at v4.18 31 kB view raw
1/* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20#ifndef _LINUX_MEMCONTROL_H 21#define _LINUX_MEMCONTROL_H 22#include <linux/cgroup.h> 23#include <linux/vm_event_item.h> 24#include <linux/hardirq.h> 25#include <linux/jump_label.h> 26#include <linux/page_counter.h> 27#include <linux/vmpressure.h> 28#include <linux/eventfd.h> 29#include <linux/mm.h> 30#include <linux/vmstat.h> 31#include <linux/writeback.h> 32#include <linux/page-flags.h> 33 34struct mem_cgroup; 35struct page; 36struct mm_struct; 37struct kmem_cache; 38 39/* Cgroup-specific page state, on top of universal node page state */ 40enum memcg_stat_item { 41 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 42 MEMCG_RSS, 43 MEMCG_RSS_HUGE, 44 MEMCG_SWAP, 45 MEMCG_SOCK, 46 /* XXX: why are these zone and not node counters? */ 47 MEMCG_KERNEL_STACK_KB, 48 MEMCG_NR_STAT, 49}; 50 51enum memcg_memory_event { 52 MEMCG_LOW, 53 MEMCG_HIGH, 54 MEMCG_MAX, 55 MEMCG_OOM, 56 MEMCG_OOM_KILL, 57 MEMCG_SWAP_MAX, 58 MEMCG_SWAP_FAIL, 59 MEMCG_NR_MEMORY_EVENTS, 60}; 61 62enum mem_cgroup_protection { 63 MEMCG_PROT_NONE, 64 MEMCG_PROT_LOW, 65 MEMCG_PROT_MIN, 66}; 67 68struct mem_cgroup_reclaim_cookie { 69 pg_data_t *pgdat; 70 int priority; 71 unsigned int generation; 72}; 73 74#ifdef CONFIG_MEMCG 75 76#define MEM_CGROUP_ID_SHIFT 16 77#define MEM_CGROUP_ID_MAX USHRT_MAX 78 79struct mem_cgroup_id { 80 int id; 81 atomic_t ref; 82}; 83 84/* 85 * Per memcg event counter is incremented at every pagein/pageout. With THP, 86 * it will be incremated by the number of pages. This counter is used for 87 * for trigger some periodic events. This is straightforward and better 88 * than using jiffies etc. to handle periodic memcg event. 89 */ 90enum mem_cgroup_events_target { 91 MEM_CGROUP_TARGET_THRESH, 92 MEM_CGROUP_TARGET_SOFTLIMIT, 93 MEM_CGROUP_TARGET_NUMAINFO, 94 MEM_CGROUP_NTARGETS, 95}; 96 97struct mem_cgroup_stat_cpu { 98 long count[MEMCG_NR_STAT]; 99 unsigned long events[NR_VM_EVENT_ITEMS]; 100 unsigned long nr_page_events; 101 unsigned long targets[MEM_CGROUP_NTARGETS]; 102}; 103 104struct mem_cgroup_reclaim_iter { 105 struct mem_cgroup *position; 106 /* scan generation, increased every round-trip */ 107 unsigned int generation; 108}; 109 110struct lruvec_stat { 111 long count[NR_VM_NODE_STAT_ITEMS]; 112}; 113 114/* 115 * per-zone information in memory controller. 116 */ 117struct mem_cgroup_per_node { 118 struct lruvec lruvec; 119 120 struct lruvec_stat __percpu *lruvec_stat_cpu; 121 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 122 123 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 124 125 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 126 127 struct rb_node tree_node; /* RB tree node */ 128 unsigned long usage_in_excess;/* Set to the value by which */ 129 /* the soft limit is exceeded*/ 130 bool on_tree; 131 bool congested; /* memcg has many dirty pages */ 132 /* backed by a congested BDI */ 133 134 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 135 /* use container_of */ 136}; 137 138struct mem_cgroup_threshold { 139 struct eventfd_ctx *eventfd; 140 unsigned long threshold; 141}; 142 143/* For threshold */ 144struct mem_cgroup_threshold_ary { 145 /* An array index points to threshold just below or equal to usage. */ 146 int current_threshold; 147 /* Size of entries[] */ 148 unsigned int size; 149 /* Array of thresholds */ 150 struct mem_cgroup_threshold entries[0]; 151}; 152 153struct mem_cgroup_thresholds { 154 /* Primary thresholds array */ 155 struct mem_cgroup_threshold_ary *primary; 156 /* 157 * Spare threshold array. 158 * This is needed to make mem_cgroup_unregister_event() "never fail". 159 * It must be able to store at least primary->size - 1 entries. 