at v4.18 57 kB view raw
1/* 2 * Scatterlist Cryptographic API. 3 * 4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> 5 * Copyright (c) 2002 David S. Miller (davem@redhat.com) 6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> 7 * 8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> 9 * and Nettle, by Niels Möller. 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the Free 13 * Software Foundation; either version 2 of the License, or (at your option) 14 * any later version. 15 * 16 */ 17#ifndef _LINUX_CRYPTO_H 18#define _LINUX_CRYPTO_H 19 20#include <linux/atomic.h> 21#include <linux/kernel.h> 22#include <linux/list.h> 23#include <linux/bug.h> 24#include <linux/slab.h> 25#include <linux/string.h> 26#include <linux/uaccess.h> 27#include <linux/completion.h> 28 29/* 30 * Autoloaded crypto modules should only use a prefixed name to avoid allowing 31 * arbitrary modules to be loaded. Loading from userspace may still need the 32 * unprefixed names, so retains those aliases as well. 33 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 34 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro 35 * expands twice on the same line. Instead, use a separate base name for the 36 * alias. 37 */ 38#define MODULE_ALIAS_CRYPTO(name) \ 39 __MODULE_INFO(alias, alias_userspace, name); \ 40 __MODULE_INFO(alias, alias_crypto, "crypto-" name) 41 42/* 43 * Algorithm masks and types. 44 */ 45#define CRYPTO_ALG_TYPE_MASK 0x0000000f 46#define CRYPTO_ALG_TYPE_CIPHER 0x00000001 47#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 48#define CRYPTO_ALG_TYPE_AEAD 0x00000003 49#define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004 50#define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005 51#define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 52#define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006 53#define CRYPTO_ALG_TYPE_KPP 0x00000008 54#define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a 55#define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b 56#define CRYPTO_ALG_TYPE_RNG 0x0000000c 57#define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d 58#define CRYPTO_ALG_TYPE_DIGEST 0x0000000e 59#define CRYPTO_ALG_TYPE_HASH 0x0000000e 60#define CRYPTO_ALG_TYPE_SHASH 0x0000000e 61#define CRYPTO_ALG_TYPE_AHASH 0x0000000f 62 63#define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e 64#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e 65#define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c 66#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e 67 68#define CRYPTO_ALG_LARVAL 0x00000010 69#define CRYPTO_ALG_DEAD 0x00000020 70#define CRYPTO_ALG_DYING 0x00000040 71#define CRYPTO_ALG_ASYNC 0x00000080 72 73/* 74 * Set this bit if and only if the algorithm requires another algorithm of 75 * the same type to handle corner cases. 76 */ 77#define CRYPTO_ALG_NEED_FALLBACK 0x00000100 78 79/* 80 * This bit is set for symmetric key ciphers that have already been wrapped 81 * with a generic IV generator to prevent them from being wrapped again. 82 */ 83#define CRYPTO_ALG_GENIV 0x00000200 84 85/* 86 * Set if the algorithm has passed automated run-time testing. Note that 87 * if there is no run-time testing for a given algorithm it is considered 88 * to have passed. 89 */ 90 91#define CRYPTO_ALG_TESTED 0x00000400 92 93/* 94 * Set if the algorithm is an instance that is built from templates. 95 */ 96#define CRYPTO_ALG_INSTANCE 0x00000800 97 98/* Set this bit if the algorithm provided is hardware accelerated but 99 * not available to userspace via instruction set or so. 100 */ 101#define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 102 103/* 104 * Mark a cipher as a service implementation only usable by another 105 * cipher and never by a normal user of the kernel crypto API 106 */ 107#define CRYPTO_ALG_INTERNAL 0x00002000 108 109/* 110 * Set if the algorithm has a ->setkey() method but can be used without 111 * calling it first, i.e. there is a default key. 112 */ 113#define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 114 115/* 116 * Transform masks and values (for crt_flags). 117 */ 118#define CRYPTO_TFM_NEED_KEY 0x00000001 119 120#define CRYPTO_TFM_REQ_MASK 0x000fff00 121#define CRYPTO_TFM_RES_MASK 0xfff00000 122 123#define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100 124#define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 125#define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 126#define CRYPTO_TFM_RES_WEAK_KEY 0x00100000 127#define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000 128#define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000 129#define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000 130#define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000 131 132/* 133 * Miscellaneous stuff. 134 */ 135#define CRYPTO_MAX_ALG_NAME 128 136 137/* 138 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual 139 * declaration) is used to ensure that the crypto_tfm context structure is 140 * aligned correctly for the given architecture so that there are no alignment 141 * faults for C data types. In particular, this is required on platforms such 142 * as arm where pointers are 32-bit aligned but there are data types such as 143 * u64 which require 64-bit alignment. 144 */ 145#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN 146 147#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) 148 149struct scatterlist; 150struct crypto_ablkcipher; 151struct crypto_async_request; 152struct crypto_blkcipher; 153struct crypto_tfm; 154struct crypto_type; 155struct skcipher_givcrypt_request; 156 157typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); 158 159/** 160 * DOC: Block Cipher Context Data Structures 161 * 162 * These data structures define the operating context for each block cipher 163 * type. 164 */ 165 166struct crypto_async_request { 167 struct list_head list; 168 crypto_completion_t complete; 169 void *data; 170 struct crypto_tfm *tfm; 171 172 u32 flags; 173}; 174 175struct ablkcipher_request { 176 struct crypto_async_request base; 177 178 unsigned int nbytes; 179 180 void *info; 181 182 struct scatterlist *src; 183 struct scatterlist *dst; 184 185 void *__ctx[] CRYPTO_MINALIGN_ATTR; 186}; 187 188struct blkcipher_desc { 189 struct crypto_blkcipher *tfm; 190 void *info; 191 u32 flags; 192}; 193 194struct cipher_desc { 195 struct crypto_tfm *tfm; 196 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 197 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst, 198 const u8 *src, unsigned int nbytes); 199 void *info; 200}; 201 202/** 203 * DOC: Block Cipher Algorithm Definitions 204 * 205 * These data structures define modular crypto algorithm implementations, 206 * managed via crypto_register_alg() and crypto_unregister_alg(). 207 */ 208 209/** 210 * struct ablkcipher_alg - asynchronous block cipher definition 211 * @min_keysize: Minimum key size supported by the transformation. This is the 212 * smallest key length supported by this transformation algorithm. 213 * This must be set to one of the pre-defined values as this is 214 * not hardware specific. Possible values for this field can be 215 * found via git grep "_MIN_KEY_SIZE" include/crypto/ 216 * @max_keysize: Maximum key size supported by the transformation. This is the 217 * largest key length supported by this transformation algorithm. 