_queue_tailp; 2900 struct sk_buff *completion_queue; 2901#ifdef CONFIG_XFRM_OFFLOAD 2902 struct sk_buff_head xfrm_backlog; 2903#endif 2904#ifdef CONFIG_RPS 2905 /* input_queue_head should be written by cpu owning this struct, 2906 * and only read by other cpus. Worth using a cache line. 2907 */ 2908 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2909 2910 /* Elements below can be accessed between CPUs for RPS/RFS */ 2911 call_single_data_t csd ____cacheline_aligned_in_smp; 2912 struct softnet_data *rps_ipi_next; 2913 unsigned int cpu; 2914 unsigned int input_queue_tail; 2915#endif 2916 unsigned int dropped; 2917 struct sk_buff_head input_pkt_queue; 2918 struct napi_struct backlog; 2919 2920}; 2921 2922static inline void input_queue_head_incr(struct softnet_data *sd) 2923{ 2924#ifdef CONFIG_RPS 2925 sd->input_queue_head++; 2926#endif 2927} 2928 2929static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2930 unsigned int *qtail) 2931{ 2932#ifdef CONFIG_RPS 2933 *qtail = ++sd->input_queue_tail; 2934#endif 2935} 2936 2937DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2938 2939void __netif_schedule(struct Qdisc *q); 2940void netif_schedule_queue(struct netdev_queue *txq); 2941 2942static inline void netif_tx_schedule_all(struct net_device *dev) 2943{ 2944 unsigned int i; 2945 2946 for (i = 0; i < dev->num_tx_queues; i++) 2947 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2948} 2949 2950static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2951{ 2952 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2953} 2954 2955/** 2956 * netif_start_queue - allow transmit 2957 * @dev: network device 2958 * 2959 * Allow upper layers to call the device hard_start_xmit routine. 2960 */ 2961static inline void netif_start_queue(struct net_device *dev) 2962{ 2963 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2964} 2965 2966static inline void netif_tx_start_all_queues(struct net_device *dev) 2967{ 2968 unsigned int i; 2969 2970 for (i = 0; i < dev->num_tx_queues; i++) { 2971 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2972 netif_tx_start_queue(txq); 2973 } 2974} 2975 2976void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2977 2978/** 2979 * netif_wake_queue - restart transmit 2980 * @dev: network device 2981 * 2982 * Allow upper layers to call the device hard_start_xmit routine. 2983 * Used for flow control when transmit resources are available. 2984 */ 2985static inline void netif_wake_queue(struct net_device *dev) 2986{ 2987 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2988} 2989 2990static inline void netif_tx_wake_all_queues(struct net_device *dev) 2991{ 2992 unsigned int i; 2993 2994 for (i = 0; i < dev->num_tx_queues; i++) { 2995 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2996 netif_tx_wake_queue(txq); 2997 } 2998} 2999 3000static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3001{ 3002 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3003} 3004 3005/** 3006 * netif_stop_queue - stop transmitted packets 3007 * @dev: network device 3008 * 3009 * Stop upper layers calling the device hard_start_xmit routine. 3010 * Used for flow control when transmit resources are unavailable. 3011 */ 3012static inline void netif_stop_queue(struct net_device *dev) 3013{ 3014 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3015} 3016 3017void netif_tx_stop_all_queues(struct net_device *dev); 3018 3019static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3020{ 3021 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3022} 3023 3024/** 3025 * netif_queue_stopped - test if transmit queue is flowblocked 3026 * @dev: network device 3027 * 3028 * Test if transmit queue on device is currently unable to send. 3029 */ 3030static inline bool netif_queue_stopped(const struct net_device *dev) 3031{ 3032 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3033} 3034 3035static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3036{ 3037 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3038} 3039 3040static inline bool 3041netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3042{ 3043 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3044} 3045 3046static inline bool 3047netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3048{ 3049 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3050} 3051 3052/** 3053 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3054 * @dev_queue: pointer to transmit queue 3055 * 3056 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3057 * to give appropriate hint to the CPU. 3058 */ 3059static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3060{ 3061#ifdef CONFIG_BQL 3062 prefetchw(&dev_queue->dql.num_queued); 3063#endif 3064} 3065 3066/** 3067 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3068 * @dev_queue: pointer to transmit queue 3069 * 3070 * BQL enabled drivers might use this helper in their TX completion path, 3071 * to give appropriate hint to the CPU. 3072 */ 3073static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3074{ 3075#ifdef CONFIG_BQL 3076 prefetchw(&dev_queue->dql.limit); 3077#endif 3078} 3079 3080static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3081 unsigned int bytes) 3082{ 3083#ifdef CONFIG_BQL 3084 dql_queued(&dev_queue->dql, bytes); 3085 3086 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3087 return; 3088 3089 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3090 3091 /* 3092 * The XOFF flag must be set before checking the dql_avail below, 3093 * because in netdev_tx_completed_queue we update the dql_completed 3094 * before checking the XOFF flag. 3095 */ 3096 smp_mb(); 3097 3098 /* check again in case another CPU has just made room avail */ 3099 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3100 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3101#endif 3102} 3103 3104/** 3105 * netdev_sent_queue - report the number of bytes queued to hardware 3106 * @dev: network device 3107 * @bytes: number of bytes queued to the hardware device queue 3108 * 3109 * Report the number of bytes queued for sending/completion to the network 3110 * device hardware queue. @bytes should be a good approximation and should 3111 * exactly match netdev_completed_queue() @bytes 3112 */ 3113static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3114{ 3115 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3116} 3117 3118static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3119 unsigned int pkts, unsigned int bytes) 3120{ 3121#ifdef CONFIG_BQL 3122 if (unlikely(!bytes)) 3123 return; 3124 3125 dql_completed(&dev_queue->dql, bytes); 3126 3127 /* 3128 * Without the memory barrier there is a small possiblity that 3129 * netdev_tx_sent_queue will miss the update and cause the queue to 3130 * be stopped forever 3131 */ 3132 smp_mb(); 3133 3134 if (dql_avail(&dev_queue->dql) < 0) 3135 return; 