160 */ 161 struct mem_cgroup_threshold_ary *spare; 162}; 163 164enum memcg_kmem_state { 165 KMEM_NONE, 166 KMEM_ALLOCATED, 167 KMEM_ONLINE, 168}; 169 170#if defined(CONFIG_SMP) 171struct memcg_padding { 172 char x[0]; 173} ____cacheline_internodealigned_in_smp; 174#define MEMCG_PADDING(name) struct memcg_padding name; 175#else 176#define MEMCG_PADDING(name) 177#endif 178 179/* 180 * The memory controller data structure. The memory controller controls both 181 * page cache and RSS per cgroup. We would eventually like to provide 182 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 183 * to help the administrator determine what knobs to tune. 184 */ 185struct mem_cgroup { 186 struct cgroup_subsys_state css; 187 188 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 189 struct mem_cgroup_id id; 190 191 /* Accounted resources */ 192 struct page_counter memory; 193 struct page_counter swap; 194 195 /* Legacy consumer-oriented counters */ 196 struct page_counter memsw; 197 struct page_counter kmem; 198 struct page_counter tcpmem; 199 200 /* Upper bound of normal memory consumption range */ 201 unsigned long high; 202 203 /* Range enforcement for interrupt charges */ 204 struct work_struct high_work; 205 206 unsigned long soft_limit; 207 208 /* vmpressure notifications */ 209 struct vmpressure vmpressure; 210 211 /* 212 * Should the accounting and control be hierarchical, per subtree? 213 */ 214 bool use_hierarchy; 215 216 /* protected by memcg_oom_lock */ 217 bool oom_lock; 218 int under_oom; 219 220 int swappiness; 221 /* OOM-Killer disable */ 222 int oom_kill_disable; 223 224 /* memory.events */ 225 struct cgroup_file events_file; 226 227 /* handle for "memory.swap.events" */ 228 struct cgroup_file swap_events_file; 229 230 /* protect arrays of thresholds */ 231 struct mutex thresholds_lock; 232 233 /* thresholds for memory usage. RCU-protected */ 234 struct mem_cgroup_thresholds thresholds; 235 236 /* thresholds for mem+swap usage. RCU-protected */ 237 struct mem_cgroup_thresholds memsw_thresholds; 238 239 /* For oom notifier event fd */ 240 struct list_head oom_notify; 241 242 /* 243 * Should we move charges of a task when a task is moved into this 244 * mem_cgroup ? And what type of charges should we move ? 245 */ 246 unsigned long move_charge_at_immigrate; 247 /* taken only while moving_account > 0 */ 248 spinlock_t move_lock; 249 unsigned long move_lock_flags; 250 251 MEMCG_PADDING(_pad1_); 252 253 /* 254 * set > 0 if pages under this cgroup are moving to other cgroup. 255 */ 256 atomic_t moving_account; 257 struct task_struct *move_lock_task; 258 259 /* memory.stat */ 260 struct mem_cgroup_stat_cpu __percpu *stat_cpu; 261 262 MEMCG_PADDING(_pad2_); 263 264 atomic_long_t stat[MEMCG_NR_STAT]; 265 atomic_long_t events[NR_VM_EVENT_ITEMS]; 266 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 267 268 unsigned long socket_pressure; 269 270 /* Legacy tcp memory accounting */ 271 bool tcpmem_active; 272 int tcpmem_pressure; 273 274#ifndef CONFIG_SLOB 275 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 276 int kmemcg_id; 277 enum memcg_kmem_state kmem_state; 278 struct list_head kmem_caches; 279#endif 280 281 int last_scanned_node; 282#if MAX_NUMNODES > 1 283 nodemask_t scan_nodes; 284 atomic_t numainfo_events; 285 atomic_t numainfo_updating; 286#endif 287 288#ifdef CONFIG_CGROUP_WRITEBACK 289 struct list_head cgwb_list; 290 struct wb_domain cgwb_domain; 291#endif 292 293 /* List of events which userspace want to receive */ 294 struct list_head event_list; 295 spinlock_t event_list_lock; 296 297 struct mem_cgroup_per_node *nodeinfo[0]; 298 /* WARNING: nodeinfo must be the last member here */ 299}; 300 301/* 302 * size of first charge trial. "32" comes from vmscan.c's magic value. 303 * TODO: maybe necessary to use big numbers in big irons. 