at v4.18 62 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_BLKDEV_H 3#define _LINUX_BLKDEV_H 4 5#include <linux/sched.h> 6#include <linux/sched/clock.h> 7 8#ifdef CONFIG_BLOCK 9 10#include <linux/major.h> 11#include <linux/genhd.h> 12#include <linux/list.h> 13#include <linux/llist.h> 14#include <linux/timer.h> 15#include <linux/workqueue.h> 16#include <linux/pagemap.h> 17#include <linux/backing-dev-defs.h> 18#include <linux/wait.h> 19#include <linux/mempool.h> 20#include <linux/pfn.h> 21#include <linux/bio.h> 22#include <linux/stringify.h> 23#include <linux/gfp.h> 24#include <linux/bsg.h> 25#include <linux/smp.h> 26#include <linux/rcupdate.h> 27#include <linux/percpu-refcount.h> 28#include <linux/scatterlist.h> 29#include <linux/blkzoned.h> 30#include <linux/seqlock.h> 31#include <linux/u64_stats_sync.h> 32 33struct module; 34struct scsi_ioctl_command; 35 36struct request_queue; 37struct elevator_queue; 38struct blk_trace; 39struct request; 40struct sg_io_hdr; 41struct bsg_job; 42struct blkcg_gq; 43struct blk_flush_queue; 44struct pr_ops; 45struct rq_wb; 46struct blk_queue_stats; 47struct blk_stat_callback; 48 49#define BLKDEV_MIN_RQ 4 50#define BLKDEV_MAX_RQ 128 /* Default maximum */ 51 52/* Must be consistent with blk_mq_poll_stats_bkt() */ 53#define BLK_MQ_POLL_STATS_BKTS 16 54 55/* 56 * Maximum number of blkcg policies allowed to be registered concurrently. 57 * Defined here to simplify include dependency. 58 */ 59#define BLKCG_MAX_POLS 3 60 61typedef void (rq_end_io_fn)(struct request *, blk_status_t); 62 63#define BLK_RL_SYNCFULL (1U << 0) 64#define BLK_RL_ASYNCFULL (1U << 1) 65 66struct request_list { 67 struct request_queue *q; /* the queue this rl belongs to */ 68#ifdef CONFIG_BLK_CGROUP 69 struct blkcg_gq *blkg; /* blkg this request pool belongs to */ 70#endif 71 /* 72 * count[], starved[], and wait[] are indexed by 73 * BLK_RW_SYNC/BLK_RW_ASYNC 74 */ 75 int count[2]; 76 int starved[2]; 77 mempool_t *rq_pool; 78 wait_queue_head_t wait[2]; 79 unsigned int flags; 80}; 81 82/* 83 * request flags */ 84typedef __u32 __bitwise req_flags_t; 85 86/* elevator knows about this request */ 87#define RQF_SORTED ((__force req_flags_t)(1 << 0)) 88/* drive already may have started this one */ 89#define RQF_STARTED ((__force req_flags_t)(1 << 1)) 90/* uses tagged queueing */ 91#define RQF_QUEUED ((__force req_flags_t)(1 << 2)) 92/* may not be passed by ioscheduler */ 93#define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 94/* request for flush sequence */ 95#define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 96/* merge of different types, fail separately */ 97#define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 98/* track inflight for MQ */ 99#define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 100/* don't call prep for this one */ 101#define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 102/* set for "ide_preempt" requests and also for requests for which the SCSI 103 "quiesce" state must be ignored. */ 104#define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 105/* contains copies of user pages */ 106#define RQF_COPY_USER ((__force req_flags_t)(1 << 9)) 107/* vaguely specified driver internal error. Ignored by the block layer */ 108#define RQF_FAILED ((__force req_flags_t)(1 << 10)) 109/* don't warn about errors */ 110#define RQF_QUIET ((__force req_flags_t)(1 << 11)) 111/* elevator private data attached */ 112#define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 113/* account I/O stat */ 114#define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 115/* request came from our alloc pool */ 116#define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 117/* runtime pm request */ 118#define RQF_PM ((__force req_flags_t)(1 << 15)) 119/* on IO scheduler merge hash */ 120#define RQF_HASHED ((__force req_flags_t)(1 << 16)) 121/* IO stats tracking on */ 122#define RQF_STATS ((__force req_flags_t)(1 << 17)) 123/* Look at ->special_vec for the actual data payload instead of the 124 bio chain. */ 125#define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 126/* The per-zone write lock is held for this request */ 127#define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 128/* already slept for hybrid poll */ 129#define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 130/* ->timeout has been called, don't expire again */ 131#define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 132 133/* flags that prevent us from merging requests: */ 134#define RQF_NOMERGE_FLAGS \ 135 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 136 137/* 138 * Request state for blk-mq. 139 */ 140enum mq_rq_state { 141 MQ_RQ_IDLE = 0, 142 MQ_RQ_IN_FLIGHT = 1, 143 MQ_RQ_COMPLETE = 2, 144}; 145 146/* 147 * Try to put the fields that are referenced together in the same cacheline. 