Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 *
18 */
19
20#ifndef __MTD_MTD_H__
21#define __MTD_MTD_H__
22
23#include <linux/types.h>
24#include <linux/uio.h>
25#include <linux/notifier.h>
26#include <linux/device.h>
27#include <linux/of.h>
28
29#include <mtd/mtd-abi.h>
30
31#include <asm/div64.h>
32
33#define MTD_FAIL_ADDR_UNKNOWN -1LL
34
35struct mtd_info;
36
37/*
38 * If the erase fails, fail_addr might indicate exactly which block failed. If
39 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
40 * or was not specific to any particular block.
41 */
42struct erase_info {
43 uint64_t addr;
44 uint64_t len;
45 uint64_t fail_addr;
46};
47
48struct mtd_erase_region_info {
49 uint64_t offset; /* At which this region starts, from the beginning of the MTD */
50 uint32_t erasesize; /* For this region */
51 uint32_t numblocks; /* Number of blocks of erasesize in this region */
52 unsigned long *lockmap; /* If keeping bitmap of locks */
53};
54
55/**
56 * struct mtd_oob_ops - oob operation operands
57 * @mode: operation mode
58 *
59 * @len: number of data bytes to write/read
60 *
61 * @retlen: number of data bytes written/read
62 *
63 * @ooblen: number of oob bytes to write/read
64 * @oobretlen: number of oob bytes written/read
65 * @ooboffs: offset of oob data in the oob area (only relevant when
66 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
67 * @datbuf: data buffer - if NULL only oob data are read/written
68 * @oobbuf: oob data buffer
69 *
70 * Note, it is allowed to read more than one OOB area at one go, but not write.
71 * The interface assumes that the OOB write requests program only one page's
72 * OOB area.
73 */
74struct mtd_oob_ops {
75 unsigned int mode;
76 size_t len;
77 size_t retlen;
78 size_t ooblen;
79 size_t oobretlen;
80 uint32_t ooboffs;
81 uint8_t *datbuf;
82 uint8_t *oobbuf;
83};
84
85#define MTD_MAX_OOBFREE_ENTRIES_LARGE 32
86#define MTD_MAX_ECCPOS_ENTRIES_LARGE 640
87/**
88 * struct mtd_oob_region - oob region definition
89 * @offset: region offset
90 * @length: region length
91 *
92 * This structure describes a region of the OOB area, and is used
93 * to retrieve ECC or free bytes sections.
94 * Each section is defined by an offset within the OOB area and a
95 * length.
96 */
97struct mtd_oob_region {
98 u32 offset;
99 u32 length;
100};
101
102/*
103 * struct mtd_ooblayout_ops - NAND OOB layout operations
104 * @ecc: function returning an ECC region in the OOB area.
105 * Should return -ERANGE if %section exceeds the total number of
106 * ECC sections.
107 * @free: function returning a free region in the OOB area.
108 * Should return -ERANGE if %section exceeds the total number of
109 * free sections.
110 */
111struct mtd_ooblayout_ops {
112 int (*ecc)(struct mtd_info *mtd, int section,
113 struct mtd_oob_region *oobecc);
114 int (*free)(struct mtd_info *mtd, int section,
115 struct mtd_oob_region *oobfree);
116};
117
118/**
119 * struct mtd_pairing_info - page pairing information
120 *
121 * @pair: pair id
122 * @group: group id
123 *
124 * The term "pair" is used here, even though TLC NANDs might group pages by 3
125 * (3 bits in a single cell). A pair should regroup all pages that are sharing
126 * the same cell. Pairs are then indexed in ascending order.
127 *
128 * @group is defining the position of a page in a given pair. It can also be
129 * seen as the bit position in the cell: page attached to bit 0 belongs to
130 * group 0, page attached to bit 1 belongs to group 1, etc.
131 *
132 * Example:
133 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme:
134 *
135 * group-0 group-1
136 *
137 * pair-0 page-0 page-4
138 * pair-1 page-1 page-5
139 * pair-2 page-2 page-8
140 * ...
141 * pair-127 page-251 page-255
142 *
143 *
144 * Note that the "group" and "pair" terms were extracted from Samsung and
145 * Hynix datasheets, and might be referenced under other names in other
146 * datasheets (Micron is describing this concept as "shared pages").
147 */
148struct mtd_pairing_info {
149 int pair;
150 int group;
151};
152
153/**
154 * struct mtd_pairing_scheme - page pairing scheme description
155 *
156 * @ngroups: number of groups. Should be related to the number of bits
157 * per cell.