304 */ 305#define MEMCG_CHARGE_BATCH 32U 306 307extern struct mem_cgroup *root_mem_cgroup; 308 309static inline bool mem_cgroup_disabled(void) 310{ 311 return !cgroup_subsys_enabled(memory_cgrp_subsys); 312} 313 314enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 315 struct mem_cgroup *memcg); 316 317int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 318 gfp_t gfp_mask, struct mem_cgroup **memcgp, 319 bool compound); 320void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 321 bool lrucare, bool compound); 322void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 323 bool compound); 324void mem_cgroup_uncharge(struct page *page); 325void mem_cgroup_uncharge_list(struct list_head *page_list); 326 327void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 328 329static struct mem_cgroup_per_node * 330mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 331{ 332 return memcg->nodeinfo[nid]; 333} 334 335/** 336 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone 337 * @node: node of the wanted lruvec 338 * @memcg: memcg of the wanted lruvec 339 * 340 * Returns the lru list vector holding pages for a given @node or a given 341 * @memcg and @zone. This can be the node lruvec, if the memory controller 342 * is disabled. 343 */ 344static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 345 struct mem_cgroup *memcg) 346{ 347 struct mem_cgroup_per_node *mz; 348 struct lruvec *lruvec; 349 350 if (mem_cgroup_disabled()) { 351 lruvec = node_lruvec(pgdat); 352 goto out; 353 } 354 355 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 356 lruvec = &mz->lruvec; 357out: 358 /* 359 * Since a node can be onlined after the mem_cgroup was created, 360 * we have to be prepared to initialize lruvec->pgdat here; 361 * and if offlined then reonlined, we need to reinitialize it. 362 */ 363 if (unlikely(lruvec->pgdat != pgdat)) 364 lruvec->pgdat = pgdat; 365 return lruvec; 366} 367 368struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 369 370bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 371struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 372 373static inline 374struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 375 return css ? container_of(css, struct mem_cgroup, css) : NULL; 376} 377 378#define mem_cgroup_from_counter(counter, member) \ 379 container_of(counter, struct mem_cgroup, member) 380 381struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 382 struct mem_cgroup *, 383 struct mem_cgroup_reclaim_cookie *); 384void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 385int mem_cgroup_scan_tasks(struct mem_cgroup *, 386 int (*)(struct task_struct *, void *), void *); 387 388static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 389{ 390 if (mem_cgroup_disabled()) 391 return 0; 392 393 return memcg->id.id; 394} 395struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 396 397static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 398{ 399 struct mem_cgroup_per_node *mz; 400 401 if (mem_cgroup_disabled()) 402 return NULL; 403 404 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 405 return mz->memcg; 406} 407 408/** 409 * parent_mem_cgroup - find the accounting parent of a memcg 410 * @memcg: memcg whose parent to find 411 * 412 * Returns the parent memcg, or NULL if this is the root or the memory 413 * controller is in legacy no-hierarchy mode. 414 */ 415static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 416{ 417 if (!memcg->memory.parent) 418 return NULL; 419 return mem_cgroup_from_counter(memcg->memory.parent, memory); 420} 421 422static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 423 struct mem_cgroup *root) 424{ 425 if (root == memcg) 426 return true; 427 if (!root->use_hierarchy) 428 return false; 429 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 430} 431 432static inline bool mm_match_cgroup(struct mm_struct *mm, 433 struct mem_cgroup *memcg) 434{ 435 struct mem_cgroup *task_memcg; 436 bool match = false; 437 438 rcu_read_lock(); 439 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 440 if (task_memcg) 441 match = mem_cgroup_is_descendant(task_memcg, memcg); 442 rcu_read_unlock(); 443 return match; 444} 445 446struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 447ino_t page_cgroup_ino(struct page *page); 448 449static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 450{ 451 if (mem_cgroup_disabled()) 452 return true; 453 return !!(memcg->css.flags & CSS_ONLINE); 454} 455 456/* 457 * For memory reclaim. 