at v4.18 37 kB view raw
1#ifndef __KVM_HOST_H 2#define __KVM_HOST_H 3 4/* 5 * This work is licensed under the terms of the GNU GPL, version 2. See 6 * the COPYING file in the top-level directory. 7 */ 8 9#include <linux/types.h> 10#include <linux/hardirq.h> 11#include <linux/list.h> 12#include <linux/mutex.h> 13#include <linux/spinlock.h> 14#include <linux/signal.h> 15#include <linux/sched.h> 16#include <linux/bug.h> 17#include <linux/mm.h> 18#include <linux/mmu_notifier.h> 19#include <linux/preempt.h> 20#include <linux/msi.h> 21#include <linux/slab.h> 22#include <linux/vmalloc.h> 23#include <linux/rcupdate.h> 24#include <linux/ratelimit.h> 25#include <linux/err.h> 26#include <linux/irqflags.h> 27#include <linux/context_tracking.h> 28#include <linux/irqbypass.h> 29#include <linux/swait.h> 30#include <linux/refcount.h> 31#include <asm/signal.h> 32 33#include <linux/kvm.h> 34#include <linux/kvm_para.h> 35 36#include <linux/kvm_types.h> 37 38#include <asm/kvm_host.h> 39 40#ifndef KVM_MAX_VCPU_ID 41#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 42#endif 43 44/* 45 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 46 * in kvm, other bits are visible for userspace which are defined in 47 * include/linux/kvm_h. 48 */ 49#define KVM_MEMSLOT_INVALID (1UL << 16) 50 51/* Two fragments for cross MMIO pages. */ 52#define KVM_MAX_MMIO_FRAGMENTS 2 53 54#ifndef KVM_ADDRESS_SPACE_NUM 55#define KVM_ADDRESS_SPACE_NUM 1 56#endif 57 58/* 59 * For the normal pfn, the highest 12 bits should be zero, 60 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 61 * mask bit 63 to indicate the noslot pfn. 62 */ 63#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 64#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 65#define KVM_PFN_NOSLOT (0x1ULL << 63) 66 67#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 68#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 69#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 70 71/* 72 * error pfns indicate that the gfn is in slot but faild to 73 * translate it to pfn on host. 74 */ 75static inline bool is_error_pfn(kvm_pfn_t pfn) 76{ 77 return !!(pfn & KVM_PFN_ERR_MASK); 78} 79 80/* 81 * error_noslot pfns indicate that the gfn can not be 82 * translated to pfn - it is not in slot or failed to 83 * translate it to pfn. 84 */ 85static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 86{ 87 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 88} 89 90/* noslot pfn indicates that the gfn is not in slot. */ 91static inline bool is_noslot_pfn(kvm_pfn_t pfn) 92{ 93 return pfn == KVM_PFN_NOSLOT; 94} 95 96/* 97 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 98 * provide own defines and kvm_is_error_hva 99 */ 100#ifndef KVM_HVA_ERR_BAD 101 102#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 103#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 104 105static inline bool kvm_is_error_hva(unsigned long addr) 106{ 107 return addr >= PAGE_OFFSET; 108} 109 110#endif 111 112#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 113 114static inline bool is_error_page(struct page *page) 115{ 116 return IS_ERR(page); 117} 118 119#define KVM_REQUEST_MASK GENMASK(7,0) 120#define KVM_REQUEST_NO_WAKEUP BIT(8) 121#define KVM_REQUEST_WAIT BIT(9) 122/* 123 * Architecture-independent vcpu->requests bit members 124 * Bits 4-7 are reserved for more arch-independent bits. 125 */ 126#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 127#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 128#define KVM_REQ_PENDING_TIMER 2 129#define KVM_REQ_UNHALT 3 130#define KVM_REQUEST_ARCH_BASE 8 131 132#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 133 BUILD_BUG_ON((unsigned)(nr) >= 32 - KVM_REQUEST_ARCH_BASE); \ 134 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 135}) 136#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 137 138#define KVM_USERSPACE_IRQ_SOURCE_ID 0 139#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 140 141extern struct kmem_cache *kvm_vcpu_cache; 142 143extern spinlock_t kvm_lock; 144extern struct list_head vm_list; 145 146struct kvm_io_range { 147 gpa_t addr; 148 int len; 149 struct kvm_io_device *dev; 150}; 151 152#define NR_IOBUS_DEVS 1000 153 154struct kvm_io_bus { 155 int dev_count; 156 int ioeventfd_count; 157 struct kvm_io_range range[]; 158}; 159 160enum kvm_bus { 161 KVM_MMIO_BUS, 162 KVM_PIO_BUS, 163 KVM_VIRTIO_CCW_NOTIFY_BUS, 164 KVM_FAST_MMIO_BUS, 165 KVM_NR_BUSES 166}; 167 168int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 169 int len, const void *val); 170int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 171 gpa_t addr, int len, const void *val, long cookie); 172int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 173 int len, void *val); 174int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 175 int len, struct kvm_io_device *dev); 176void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 177 