218 * This must be set to one of the pre-defined values as this is 219 * not hardware specific. Possible values for this field can be 220 * found via git grep "_MAX_KEY_SIZE" include/crypto/ 221 * @setkey: Set key for the transformation. This function is used to either 222 * program a supplied key into the hardware or store the key in the 223 * transformation context for programming it later. Note that this 224 * function does modify the transformation context. This function can 225 * be called multiple times during the existence of the transformation 226 * object, so one must make sure the key is properly reprogrammed into 227 * the hardware. This function is also responsible for checking the key 228 * length for validity. In case a software fallback was put in place in 229 * the @cra_init call, this function might need to use the fallback if 230 * the algorithm doesn't support all of the key sizes. 231 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt 232 * the supplied scatterlist containing the blocks of data. The crypto 233 * API consumer is responsible for aligning the entries of the 234 * scatterlist properly and making sure the chunks are correctly 235 * sized. In case a software fallback was put in place in the 236 * @cra_init call, this function might need to use the fallback if 237 * the algorithm doesn't support all of the key sizes. In case the 238 * key was stored in transformation context, the key might need to be 239 * re-programmed into the hardware in this function. This function 240 * shall not modify the transformation context, as this function may 241 * be called in parallel with the same transformation object. 242 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt 243 * and the conditions are exactly the same. 244 * @givencrypt: Update the IV for encryption. With this function, a cipher 245 * implementation may provide the function on how to update the IV 246 * for encryption. 247 * @givdecrypt: Update the IV for decryption. This is the reverse of 248 * @givencrypt . 249 * @geniv: The transformation implementation may use an "IV generator" provided 250 * by the kernel crypto API. Several use cases have a predefined 251 * approach how IVs are to be updated. For such use cases, the kernel 252 * crypto API provides ready-to-use implementations that can be 253 * referenced with this variable. 254 * @ivsize: IV size applicable for transformation. The consumer must provide an 255 * IV of exactly that size to perform the encrypt or decrypt operation. 256 * 257 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are 258 * mandatory and must be filled. 259 */ 260struct ablkcipher_alg { 261 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 262 unsigned int keylen); 263 int (*encrypt)(struct ablkcipher_request *req); 264 int (*decrypt)(struct ablkcipher_request *req); 265 int (*givencrypt)(struct skcipher_givcrypt_request *req); 266 int (*givdecrypt)(struct skcipher_givcrypt_request *req); 267 268 const char *geniv; 269 270 unsigned int min_keysize; 271 unsigned int max_keysize; 272 unsigned int ivsize; 273}; 274 275/** 276 * struct blkcipher_alg - synchronous block cipher definition 277 * @min_keysize: see struct ablkcipher_alg 278 * @max_keysize: see struct ablkcipher_alg 279 * @setkey: see struct ablkcipher_alg 280 * @encrypt: see struct ablkcipher_alg 281 * @decrypt: see struct ablkcipher_alg 282 * @geniv: see struct ablkcipher_alg 283 * @ivsize: see struct ablkcipher_alg 284 * 285 * All fields except @geniv and @ivsize are mandatory and must be filled. 286 */ 287struct blkcipher_alg { 288 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 289 unsigned int keylen); 290 int (*encrypt)(struct blkcipher_desc *desc, 291 struct scatterlist *dst, struct scatterlist *src, 292 unsigned int nbytes); 293 int (*decrypt)(struct blkcipher_desc *desc, 294 struct scatterlist *dst, struct scatterlist *src, 295 unsigned int nbytes); 296 297 const char *geniv; 298 299 unsigned int min_keysize; 300 unsigned int max_keysize; 301 unsigned int ivsize; 302}; 303 304/** 305 * struct cipher_alg - single-block symmetric ciphers definition 306 * @cia_min_keysize: Minimum key size supported by the transformation. This is 307 * the smallest key length supported by this transformation 308 * algorithm. This must be set to one of the pre-defined 309 * values as this is not hardware specific. Possible values 310 * for this field can be found via git grep "_MIN_KEY_SIZE" 311 * include/crypto/ 312 * @cia_max_keysize: Maximum key size supported by the transformation. This is 313 * the largest key length supported by this transformation 314 * algorithm. This must be set to one of the pre-defined values 315 * as this is not hardware specific. Possible values for this 316 * field can be found via git grep "_MAX_KEY_SIZE" 317 * include/crypto/ 318 * @cia_setkey: Set key for the transformation. This function is used to either 319 * program a supplied key into the hardware or store the key in the 320 * transformation context for programming it later. Note that this 321 * function does modify the transformation context. This function 322 * can be called multiple times during the existence of the 323 * transformation object, so one must make sure the key is properly 324 * reprogrammed into the hardware. This function is also 325 * responsible for checking the key length for validity. 326 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a 327 * single block of data, which must be @cra_blocksize big. This 328 * always operates on a full @cra_blocksize and it is not possible 329 * to encrypt a block of smaller size. The supplied buffers must 330 * therefore also be at least of @cra_blocksize size. Both the 331 * input and output buffers are always aligned to @cra_alignmask. 332 * In case either of the input or output buffer supplied by user 333 * of the crypto API is not aligned to @cra_alignmask, the crypto 334 * API will re-align the buffers. The re-alignment means that a 335 * new buffer will be allocated, the data will be copied into the 336 * new buffer, then the processing will happen on the new buffer, 337 * then the data will be copied back into the original buffer and 338 * finally the new buffer will be freed. In case a software 339 * fallback was put in place in the @cra_init call, this function 340 * might need to use the fallback if the algorithm doesn't support 341 * all of the key sizes. In case the key was stored in 342 * transformation context, the key might need to be re-programmed 343 * into the hardware in this function. This function shall not 344 * modify the transformation context, as this function may be 345 * called in parallel with the same transformation object. 346 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to 347 * @cia_encrypt, and the conditions are exactly the same. 348 * 349 * All fields are mandatory and must be filled. 350 */ 351struct cipher_alg { 352 unsigned int cia_min_keysize; 353 unsigned int cia_max_keysize; 354 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, 355 unsigned int keylen); 356 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 357 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 358}; 359 360struct compress_alg { 361 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, 362 unsigned int slen, u8 *dst, unsigned int *dlen); 363 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, 364 unsigned int slen, u8 *dst, unsigned int *dlen); 365}; 366 367 368#define cra_ablkcipher cra_u.ablkcipher 369#define cra_blkcipher cra_u.blkcipher 370#define cra_cipher cra_u.cipher 371#define cra_compress cra_u.compress 372 373/** 374 * struct crypto_alg - definition of a cryptograpic cipher algorithm 375 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h 376 * CRYPTO_ALG_* flags for the flags which go in here. Those are 377 * used for fine-tuning the description of the transformation 378 * algorithm. 