458 */ 459int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 460 461void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 462 int zid, int nr_pages); 463 464unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 465 int nid, unsigned int lru_mask); 466 467static inline 468unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 469{ 470 struct mem_cgroup_per_node *mz; 471 unsigned long nr_pages = 0; 472 int zid; 473 474 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 475 for (zid = 0; zid < MAX_NR_ZONES; zid++) 476 nr_pages += mz->lru_zone_size[zid][lru]; 477 return nr_pages; 478} 479 480static inline 481unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 482 enum lru_list lru, int zone_idx) 483{ 484 struct mem_cgroup_per_node *mz; 485 486 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 487 return mz->lru_zone_size[zone_idx][lru]; 488} 489 490void mem_cgroup_handle_over_high(void); 491 492unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 493 494void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 495 struct task_struct *p); 496 497static inline void mem_cgroup_oom_enable(void) 498{ 499 WARN_ON(current->memcg_may_oom); 500 current->memcg_may_oom = 1; 501} 502 503static inline void mem_cgroup_oom_disable(void) 504{ 505 WARN_ON(!current->memcg_may_oom); 506 current->memcg_may_oom = 0; 507} 508 509static inline bool task_in_memcg_oom(struct task_struct *p) 510{ 511 return p->memcg_in_oom; 512} 513 514bool mem_cgroup_oom_synchronize(bool wait); 515 516#ifdef CONFIG_MEMCG_SWAP 517extern int do_swap_account; 518#endif 519 520struct mem_cgroup *lock_page_memcg(struct page *page); 521void __unlock_page_memcg(struct mem_cgroup *memcg); 522void unlock_page_memcg(struct page *page); 523 524/* idx can be of type enum memcg_stat_item or node_stat_item */ 525static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 526 int idx) 527{ 528 long x = atomic_long_read(&memcg->stat[idx]); 529#ifdef CONFIG_SMP 530 if (x < 0) 531 x = 0; 532#endif 533 return x; 534} 535 536/* idx can be of type enum memcg_stat_item or node_stat_item */ 537static inline void __mod_memcg_state(struct mem_cgroup *memcg, 538 int idx, int val) 539{ 540 long x; 541 542 if (mem_cgroup_disabled()) 543 return; 544 545 x = val + __this_cpu_read(memcg->stat_cpu->count[idx]); 546 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 547 atomic_long_add(x, &memcg->stat[idx]); 548 x = 0; 549 } 550 __this_cpu_write(memcg->stat_cpu->count[idx], x); 551} 552 553/* idx can be of type enum memcg_stat_item or node_stat_item */ 554static inline void mod_memcg_state(struct mem_cgroup *memcg, 555 int idx, int val) 556{ 557 unsigned long flags; 558 559 local_irq_save(flags); 560 __mod_memcg_state(memcg, idx, val); 561 local_irq_restore(flags); 562} 563 564/** 565 * mod_memcg_page_state - update page state statistics 566 * @page: the page 567 * @idx: page state item to account 568 * @val: number of pages (positive or negative) 569 * 570 * The @page must be locked or the caller must use lock_page_memcg() 571 * to prevent double accounting when the page is concurrently being 572 * moved to another memcg: 573 * 574 * lock_page(page) or lock_page_memcg(page) 575 * if (TestClearPageState(page)) 576 * mod_memcg_page_state(page, state, -1); 577 * unlock_page(page) or unlock_page_memcg(page) 578 * 579 * Kernel pages are an exception to this, since they'll never move. 580 */ 581static inline void __mod_memcg_page_state(struct page *page, 582 int idx, int val) 583{ 584 if (page->mem_cgroup) 585 __mod_memcg_state(page->mem_cgroup, idx, val); 586} 587 588static inline void mod_memcg_page_state(struct page *page, 589 int idx, int val) 590{ 591 if (page->mem_cgroup) 592 mod_memcg_state(page->mem_cgroup, idx, val); 593} 594 595static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 596 enum node_stat_item idx) 597{ 598 struct mem_cgroup_per_node *pn; 599 long x; 600 601 if (mem_cgroup_disabled()) 602 return node_page_state(lruvec_pgdat(lruvec), idx); 603 604 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 605 x = atomic_long_read(&pn->lruvec_stat[idx]); 