3136 3137 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3138 netif_schedule_queue(dev_queue); 3139#endif 3140} 3141 3142/** 3143 * netdev_completed_queue - report bytes and packets completed by device 3144 * @dev: network device 3145 * @pkts: actual number of packets sent over the medium 3146 * @bytes: actual number of bytes sent over the medium 3147 * 3148 * Report the number of bytes and packets transmitted by the network device 3149 * hardware queue over the physical medium, @bytes must exactly match the 3150 * @bytes amount passed to netdev_sent_queue() 3151 */ 3152static inline void netdev_completed_queue(struct net_device *dev, 3153 unsigned int pkts, unsigned int bytes) 3154{ 3155 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3156} 3157 3158static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3159{ 3160#ifdef CONFIG_BQL 3161 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3162 dql_reset(&q->dql); 3163#endif 3164} 3165 3166/** 3167 * netdev_reset_queue - reset the packets and bytes count of a network device 3168 * @dev_queue: network device 3169 * 3170 * Reset the bytes and packet count of a network device and clear the 3171 * software flow control OFF bit for this network device 3172 */ 3173static inline void netdev_reset_queue(struct net_device *dev_queue) 3174{ 3175 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3176} 3177 3178/** 3179 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3180 * @dev: network device 3181 * @queue_index: given tx queue index 3182 * 3183 * Returns 0 if given tx queue index >= number of device tx queues, 3184 * otherwise returns the originally passed tx queue index. 3185 */ 3186static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3187{ 3188 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3189 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3190 dev->name, queue_index, 3191 dev->real_num_tx_queues); 3192 return 0; 3193 } 3194 3195 return queue_index; 3196} 3197 3198/** 3199 * netif_running - test if up 3200 * @dev: network device 3201 * 3202 * Test if the device has been brought up. 3203 */ 3204static inline bool netif_running(const struct net_device *dev) 3205{ 3206 return test_bit(__LINK_STATE_START, &dev->state); 3207} 3208 3209/* 3210 * Routines to manage the subqueues on a device. We only need start, 3211 * stop, and a check if it's stopped. All other device management is 3212 * done at the overall netdevice level. 3213 * Also test the device if we're multiqueue. 3214 */ 3215 3216/** 3217 * netif_start_subqueue - allow sending packets on subqueue 3218 * @dev: network device 3219 * @queue_index: sub queue index 3220 * 3221 * Start individual transmit queue of a device with multiple transmit queues. 3222 */ 3223static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3224{ 3225 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3226 3227 netif_tx_start_queue(txq); 3228} 3229 3230/** 3231 * netif_stop_subqueue - stop sending packets on subqueue 3232 * @dev: network device 3233 * @queue_index: sub queue index 3234 * 3235 * Stop individual transmit queue of a device with multiple transmit queues. 3236 */ 3237static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3238{ 3239 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3240 netif_tx_stop_queue(txq); 3241} 3242 3243/** 3244 * netif_subqueue_stopped - test status of subqueue 3245 * @dev: network device 3246 * @queue_index: sub queue index 3247 * 3248 * Check individual transmit queue of a device with multiple transmit queues. 3249 */ 3250static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3251 u16 queue_index) 3252{ 3253 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3254 3255 return netif_tx_queue_stopped(txq); 3256} 3257 3258static inline bool netif_subqueue_stopped(const struct net_device *dev, 3259 struct sk_buff *skb) 3260{ 3261 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3262} 3263 3264/** 3265 * netif_wake_subqueue - allow sending packets on subqueue 3266 * @dev: network device 3267 * @queue_index: sub queue index 3268 * 3269 * Resume individual transmit queue of a device with multiple transmit queues. 3270 */ 3271static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3272{ 3273 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3274 3275 netif_tx_wake_queue(txq); 3276} 3277 3278#ifdef CONFIG_XPS 3279int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3280 u16 index); 3281#else 3282static inline int netif_set_xps_queue(struct net_device *dev, 3283 const struct cpumask *mask, 3284 u16 index) 3285{ 3286 return 0; 3287} 3288#endif 3289 3290/** 3291 * netif_is_multiqueue - test if device has multiple transmit queues 3292 * @dev: network device 3293 * 3294 * Check if device has multiple transmit queues 3295 */ 3296static inline bool netif_is_multiqueue(const struct net_device *dev) 3297{ 3298 return dev->num_tx_queues > 1; 3299} 3300 3301int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3302 3303#ifdef CONFIG_SYSFS 3304int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3305#else 3306static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3307 unsigned int rxq) 3308{ 3309 return 0; 3310} 3311#endif 3312 3313static inline struct netdev_rx_queue * 3314__netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3315{ 3316 return dev->_rx + rxq; 3317} 3318 3319#ifdef CONFIG_SYSFS 3320static inline unsigned int get_netdev_rx_queue_index( 3321 struct netdev_rx_queue *queue) 3322{ 3323 struct net_device *dev = queue->dev; 3324 int index = queue - dev->_rx; 3325 3326 BUG_ON(index >= dev->num_rx_queues); 3327 return index; 3328} 3329#endif 3330 3331#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3332int netif_get_num_default_rss_queues(void); 3333 3334enum skb_free_reason { 3335 SKB_REASON_CONSUMED, 3336 SKB_REASON_DROPPED, 3337}; 3338 3339void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3340void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3341 3342/* 3343 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3344 * interrupt context or with hardware interrupts being disabled. 