struct kvm_io_device *dev); 178struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 179 gpa_t addr); 180 181#ifdef CONFIG_KVM_ASYNC_PF 182struct kvm_async_pf { 183 struct work_struct work; 184 struct list_head link; 185 struct list_head queue; 186 struct kvm_vcpu *vcpu; 187 struct mm_struct *mm; 188 gva_t gva; 189 unsigned long addr; 190 struct kvm_arch_async_pf arch; 191 bool wakeup_all; 192}; 193 194void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 195void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 196int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 197 struct kvm_arch_async_pf *arch); 198int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 199#endif 200 201enum { 202 OUTSIDE_GUEST_MODE, 203 IN_GUEST_MODE, 204 EXITING_GUEST_MODE, 205 READING_SHADOW_PAGE_TABLES, 206}; 207 208/* 209 * Sometimes a large or cross-page mmio needs to be broken up into separate 210 * exits for userspace servicing. 211 */ 212struct kvm_mmio_fragment { 213 gpa_t gpa; 214 void *data; 215 unsigned len; 216}; 217 218struct kvm_vcpu { 219 struct kvm *kvm; 220#ifdef CONFIG_PREEMPT_NOTIFIERS 221 struct preempt_notifier preempt_notifier; 222#endif 223 int cpu; 224 int vcpu_id; 225 int srcu_idx; 226 int mode; 227 unsigned long requests; 228 unsigned long guest_debug; 229 230 int pre_pcpu; 231 struct list_head blocked_vcpu_list; 232 233 struct mutex mutex; 234 struct kvm_run *run; 235 236 int guest_xcr0_loaded; 237 struct swait_queue_head wq; 238 struct pid __rcu *pid; 239 int sigset_active; 240 sigset_t sigset; 241 struct kvm_vcpu_stat stat; 242 unsigned int halt_poll_ns; 243 bool valid_wakeup; 244 245#ifdef CONFIG_HAS_IOMEM 246 int mmio_needed; 247 int mmio_read_completed; 248 int mmio_is_write; 249 int mmio_cur_fragment; 250 int mmio_nr_fragments; 251 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 252#endif 253 254#ifdef CONFIG_KVM_ASYNC_PF 255 struct { 256 u32 queued; 257 struct list_head queue; 258 struct list_head done; 259 spinlock_t lock; 260 } async_pf; 261#endif 262 263#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 264 /* 265 * Cpu relax intercept or pause loop exit optimization 266 * in_spin_loop: set when a vcpu does a pause loop exit 267 * or cpu relax intercepted. 268 * dy_eligible: indicates whether vcpu is eligible for directed yield. 269 */ 270 struct { 271 bool in_spin_loop; 272 bool dy_eligible; 273 } spin_loop; 274#endif 275 bool preempted; 276 struct kvm_vcpu_arch arch; 277 struct dentry *debugfs_dentry; 278}; 279 280static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 281{ 282 /* 283 * The memory barrier ensures a previous write to vcpu->requests cannot 284 * be reordered with the read of vcpu->mode. It pairs with the general 285 * memory barrier following the write of vcpu->mode in VCPU RUN. 286 */ 287 smp_mb__before_atomic(); 288 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 289} 290 291/* 292 * Some of the bitops functions do not support too long bitmaps. 293 * This number must be determined not to exceed such limits. 294 */ 295#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 296 297struct kvm_memory_slot { 298 gfn_t base_gfn; 299 unsigned long npages; 300 unsigned long *dirty_bitmap; 301 struct kvm_arch_memory_slot arch; 302 unsigned long userspace_addr; 303 u32 flags; 304 short id; 305}; 306 307static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 308{ 309 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 310} 311 312struct kvm_s390_adapter_int { 313 u64 ind_addr; 314 u64 summary_addr; 315 u64 ind_offset; 316 u32 summary_offset; 317 u32 adapter_id; 318}; 319 320struct kvm_hv_sint { 321 u32 vcpu; 322 u32 sint; 323}; 324 325struct kvm_kernel_irq_routing_entry { 326 u32 gsi; 327 u32 type; 328 int (*set)(struct kvm_kernel_irq_routing_entry *e, 329 struct kvm *kvm, int irq_source_id, int level, 330 bool line_status); 331 union { 332 struct { 333 unsigned irqchip; 334 unsigned pin; 335 } irqchip; 336 struct { 337 u32 address_lo; 338 u32 address_hi; 339 u32 data; 340 u32 flags; 341 u32 devid; 342 } msi; 343 struct kvm_s390_adapter_int adapter; 344 struct kvm_hv_sint hv_sint; 345 }; 346 struct hlist_node link; 347}; 348 349#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 350struct kvm_irq_routing_table { 351 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 352 u32 nr_rt_entries; 353 /* 354 * Array indexed by gsi. Each entry contains list of irq chips 355 * the gsi is connected to. 356 */ 357 struct hlist_head map[0]; 358}; 359#endif 360 361#ifndef KVM_PRIVATE_MEM_SLOTS 362#define KVM_PRIVATE_MEM_SLOTS 0 363#endif 364 365#ifndef KVM_MEM_SLOTS_NUM 366#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 367#endif 368 369#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 370static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 371{ 372 return 0; 373} 374#endif 375 376/* 377 * Note: 378 * memslots are not sorted by id