606#ifdef CONFIG_SMP 607 if (x < 0) 608 x = 0; 609#endif 610 return x; 611} 612 613static inline void __mod_lruvec_state(struct lruvec *lruvec, 614 enum node_stat_item idx, int val) 615{ 616 struct mem_cgroup_per_node *pn; 617 long x; 618 619 /* Update node */ 620 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 621 622 if (mem_cgroup_disabled()) 623 return; 624 625 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 626 627 /* Update memcg */ 628 __mod_memcg_state(pn->memcg, idx, val); 629 630 /* Update lruvec */ 631 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 632 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 633 atomic_long_add(x, &pn->lruvec_stat[idx]); 634 x = 0; 635 } 636 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 637} 638 639static inline void mod_lruvec_state(struct lruvec *lruvec, 640 enum node_stat_item idx, int val) 641{ 642 unsigned long flags; 643 644 local_irq_save(flags); 645 __mod_lruvec_state(lruvec, idx, val); 646 local_irq_restore(flags); 647} 648 649static inline void __mod_lruvec_page_state(struct page *page, 650 enum node_stat_item idx, int val) 651{ 652 pg_data_t *pgdat = page_pgdat(page); 653 struct lruvec *lruvec; 654 655 /* Untracked pages have no memcg, no lruvec. Update only the node */ 656 if (!page->mem_cgroup) { 657 __mod_node_page_state(pgdat, idx, val); 658 return; 659 } 660 661 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup); 662 __mod_lruvec_state(lruvec, idx, val); 663} 664 665static inline void mod_lruvec_page_state(struct page *page, 666 enum node_stat_item idx, int val) 667{ 668 unsigned long flags; 669 670 local_irq_save(flags); 671 __mod_lruvec_page_state(page, idx, val); 672 local_irq_restore(flags); 673} 674 675unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 676 gfp_t gfp_mask, 677 unsigned long *total_scanned); 678 679static inline void __count_memcg_events(struct mem_cgroup *memcg, 680 enum vm_event_item idx, 681 unsigned long count) 682{ 683 unsigned long x; 684 685 if (mem_cgroup_disabled()) 686 return; 687 688 x = count + __this_cpu_read(memcg->stat_cpu->events[idx]); 689 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 690 atomic_long_add(x, &memcg->events[idx]); 691 x = 0; 692 } 693 __this_cpu_write(memcg->stat_cpu->events[idx], x); 694} 695 696static inline void count_memcg_events(struct mem_cgroup *memcg, 697 enum vm_event_item idx, 698 unsigned long count) 699{ 700 unsigned long flags; 701 702 local_irq_save(flags); 703 __count_memcg_events(memcg, idx, count); 704 local_irq_restore(flags); 705} 706 707static inline void count_memcg_page_event(struct page *page, 708 enum vm_event_item idx) 709{ 710 if (page->mem_cgroup) 711 count_memcg_events(page->mem_cgroup, idx, 1); 712} 713 714static inline void count_memcg_event_mm(struct mm_struct *mm, 715 enum vm_event_item idx) 716{ 717 struct mem_cgroup *memcg; 718 719 if (mem_cgroup_disabled()) 720 return; 721 722 rcu_read_lock(); 723 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 724 if (likely(memcg)) 725 count_memcg_events(memcg, idx, 1); 726 rcu_read_unlock(); 727} 728 729static inline void memcg_memory_event(struct mem_cgroup *memcg, 730 enum memcg_memory_event event) 731{ 732 atomic_long_inc(&memcg->memory_events[event]); 733 cgroup_file_notify(&memcg->events_file); 734} 735 736static inline void memcg_memory_event_mm(struct mm_struct *mm, 737 enum memcg_memory_event event) 738{ 739 struct mem_cgroup *memcg; 740 741 if (mem_cgroup_disabled()) 742 return; 743 744 rcu_read_lock(); 745 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 746 if (likely(memcg)) 747 memcg_memory_event(memcg, event); 748 rcu_read_unlock(); 749} 750 751#ifdef CONFIG_TRANSPARENT_HUGEPAGE 752void mem_cgroup_split_huge_fixup(struct page *head); 753#endif 754 755#else /* CONFIG_MEMCG */ 756 757#define MEM_CGROUP_ID_SHIFT 0 758#define MEM_CGROUP_ID_MAX 0 759 760struct mem_cgroup; 761 762static inline bool mem_cgroup_disabled(void) 763{ 764 return true; 765} 766 767static inline void memcg_memory_event(struct