3345 * (in_irq() || irqs_disabled()) 3346 * 3347 * We provide four helpers that can be used in following contexts : 3348 * 3349 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3350 * replacing kfree_skb(skb) 3351 * 3352 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3353 * Typically used in place of consume_skb(skb) in TX completion path 3354 * 3355 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3356 * replacing kfree_skb(skb) 3357 * 3358 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3359 * and consumed a packet. Used in place of consume_skb(skb) 3360 */ 3361static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3362{ 3363 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3364} 3365 3366static inline void dev_consume_skb_irq(struct sk_buff *skb) 3367{ 3368 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3369} 3370 3371static inline void dev_kfree_skb_any(struct sk_buff *skb) 3372{ 3373 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3374} 3375 3376static inline void dev_consume_skb_any(struct sk_buff *skb) 3377{ 3378 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3379} 3380 3381void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3382int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3383int netif_rx(struct sk_buff *skb); 3384int netif_rx_ni(struct sk_buff *skb); 3385int netif_receive_skb(struct sk_buff *skb); 3386int netif_receive_skb_core(struct sk_buff *skb); 3387gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3388void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3389struct sk_buff *napi_get_frags(struct napi_struct *napi); 3390gro_result_t napi_gro_frags(struct napi_struct *napi); 3391struct packet_offload *gro_find_receive_by_type(__be16 type); 3392struct packet_offload *gro_find_complete_by_type(__be16 type); 3393 3394static inline void napi_free_frags(struct napi_struct *napi) 3395{ 3396 kfree_skb(napi->skb); 3397 napi->skb = NULL; 3398} 3399 3400bool netdev_is_rx_handler_busy(struct net_device *dev); 3401int netdev_rx_handler_register(struct net_device *dev, 3402 rx_handler_func_t *rx_handler, 3403 void *rx_handler_data); 3404void netdev_rx_handler_unregister(struct net_device *dev); 3405 3406bool dev_valid_name(const char *name); 3407int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3408 bool *need_copyout); 3409int dev_ifconf(struct net *net, struct ifconf *, int); 3410int dev_ethtool(struct net *net, struct ifreq *); 3411unsigned int dev_get_flags(const struct net_device *); 3412int __dev_change_flags(struct net_device *, unsigned int flags); 3413int dev_change_flags(struct net_device *, unsigned int); 3414void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3415 unsigned int gchanges); 3416int dev_change_name(struct net_device *, const char *); 3417int dev_set_alias(struct net_device *, const char *, size_t); 3418int dev_get_alias(const struct net_device *, char *, size_t); 3419int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3420int __dev_set_mtu(struct net_device *, int); 3421int dev_set_mtu(struct net_device *, int); 3422int dev_change_tx_queue_len(struct net_device *, unsigned long); 3423void dev_set_group(struct net_device *, int); 3424int dev_set_mac_address(struct net_device *, struct sockaddr *); 3425int dev_change_carrier(struct net_device *, bool new_carrier); 3426int dev_get_phys_port_id(struct net_device *dev, 3427 struct netdev_phys_item_id *ppid); 3428int dev_get_phys_port_name(struct net_device *dev, 3429 char *name, size_t len); 3430int dev_change_proto_down(struct net_device *dev, bool proto_down); 3431struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3432struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3433 struct netdev_queue *txq, int *ret); 3434 3435typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3436int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3437 int fd, u32 flags); 3438void __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3439 struct netdev_bpf *xdp); 3440 3441int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3442int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3443bool is_skb_forwardable(const struct net_device *dev, 3444 const struct sk_buff *skb); 3445 3446static __always_inline int ____dev_forward_skb(struct net_device *dev, 3447 struct sk_buff *skb) 3448{ 3449 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3450 unlikely(!is_skb_forwardable(dev, skb))) { 3451 atomic_long_inc(&dev->rx_dropped); 3452 kfree_skb(skb); 3453 return NET_RX_DROP; 3454 } 3455 3456 skb_scrub_packet(skb, true); 3457 skb->priority = 0; 3458 return 0; 3459} 3460 3461void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3462 3463extern int netdev_budget; 3464extern unsigned int netdev_budget_usecs; 3465 3466/* Called by rtnetlink.c:rtnl_unlock() */ 3467void netdev_run_todo(void); 3468 3469/** 3470 * dev_put - release reference to device 3471 * @dev: network device 3472 * 3473 * Release reference to device to allow it to be freed. 3474 */ 3475static inline void dev_put(struct net_device *dev) 3476{ 3477 this_cpu_dec(*dev->pcpu_refcnt); 3478} 3479 3480/** 3481 * dev_hold - get reference to device 3482 * @dev: network device 3483 * 3484 * Hold reference to device to keep it from being freed. 3485 */ 3486static inline void dev_hold(struct net_device *dev) 3487{ 3488 this_cpu_inc(*dev->pcpu_refcnt); 3489} 3490 3491/* Carrier loss detection, dial on demand. The functions netif_carrier_on 3492 * and _off may be called from IRQ context, but it is caller 3493 * who is responsible for serialization of these calls. 3494 * 3495 * The name carrier is inappropriate, these functions should really be 3496 * called netif_lowerlayer_*() because they represent the state of any 3497 * kind of lower layer not just hardware media. 3498 */ 3499 3500void linkwatch_init_dev(struct net_device *dev); 3501void linkwatch_fire_event(struct net_device *dev); 3502void linkwatch_forget_dev(struct net_device *dev); 3503 3504/** 3505 * netif_carrier_ok - test if carrier present 3506 * @dev: network device 3507 * 3508 * Check if carrier is present on device 3509 */ 3510static inline bool netif_carrier_ok(const struct net_device *dev) 3511{ 3512 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3513} 3514 3515unsigned long dev_trans_start(struct net_device *dev); 3516 3517void __netdev_watchdog_up(struct net_device *dev); 3518 3519void netif_carrier_on(struct net_device *dev); 3520 3521void netif_carrier_off(struct net_device *dev); 3522 3523/** 3524 * netif_dormant_on - mark device as dormant. 3525 * @dev: network device 3526 * 3527 * Mark device as dormant (as per RFC2863). 3528 * 3529 * The dormant state indicates that the relevant interface is not 3530 * actually in a condition to pass packets (i.e., it is not 'up') but is 3531 * in a "pending" state, waiting for some external event. For "on- 3532 * demand" interfaces, this new state identifies the situation where the 3533 * interface is waiting for events to place it in the up state. 3534 */ 3535static inline void netif_dormant_on(struct net_device *dev) 3536{ 3537 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3538 linkwatch_fire_event(dev); 3539} 3540 3541/** 3542 * netif_dormant_off - set device as not dormant. 3543 * @dev: network device 3544 * 3545 * Device is not in dormant state. 3546 */ 3547static inline void netif_dormant_off(struct net_device *dev) 3548{ 3549 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3550 linkwatch_fire_event(dev); 3551} 3552 3553/** 3554 * netif_dormant - test if device is dormant 3555 * @dev: network device 3556 * 3557 * Check if device is dormant. 