anymore, please use id_to_memslot() 379 * to get the memslot by its id. 380 */ 381struct kvm_memslots { 382 u64 generation; 383 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 384 /* The mapping table from slot id to the index in memslots[]. */ 385 short id_to_index[KVM_MEM_SLOTS_NUM]; 386 atomic_t lru_slot; 387 int used_slots; 388}; 389 390struct kvm { 391 spinlock_t mmu_lock; 392 struct mutex slots_lock; 393 struct mm_struct *mm; /* userspace tied to this vm */ 394 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 395 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 396 397 /* 398 * created_vcpus is protected by kvm->lock, and is incremented 399 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 400 * incremented after storing the kvm_vcpu pointer in vcpus, 401 * and is accessed atomically. 402 */ 403 atomic_t online_vcpus; 404 int created_vcpus; 405 int last_boosted_vcpu; 406 struct list_head vm_list; 407 struct mutex lock; 408 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 409#ifdef CONFIG_HAVE_KVM_EVENTFD 410 struct { 411 spinlock_t lock; 412 struct list_head items; 413 struct list_head resampler_list; 414 struct mutex resampler_lock; 415 } irqfds; 416 struct list_head ioeventfds; 417#endif 418 struct kvm_vm_stat stat; 419 struct kvm_arch arch; 420 refcount_t users_count; 421#ifdef CONFIG_KVM_MMIO 422 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 423 spinlock_t ring_lock; 424 struct list_head coalesced_zones; 425#endif 426 427 struct mutex irq_lock; 428#ifdef CONFIG_HAVE_KVM_IRQCHIP 429 /* 430 * Update side is protected by irq_lock. 431 */ 432 struct kvm_irq_routing_table __rcu *irq_routing; 433#endif 434#ifdef CONFIG_HAVE_KVM_IRQFD 435 struct hlist_head irq_ack_notifier_list; 436#endif 437 438#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 439 struct mmu_notifier mmu_notifier; 440 unsigned long mmu_notifier_seq; 441 long mmu_notifier_count; 442#endif 443 long tlbs_dirty; 444 struct list_head devices; 445 struct dentry *debugfs_dentry; 446 struct kvm_stat_data **debugfs_stat_data; 447 struct srcu_struct srcu; 448 struct srcu_struct irq_srcu; 449 pid_t userspace_pid; 450}; 451 452#define kvm_err(fmt, ...) \ 453 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 454#define kvm_info(fmt, ...) \ 455 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 456#define kvm_debug(fmt, ...) \ 457 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 458#define kvm_debug_ratelimited(fmt, ...) \ 459 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 460 ## __VA_ARGS__) 461#define kvm_pr_unimpl(fmt, ...) \ 462 pr_err_ratelimited("kvm [%i]: " fmt, \ 463 task_tgid_nr(current), ## __VA_ARGS__) 464 465/* The guest did something we don't support. */ 466#define vcpu_unimpl(vcpu, fmt, ...) \ 467 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 468 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 469 470#define vcpu_debug(vcpu, fmt, ...) \ 471 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 472#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 473 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 474 ## __VA_ARGS__) 475#define vcpu_err(vcpu, fmt, ...) \ 476 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 477 478static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 479{ 480 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 481 lockdep_is_held(&kvm->slots_lock) || 482 !refcount_read(&kvm->users_count)); 483} 484 485static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 486{ 487 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu, in case 488 * the caller has read kvm->online_vcpus before (as is the case 489 * for kvm_for_each_vcpu, for example). 490 */ 491 smp_rmb(); 492 return kvm->vcpus[i]; 493} 494 495#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 496 for (idx = 0; \ 497 idx < atomic_read(&kvm->online_vcpus) && \ 498 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 499 idx++) 500 501static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 502{ 503 struct kvm_vcpu *vcpu = NULL; 504 int i; 505 506 if (id < 0) 507 return NULL; 508 if (id < KVM_MAX_VCPUS) 509 vcpu = kvm_get_vcpu(kvm, id); 510 if (vcpu && vcpu->vcpu_id == id) 511 return vcpu; 512 kvm_for_each_vcpu(i, vcpu, kvm) 513 if (vcpu->vcpu_id == id) 514 return vcpu; 515 return NULL; 516} 517 518static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 519{ 520 struct kvm_vcpu *tmp; 521 int idx; 522 523 kvm_for_each_vcpu(idx, tmp, vcpu->kvm) 524 if (tmp == vcpu) 525 return idx; 526 BUG(); 527} 528 529#define kvm_for_each_memslot(memslot, slots) \ 530 for (memslot = &slots->memslots[0]; \ 531 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 532 memslot++) 533 534int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 535void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 536 537void vcpu_load(struct kvm_vcpu *vcpu); 538void vcpu_put(struct kvm_vcpu *vcpu); 539 540#ifdef __KVM_HAVE_IOAPIC 541void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 542void kvm_arch_post_irq_routing_update(struct kvm *kvm); 543#else 544static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 545{ 546} 547static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 548{ 549} 550#endif 551 552#ifdef CONFIG_HAVE_KVM_IRQFD 553int kvm_irqfd_init(void); 554void kvm_irqfd_exit(void); 555#else 556static inline int kvm_irqfd_init(void) 557{ 558 return 0; 559} 560 561static inline void kvm_irqfd_exit(void) 562{ 563} 564#endif 565int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 566 struct module *module); 567void kvm_exit(void); 568 569void kvm_get_kvm(struct kvm *kvm); 570void kvm_put_kvm(struct kvm *kvm); 571 572static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 573{ 574 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 575 lockdep_is_held(&kvm->slots_lock) || 576 !refcount_read(&kvm->users_count)); 577} 578 579static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 580{ 581 return __kvm_memslots(kvm, 0); 582} 583 584static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 585{ 586 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 587 588 return __kvm_memslots(vcpu->kvm, as_id); 589} 590 591static inline struct kvm_memory_slot * 592id_to_memslot(struct kvm_memslots *slots, int id) 593{ 594 int index = slots->id_to_index[id]; 595 struct kvm_memory_slot *slot; 596 597 slot = &slots->memslots[index]; 598 599 WARN_ON(slot->id != id); 600 return slot; 601} 602 603/* 604 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 605 * - create a new memory slot 606 * - delete an existing memory slot 607 * - modify an existing memory slot 608 * -- move it in the guest physical memory space 609 * -- just change its flags 610 * 611 * Since flags can be changed by some of these operations, the following 612 * differentiation is the best we can do for __kvm_set_memory_region(): 613 */ 614enum kvm_mr_change { 615 KVM_MR_CREATE, 616 KVM_MR_DELETE, 617 KVM_MR_MOVE, 618 KVM_MR_FLAGS_ONLY, 619}; 620 621int kvm_set_memory_region(struct kvm *kvm, 622 const struct kvm_userspace_memory_region *mem); 623int __kvm_set_memory_region(struct kvm *kvm, 624 const struct kvm_userspace_memory_region *mem); 625void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 626 struct kvm_memory_slot *dont); 627int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 628 unsigned long npages); 629void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots); 630int kvm_arch_prepare_memory_region(struct kvm *kvm, 631 struct kvm_memory_slot *memslot, 632 const struct kvm_userspace_memory_region *mem, 633 enum kvm_mr_change change); 634void kvm_arch_commit_memory_region(struct kvm *kvm, 635 const struct kvm_userspace_memory_region *mem, 636 const struct kvm_memory_slot *old, 637 const struct kvm_memory_slot *new, 638 enum kvm_mr_change change); 639bool kvm_largepages_enabled(void); 640void kvm_disable_largepages(void); 641/* flush all memory translations */ 642void kvm_arch_flush_shadow_all(struct kvm *kvm); 643/* flush memory translations pointing to 'slot' */ 644void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 645 struct kvm_memory_slot *slot); 646 647int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 648 struct page **pages, int nr_pages); 649 650struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 651unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 652unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 653unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 654unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 655 bool *writable); 656void kvm_release_page_clean(struct page *page); 657void kvm_release_page_dirty(struct page *page); 658void kvm_set_page_accessed(struct page *page); 659 660kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 661kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 662kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 663 bool *writable); 664kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 665kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 666kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 667 bool atomic, bool *async, bool write_fault, 668 bool *writable); 669 670void kvm_release_pfn_clean(kvm_pfn_t pfn); 671void kvm_release_pfn_dirty(kvm_pfn_t pfn); 672void kvm_set_pfn_dirty(kvm_pfn_t pfn); 673void kvm_set_pfn_accessed(kvm_pfn_t pfn); 674void kvm_get_pfn(kvm_pfn_t pfn); 675 676int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 677 int len); 678int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 679 unsigned long len); 680int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 681int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 682 void *data, unsigned long len); 683int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 684 int offset, int len); 