mem_cgroup *memcg, 768 enum memcg_memory_event event) 769{ 770} 771 772static inline void memcg_memory_event_mm(struct mm_struct *mm, 773 enum memcg_memory_event event) 774{ 775} 776 777static inline enum mem_cgroup_protection mem_cgroup_protected( 778 struct mem_cgroup *root, struct mem_cgroup *memcg) 779{ 780 return MEMCG_PROT_NONE; 781} 782 783static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 784 gfp_t gfp_mask, 785 struct mem_cgroup **memcgp, 786 bool compound) 787{ 788 *memcgp = NULL; 789 return 0; 790} 791 792static inline void mem_cgroup_commit_charge(struct page *page, 793 struct mem_cgroup *memcg, 794 bool lrucare, bool compound) 795{ 796} 797 798static inline void mem_cgroup_cancel_charge(struct page *page, 799 struct mem_cgroup *memcg, 800 bool compound) 801{ 802} 803 804static inline void mem_cgroup_uncharge(struct page *page) 805{ 806} 807 808static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 809{ 810} 811 812static inline void mem_cgroup_migrate(struct page *old, struct page *new) 813{ 814} 815 816static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 817 struct mem_cgroup *memcg) 818{ 819 return node_lruvec(pgdat); 820} 821 822static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 823 struct pglist_data *pgdat) 824{ 825 return &pgdat->lruvec; 826} 827 828static inline bool mm_match_cgroup(struct mm_struct *mm, 829 struct mem_cgroup *memcg) 830{ 831 return true; 832} 833 834static inline bool task_in_mem_cgroup(struct task_struct *task, 835 const struct mem_cgroup *memcg) 836{ 837 return true; 838} 839 840static inline struct mem_cgroup * 841mem_cgroup_iter(struct mem_cgroup *root, 842 struct mem_cgroup *prev, 843 struct mem_cgroup_reclaim_cookie *reclaim) 844{ 845 return NULL; 846} 847 848static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 849 struct mem_cgroup *prev) 850{ 851} 852 853static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 854 int (*fn)(struct task_struct *, void *), void *arg) 855{ 856 return 0; 857} 858 859static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 860{ 861 return 0; 862} 863 864static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 865{ 866 WARN_ON_ONCE(id); 867 /* XXX: This should always return root_mem_cgroup */ 868 return NULL; 869} 870 871static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 872{ 873 return NULL; 874} 875 876static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 877{ 878 return true; 879} 880 881static inline unsigned long 882mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 883{ 884 return 0; 885} 886static inline 887unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 888 enum lru_list lru, int zone_idx) 889{ 890 return 0; 891} 892 893static inline unsigned long 894mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 895 int nid, unsigned int lru_mask) 896{ 897 return 0; 898} 899 900static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 901{ 902 return 0; 903} 904 905static inline void 906mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 907{ 908} 909 910static inline struct mem_cgroup *lock_page_memcg(struct page *page) 911{ 912 return NULL; 913} 914 915static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 916{ 917} 918 919static inline void unlock_page_memcg(struct page *page) 920{ 921} 922 923static inline void mem_cgroup_handle_over_high(void) 924{ 925} 926 927static inline void mem_cgroup_oom_enable(void) 928{ 929} 930 931static inline void mem_cgroup_oom_disable(void) 932{ 933} 934 935static inline bool task_in_memcg_oom(struct task_struct *p) 936{ 937 return false; 938} 939 940static inline bool mem_cgroup_oom_synchronize(bool wait) 941{ 942 return false; 943} 944 945static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 946 int idx) 947{ 948 return 0; 949} 950 951static inline void __mod_memcg_state(struct mem_cgroup *memcg, 952 int idx, 953 int nr) 954{ 955} 956 957static inline void mod_memcg_state(struct mem_cgroup *memcg, 958 int idx, 959 int nr) 960{ 961} 962 963static inline