3558 */ 3559static inline bool netif_dormant(const struct net_device *dev) 3560{ 3561 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3562} 3563 3564 3565/** 3566 * netif_oper_up - test if device is operational 3567 * @dev: network device 3568 * 3569 * Check if carrier is operational 3570 */ 3571static inline bool netif_oper_up(const struct net_device *dev) 3572{ 3573 return (dev->operstate == IF_OPER_UP || 3574 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3575} 3576 3577/** 3578 * netif_device_present - is device available or removed 3579 * @dev: network device 3580 * 3581 * Check if device has not been removed from system. 3582 */ 3583static inline bool netif_device_present(struct net_device *dev) 3584{ 3585 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3586} 3587 3588void netif_device_detach(struct net_device *dev); 3589 3590void netif_device_attach(struct net_device *dev); 3591 3592/* 3593 * Network interface message level settings 3594 */ 3595 3596enum { 3597 NETIF_MSG_DRV = 0x0001, 3598 NETIF_MSG_PROBE = 0x0002, 3599 NETIF_MSG_LINK = 0x0004, 3600 NETIF_MSG_TIMER = 0x0008, 3601 NETIF_MSG_IFDOWN = 0x0010, 3602 NETIF_MSG_IFUP = 0x0020, 3603 NETIF_MSG_RX_ERR = 0x0040, 3604 NETIF_MSG_TX_ERR = 0x0080, 3605 NETIF_MSG_TX_QUEUED = 0x0100, 3606 NETIF_MSG_INTR = 0x0200, 3607 NETIF_MSG_TX_DONE = 0x0400, 3608 NETIF_MSG_RX_STATUS = 0x0800, 3609 NETIF_MSG_PKTDATA = 0x1000, 3610 NETIF_MSG_HW = 0x2000, 3611 NETIF_MSG_WOL = 0x4000, 3612}; 3613 3614#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3615#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3616#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3617#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3618#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3619#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3620#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3621#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3622#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3623#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3624#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3625#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3626#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3627#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3628#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3629 3630static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3631{ 3632 /* use default */ 3633 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3634 return default_msg_enable_bits; 3635 if (debug_value == 0) /* no output */ 3636 return 0; 3637 /* set low N bits */ 3638 return (1 << debug_value) - 1; 3639} 3640 3641static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3642{ 3643 spin_lock(&txq->_xmit_lock); 3644 txq->xmit_lock_owner = cpu; 3645} 3646 3647static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3648{ 3649 __acquire(&txq->_xmit_lock); 3650 return true; 3651} 3652 3653static inline void __netif_tx_release(struct netdev_queue *txq) 3654{ 3655 __release(&txq->_xmit_lock); 3656} 3657 3658static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3659{ 3660 spin_lock_bh(&txq->_xmit_lock); 3661 txq->xmit_lock_owner = smp_processor_id(); 3662} 3663 3664static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3665{ 3666 bool ok = spin_trylock(&txq->_xmit_lock); 3667 if (likely(ok)) 3668 txq->xmit_lock_owner = smp_processor_id(); 3669 return ok; 3670} 3671 3672static inline void __netif_tx_unlock(struct netdev_queue *txq) 3673{ 3674 txq->xmit_lock_owner = -1; 3675 spin_unlock(&txq->_xmit_lock); 3676} 3677 3678static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3679{ 3680 txq->xmit_lock_owner = -1; 3681 spin_unlock_bh(&txq->_xmit_lock); 3682} 3683 3684static inline void txq_trans_update(struct netdev_queue *txq) 3685{ 3686 if (txq->xmit_lock_owner != -1) 3687 txq->trans_start = jiffies; 3688} 3689 3690/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3691static inline void netif_trans_update(struct net_device *dev) 3692{ 3693 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3694 3695 if (txq->trans_start != jiffies) 3696 txq->trans_start = jiffies; 3697} 3698 3699/** 3700 * netif_tx_lock - grab network device transmit lock 3701 * @dev: network device 3702 * 3703 * Get network device transmit lock 3704 */ 3705static inline void netif_tx_lock(struct net_device *dev) 3706{ 3707 unsigned int i; 3708 int cpu; 3709 3710 spin_lock(&dev->tx_global_lock); 3711 cpu = smp_processor_id(); 3712 for (i = 0; i < dev->num_tx_queues; i++) { 3713 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3714 3715 /* We are the only thread of execution doing a 3716 * freeze, but we have to grab the _xmit_lock in 3717 * order to synchronize with threads which are in 3718 * the ->hard_start_xmit() handler and already 3719 * checked the frozen bit. 3720 */ 3721 __netif_tx_lock(txq, cpu); 3722 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3723 __netif_tx_unlock(txq); 3724 } 3725} 3726 3727static inline void netif_tx_lock_bh(struct net_device *dev) 3728{ 3729 local_bh_disable(); 3730 netif_tx_lock(dev); 3731} 3732 3733static inline void netif_tx_unlock(struct net_device *dev) 3734{ 3735 unsigned int i; 3736 3737 for (i = 0; i < dev->num_tx_queues; i++) { 3738 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3739 3740 /* No need to grab the _xmit_lock here. If the 3741 * queue is not stopped for another reason, we 3742 * force a schedule. 3743 */ 3744 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3745 netif_schedule_queue(txq); 3746 } 3747 spin_unlock(&dev->tx_global_lock); 3748} 3749 3750static inline void netif_tx_unlock_bh(struct net_device *dev) 3751{ 3752 netif_tx_unlock(dev); 3753 local_bh_enable(); 3754} 3755 3756#define HARD_TX_LOCK(dev, txq, cpu) { \ 3757 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3758 __netif_tx_lock(txq, cpu); \ 3759 } else { \ 3760 __netif_tx_acquire(txq); \ 3761 } \ 3762} 3763 3764#define HARD_TX_TRYLOCK(dev, txq) \ 3765 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3766 __netif_tx_trylock(txq) : \ 3767 __netif_tx_acquire(txq)) 3768 3769#define HARD_TX_UNLOCK(dev, txq) { \ 3770 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3771 __netif_tx_unlock(txq); \ 3772 } else { \ 3773 __netif_tx_release(txq); \ 3774 } \ 3775} 3776 3777static inline void netif_tx_disable(struct net_device *dev) 3778{ 3779 unsigned int i; 3780 int cpu; 3781 3782 local_bh_disable(); 3783 cpu = smp_processor_id(); 3784 for (i = 0; i < dev->num_tx_queues; i++) { 3785 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3786 3787 __netif_tx_lock(txq, cpu); 3788 netif_tx_stop_queue(txq); 3789 __netif_tx_unlock(txq); 3790 } 3791 local_bh_enable(); 3792} 3793 3794static inline void netif_addr_lock(struct net_device *dev) 3795{ 3796 spin_lock(&dev->addr_list_lock); 3797} 3798 3799static inline void