685int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 686 unsigned long len); 687int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 688 void *data, unsigned long len); 689int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 690 void *data, int offset, unsigned long len); 691int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 692 gpa_t gpa, unsigned long len); 693int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 694int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 695struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 696bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 697unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 698void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 699 700struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 701struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 702kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 703kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 704struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 705unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 706unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 707int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 708 int len); 709int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 710 unsigned long len); 711int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 712 unsigned long len); 713int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 714 int offset, int len); 715int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 716 unsigned long len); 717void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 718 719void kvm_sigset_activate(struct kvm_vcpu *vcpu); 720void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 721 722void kvm_vcpu_block(struct kvm_vcpu *vcpu); 723void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 724void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 725bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 726void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 727int kvm_vcpu_yield_to(struct kvm_vcpu *target); 728void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 729void kvm_load_guest_fpu(struct kvm_vcpu *vcpu); 730void kvm_put_guest_fpu(struct kvm_vcpu *vcpu); 731 732void kvm_flush_remote_tlbs(struct kvm *kvm); 733void kvm_reload_remote_mmus(struct kvm *kvm); 734 735bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 736 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 737bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 738 739long kvm_arch_dev_ioctl(struct file *filp, 740 unsigned int ioctl, unsigned long arg); 741long kvm_arch_vcpu_ioctl(struct file *filp, 742 unsigned int ioctl, unsigned long arg); 743vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 744 745int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 746 747int kvm_get_dirty_log(struct kvm *kvm, 748 struct kvm_dirty_log *log, int *is_dirty); 749 750int kvm_get_dirty_log_protect(struct kvm *kvm, 751 struct kvm_dirty_log *log, bool *is_dirty); 752 753void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 754 struct kvm_memory_slot *slot, 755 gfn_t gfn_offset, 756 unsigned long mask); 757 758int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 759 struct kvm_dirty_log *log); 760 761int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 762 bool line_status); 763long kvm_arch_vm_ioctl(struct file *filp, 764 unsigned int ioctl, unsigned long arg); 765 766int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 767int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 768 769int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 770 struct kvm_translation *tr); 771 772int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 773int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 774int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 775 struct kvm_sregs *sregs); 776int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 777 struct kvm_sregs *sregs); 778int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 779 struct kvm_mp_state *mp_state); 780int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 781 struct kvm_mp_state *mp_state); 782int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 783 struct kvm_guest_debug *dbg); 784int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 785 786int kvm_arch_init(void *opaque); 787void kvm_arch_exit(void); 788 789int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 790void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 791 792void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 793 794void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 795void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 796void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 797struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 798int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 