379 * @cra_blocksize: Minimum block size of this transformation. The size in bytes 380 * of the smallest possible unit which can be transformed with 381 * this algorithm. The users must respect this value. 382 * In case of HASH transformation, it is possible for a smaller 383 * block than @cra_blocksize to be passed to the crypto API for 384 * transformation, in case of any other transformation type, an 385 * error will be returned upon any attempt to transform smaller 386 * than @cra_blocksize chunks. 387 * @cra_ctxsize: Size of the operational context of the transformation. This 388 * value informs the kernel crypto API about the memory size 389 * needed to be allocated for the transformation context. 390 * @cra_alignmask: Alignment mask for the input and output data buffer. The data 391 * buffer containing the input data for the algorithm must be 392 * aligned to this alignment mask. The data buffer for the 393 * output data must be aligned to this alignment mask. Note that 394 * the Crypto API will do the re-alignment in software, but 395 * only under special conditions and there is a performance hit. 396 * The re-alignment happens at these occasions for different 397 * @cra_u types: cipher -- For both input data and output data 398 * buffer; ahash -- For output hash destination buf; shash -- 399 * For output hash destination buf. 400 * This is needed on hardware which is flawed by design and 401 * cannot pick data from arbitrary addresses. 402 * @cra_priority: Priority of this transformation implementation. In case 403 * multiple transformations with same @cra_name are available to 404 * the Crypto API, the kernel will use the one with highest 405 * @cra_priority. 406 * @cra_name: Generic name (usable by multiple implementations) of the 407 * transformation algorithm. This is the name of the transformation 408 * itself. This field is used by the kernel when looking up the 409 * providers of particular transformation. 410 * @cra_driver_name: Unique name of the transformation provider. This is the 411 * name of the provider of the transformation. This can be any 412 * arbitrary value, but in the usual case, this contains the 413 * name of the chip or provider and the name of the 414 * transformation algorithm. 415 * @cra_type: Type of the cryptographic transformation. This is a pointer to 416 * struct crypto_type, which implements callbacks common for all 417 * transformation types. There are multiple options: 418 * &crypto_blkcipher_type, &crypto_ablkcipher_type, 419 * &crypto_ahash_type, &crypto_rng_type. 420 * This field might be empty. In that case, there are no common 421 * callbacks. This is the case for: cipher, compress, shash. 422 * @cra_u: Callbacks implementing the transformation. This is a union of 423 * multiple structures. Depending on the type of transformation selected 424 * by @cra_type and @cra_flags above, the associated structure must be 425 * filled with callbacks. This field might be empty. This is the case 426 * for ahash, shash. 427 * @cra_init: Initialize the cryptographic transformation object. This function 428 * is used to initialize the cryptographic transformation object. 429 * This function is called only once at the instantiation time, right 430 * after the transformation context was allocated. In case the 431 * cryptographic hardware has some special requirements which need to 432 * be handled by software, this function shall check for the precise 433 * requirement of the transformation and put any software fallbacks 434 * in place. 435 * @cra_exit: Deinitialize the cryptographic transformation object. This is a 436 * counterpart to @cra_init, used to remove various changes set in 437 * @cra_init. 438 * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher 439 * definition. See @struct @ablkcipher_alg. 440 * @cra_u.blkcipher: Union member which contains a synchronous block cipher 441 * definition See @struct @blkcipher_alg. 442 * @cra_u.cipher: Union member which contains a single-block symmetric cipher 443 * definition. See @struct @cipher_alg. 444 * @cra_u.compress: Union member which contains a (de)compression algorithm. 445 * See @struct @compress_alg. 446 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE 447 * @cra_list: internally used 448 * @cra_users: internally used 449 * @cra_refcnt: internally used 450 * @cra_destroy: internally used 451 * 452 * The struct crypto_alg describes a generic Crypto API algorithm and is common 453 * for all of the transformations. Any variable not documented here shall not 454 * be used by a cipher implementation as it is internal to the Crypto API. 455 */ 456struct crypto_alg { 457 struct list_head cra_list; 458 struct list_head cra_users; 459 460 u32 cra_flags; 461 unsigned int cra_blocksize; 462 unsigned int cra_ctxsize; 463 unsigned int cra_alignmask; 464 465 int cra_priority; 466 refcount_t cra_refcnt; 467 468 char cra_name[CRYPTO_MAX_ALG_NAME]; 469 char cra_driver_name[CRYPTO_MAX_ALG_NAME]; 470 471 const struct crypto_type *cra_type; 472 473 union { 474 struct ablkcipher_alg ablkcipher; 475 struct blkcipher_alg blkcipher; 476 struct cipher_alg cipher; 477 struct compress_alg compress; 478 } cra_u; 479 480 int (*cra_init)(struct crypto_tfm *tfm); 481 void (*cra_exit)(struct crypto_tfm *tfm); 482 void (*cra_destroy)(struct crypto_alg *alg); 483 484 struct module *cra_module; 485} CRYPTO_MINALIGN_ATTR; 486 487/* 488 * A helper struct for waiting for completion of async crypto ops 489 */ 490struct crypto_wait { 491 struct completion completion; 492 int err; 493}; 494 495/* 496 * Macro for declaring a crypto op async wait object on stack 497 */ 498#define DECLARE_CRYPTO_WAIT(_wait) \ 499 struct crypto_wait _wait = { \ 500 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } 501 502/* 503 * Async ops completion helper functioons 504 */ 505void crypto_req_done(struct crypto_async_request *req, int err); 506 507static inline int crypto_wait_req(int err, struct crypto_wait *wait) 508{ 509 switch (err) { 510 case -EINPROGRESS: 511 case -EBUSY: 512 wait_for_completion(&wait->completion); 513 reinit_completion(&wait->completion); 514 err = wait->err; 515 break; 516 }; 517 518 return err; 519} 520 521static inline void crypto_init_wait(struct crypto_wait *wait) 522{ 523 init_completion(&wait->completion); 524} 525 526/* 527 * Algorithm registration interface. 528 */ 529int crypto_register_alg(struct crypto_alg *alg); 530int crypto_unregister_alg(struct crypto_alg *alg); 531int crypto_register_algs(struct crypto_alg *algs, int count); 532int crypto_unregister_algs(struct crypto_alg *algs, int count); 533 534/* 535 * Algorithm query interface. 536 */ 537int crypto_has_alg(const char *name, u32 type, u32 mask); 538 539/* 540 * Transforms: user-instantiated objects which encapsulate algorithms 541 * and core processing logic. Managed via crypto_alloc_*() and 542 * crypto_free_*(), as well as the various helpers below. 