netif_addr_lock_nested(struct net_device *dev) 3800{ 3801 int subclass = SINGLE_DEPTH_NESTING; 3802 3803 if (dev->netdev_ops->ndo_get_lock_subclass) 3804 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3805 3806 spin_lock_nested(&dev->addr_list_lock, subclass); 3807} 3808 3809static inline void netif_addr_lock_bh(struct net_device *dev) 3810{ 3811 spin_lock_bh(&dev->addr_list_lock); 3812} 3813 3814static inline void netif_addr_unlock(struct net_device *dev) 3815{ 3816 spin_unlock(&dev->addr_list_lock); 3817} 3818 3819static inline void netif_addr_unlock_bh(struct net_device *dev) 3820{ 3821 spin_unlock_bh(&dev->addr_list_lock); 3822} 3823 3824/* 3825 * dev_addrs walker. Should be used only for read access. Call with 3826 * rcu_read_lock held. 3827 */ 3828#define for_each_dev_addr(dev, ha) \ 3829 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3830 3831/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3832 3833void ether_setup(struct net_device *dev); 3834 3835/* Support for loadable net-drivers */ 3836struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3837 unsigned char name_assign_type, 3838 void (*setup)(struct net_device *), 3839 unsigned int txqs, unsigned int rxqs); 3840int dev_get_valid_name(struct net *net, struct net_device *dev, 3841 const char *name); 3842 3843#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3844 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3845 3846#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3847 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3848 count) 3849 3850int register_netdev(struct net_device *dev); 3851void unregister_netdev(struct net_device *dev); 3852 3853/* General hardware address lists handling functions */ 3854int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3855 struct netdev_hw_addr_list *from_list, int addr_len); 3856void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3857 struct netdev_hw_addr_list *from_list, int addr_len); 3858int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3859 struct net_device *dev, 3860 int (*sync)(struct net_device *, const unsigned char *), 3861 int (*unsync)(struct net_device *, 3862 const unsigned char *)); 3863void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3864 struct net_device *dev, 3865 int (*unsync)(struct net_device *, 3866 const unsigned char *)); 3867void __hw_addr_init(struct netdev_hw_addr_list *list); 3868 3869/* Functions used for device addresses handling */ 3870int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3871 unsigned char addr_type); 3872int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3873 unsigned char addr_type); 3874void dev_addr_flush(struct net_device *dev); 3875int dev_addr_init(struct net_device *dev); 3876 3877/* Functions used for unicast addresses handling */ 3878int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3879int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3880int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3881int dev_uc_sync(struct net_device *to, struct net_device *from); 3882int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3883void dev_uc_unsync(struct net_device *to, struct net_device *from); 3884void dev_uc_flush(struct net_device *dev); 3885void dev_uc_init(struct net_device *dev); 3886 3887/** 3888 * __dev_uc_sync - Synchonize device's unicast list 3889 * @dev: device to sync 3890 * @sync: function to call if address should be added 3891 * @unsync: function to call if address should be removed 3892 * 3893 * Add newly added addresses to the interface, and release 3894 * addresses that have been deleted. 3895 */ 3896static inline int __dev_uc_sync(struct net_device *dev, 3897 int (*sync)(struct net_device *, 3898 const unsigned char *), 3899 int (*unsync)(struct net_device *, 3900 const unsigned char *)) 3901{ 3902 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3903} 3904 3905/** 3906 * __dev_uc_unsync - Remove synchronized addresses from device 3907 * @dev: device to sync 3908 * @unsync: function to call if address should be removed 3909 * 3910 * Remove all addresses that were added to the device by dev_uc_sync(). 3911 */ 3912static inline void __dev_uc_unsync(struct net_device *dev, 3913 int (*unsync)(struct net_device *, 3914 const unsigned char *)) 3915{ 3916 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3917} 3918 3919/* Functions used for multicast addresses handling */ 3920int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3921int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3922int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3923int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3924int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3925int dev_mc_sync(struct net_device *to, struct net_device *from); 3926int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3927void dev_mc_unsync(struct net_device *to, struct net_device *from); 3928void dev_mc_flush(struct net_device *dev); 3929void dev_mc_init(struct net_device *dev); 3930 3931/** 3932 * __dev_mc_sync - Synchonize device's multicast list 3933 * @dev: device to sync 3934 * @sync: function to call if address should be added 3935 * @unsync: function to call if address should be removed 3936 * 3937 * Add newly added addresses to the interface, and release 3938 * addresses that have been deleted. 3939 */ 3940static inline int __dev_mc_sync(struct net_device *dev, 3941 int (*sync)(struct net_device *, 3942 const unsigned char *), 3943 int (*unsync)(struct net_device *, 3944 const unsigned char *)) 3945{ 3946 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3947} 3948 3949/** 3950 * __dev_mc_unsync - Remove synchronized addresses from device 3951 * @dev: device to sync 3952 * @unsync: function to call if address should be removed 3953 * 3954 * Remove all addresses that were added to the device by dev_mc_sync(). 