799void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 800void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 801 802bool kvm_arch_has_vcpu_debugfs(void); 803int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 804 805int kvm_arch_hardware_enable(void); 806void kvm_arch_hardware_disable(void); 807int kvm_arch_hardware_setup(void); 808void kvm_arch_hardware_unsetup(void); 809void kvm_arch_check_processor_compat(void *rtn); 810int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 811bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 812int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 813 814#ifndef __KVM_HAVE_ARCH_VM_ALLOC 815/* 816 * All architectures that want to use vzalloc currently also 817 * need their own kvm_arch_alloc_vm implementation. 818 */ 819static inline struct kvm *kvm_arch_alloc_vm(void) 820{ 821 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 822} 823 824static inline void kvm_arch_free_vm(struct kvm *kvm) 825{ 826 kfree(kvm); 827} 828#endif 829 830#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 831void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 832void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 833bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 834#else 835static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 836{ 837} 838 839static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 840{ 841} 842 843static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 844{ 845 return false; 846} 847#endif 848#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 849void kvm_arch_start_assignment(struct kvm *kvm); 850void kvm_arch_end_assignment(struct kvm *kvm); 851bool kvm_arch_has_assigned_device(struct kvm *kvm); 852#else 853static inline void kvm_arch_start_assignment(struct kvm *kvm) 854{ 855} 856 857static inline void kvm_arch_end_assignment(struct kvm *kvm) 858{ 859} 860 861static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 862{ 863 return false; 864} 865#endif 866 867static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 868{ 869#ifdef __KVM_HAVE_ARCH_WQP 870 return vcpu->arch.wqp; 871#else 872 return &vcpu->wq; 873#endif 874} 875 876#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 877/* 878 * returns true if the virtual interrupt controller is initialized and 879 * ready to accept virtual IRQ. On some architectures the virtual interrupt 880 * controller is dynamically instantiated and this is not always true. 881 */ 882bool kvm_arch_intc_initialized(struct kvm *kvm); 883#else 884static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 885{ 886 return true; 887} 888#endif 889 890int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 891void kvm_arch_destroy_vm(struct kvm *kvm); 892void kvm_arch_sync_events(struct kvm *kvm); 893 894int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 895void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 896 897bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 898 899struct kvm_irq_ack_notifier { 900 struct hlist_node link; 901 unsigned gsi; 902 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 903}; 904 905int kvm_irq_map_gsi(struct kvm *kvm, 906 struct kvm_kernel_irq_routing_entry *entries, int gsi); 907int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 908 909int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 910 bool line_status); 911int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 912 int irq_source_id, int level, bool line_status); 913int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 914 struct kvm *kvm, int irq_source_id, 915 int level, bool line_status); 916bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 917void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 918void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 919void kvm_register_irq_ack_notifier(struct kvm *kvm, 920 struct kvm_irq_ack_notifier *kian); 921void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 922 struct kvm_irq_ack_notifier *kian); 923int kvm_request_irq_source_id(struct kvm *kvm); 924void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 925 926/* 927 * search_memslots() and __gfn_to_memslot() are here because they are 928 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 929 * gfn_to_memslot() itself isn't here as an inline because that would 930 * bloat other code too much. 931 */ 932static inline struct kvm_memory_slot * 933search_memslots(struct kvm_memslots *slots, gfn_t gfn) 934{ 935 int start = 0, end = slots->used_slots; 936 int slot = atomic_read(&slots->lru_slot); 937 struct kvm_memory_slot *memslots = slots->memslots; 938 939 if (gfn >= memslots[slot].base_gfn && 940 gfn < memslots[slot].base_gfn + memslots[slot].npages) 941 return &memslots[slot]; 942 943 while (start < end) { 944 slot = start + (end - start) / 2; 945 946 if (gfn >= memslots[slot].base_gfn) 947 end = slot; 948 else 949 start = slot + 1; 950 } 951 952 