543 */ 544 545struct ablkcipher_tfm { 546 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 547 unsigned int keylen); 548 int (*encrypt)(struct ablkcipher_request *req); 549 int (*decrypt)(struct ablkcipher_request *req); 550 551 struct crypto_ablkcipher *base; 552 553 unsigned int ivsize; 554 unsigned int reqsize; 555}; 556 557struct blkcipher_tfm { 558 void *iv; 559 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 560 unsigned int keylen); 561 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 562 struct scatterlist *src, unsigned int nbytes); 563 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 564 struct scatterlist *src, unsigned int nbytes); 565}; 566 567struct cipher_tfm { 568 int (*cit_setkey)(struct crypto_tfm *tfm, 569 const u8 *key, unsigned int keylen); 570 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 571 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 572}; 573 574struct compress_tfm { 575 int (*cot_compress)(struct crypto_tfm *tfm, 576 const u8 *src, unsigned int slen, 577 u8 *dst, unsigned int *dlen); 578 int (*cot_decompress)(struct crypto_tfm *tfm, 579 const u8 *src, unsigned int slen, 580 u8 *dst, unsigned int *dlen); 581}; 582 583#define crt_ablkcipher crt_u.ablkcipher 584#define crt_blkcipher crt_u.blkcipher 585#define crt_cipher crt_u.cipher 586#define crt_compress crt_u.compress 587 588struct crypto_tfm { 589 590 u32 crt_flags; 591 592 union { 593 struct ablkcipher_tfm ablkcipher; 594 struct blkcipher_tfm blkcipher; 595 struct cipher_tfm cipher; 596 struct compress_tfm compress; 597 } crt_u; 598 599 void (*exit)(struct crypto_tfm *tfm); 600 601 struct crypto_alg *__crt_alg; 602 603 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; 604}; 605 606struct crypto_ablkcipher { 607 struct crypto_tfm base; 608}; 609 610struct crypto_blkcipher { 611 struct crypto_tfm base; 612}; 613 614struct crypto_cipher { 615 struct crypto_tfm base; 616}; 617 618struct crypto_comp { 619 struct crypto_tfm base; 620}; 621 622enum { 623 CRYPTOA_UNSPEC, 624 CRYPTOA_ALG, 625 CRYPTOA_TYPE, 626 CRYPTOA_U32, 627 __CRYPTOA_MAX, 628}; 629 630#define CRYPTOA_MAX (__CRYPTOA_MAX - 1) 631 632/* Maximum number of (rtattr) parameters for each template. */ 633#define CRYPTO_MAX_ATTRS 32 634 635struct crypto_attr_alg { 636 char name[CRYPTO_MAX_ALG_NAME]; 637}; 638 639struct crypto_attr_type { 640 u32 type; 641 u32 mask; 642}; 643 644struct crypto_attr_u32 { 645 u32 num; 646}; 647 648/* 649 * Transform user interface. 650 */ 651 652struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); 653void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); 654 655static inline void crypto_free_tfm(struct crypto_tfm *tfm) 656{ 657 return crypto_destroy_tfm(tfm, tfm); 658} 659 660int alg_test(const char *driver, const char *alg, u32 type, u32 mask); 661 662/* 663 * Transform helpers which query the underlying algorithm. 664 */ 665static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) 666{ 667 return tfm->__crt_alg->cra_name; 668} 669 670static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) 671{ 672 return tfm->__crt_alg->cra_driver_name; 673} 674 675static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) 676{ 677 return tfm->__crt_alg->cra_priority; 678} 679 680static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) 681{ 682 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; 683} 684 685static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) 686{ 687 return tfm->__crt_alg->cra_blocksize; 688} 689 690static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) 691{ 692 return tfm->__crt_alg->cra_alignmask; 693} 694 695static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) 696{ 697 return tfm->crt_flags; 698} 699 700static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) 701{ 702 tfm->crt_flags |= flags; 703} 704 705static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) 706{ 707 tfm->crt_flags &= ~flags; 708} 709 710static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) 711{ 712 return tfm->__crt_ctx; 713} 714 715static inline unsigned int crypto_tfm_ctx_alignment(void) 716{ 717 struct crypto_tfm *tfm; 718 return __alignof__(tfm->__crt_ctx); 719} 720 721/* 722 * API wrappers. 723 */ 724static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast( 725 struct crypto_tfm *tfm) 726{ 727 return (struct crypto_ablkcipher *)tfm; 728} 729 730static inline u32 crypto_skcipher_type(u32 type) 731{ 732 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); 733 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 734 return type; 735} 736 737static inline u32 crypto_skcipher_mask(u32 mask) 738{ 739 mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); 740 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK; 741 return mask; 742} 743 744/** 745 * DOC: Asynchronous Block Cipher API 746 * 747 * Asynchronous block cipher API is used with the ciphers of type 748 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto). 749 * 750 * Asynchronous cipher operations imply that the function invocation for a 751 * cipher request returns immediately before the completion of the operation. 752 * The cipher request is scheduled as a separate kernel thread and therefore 753 * load-balanced on the different CPUs via the process scheduler. To allow 754 * the kernel crypto API to inform the caller about the completion of a cipher 755 * request, the caller must provide a callback function. That function is 756 * invoked with the cipher handle when the request completes. 757 * 758 * To support the asynchronous operation, additional information than just the 759 * cipher handle must be supplied to the kernel crypto API. That additional 760 * information is given by filling in the ablkcipher_request data structure. 761 * 762 * For the asynchronous block cipher API, the state is maintained with the tfm 763 * cipher handle. A single tfm can be used across multiple calls and in 764 * parallel. For asynchronous block cipher calls, context data supplied and 765 * only used by the caller can be referenced the request data structure in 766 * addition to the IV used for the cipher request. The maintenance of such 767 * state information would be important for a crypto driver implementer to 768 * have, because when calling the callback function upon completion of the 769 * cipher operation, that callback function may need some information about 770 * which operation just finished if it invoked multiple in parallel. This 771 * state information is unused by the kernel crypto API. 772 */ 773 774static inline struct crypto_tfm *crypto_ablkcipher_tfm( 775 struct crypto_ablkcipher *tfm) 776{ 777 return &tfm->base; 778} 779 780/** 781 * crypto_free_ablkcipher() - zeroize and free cipher handle 782 * @tfm: cipher handle to be freed 783 */ 784static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm) 785{ 786 crypto_free_tfm(crypto_ablkcipher_tfm(tfm)); 787} 788 789/** 790 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher. 791 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 792 * ablkcipher 793 * @type: specifies the type of the cipher 794 * @mask: specifies the mask for the cipher 795 * 796 * Return: true when the ablkcipher is known to the kernel crypto API; false 797 * otherwise 798 */ 799static inline int crypto_has_ablkcipher(const char *alg_name, u32 type, 800 u32 mask) 801{ 802 return crypto_has_alg(alg_name, crypto_skcipher_type(type), 803 crypto_skcipher_mask(mask)); 804} 805 806static inline struct ablkcipher_tfm *crypto_ablkcipher_crt( 807 struct crypto_ablkcipher *tfm) 808{ 809 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher; 810} 811 812/** 813 * crypto_ablkcipher_ivsize() - obtain IV size 814 * @tfm: cipher handle 815 * 816 * The size of the IV for the ablkcipher referenced by the cipher handle is 817 * returned. This IV size may be zero if the cipher does not need an IV. 818 * 819 * Return: IV size in bytes 820 */ 821static inline unsigned int crypto_ablkcipher_ivsize( 822 struct crypto_ablkcipher *tfm) 823{ 824 return crypto_ablkcipher_crt(tfm)->ivsize; 825} 826 827/** 828 * crypto_ablkcipher_blocksize() - obtain block size of cipher 829 * @tfm: cipher handle 830 * 831 * The block size for the ablkcipher referenced with the cipher handle is 832 * returned. The caller may use that information to allocate appropriate 833 * memory for the data returned by the encryption or decryption operation 834 * 835 * Return: block size of cipher 836 */ 837static inline unsigned int crypto_ablkcipher_blocksize( 838 struct crypto_ablkcipher *tfm) 839{ 840 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm)); 841} 842 843static inline unsigned int crypto_ablkcipher_alignmask( 844 struct crypto_ablkcipher *tfm) 845{ 846 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm)); 847} 848 849static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm) 850{ 851 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm)); 852} 853 854static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm, 855 u32 flags) 856{ 857 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags); 858} 859 860static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm, 861 u32 flags) 862{ 863 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags); 864} 865 866/** 867 * crypto_ablkcipher_setkey() - set key for cipher 868 * @tfm: cipher handle 869 * @key: buffer holding the key 870 * @keylen: length of the key in bytes 871 * 872 * The caller provided key is set for the ablkcipher referenced by the cipher 873 * handle. 874 * 875 * Note, the key length determines the cipher type. Many block ciphers implement 876 * different cipher modes depending on the key size, such as AES-128 vs AES-192 877 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 878 * is performed. 879 * 880 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 881 */ 882static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm, 883 const u8 *key, unsigned int keylen) 884{ 885 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm); 886 887 return crt->setkey(crt->base, key, keylen); 888} 889 890/** 891 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request 892 * @req: ablkcipher_request out of which the cipher handle is to be obtained 893 * 894 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request 895 * data structure. 896 * 897 * Return: crypto_ablkcipher handle 898 */ 899static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm( 900 struct ablkcipher_request *req) 901{ 902 return __crypto_ablkcipher_cast(req->base.tfm); 903} 904 905/** 906 * crypto_ablkcipher_encrypt() - encrypt plaintext 907 * @req: reference to the ablkcipher_request handle that holds all information 908 * needed to perform the cipher operation 909 * 910 * Encrypt plaintext data using the ablkcipher_request handle. That data 911 * structure and how it is filled with data is discussed with the 912 * ablkcipher_request_* functions. 913 * 914 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 915 */ 916static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req) 917{ 918 struct ablkcipher_tfm *crt = 919 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 920 return crt->encrypt(req); 921} 922 923/** 924 * crypto_ablkcipher_decrypt() - decrypt ciphertext 925 * @req: reference to the ablkcipher_request handle that holds all information 926 * needed to perform the cipher operation 927 * 928 * Decrypt ciphertext data using the ablkcipher_request handle. That data 929 * structure and how it is filled with data is discussed with the 930 * ablkcipher_request_* functions. 931 * 932 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 933 */ 934static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req) 935{ 936 struct ablkcipher_tfm *crt = 937 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 938 return crt->decrypt(req); 939} 940 941/** 942 * DOC: Asynchronous Cipher Request Handle 943 * 944 * The ablkcipher_request data structure contains all pointers to data 945 * required for the asynchronous cipher operation. This includes the cipher 946 * handle (which can be used by multiple ablkcipher_request instances), pointer 947 * to plaintext and ciphertext, asynchronous callback function, etc. It acts 948 * as a handle to the ablkcipher_request_* API calls in a similar way as 949 * ablkcipher handle to the crypto_ablkcipher_* API calls. 950 */ 951 952/** 953 * crypto_ablkcipher_reqsize() - obtain size of the request data structure 954 * @tfm: cipher handle 955 * 956 * Return: number of bytes 957 */ 958static inline unsigned int crypto_ablkcipher_reqsize( 959 struct crypto_ablkcipher *tfm) 960{ 961 return crypto_ablkcipher_crt(tfm)->reqsize; 962} 963 964/** 965 * ablkcipher_request_set_tfm() - update cipher handle reference in request 966 * @req: request handle to be modified 967 * @tfm: cipher handle that shall be added to the request handle 968 * 969 * Allow the caller to replace the existing ablkcipher handle in the request 970 * data structure with a different one. 971 */ 972static inline void ablkcipher_request_set_tfm( 973 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm) 974{ 975 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base); 976} 977 978static inline struct ablkcipher_request *ablkcipher_request_cast( 979 struct crypto_async_request *req) 980{ 981 return container_of(req, struct ablkcipher_request, base); 982} 983 984/** 985 * ablkcipher_request_alloc() - allocate request data structure 986 * @tfm: cipher handle to be registered with the request 987 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 988 * 989 * Allocate the request data structure that must be used with the ablkcipher 990 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher 991 * handle is registered in the request data structure. 992 * 993 * Return: allocated request handle in case of success, or NULL if out of memory 994 */ 995static inline struct ablkcipher_request *ablkcipher_request_alloc( 996 struct crypto_ablkcipher *tfm, gfp_t gfp) 997{ 998 struct ablkcipher_request *req; 999 1000 req = kmalloc(sizeof(struct ablkcipher_request) + 1001 crypto_ablkcipher_reqsize(tfm), gfp); 1002 1003 if (likely(req)) 1004 ablkcipher_request_set_tfm(req, tfm); 1005 1006 return req; 1007} 1008 1009/** 1010 * ablkcipher_request_free() - zeroize and free request data structure 1011 * @req: request data structure cipher handle to be freed 1012 */ 1013static inline void ablkcipher_request_free(struct ablkcipher_request *req) 1014{ 1015 kzfree(req); 1016} 1017 1018/** 1019 * ablkcipher_request_set_callback() - set asynchronous callback function 1020 * @req: request handle 1021 * @flags: specify zero or an ORing of the flags 1022 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 1023 * increase the wait queue beyond the initial maximum size; 1024 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 1025 * @compl: callback function pointer to be registered with the request handle 1026 * @data: The data pointer refers to memory that is not used by the kernel 1027 * crypto API, but provided to the callback function for it to use. Here, 1028 * the caller can provide a reference to memory the callback function can 1029 * operate on. As the callback function is invoked asynchronously to the 1030 * related functionality, it may need to access data structures of the 1031 * related functionality which can be referenced using this pointer. The 1032 * callback function can access the memory via the "data" field in the 1033 * crypto_async_request data structure provided to the callback function. 