3955 */ 3956static inline void __dev_mc_unsync(struct net_device *dev, 3957 int (*unsync)(struct net_device *, 3958 const unsigned char *)) 3959{ 3960 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3961} 3962 3963/* Functions used for secondary unicast and multicast support */ 3964void dev_set_rx_mode(struct net_device *dev); 3965void __dev_set_rx_mode(struct net_device *dev); 3966int dev_set_promiscuity(struct net_device *dev, int inc); 3967int dev_set_allmulti(struct net_device *dev, int inc); 3968void netdev_state_change(struct net_device *dev); 3969void netdev_notify_peers(struct net_device *dev); 3970void netdev_features_change(struct net_device *dev); 3971/* Load a device via the kmod */ 3972void dev_load(struct net *net, const char *name); 3973struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3974 struct rtnl_link_stats64 *storage); 3975void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3976 const struct net_device_stats *netdev_stats); 3977 3978extern int netdev_max_backlog; 3979extern int netdev_tstamp_prequeue; 3980extern int weight_p; 3981extern int dev_weight_rx_bias; 3982extern int dev_weight_tx_bias; 3983extern int dev_rx_weight; 3984extern int dev_tx_weight; 3985 3986bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3987struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3988 struct list_head **iter); 3989struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3990 struct list_head **iter); 3991 3992/* iterate through upper list, must be called under RCU read lock */ 3993#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3994 for (iter = &(dev)->adj_list.upper, \ 3995 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3996 updev; \ 3997 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3998 3999int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4000 int (*fn)(struct net_device *upper_dev, 4001 void *data), 4002 void *data); 4003 4004bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4005 struct net_device *upper_dev); 4006 4007bool netdev_has_any_upper_dev(struct net_device *dev); 4008 4009void *netdev_lower_get_next_private(struct net_device *dev, 4010 struct list_head **iter); 4011void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4012 struct list_head **iter); 4013 4014#define netdev_for_each_lower_private(dev, priv, iter) \ 4015 for (iter = (dev)->adj_list.lower.next, \ 4016 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4017 priv; \ 4018 priv = netdev_lower_get_next_private(dev, &(iter))) 4019 4020#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4021 for (iter = &(dev)->adj_list.lower, \ 4022 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4023 priv; \ 4024 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4025 4026void *netdev_lower_get_next(struct net_device *dev, 4027 struct list_head **iter); 4028 4029#define netdev_for_each_lower_dev(dev, ldev, iter) \ 4030 for (iter = (dev)->adj_list.lower.next, \ 4031 ldev = netdev_lower_get_next(dev, &(iter)); \ 4032 ldev; \ 4033 ldev = netdev_lower_get_next(dev, &(iter))) 4034 4035struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4036 struct list_head **iter); 4037struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4038 struct list_head **iter); 4039 4040int netdev_walk_all_lower_dev(struct net_device *dev, 4041 int (*fn)(struct net_device *lower_dev, 4042 void *data), 4043 void *data); 4044int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4045 int (*fn)(struct net_device *lower_dev, 4046 void *data), 4047 void *data); 4048 4049void *netdev_adjacent_get_private(struct list_head *adj_list); 4050void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4051struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4052struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4053int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4054 struct netlink_ext_ack *extack); 4055int netdev_master_upper_dev_link(struct net_device *dev, 4056 struct net_device *upper_dev, 4057 void *upper_priv, void *upper_info, 4058 struct netlink_ext_ack *extack); 4059void netdev_upper_dev_unlink(struct net_device *dev, 4060 struct net_device *upper_dev); 4061void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4062void *netdev_lower_dev_get_private(struct net_device *dev, 4063 struct net_device *lower_dev); 4064void netdev_lower_state_changed(struct net_device *lower_dev, 4065 void *lower_state_info); 4066 4067/* RSS keys are 40 or 52 bytes long */ 4068#define NETDEV_RSS_KEY_LEN 52 4069extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4070void netdev_rss_key_fill(void *buffer, size_t len); 4071 4072int dev_get_nest_level(struct net_device *dev); 4073int skb_checksum_help(struct sk_buff *skb); 4074int skb_crc32c_csum_help(struct sk_buff *skb); 4075int skb_csum_hwoffload_help(struct sk_buff *skb, 4076 const netdev_features_t features); 4077 4078struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4079 netdev_features_t features, bool tx_path); 4080struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4081 netdev_features_t features); 4082 4083struct netdev_bonding_info { 4084 ifslave slave; 4085 ifbond master; 4086}; 4087 4088struct netdev_notifier_bonding_info { 4089 struct netdev_notifier_info info; /* must be first */ 4090 struct netdev_bonding_info bonding_info; 4091}; 4092 4093void netdev_bonding_info_change(struct net_device *dev, 4094 struct netdev_bonding_info *bonding_info); 4095 4096static inline 4097struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4098{ 4099 return __skb_gso_segment(skb, features, true); 4100} 4101__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4102 4103static inline bool can_checksum_protocol(netdev_features_t features, 4104 __be16 protocol) 4105{ 4106 if (protocol == htons(ETH_P_FCOE)) 4107 return !!(features & NETIF_F_FCOE_CRC); 4108 4109 /* Assume this is an IP checksum (not SCTP CRC) */ 4110 4111 if (features & NETIF_F_HW_CSUM) { 4112 /* Can checksum everything */ 4113 return true; 4114 } 4115 4116 switch (protocol) { 4117 case htons(ETH_P_IP): 4118 return !!(features & NETIF_F_IP_CSUM); 4119 case htons(ETH_P_IPV6): 4120 return !!(features & NETIF_F_IPV6_CSUM); 4121 default: 4122 return false; 4123 } 4124} 4125 4126#ifdef CONFIG_BUG 4127void netdev_rx_csum_fault(struct net_device *dev); 4128#else 4129static inline void netdev_rx_csum_fault(struct net_device *dev) 4130{ 4131} 4132#endif 4133/* rx skb timestamps */ 4134void net_enable_timestamp(void); 4135void net_disable_timestamp(void); 4136 4137#ifdef CONFIG_PROC_FS 4138int __init dev_proc_init(void); 4139#else 4140#define dev_proc_init() 0 4141#endif 4142 4143static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4144 struct sk_buff *skb, struct net_device *dev, 4145 bool more) 4146{ 4147 skb->xmit_more = more ? 1 : 0; 4148 return ops->ndo_start_xmit(skb, dev); 4149} 4150 4151static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4152 struct netdev_queue *txq, bool more) 4153{ 4154 const struct net_device_ops *ops = dev->netdev_ops; 4155 int rc; 4156 4157 rc = __netdev_start_xmit(ops, skb, dev, more); 4158 if (rc == NETDEV_TX_OK) 4159 txq_trans_update(txq); 4160 4161 return rc; 4162} 4163 4164int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4165 const void *ns); 4166void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4167 const void *ns); 4168 4169static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4170{ 4171 return netdev_class_create_file_ns(class_attr, NULL); 4172} 4173 4174static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4175{ 4176 netdev_class_remove_file_ns(class_attr, NULL); 4177} 4178 4179extern const struct kobj_ns_type_operations net_ns_type_operations; 4180 4181const char *netdev_drivername(const struct net_device *dev); 4182 4183void linkwatch_run_queue(void); 4184 4185static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4186 netdev_features_t f2) 4187{ 4188 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4189 if (f1 & NETIF_F_HW_CSUM) 4190 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4191 else 4192 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4193 } 4194 4195 return f1 & f2; 4196} 4197 4198static inline netdev_features_t netdev_get_wanted_features( 4199 struct net_device *dev) 4200{ 4201 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4202} 4203netdev_features_t netdev_increment_features(netdev_features_t all, 4204 netdev_features_t one, netdev_features_t mask); 4205 4206/* Allow TSO being used on stacked device : 4207 * Performing the GSO segmentation before last device 4208 * is a performance improvement. 