if (gfn >= memslots[start].base_gfn && 953 gfn < memslots[start].base_gfn + memslots[start].npages) { 954 atomic_set(&slots->lru_slot, start); 955 return &memslots[start]; 956 } 957 958 return NULL; 959} 960 961static inline struct kvm_memory_slot * 962__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 963{ 964 return search_memslots(slots, gfn); 965} 966 967static inline unsigned long 968__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 969{ 970 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 971} 972 973static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 974{ 975 return gfn_to_memslot(kvm, gfn)->id; 976} 977 978static inline gfn_t 979hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 980{ 981 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 982 983 return slot->base_gfn + gfn_offset; 984} 985 986static inline gpa_t gfn_to_gpa(gfn_t gfn) 987{ 988 return (gpa_t)gfn << PAGE_SHIFT; 989} 990 991static inline gfn_t gpa_to_gfn(gpa_t gpa) 992{ 993 return (gfn_t)(gpa >> PAGE_SHIFT); 994} 995 996static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 997{ 998 return (hpa_t)pfn << PAGE_SHIFT; 999} 1000 1001static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1002 gpa_t gpa) 1003{ 1004 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1005} 1006 1007static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1008{ 1009 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1010 1011 return kvm_is_error_hva(hva); 1012} 1013 1014enum kvm_stat_kind { 1015 KVM_STAT_VM, 1016 KVM_STAT_VCPU, 1017}; 1018 1019struct kvm_stat_data { 1020 int offset; 1021 struct kvm *kvm; 1022}; 1023 1024struct kvm_stats_debugfs_item { 1025 const char *name; 1026 int offset; 1027 enum kvm_stat_kind kind; 1028}; 1029extern struct kvm_stats_debugfs_item debugfs_entries[]; 1030extern struct dentry *kvm_debugfs_dir; 1031 1032#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1033static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1034{ 1035 if (unlikely(kvm->mmu_notifier_count)) 1036 return 1; 1037 /* 1038 * Ensure the read of mmu_notifier_count happens before the read 1039 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1040 * mmu_notifier_invalidate_range_end to make sure that the caller 1041 * either sees the old (non-zero) value of mmu_notifier_count or 1042 * the new (incremented) value of mmu_notifier_seq. 1043 * PowerPC Book3s HV KVM calls this under a per-page lock 1044 * rather than under kvm->mmu_lock, for scalability, so 1045 * can't rely on kvm->mmu_lock to keep things ordered. 1046 */ 1047 smp_rmb(); 1048 if (kvm->mmu_notifier_seq != mmu_seq) 1049 return 1; 1050 return 0; 1051} 1052#endif 1053 1054#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1055 1056#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1057 1058bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1059int kvm_set_irq_routing(struct kvm *kvm, 1060 const struct kvm_irq_routing_entry *entries, 1061 unsigned nr, 1062 unsigned flags); 1063int kvm_set_routing_entry(struct kvm *kvm, 1064 struct kvm_kernel_irq_routing_entry *e, 1065 const struct kvm_irq_routing_entry *ue); 1066void kvm_free_irq_routing(struct kvm *kvm); 1067 1068#else 1069 1070static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1071 1072#endif 1073 1074int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1075 1076#ifdef CONFIG_HAVE_KVM_EVENTFD 1077 1078void kvm_eventfd_init(struct kvm *kvm); 1079int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1080 1081#ifdef CONFIG_HAVE_KVM_IRQFD 1082int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1083void kvm_irqfd_release(struct kvm *kvm); 1084void kvm_irq_routing_update(struct kvm *); 1085#else 1086static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1087{ 1088 return -EINVAL; 1089} 1090 1091static inline void kvm_irqfd_release(struct kvm *kvm) {} 1092#endif 1093 1094#else 1095 1096static inline void kvm_eventfd_init(struct kvm *kvm) {} 1097 1098static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1099{ 1100 return -EINVAL; 1101} 1102 1103static inline void kvm_irqfd_release(struct kvm *kvm) {} 1104 1105#ifdef CONFIG_HAVE_KVM_IRQCHIP 1106static inline void kvm_irq_routing_update(struct kvm *kvm) 1107{ 1108} 1109#endif 1110 1111static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1112{ 1113 return -ENOSYS; 1114} 1115 1116#endif /* CONFIG_HAVE_KVM_EVENTFD */ 1117 1118void kvm_arch_irq_routing_update(struct kvm *kvm); 1119 1120static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1121{ 1122 /* 1123 * Ensure the rest of the request is published to kvm_check_request's 1124 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1125 */ 1126 smp_wmb(); 1127 set_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1128} 1129 1130static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1131{ 1132 return READ_ONCE(vcpu->requests); 1133} 1134 1135static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1136{ 1137 return test_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1138} 1139 1140static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1141{ 1142 clear_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1143} 1144 1145static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1146{ 1147 if (kvm_test_request(req, vcpu)) { 1148 kvm_clear_request(req, vcpu); 1149 1150 /* 1151 * Ensure the rest of the request is visible to kvm_check_request's 1152 * caller. Paired with the smp_wmb in kvm_make_request. 