void __mod_memcg_page_state(struct page *page, 964 int idx, 965 int nr) 966{ 967} 968 969static inline void mod_memcg_page_state(struct page *page, 970 int idx, 971 int nr) 972{ 973} 974 975static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 976 enum node_stat_item idx) 977{ 978 return node_page_state(lruvec_pgdat(lruvec), idx); 979} 980 981static inline void __mod_lruvec_state(struct lruvec *lruvec, 982 enum node_stat_item idx, int val) 983{ 984 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 985} 986 987static inline void mod_lruvec_state(struct lruvec *lruvec, 988 enum node_stat_item idx, int val) 989{ 990 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 991} 992 993static inline void __mod_lruvec_page_state(struct page *page, 994 enum node_stat_item idx, int val) 995{ 996 __mod_node_page_state(page_pgdat(page), idx, val); 997} 998 999static inline void mod_lruvec_page_state(struct page *page, 1000 enum node_stat_item idx, int val) 1001{ 1002 mod_node_page_state(page_pgdat(page), idx, val); 1003} 1004 1005static inline 1006unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1007 gfp_t gfp_mask, 1008 unsigned long *total_scanned) 1009{ 1010 return 0; 1011} 1012 1013static inline void mem_cgroup_split_huge_fixup(struct page *head) 1014{ 1015} 1016 1017static inline void count_memcg_events(struct mem_cgroup *memcg, 1018 enum vm_event_item idx, 1019 unsigned long count) 1020{ 1021} 1022 1023static inline void count_memcg_page_event(struct page *page, 1024 int idx) 1025{ 1026} 1027 1028static inline 1029void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1030{ 1031} 1032#endif /* CONFIG_MEMCG */ 1033 1034/* idx can be of type enum memcg_stat_item or node_stat_item */ 1035static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1036 int idx) 1037{ 1038 __mod_memcg_state(memcg, idx, 1); 1039} 1040 1041/* idx can be of type enum memcg_stat_item or node_stat_item */ 1042static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1043 int idx) 1044{ 1045 __mod_memcg_state(memcg, idx, -1); 1046} 1047 1048/* idx can be of type enum memcg_stat_item or node_stat_item */ 1049static inline void __inc_memcg_page_state(struct page *page, 1050 int idx) 1051{ 1052 __mod_memcg_page_state(page, idx, 1); 1053} 1054 1055/* idx can be of type enum memcg_stat_item or node_stat_item */ 1056static inline void __dec_memcg_page_state(struct page *page, 1057 int idx) 1058{ 1059 __mod_memcg_page_state(page, idx, -1); 1060} 1061 1062static inline void __inc_lruvec_state(struct lruvec *lruvec, 1063 enum node_stat_item idx) 1064{ 1065 __mod_lruvec_state(lruvec, idx, 1); 1066} 1067 1068static inline void __dec_lruvec_state(struct lruvec *lruvec, 1069 enum node_stat_item idx) 1070{ 1071 __mod_lruvec_state(lruvec, idx, -1); 1072} 1073 1074static inline void __inc_lruvec_page_state(struct page *page, 1075 enum node_stat_item idx) 1076{ 1077 __mod_lruvec_page_state(page, idx, 1); 1078} 1079 1080static inline void __dec_lruvec_page_state(struct page *page, 1081 enum node_stat_item idx) 1082{ 1083 __mod_lruvec_page_state(page, idx, -1); 1084} 1085 1086/* idx can be of type enum memcg_stat_item or node_stat_item */ 1087static inline void inc_memcg_state(struct mem_cgroup *memcg, 1088 int idx) 1089{ 1090 mod_memcg_state(memcg, idx, 1); 1091} 1092 1093/* idx can be of type enum memcg_stat_item or node_stat_item */ 1094static inline void dec_memcg_state(struct mem_cgroup *memcg, 1095 int idx) 1096{ 1097 mod_memcg_state(memcg, idx, -1); 1098} 1099 1100/* idx can be of type enum memcg_stat_item or node_stat_item */ 1101static inline void inc_memcg_page_state(struct page *page, 1102 int idx) 1103{ 1104 mod_memcg_page_state(page, idx, 1); 1105} 1106 1107/* idx can be of type enum memcg_stat_item or node_stat_item */ 1108static inline void dec_memcg_page_state(struct page *page, 1109 int idx) 1110{ 1111 mod_memcg_page_state(page, idx, -1); 1112} 1113 1114static inline void inc_lruvec_state(struct lruvec *lruvec, 1115 enum node_stat_item idx) 1116{ 1117 mod_lruvec_state(lruvec, idx, 