4209 */ 4210static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4211 netdev_features_t mask) 4212{ 4213 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4214} 4215 4216int __netdev_update_features(struct net_device *dev); 4217void netdev_update_features(struct net_device *dev); 4218void netdev_change_features(struct net_device *dev); 4219 4220void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4221 struct net_device *dev); 4222 4223netdev_features_t passthru_features_check(struct sk_buff *skb, 4224 struct net_device *dev, 4225 netdev_features_t features); 4226netdev_features_t netif_skb_features(struct sk_buff *skb); 4227 4228static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4229{ 4230 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4231 4232 /* check flags correspondence */ 4233 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4234 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4235 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4236 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4237 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4238 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4239 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4240 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4241 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4242 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4243 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4244 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4245 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4246 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4247 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4248 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4249 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4250 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4251 4252 return (features & feature) == feature; 4253} 4254 4255static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4256{ 4257 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4258 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4259} 4260 4261static inline bool netif_needs_gso(struct sk_buff *skb, 4262 netdev_features_t features) 4263{ 4264 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4265 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4266 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4267} 4268 4269static inline void netif_set_gso_max_size(struct net_device *dev, 4270 unsigned int size) 4271{ 4272 dev->gso_max_size = size; 4273} 4274 4275static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4276 int pulled_hlen, u16 mac_offset, 4277 int mac_len) 4278{ 4279 skb->protocol = protocol; 4280 skb->encapsulation = 1; 4281 skb_push(skb, pulled_hlen); 4282 skb_reset_transport_header(skb); 4283 skb->mac_header = mac_offset; 4284 skb->network_header = skb->mac_header + mac_len; 4285 skb->mac_len = mac_len; 4286} 4287 4288static inline bool netif_is_macsec(const struct net_device *dev) 4289{ 4290 return dev->priv_flags & IFF_MACSEC; 4291} 4292 4293static inline bool netif_is_macvlan(const struct net_device *dev) 4294{ 4295 return dev->priv_flags & IFF_MACVLAN; 4296} 4297 4298static inline bool netif_is_macvlan_port(const struct net_device *dev) 4299{ 4300 return dev->priv_flags & IFF_MACVLAN_PORT; 4301} 4302 4303static inline bool netif_is_bond_master(const struct net_device *dev) 4304{ 4305 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4306} 4307 4308static inline bool netif_is_bond_slave(const struct net_device *dev) 4309{ 4310 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4311} 4312 4313static inline bool netif_supports_nofcs(struct net_device *dev) 4314{ 4315 return dev->priv_flags & IFF_SUPP_NOFCS; 4316} 4317 4318static inline bool netif_is_l3_master(const struct net_device *dev) 4319{ 4320 return dev->priv_flags & IFF_L3MDEV_MASTER; 4321} 4322 4323static inline bool netif_is_l3_slave(const struct net_device *dev) 4324{ 4325 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4326} 4327 4328static inline bool netif_is_bridge_master(const struct net_device *dev) 4329{ 4330 return dev->priv_flags & IFF_EBRIDGE; 4331} 4332 4333static inline bool netif_is_bridge_port(const struct net_device *dev) 4334{ 4335 return dev->priv_flags & IFF_BRIDGE_PORT; 4336} 4337 4338static inline bool netif_is_ovs_master(const struct net_device *dev) 4339{ 4340 return dev->priv_flags & IFF_OPENVSWITCH; 4341} 4342 4343static inline bool netif_is_ovs_port(const struct net_device *dev) 4344{ 4345 return dev->priv_flags & IFF_OVS_DATAPATH; 4346} 4347 4348static inline bool netif_is_team_master(const struct net_device *dev) 4349{ 4350 return dev->priv_flags & IFF_TEAM; 4351} 4352 4353static inline bool netif_is_team_port(const struct net_device *dev) 4354{ 4355 return dev->priv_flags & IFF_TEAM_PORT; 4356} 4357 4358static inline bool netif_is_lag_master(const struct net_device *dev) 4359{ 4360 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4361} 4362 4363static inline bool netif_is_lag_port(const struct net_device *dev) 4364{ 4365 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4366} 4367 4368static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4369{ 4370 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4371} 4372 4373static inline bool netif_is_failover(const struct net_device *dev) 4374{ 4375 return dev->priv_flags & IFF_FAILOVER; 4376} 4377 4378static inline bool netif_is_failover_slave(const struct net_device *dev) 4379{ 4380 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4381} 4382 4383/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4384static inline void netif_keep_dst(struct net_device *dev) 4385{ 4386 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4387} 4388 4389/* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4390static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4391{ 4392 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4393 return dev->priv_flags & IFF_MACSEC; 4394} 4395 4396extern struct pernet_operations __net_initdata loopback_net_ops; 4397 4398/* Logging, debugging and troubleshooting/diagnostic helpers. */ 4399 