158 * @get_info: converts a write-unit (page number within an erase block) into
159 * mtd_pairing information (pair + group). This function should
160 * fill the info parameter based on the wunit index or return
161 * -EINVAL if the wunit parameter is invalid.
162 * @get_wunit: converts pairing information into a write-unit (page) number.
163 * This function should return the wunit index pointed by the
164 * pairing information described in the info argument. It should
165 * return -EINVAL, if there's no wunit corresponding to the
166 * passed pairing information.
167 *
168 * See mtd_pairing_info documentation for a detailed explanation of the
169 * pair and group concepts.
170 *
171 * The mtd_pairing_scheme structure provides a generic solution to represent
172 * NAND page pairing scheme. Instead of exposing two big tables to do the
173 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to
174 * implement the ->get_info() and ->get_wunit() functions.
175 *
176 * MTD users will then be able to query these information by using the
177 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers.
178 *
179 * @ngroups is here to help MTD users iterating over all the pages in a
180 * given pair. This value can be retrieved by MTD users using the
181 * mtd_pairing_groups() helper.
182 *
183 * Examples are given in the mtd_pairing_info_to_wunit() and
184 * mtd_wunit_to_pairing_info() documentation.
185 */
186struct mtd_pairing_scheme {
187 int ngroups;
188 int (*get_info)(struct mtd_info *mtd, int wunit,
189 struct mtd_pairing_info *info);
190 int (*get_wunit)(struct mtd_info *mtd,
191 const struct mtd_pairing_info *info);
192};
193
194struct module; /* only needed for owner field in mtd_info */
195
196/**
197 * struct mtd_debug_info - debugging information for an MTD device.
198 *
199 * @dfs_dir: direntry object of the MTD device debugfs directory
200 */
201struct mtd_debug_info {
202 struct dentry *dfs_dir;
203};
204
205struct mtd_info {
206 u_char type;
207 uint32_t flags;
208 uint64_t size; // Total size of the MTD
209
210 /* "Major" erase size for the device. Naïve users may take this
211 * to be the only erase size available, or may use the more detailed
212 * information below if they desire
213 */
214 uint32_t erasesize;
215 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even
216 * though individual bits can be cleared), in case of NAND flash it is
217 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
218 * it is of ECC block size, etc. It is illegal to have writesize = 0.
219 * Any driver registering a struct mtd_info must ensure a writesize of
220 * 1 or larger.
221 */
222 uint32_t writesize;
223
224 /*
225 * Size of the write buffer used by the MTD. MTD devices having a write
226 * buffer can write multiple writesize chunks at a time. E.g. while
227 * writing 4 * writesize bytes to a device with 2 * writesize bytes
228 * buffer the MTD driver can (but doesn't have to) do 2 writesize
229 * operations, but not 4. Currently, all NANDs have writebufsize
230 * equivalent to writesize (NAND page size). Some NOR flashes do have
231 * writebufsize greater than writesize.
232 */
233 uint32_t writebufsize;
234
235 uint32_t oobsize; // Amount of OOB data per block (e.g. 16)
236 uint32_t oobavail; // Available OOB bytes per block
237
238 /*
239 * If erasesize is a power of 2 then the shift is stored in
240 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
241 */
242 unsigned int erasesize_shift;
243 unsigned int writesize_shift;
244 /* Masks based on erasesize_shift and writesize_shift */
245 unsigned int erasesize_mask;
246 unsigned int writesize_mask;
247
248 /*
249 * read ops return -EUCLEAN if max number of bitflips corrected on any
250 * one region comprising an ecc step equals or exceeds this value.
251 * Settable by driver, else defaults to ecc_strength. User can override
252 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed;
253 * see Documentation/ABI/testing/sysfs-class-mtd for more detail.
254 */
255 unsigned int bitflip_threshold;
256
257 /* Kernel-only stuff starts here. */
258 const char *name;
259 int index;
260
261 /* OOB layout description */
262 const struct mtd_ooblayout_ops *ooblayout;
263
264 /* NAND pairing scheme, only provided for MLC/TLC NANDs */
265 const struct mtd_pairing_scheme *pairing;
266
267 /* the ecc step size. */
268 unsigned int ecc_step_size;
269
270 /* max number of correctible bit errors per ecc step */
271 unsigned int ecc_strength;
272
273 /* Data for variable erase regions. If numeraseregions is zero,
274 * it means that the whole device has erasesize as given above.