1034 * 1035 * This function allows setting the callback function that is triggered once the 1036 * cipher operation completes. 1037 * 1038 * The callback function is registered with the ablkcipher_request handle and 1039 * must comply with the following template:: 1040 * 1041 * void callback_function(struct crypto_async_request *req, int error) 1042 */ 1043static inline void ablkcipher_request_set_callback( 1044 struct ablkcipher_request *req, 1045 u32 flags, crypto_completion_t compl, void *data) 1046{ 1047 req->base.complete = compl; 1048 req->base.data = data; 1049 req->base.flags = flags; 1050} 1051 1052/** 1053 * ablkcipher_request_set_crypt() - set data buffers 1054 * @req: request handle 1055 * @src: source scatter / gather list 1056 * @dst: destination scatter / gather list 1057 * @nbytes: number of bytes to process from @src 1058 * @iv: IV for the cipher operation which must comply with the IV size defined 1059 * by crypto_ablkcipher_ivsize 1060 * 1061 * This function allows setting of the source data and destination data 1062 * scatter / gather lists. 1063 * 1064 * For encryption, the source is treated as the plaintext and the 1065 * destination is the ciphertext. For a decryption operation, the use is 1066 * reversed - the source is the ciphertext and the destination is the plaintext. 1067 */ 1068static inline void ablkcipher_request_set_crypt( 1069 struct ablkcipher_request *req, 1070 struct scatterlist *src, struct scatterlist *dst, 1071 unsigned int nbytes, void *iv) 1072{ 1073 req->src = src; 1074 req->dst = dst; 1075 req->nbytes = nbytes; 1076 req->info = iv; 1077} 1078 1079/** 1080 * DOC: Synchronous Block Cipher API 1081 * 1082 * The synchronous block cipher API is used with the ciphers of type 1083 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto) 1084 * 1085 * Synchronous calls, have a context in the tfm. But since a single tfm can be 1086 * used in multiple calls and in parallel, this info should not be changeable 1087 * (unless a lock is used). This applies, for example, to the symmetric key. 1088 * However, the IV is changeable, so there is an iv field in blkcipher_tfm 1089 * structure for synchronous blkcipher api. So, its the only state info that can 1090 * be kept for synchronous calls without using a big lock across a tfm. 1091 * 1092 * The block cipher API allows the use of a complete cipher, i.e. a cipher 1093 * consisting of a template (a block chaining mode) and a single block cipher 1094 * primitive (e.g. AES). 1095 * 1096 * The plaintext data buffer and the ciphertext data buffer are pointed to 1097 * by using scatter/gather lists. The cipher operation is performed 1098 * on all segments of the provided scatter/gather lists. 1099 * 1100 * The kernel crypto API supports a cipher operation "in-place" which means that 1101 * the caller may provide the same scatter/gather list for the plaintext and 1102 * cipher text. After the completion of the cipher operation, the plaintext 1103 * data is replaced with the ciphertext data in case of an encryption and vice 1104 * versa for a decryption. The caller must ensure that the scatter/gather lists 1105 * for the output data point to sufficiently large buffers, i.e. multiples of 1106 * the block size of the cipher. 1107 */ 1108 1109static inline struct crypto_blkcipher *__crypto_blkcipher_cast( 1110 struct crypto_tfm *tfm) 1111{ 1112 return (struct crypto_blkcipher *)tfm; 1113} 1114 1115static inline struct crypto_blkcipher *crypto_blkcipher_cast( 1116 struct crypto_tfm *tfm) 1117{ 1118 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER); 1119 return __crypto_blkcipher_cast(tfm); 1120} 1121 1122/** 1123 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle 1124 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1125 * blkcipher cipher 1126 * @type: specifies the type of the cipher 1127 * @mask: specifies the mask for the cipher 1128 * 1129 * Allocate a cipher handle for a block cipher. The returned struct 1130 * crypto_blkcipher is the cipher handle that is required for any subsequent 1131 * API invocation for that block cipher. 1132 * 1133 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1134 * of an error, PTR_ERR() returns the error code. 1135 */ 1136static inline struct crypto_blkcipher *crypto_alloc_blkcipher( 1137 const char *alg_name, u32 type, u32 mask) 1138{ 1139 type &= ~CRYPTO_ALG_TYPE_MASK; 1140 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1141 mask |= CRYPTO_ALG_TYPE_MASK; 1142 1143 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask)); 1144} 1145 1146static inline struct crypto_tfm *crypto_blkcipher_tfm( 1147 struct crypto_blkcipher *tfm) 1148{ 1149 return &tfm->base; 1150} 1151 1152/** 1153 * crypto_free_blkcipher() - zeroize and free the block cipher handle 1154 * @tfm: cipher handle to be freed 1155 */ 1156static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm) 1157{ 1158 crypto_free_tfm(crypto_blkcipher_tfm(tfm)); 1159} 1160 1161/** 1162 * crypto_has_blkcipher() - Search for the availability of a block cipher 1163 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1164 * block cipher 1165 * @type: specifies the type of the cipher 1166 * @mask: specifies the mask for the cipher 1167 * 1168 * Return: true when the block cipher is known to the kernel crypto API; false 1169 * otherwise 1170 */ 1171static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask) 1172{ 1173 type &= ~CRYPTO_ALG_TYPE_MASK; 1174 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1175 mask |= CRYPTO_ALG_TYPE_MASK; 1176 1177 return crypto_has_alg(alg_name, type, mask); 1178} 1179 1180/** 1181 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle 1182 * @tfm: cipher handle 1183 * 1184 * Return: The character string holding the name of the cipher 1185 */ 1186static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm) 1187{ 1188 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm)); 1189} 1190 1191static inline struct blkcipher_tfm *crypto_blkcipher_crt( 1192 struct crypto_blkcipher *tfm) 1193{ 1194 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher; 1195} 1196 1197static inline struct blkcipher_alg *crypto_blkcipher_alg( 1198 struct crypto_blkcipher *tfm) 1199{ 1200 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher; 1201} 1202 1203/** 1204 * crypto_blkcipher_ivsize() - obtain IV size 1205 * @tfm: cipher handle 1206 * 1207 * The size of the IV for the block cipher referenced by the cipher handle is 1208 * returned. This IV size may be zero if the cipher does not need an IV. 1209 * 1210 * Return: IV size in bytes 1211 */ 1212static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm) 1213{ 1214 return crypto_blkcipher_alg(tfm)->ivsize; 1215} 1216 1217/** 1218 * crypto_blkcipher_blocksize() - obtain block size of cipher 1219 * @tfm: cipher handle 1220 * 1221 * The block size for the block cipher referenced with the cipher handle is 1222 * returned. The caller may use that information to allocate appropriate 1223 * memory for the data returned by the encryption or decryption operation. 