1); 1118} 1119 1120static inline void dec_lruvec_state(struct lruvec *lruvec, 1121 enum node_stat_item idx) 1122{ 1123 mod_lruvec_state(lruvec, idx, -1); 1124} 1125 1126static inline void inc_lruvec_page_state(struct page *page, 1127 enum node_stat_item idx) 1128{ 1129 mod_lruvec_page_state(page, idx, 1); 1130} 1131 1132static inline void dec_lruvec_page_state(struct page *page, 1133 enum node_stat_item idx) 1134{ 1135 mod_lruvec_page_state(page, idx, -1); 1136} 1137 1138#ifdef CONFIG_CGROUP_WRITEBACK 1139 1140struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1141void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1142 unsigned long *pheadroom, unsigned long *pdirty, 1143 unsigned long *pwriteback); 1144 1145#else /* CONFIG_CGROUP_WRITEBACK */ 1146 1147static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1148{ 1149 return NULL; 1150} 1151 1152static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1153 unsigned long *pfilepages, 1154 unsigned long *pheadroom, 1155 unsigned long *pdirty, 1156 unsigned long *pwriteback) 1157{ 1158} 1159 1160#endif /* CONFIG_CGROUP_WRITEBACK */ 1161 1162struct sock; 1163bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1164void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1165#ifdef CONFIG_MEMCG 1166extern struct static_key_false memcg_sockets_enabled_key; 1167#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1168void mem_cgroup_sk_alloc(struct sock *sk); 1169void mem_cgroup_sk_free(struct sock *sk); 1170static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1171{ 1172 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1173 return true; 1174 do { 1175 if (time_before(jiffies, memcg->socket_pressure)) 1176 return true; 1177 } while ((memcg = parent_mem_cgroup(memcg))); 1178 return false; 1179} 1180#else 1181#define mem_cgroup_sockets_enabled 0 1182static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1183static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1184static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1185{ 1186 return false; 1187} 1188#endif 1189 1190struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1191void memcg_kmem_put_cache(struct kmem_cache *cachep); 1192int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 1193 struct mem_cgroup *memcg); 1194int memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 1195void memcg_kmem_uncharge(struct page *page, int order); 1196 1197#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 1198extern struct static_key_false memcg_kmem_enabled_key; 1199extern struct workqueue_struct *memcg_kmem_cache_wq; 1200 1201extern int memcg_nr_cache_ids; 1202void memcg_get_cache_ids(void); 1203void memcg_put_cache_ids(void); 1204 1205/* 1206 * Helper macro to loop through all memcg-specific caches. Callers must still 1207 * check if the cache is valid (it is either valid or NULL). 1208 * the slab_mutex must be held when looping through those caches 1209 */ 1210#define for_each_memcg_cache_index(_idx) \ 1211 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1212 1213static inline bool memcg_kmem_enabled(void) 1214{ 1215 return static_branch_unlikely(&memcg_kmem_enabled_key); 1216} 1217 1218/* 1219 * helper for accessing a memcg's index. It will be used as an index in the 1220 * child cache array in kmem_cache, and also to derive its name. This function 1221 * will return -1 when this is not a kmem-limited memcg. 1222 */ 1223static inline int memcg_cache_id(struct mem_cgroup *memcg) 1224{ 1225 return memcg ? memcg->kmemcg_id : -1; 1226} 1227 1228#else 1229#define for_each_memcg_cache_index(_idx) \ 1230 for (; NULL; ) 1231 1232static inline bool memcg_kmem_enabled(void) 1233{ 1234 return false; 1235} 1236 1237static inline int memcg_cache_id(struct mem_cgroup *memcg) 1238{ 1239 return -1; 1240} 1241 1242static inline void memcg_get_cache_ids(void) 1243{ 1244} 1245 1246static inline void memcg_put_cache_ids(void) 1247{ 1248} 1249 1250#endif /* CONFIG_MEMCG && !CONFIG_SLOB */ 1251 1252#endif /* _LINUX_MEMCONTROL_H */