275 */
276 int numeraseregions;
277 struct mtd_erase_region_info *eraseregions;
278
279 /*
280 * Do not call via these pointers, use corresponding mtd_*()
281 * wrappers instead.
282 */
283 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr);
284 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len,
285 size_t *retlen, void **virt, resource_size_t *phys);
286 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
287 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len,
288 size_t *retlen, u_char *buf);
289 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len,
290 size_t *retlen, const u_char *buf);
291 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
292 size_t *retlen, const u_char *buf);
293 int (*_read_oob) (struct mtd_info *mtd, loff_t from,
294 struct mtd_oob_ops *ops);
295 int (*_write_oob) (struct mtd_info *mtd, loff_t to,
296 struct mtd_oob_ops *ops);
297 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len,
298 size_t *retlen, struct otp_info *buf);
299 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
300 size_t len, size_t *retlen, u_char *buf);
301 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len,
302 size_t *retlen, struct otp_info *buf);
303 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
304 size_t len, size_t *retlen, u_char *buf);
305 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to,
306 size_t len, size_t *retlen, u_char *buf);
307 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
308 size_t len);
309 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs,
310 unsigned long count, loff_t to, size_t *retlen);
311 void (*_sync) (struct mtd_info *mtd);
312 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
313 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
314 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
315 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs);
316 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs);
317 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs);
318 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len);
319 int (*_suspend) (struct mtd_info *mtd);
320 void (*_resume) (struct mtd_info *mtd);
321 void (*_reboot) (struct mtd_info *mtd);
322 /*
323 * If the driver is something smart, like UBI, it may need to maintain
324 * its own reference counting. The below functions are only for driver.
325 */
326 int (*_get_device) (struct mtd_info *mtd);
327 void (*_put_device) (struct mtd_info *mtd);
328
329 struct notifier_block reboot_notifier; /* default mode before reboot */
330
331 /* ECC status information */
332 struct mtd_ecc_stats ecc_stats;
333 /* Subpage shift (NAND) */
334 int subpage_sft;
335
336 void *priv;
337
338 struct module *owner;
339 struct device dev;
340 int usecount;
341 struct mtd_debug_info dbg;
342};
343
344int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
345 struct mtd_oob_region *oobecc);
346int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
347 int *section,
348 struct mtd_oob_region *oobregion);
349int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
350 const u8 *oobbuf, int start, int nbytes);
351int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
352 u8 *oobbuf, int start, int nbytes);
353int mtd_ooblayout_free(struct mtd_info *mtd, int section,
354 struct mtd_oob_region *oobfree);
355int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
356 const u8 *oobbuf, int start, int nbytes);
357int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
358 u8 *oobbuf, int start, int nbytes);
359int mtd_ooblayout_count_freebytes(struct mtd_info *mtd);
360int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd);
361
362static inline void mtd_set_ooblayout(struct mtd_info *mtd,
363 const struct mtd_ooblayout_ops *ooblayout)
364{
365 mtd->ooblayout = ooblayout;
366}
367
368static inline void mtd_set_pairing_scheme(struct mtd_info *mtd,
369 const struct mtd_pairing_scheme *pairing)
370{
371 mtd->pairing = pairing;
372}
373
374static inline void mtd_set_of_node(struct mtd_info *mtd,
375 struct device_node *np)
376{
377 mtd->dev.of_node = np;
378 if (!mtd->name)
379 of_property_read_string(np, "label", &mtd->name);
380}
381
382static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd)
383{
384 return dev_of_node(&mtd->dev);
385}
386
387static inline int mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
388{
389 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize;
390}
391
392static inline int mtd_max_bad_blocks(struct mtd_info *mtd,
393 loff_t ofs, size_t len)
394{
395 if (!mtd->_max_bad_blocks)
396 return -ENOTSUPP;
397
398 if (mtd->size < (len + ofs) || ofs < 0)
399 return -EINVAL;
400
401 return mtd->_max_bad_blocks(mtd, ofs, len);
402}
403
404int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
405 struct mtd_pairing_info *info);
406int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
407 const struct mtd_pairing_info *info);
408int mtd_pairing_groups(struct mtd_info *mtd);
409int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);
410int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
411 void **virt, resource_size_t *phys);
412int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
413unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
414 unsigned long offset, unsigned long flags);
415int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
416 u_char *buf);
417int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
418 const u_char *buf);
419int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
420 const u_char *buf);
421
422int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops);
423int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops);
424
425int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
426 struct otp_info *buf);
427int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
428 size_t *retlen, u_char *buf);
429int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
430 struct otp_info *buf);
431int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
432 size_t *retlen, u_char *buf);
433int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
434 size_t *retlen, u_char *buf);
435int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
436
437int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
438 unsigned long count, loff_t to, size_t *retlen);
439
440static inline void mtd_sync(struct mtd_info *mtd)
441{
442 if (mtd->_sync)
443 mtd->_sync(mtd);
444}
445
446int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
447int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
448int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
449int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs);
450int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);
451int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
452
453static inline int mtd_suspend(struct mtd_info *mtd)
454{
455 return mtd->_suspend ? mtd->_suspend(mtd) : 0;
456}
457
458static inline void mtd_resume(struct mtd_info *mtd)
459{
460 if (mtd->_resume)
461 mtd->_resume(mtd);
462}
463
464static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
465{
466 if (mtd->erasesize_shift)
467 return sz >> mtd->erasesize_shift;
468 do_div(sz, mtd->erasesize);
469 return sz;
470}
471
472static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
473{
474 if (mtd->erasesize_shift)
475 return sz & mtd->erasesize_mask;
476 return do_div(sz, mtd->erasesize);
477}
478
479/**
480 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock
481 * boundaries.