1153 */ 1154 smp_mb__after_atomic(); 1155 return true; 1156 } else { 1157 return false; 1158 } 1159} 1160 1161extern bool kvm_rebooting; 1162 1163extern unsigned int halt_poll_ns; 1164extern unsigned int halt_poll_ns_grow; 1165extern unsigned int halt_poll_ns_shrink; 1166 1167struct kvm_device { 1168 struct kvm_device_ops *ops; 1169 struct kvm *kvm; 1170 void *private; 1171 struct list_head vm_node; 1172}; 1173 1174/* create, destroy, and name are mandatory */ 1175struct kvm_device_ops { 1176 const char *name; 1177 1178 /* 1179 * create is called holding kvm->lock and any operations not suitable 1180 * to do while holding the lock should be deferred to init (see 1181 * below). 1182 */ 1183 int (*create)(struct kvm_device *dev, u32 type); 1184 1185 /* 1186 * init is called after create if create is successful and is called 1187 * outside of holding kvm->lock. 1188 */ 1189 void (*init)(struct kvm_device *dev); 1190 1191 /* 1192 * Destroy is responsible for freeing dev. 1193 * 1194 * Destroy may be called before or after destructors are called 1195 * on emulated I/O regions, depending on whether a reference is 1196 * held by a vcpu or other kvm component that gets destroyed 1197 * after the emulated I/O. 1198 */ 1199 void (*destroy)(struct kvm_device *dev); 1200 1201 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1202 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1203 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1204 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1205 unsigned long arg); 1206}; 1207 1208void kvm_device_get(struct kvm_device *dev); 1209void kvm_device_put(struct kvm_device *dev); 1210struct kvm_device *kvm_device_from_filp(struct file *filp); 1211int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1212void kvm_unregister_device_ops(u32 type); 1213 1214extern struct kvm_device_ops kvm_mpic_ops; 1215extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1216extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1217 1218#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1219 1220static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1221{ 1222 vcpu->spin_loop.in_spin_loop = val; 1223} 1224static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1225{ 1226 vcpu->spin_loop.dy_eligible = val; 1227} 1228 1229#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1230 1231static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1232{ 1233} 1234 1235static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1236{ 1237} 1238#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1239 1240#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1241bool kvm_arch_has_irq_bypass(void); 1242int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1243 struct irq_bypass_producer *); 1244void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1245 struct irq_bypass_producer *); 1246void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1247void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1248int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1249 uint32_t guest_irq, bool set); 1250#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1251 1252#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1253/* If we wakeup during the poll time, was it a sucessful poll? */ 1254static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1255{ 1256 return vcpu->valid_wakeup; 1257} 1258 1259#else 1260static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1261{ 1262 return true; 1263} 1264#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1265 1266#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1267long kvm_arch_vcpu_async_ioctl(struct file *filp, 1268 unsigned int ioctl, unsigned long arg); 1269#else 1270static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1271 unsigned int ioctl, 1272 unsigned long arg) 1273{ 1274 return -ENOIOCTLCMD; 1275} 1276#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1277 1278void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1279 unsigned long start, unsigned long end); 1280 1281#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1282int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1283#else 1284static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1285{ 1286 return 0; 1287} 1288#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1289 1290#endif