1224 * 1225 * Return: block size of cipher 1226 */ 1227static inline unsigned int crypto_blkcipher_blocksize( 1228 struct crypto_blkcipher *tfm) 1229{ 1230 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm)); 1231} 1232 1233static inline unsigned int crypto_blkcipher_alignmask( 1234 struct crypto_blkcipher *tfm) 1235{ 1236 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm)); 1237} 1238 1239static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm) 1240{ 1241 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm)); 1242} 1243 1244static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm, 1245 u32 flags) 1246{ 1247 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags); 1248} 1249 1250static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm, 1251 u32 flags) 1252{ 1253 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags); 1254} 1255 1256/** 1257 * crypto_blkcipher_setkey() - set key for cipher 1258 * @tfm: cipher handle 1259 * @key: buffer holding the key 1260 * @keylen: length of the key in bytes 1261 * 1262 * The caller provided key is set for the block cipher referenced by the cipher 1263 * handle. 1264 * 1265 * Note, the key length determines the cipher type. Many block ciphers implement 1266 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1267 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1268 * is performed. 1269 * 1270 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1271 */ 1272static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm, 1273 const u8 *key, unsigned int keylen) 1274{ 1275 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm), 1276 key, keylen); 1277} 1278 1279/** 1280 * crypto_blkcipher_encrypt() - encrypt plaintext 1281 * @desc: reference to the block cipher handle with meta data 1282 * @dst: scatter/gather list that is filled by the cipher operation with the 1283 * ciphertext 1284 * @src: scatter/gather list that holds the plaintext 1285 * @nbytes: number of bytes of the plaintext to encrypt. 1286 * 1287 * Encrypt plaintext data using the IV set by the caller with a preceding 1288 * call of crypto_blkcipher_set_iv. 1289 * 1290 * The blkcipher_desc data structure must be filled by the caller and can 1291 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1292 * with the block cipher handle; desc.flags is filled with either 1293 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1294 * 1295 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1296 */ 1297static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc, 1298 struct scatterlist *dst, 1299 struct scatterlist *src, 1300 unsigned int nbytes) 1301{ 1302 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1303 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1304} 1305 1306/** 1307 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV 1308 * @desc: reference to the block cipher handle with meta data 1309 * @dst: scatter/gather list that is filled by the cipher operation with the 1310 * ciphertext 1311 * @src: scatter/gather list that holds the plaintext 1312 * @nbytes: number of bytes of the plaintext to encrypt. 1313 * 1314 * Encrypt plaintext data with the use of an IV that is solely used for this 1315 * cipher operation. Any previously set IV is not used. 1316 * 1317 * The blkcipher_desc data structure must be filled by the caller and can 1318 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1319 * with the block cipher handle; desc.info is filled with the IV to be used for 1320 * the current operation; desc.flags is filled with either 1321 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1322 * 1323 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1324 */ 1325static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc, 1326 struct scatterlist *dst, 1327 struct scatterlist *src, 1328 unsigned int nbytes) 1329{ 1330 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1331} 1332 1333/** 1334 * crypto_blkcipher_decrypt() - decrypt ciphertext 1335 * @desc: reference to the block cipher handle with meta data 1336 * @dst: scatter/gather list that is filled by the cipher operation with the 1337 * plaintext 1338 * @src: scatter/gather list that holds the ciphertext 1339 * @nbytes: number of bytes of the ciphertext to decrypt. 1340 * 1341 * Decrypt ciphertext data using the IV set by the caller with a preceding 1342 * call of crypto_blkcipher_set_iv. 1343 * 1344 * The blkcipher_desc data structure must be filled by the caller as documented 1345 * for the crypto_blkcipher_encrypt call above. 1346 * 1347 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1348 * 1349 */ 1350static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc, 1351 struct scatterlist *dst, 1352 struct scatterlist *src, 1353 unsigned int nbytes) 1354{ 1355 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1356 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1357} 1358 1359/** 1360 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV 1361 * @desc: reference to the block cipher handle with meta data 1362 * @dst: scatter/gather list that is filled by the cipher operation with the 1363 * plaintext 1364 * @src: scatter/gather list that holds the ciphertext 1365 * @nbytes: number of bytes of the ciphertext to decrypt. 1366 * 1367 * Decrypt ciphertext data with the use of an IV that is solely used for this 1368 * cipher operation. Any previously set IV is not used. 1369 * 1370 * The blkcipher_desc data structure must be filled by the caller as documented 1371 * for the crypto_blkcipher_encrypt_iv call above. 1372 * 1373 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1374 */ 1375static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc, 1376 struct scatterlist *dst, 1377 struct scatterlist *src, 1378 unsigned int nbytes) 1379{ 1380 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1381} 1382 1383/** 1384 * crypto_blkcipher_set_iv() - set IV for cipher 1385 * @tfm: cipher handle 1386 * @src: buffer holding the IV 1387 * @len: length of the IV in bytes 1388 * 1389 * The caller provided IV is set for the block cipher referenced by the cipher 1390 * handle. 1391 */ 1392static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm, 1393 const u8 *src, unsigned int len) 1394{ 1395 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len); 1396} 1397 1398/** 1399 * crypto_blkcipher_get_iv() - obtain IV from cipher 1400 * @tfm: cipher handle 1401 * @dst: buffer filled with the IV 1402 * @len: length of the buffer dst 1403 * 1404 * The caller can obtain the IV set for the block cipher referenced by the 1405 * cipher handle and store it into the user-provided buffer. If the buffer 1406 * has an insufficient space, the IV is truncated to fit the buffer. 1407 */ 1408static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm, 1409 u8 *dst, unsigned int len) 1410{ 1411 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len); 1412} 1413 1414/** 1415 * DOC: Single Block Cipher API 1416 * 1417 * The single block cipher API is used with the ciphers of type 1418 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). 1419 * 1420 * Using the single block cipher API calls, operations with the basic cipher 1421 * primitive can be implemented. These cipher primitives exclude any block 1422 * chaining operations including IV handling. 1423 * 1424 * The purpose of this single block cipher API is to support the implementation 1425 * of templates or other concepts that only need to perform the cipher operation 1426 * on one block at a time. Templates invoke the underlying cipher primitive 1427 * block-wise and process either the input or the output data of these cipher 1428 * operations. 