482 * @mtd: the MTD device this erase request applies on
483 * @req: the erase request to adjust
484 *
485 * This function will adjust @req->addr and @req->len to align them on
486 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0.
487 */
488static inline void mtd_align_erase_req(struct mtd_info *mtd,
489 struct erase_info *req)
490{
491 u32 mod;
492
493 if (WARN_ON(!mtd->erasesize))
494 return;
495
496 mod = mtd_mod_by_eb(req->addr, mtd);
497 if (mod) {
498 req->addr -= mod;
499 req->len += mod;
500 }
501
502 mod = mtd_mod_by_eb(req->addr + req->len, mtd);
503 if (mod)
504 req->len += mtd->erasesize - mod;
505}
506
507static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
508{
509 if (mtd->writesize_shift)
510 return sz >> mtd->writesize_shift;
511 do_div(sz, mtd->writesize);
512 return sz;
513}
514
515static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
516{
517 if (mtd->writesize_shift)
518 return sz & mtd->writesize_mask;
519 return do_div(sz, mtd->writesize);
520}
521
522static inline int mtd_wunit_per_eb(struct mtd_info *mtd)
523{
524 return mtd->erasesize / mtd->writesize;
525}
526
527static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs)
528{
529 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd);
530}
531
532static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base,
533 int wunit)
534{
535 return base + (wunit * mtd->writesize);
536}
537
538
539static inline int mtd_has_oob(const struct mtd_info *mtd)
540{
541 return mtd->_read_oob && mtd->_write_oob;
542}
543
544static inline int mtd_type_is_nand(const struct mtd_info *mtd)
545{
546 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH;
547}
548
549static inline int mtd_can_have_bb(const struct mtd_info *mtd)
550{
551 return !!mtd->_block_isbad;
552}
553
554 /* Kernel-side ioctl definitions */
555
556struct mtd_partition;
557struct mtd_part_parser_data;
558
559extern int mtd_device_parse_register(struct mtd_info *mtd,
560 const char * const *part_probe_types,
561 struct mtd_part_parser_data *parser_data,
562 const struct mtd_partition *defparts,
563 int defnr_parts);
564#define mtd_device_register(master, parts, nr_parts) \
565 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
566extern int mtd_device_unregister(struct mtd_info *master);
567extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
568extern int __get_mtd_device(struct mtd_info *mtd);
569extern void __put_mtd_device(struct mtd_info *mtd);
570extern struct mtd_info *get_mtd_device_nm(const char *name);
571extern void put_mtd_device(struct mtd_info *mtd);
572
573
574struct mtd_notifier {
575 void (*add)(struct mtd_info *mtd);
576 void (*remove)(struct mtd_info *mtd);
577 struct list_head list;
578};
579
580
581extern void register_mtd_user (struct mtd_notifier *new);
582extern int unregister_mtd_user (struct mtd_notifier *old);
583void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
584
585static inline int mtd_is_bitflip(int err) {
586 return err == -EUCLEAN;
587}
588
589static inline int mtd_is_eccerr(int err) {
590 return err == -EBADMSG;
591}
592
593static inline int mtd_is_bitflip_or_eccerr(int err) {
594 return mtd_is_bitflip(err) || mtd_is_eccerr(err);
595}
596
597unsigned mtd_mmap_capabilities(struct mtd_info *mtd);
598
599#endif /* __MTD_MTD_H__ */