4400/* netdev_printk helpers, similar to dev_printk */ 4401 4402static inline const char *netdev_name(const struct net_device *dev) 4403{ 4404 if (!dev->name[0] || strchr(dev->name, '%')) 4405 return "(unnamed net_device)"; 4406 return dev->name; 4407} 4408 4409static inline bool netdev_unregistering(const struct net_device *dev) 4410{ 4411 return dev->reg_state == NETREG_UNREGISTERING; 4412} 4413 4414static inline const char *netdev_reg_state(const struct net_device *dev) 4415{ 4416 switch (dev->reg_state) { 4417 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4418 case NETREG_REGISTERED: return ""; 4419 case NETREG_UNREGISTERING: return " (unregistering)"; 4420 case NETREG_UNREGISTERED: return " (unregistered)"; 4421 case NETREG_RELEASED: return " (released)"; 4422 case NETREG_DUMMY: return " (dummy)"; 4423 } 4424 4425 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4426 return " (unknown)"; 4427} 4428 4429__printf(3, 4) 4430void netdev_printk(const char *level, const struct net_device *dev, 4431 const char *format, ...); 4432__printf(2, 3) 4433void netdev_emerg(const struct net_device *dev, const char *format, ...); 4434__printf(2, 3) 4435void netdev_alert(const struct net_device *dev, const char *format, ...); 4436__printf(2, 3) 4437void netdev_crit(const struct net_device *dev, const char *format, ...); 4438__printf(2, 3) 4439void netdev_err(const struct net_device *dev, const char *format, ...); 4440__printf(2, 3) 4441void netdev_warn(const struct net_device *dev, const char *format, ...); 4442__printf(2, 3) 4443void netdev_notice(const struct net_device *dev, const char *format, ...); 4444__printf(2, 3) 4445void netdev_info(const struct net_device *dev, const char *format, ...); 4446 4447#define netdev_level_once(level, dev, fmt, ...) \ 4448do { \ 4449 static bool __print_once __read_mostly; \ 4450 \ 4451 if (!__print_once) { \ 4452 __print_once = true; \ 4453 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4454 } \ 4455} while (0) 4456 4457#define netdev_emerg_once(dev, fmt, ...) \ 4458 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4459#define netdev_alert_once(dev, fmt, ...) \ 4460 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4461#define netdev_crit_once(dev, fmt, ...) \ 4462 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4463#define netdev_err_once(dev, fmt, ...) \ 4464 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4465#define netdev_warn_once(dev, fmt, ...) \ 4466 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4467#define netdev_notice_once(dev, fmt, ...) \ 4468 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4469#define netdev_info_once(dev, fmt, ...) \ 4470 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4471 4472#define MODULE_ALIAS_NETDEV(device) \ 4473 MODULE_ALIAS("netdev-" device) 4474 4475#if defined(CONFIG_DYNAMIC_DEBUG) 4476#define netdev_dbg(__dev, format, args...) \ 4477do { \ 4478 dynamic_netdev_dbg(__dev, format, ##args); \ 4479} while (0) 4480#elif defined(DEBUG) 4481#define netdev_dbg(__dev, format, args...) \ 4482 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4483#else 4484#define netdev_dbg(__dev, format, args...) \ 4485({ \ 4486 if (0) \ 4487 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4488}) 4489#endif 4490 4491#if defined(VERBOSE_DEBUG) 4492#define netdev_vdbg netdev_dbg 4493#else 4494 4495#define netdev_vdbg(dev, format, args...) \ 4496({ \ 4497 if (0) \ 4498 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4499 0; \ 4500}) 4501#endif 4502 4503/* 4504 * netdev_WARN() acts like dev_printk(), but with the key difference 4505 * of using a WARN/WARN_ON to get the message out, including the 4506 * file/line information and a backtrace. 4507 */ 4508#define netdev_WARN(dev, format, args...) \ 4509 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4510 netdev_reg_state(dev), ##args) 4511 4512#define netdev_WARN_ONCE(dev, format, args...) \ 4513 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4514 netdev_reg_state(dev), ##args) 4515 4516/* netif printk helpers, similar to netdev_printk */ 4517 4518#define netif_printk(priv, type, level, dev, fmt, args...) \ 4519do { \ 4520 if (netif_msg_##type(priv)) \ 4521 netdev_printk(level, (dev), fmt, ##args); \ 4522} while (0) 4523 4524#define netif_level(level, priv, type, dev, fmt, args...) \ 4525do { \ 4526 if (netif_msg_##type(priv)) \ 4527 netdev_##level(dev, fmt, ##args); \ 4528} while (0) 4529 4530#define netif_emerg(priv, type, dev, fmt, args...) \ 4531 netif_level(emerg, priv, type, dev, fmt, ##args) 4532#define netif_alert(priv, type, dev, fmt, args...) \ 4533 netif_level(alert, priv, type, dev, fmt, ##args) 4534#define netif_crit(priv, type, dev, fmt, args...) \ 4535 netif_level(crit, priv, type, dev, fmt, ##args) 4536#define netif_err(priv, type, dev, fmt, args...) \ 4537 netif_level(err, priv, type, dev, fmt, ##args) 4538#define netif_warn(priv, type, dev, fmt, args...) \ 4539 netif_level(warn, priv, type, dev, fmt, ##args) 4540#define netif_notice(priv, type, dev, fmt, args...) \ 4541 netif_level(notice, priv, type, dev, fmt, ##args) 4542#define netif_info(priv, type, dev, fmt, args...) \ 4543 netif_level(info, priv, type, dev, fmt, ##args) 4544 4545#if defined(CONFIG_DYNAMIC_DEBUG) 4546#define netif_dbg(priv, type, netdev, format, args...) \ 4547do { \ 4548 if (netif_msg_##type(priv)) \ 4549 dynamic_netdev_dbg(netdev, format, ##args); \ 4550} while (0) 4551#elif defined(DEBUG) 4552#define netif_dbg(priv, type, dev, format, args...) \ 4553 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4554#else 4555#define netif_dbg(priv, type, dev, format, args...) \ 4556({ \ 4557 if (0) \ 4558 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4559 0; \ 4560}) 4561#endif 4562 4563/* if @cond then downgrade to debug, else print at @level */ 4564#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4565 do { \ 4566 if (cond) \ 4567 netif_dbg(priv, type, netdev, fmt, ##args); \ 4568 else \ 4569 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4570 } while (0) 4571 4572#if defined(VERBOSE_DEBUG) 4573#define netif_vdbg netif_dbg 4574#else 4575#define netif_vdbg(priv, type, dev, format, args...) \ 4576({ \ 4577 if (0) \ 4578 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4579 0; \ 4580}) 4581#endif 4582 4583/* 4584 * The list of packet types we will receive (as opposed to discard) 4585 * and the routines to invoke. 4586 * 4587 * Why 16. Because with 16 the only overlap we get on a hash of the 4588 * low nibble of the protocol value is RARP/SNAP/X.25. 4589 * 4590 * 0800 IP 4591 * 0001 802.3 4592 * 0002 AX.25 4593 * 0004 802.2 4594 * 8035 RARP 4595 * 0005 SNAP 4596 * 0805 X.25 4597 * 0806 ARP 4598 * 8137 IPX 4599 * 0009 Localtalk 4600 * 86DD IPv6 4601 */ 4602#define PTYPE_HASH_SIZE (16) 4603#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4604 4605#endif /* _LINUX_NETDEVICE_H */