1429 */ 1430 1431static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) 1432{ 1433 return (struct crypto_cipher *)tfm; 1434} 1435 1436static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm) 1437{ 1438 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER); 1439 return __crypto_cipher_cast(tfm); 1440} 1441 1442/** 1443 * crypto_alloc_cipher() - allocate single block cipher handle 1444 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1445 * single block cipher 1446 * @type: specifies the type of the cipher 1447 * @mask: specifies the mask for the cipher 1448 * 1449 * Allocate a cipher handle for a single block cipher. The returned struct 1450 * crypto_cipher is the cipher handle that is required for any subsequent API 1451 * invocation for that single block cipher. 1452 * 1453 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1454 * of an error, PTR_ERR() returns the error code. 1455 */ 1456static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, 1457 u32 type, u32 mask) 1458{ 1459 type &= ~CRYPTO_ALG_TYPE_MASK; 1460 type |= CRYPTO_ALG_TYPE_CIPHER; 1461 mask |= CRYPTO_ALG_TYPE_MASK; 1462 1463 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); 1464} 1465 1466static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) 1467{ 1468 return &tfm->base; 1469} 1470 1471/** 1472 * crypto_free_cipher() - zeroize and free the single block cipher handle 1473 * @tfm: cipher handle to be freed 1474 */ 1475static inline void crypto_free_cipher(struct crypto_cipher *tfm) 1476{ 1477 crypto_free_tfm(crypto_cipher_tfm(tfm)); 1478} 1479 1480/** 1481 * crypto_has_cipher() - Search for the availability of a single block cipher 1482 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1483 * single block cipher 1484 * @type: specifies the type of the cipher 1485 * @mask: specifies the mask for the cipher 1486 * 1487 * Return: true when the single block cipher is known to the kernel crypto API; 1488 * false otherwise 1489 */ 1490static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) 1491{ 1492 type &= ~CRYPTO_ALG_TYPE_MASK; 1493 type |= CRYPTO_ALG_TYPE_CIPHER; 1494 mask |= CRYPTO_ALG_TYPE_MASK; 1495 1496 return crypto_has_alg(alg_name, type, mask); 1497} 1498 1499static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm) 1500{ 1501 return &crypto_cipher_tfm(tfm)->crt_cipher; 1502} 1503 1504/** 1505 * crypto_cipher_blocksize() - obtain block size for cipher 1506 * @tfm: cipher handle 1507 * 1508 * The block size for the single block cipher referenced with the cipher handle 1509 * tfm is returned. The caller may use that information to allocate appropriate 1510 * memory for the data returned by the encryption or decryption operation 1511 * 1512 * Return: block size of cipher 1513 */ 1514static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) 1515{ 1516 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); 1517} 1518 1519static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) 1520{ 1521 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); 1522} 1523 1524static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) 1525{ 1526 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); 1527} 1528 1529static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, 1530 u32 flags) 1531{ 1532 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); 1533} 1534 1535static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, 1536 u32 flags) 1537{ 1538 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); 1539} 1540 1541/** 1542 * crypto_cipher_setkey() - set key for cipher 1543 * @tfm: cipher handle 1544 * @key: buffer holding the key 1545 * @keylen: length of the key in bytes 1546 * 1547 * The caller provided key is set for the single block cipher referenced by the 1548 * cipher handle. 1549 * 1550 * Note, the key length determines the cipher type. Many block ciphers implement 1551 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1552 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1553 * is performed. 1554 * 1555 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1556 */ 1557static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, 1558 const u8 *key, unsigned int keylen) 1559{ 1560 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm), 1561 key, keylen); 1562} 1563 1564/** 1565 * crypto_cipher_encrypt_one() - encrypt one block of plaintext 1566 * @tfm: cipher handle 1567 * @dst: points to the buffer that will be filled with the ciphertext 1568 * @src: buffer holding the plaintext to be encrypted 1569 * 1570 * Invoke the encryption operation of one block. The caller must ensure that 1571 * the plaintext and ciphertext buffers are at least one block in size. 1572 */ 1573static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, 1574 u8 *dst, const u8 *src) 1575{ 1576 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm), 1577 dst, src); 1578} 1579 1580/** 1581 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext 1582 * @tfm: cipher handle 1583 * @dst: points to the buffer that will be filled with the plaintext 1584 * @src: buffer holding the ciphertext to be decrypted 1585 * 1586 * Invoke the decryption operation of one block. The caller must ensure that 1587 * the plaintext and ciphertext buffers are at least one block in size. 1588 */ 1589static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, 1590 u8 *dst, const u8 *src) 1591{ 1592 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm), 1593 dst, src); 1594} 1595 1596static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) 1597{ 1598 return (struct crypto_comp *)tfm; 1599} 1600 1601static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm) 1602{ 1603 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) & 1604 CRYPTO_ALG_TYPE_MASK); 1605 return __crypto_comp_cast(tfm); 1606} 1607 1608static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, 1609 u32 type, u32 mask) 1610{ 1611 type &= ~CRYPTO_ALG_TYPE_MASK; 1612 type |= CRYPTO_ALG_TYPE_COMPRESS; 1613 mask |= CRYPTO_ALG_TYPE_MASK; 1614 1615 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); 1616} 1617 1618static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) 1619{ 1620 return &tfm->base; 1621} 1622 1623static inline void crypto_free_comp(struct crypto_comp *tfm) 1624{ 1625 crypto_free_tfm(crypto_comp_tfm(tfm)); 1626} 1627 1628static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) 1629{ 1630 type &= ~CRYPTO_ALG_TYPE_MASK; 1631 type |= CRYPTO_ALG_TYPE_COMPRESS; 1632 mask |= CRYPTO_ALG_TYPE_MASK; 1633 1634 return crypto_has_alg(alg_name, type, mask); 1635} 1636 1637static inline const char *crypto_comp_name(struct crypto_comp *tfm) 1638{ 1639 return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); 1640} 1641 1642static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm) 1643{ 1644 return &crypto_comp_tfm(tfm)->crt_compress; 1645} 1646 1647static inline int crypto_comp_compress(struct crypto_comp *tfm, 1648 const u8 *src, unsigned int slen, 1649 u8 *dst, unsigned int *dlen) 1650{ 1651 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm), 1652 src, slen, dst, dlen); 1653} 1654 1655static inline int crypto_comp_decompress(struct crypto_comp *tfm, 1656 const u8 *src, unsigned int slen, 1657 u8 *dst, unsigned int *dlen) 1658{ 1659 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm), 1660 src, slen, dst, dlen); 1661} 1662 1663#endif /* _LINUX_CRYPTO_H */ 1664