148 * 149 * If you modify this structure, make sure to update blk_rq_init() and 150 * especially blk_mq_rq_ctx_init() to take care of the added fields. 151 */ 152struct request { 153 struct request_queue *q; 154 struct blk_mq_ctx *mq_ctx; 155 156 int cpu; 157 unsigned int cmd_flags; /* op and common flags */ 158 req_flags_t rq_flags; 159 160 int internal_tag; 161 162 /* the following two fields are internal, NEVER access directly */ 163 unsigned int __data_len; /* total data len */ 164 int tag; 165 sector_t __sector; /* sector cursor */ 166 167 struct bio *bio; 168 struct bio *biotail; 169 170 struct list_head queuelist; 171 172 /* 173 * The hash is used inside the scheduler, and killed once the 174 * request reaches the dispatch list. The ipi_list is only used 175 * to queue the request for softirq completion, which is long 176 * after the request has been unhashed (and even removed from 177 * the dispatch list). 178 */ 179 union { 180 struct hlist_node hash; /* merge hash */ 181 struct list_head ipi_list; 182 }; 183 184 /* 185 * The rb_node is only used inside the io scheduler, requests 186 * are pruned when moved to the dispatch queue. So let the 187 * completion_data share space with the rb_node. 188 */ 189 union { 190 struct rb_node rb_node; /* sort/lookup */ 191 struct bio_vec special_vec; 192 void *completion_data; 193 int error_count; /* for legacy drivers, don't use */ 194 }; 195 196 /* 197 * Three pointers are available for the IO schedulers, if they need 198 * more they have to dynamically allocate it. Flush requests are 199 * never put on the IO scheduler. So let the flush fields share 200 * space with the elevator data. 201 */ 202 union { 203 struct { 204 struct io_cq *icq; 205 void *priv[2]; 206 } elv; 207 208 struct { 209 unsigned int seq; 210 struct list_head list; 211 rq_end_io_fn *saved_end_io; 212 } flush; 213 }; 214 215 struct gendisk *rq_disk; 216 struct hd_struct *part; 217 /* Time that I/O was submitted to the kernel. */ 218 u64 start_time_ns; 219 /* Time that I/O was submitted to the device. */ 220 u64 io_start_time_ns; 221 222#ifdef CONFIG_BLK_WBT 223 unsigned short wbt_flags; 224#endif 225#ifdef CONFIG_BLK_DEV_THROTTLING_LOW 226 unsigned short throtl_size; 227#endif 228 229 /* 230 * Number of scatter-gather DMA addr+len pairs after 231 * physical address coalescing is performed. 232 */ 233 unsigned short nr_phys_segments; 234 235#if defined(CONFIG_BLK_DEV_INTEGRITY) 236 unsigned short nr_integrity_segments; 237#endif 238 239 unsigned short write_hint; 240 unsigned short ioprio; 241 242 void *special; /* opaque pointer available for LLD use */ 243 244 unsigned int extra_len; /* length of alignment and padding */ 245 246 enum mq_rq_state state; 247 refcount_t ref; 248 249 unsigned int timeout; 250 251 /* access through blk_rq_set_deadline, blk_rq_deadline */ 252 unsigned long __deadline; 253 254 struct list_head timeout_list; 255 256 union { 257 struct __call_single_data csd; 258 u64 fifo_time; 259 }; 260 261 /* 262 * completion callback. 263 */ 264 rq_end_io_fn *end_io; 265 void *end_io_data; 266 267 /* for bidi */ 268 struct request *next_rq; 269 270#ifdef CONFIG_BLK_CGROUP 271 struct request_list *rl; /* rl this rq is alloced from */ 272#endif 273}; 274 275static inline bool blk_op_is_scsi(unsigned int op) 276{ 277 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 278} 279 280static inline bool blk_op_is_private(unsigned int op) 281{ 282 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 283} 284 285static inline bool blk_rq_is_scsi(struct request *rq) 286{ 287 return blk_op_is_scsi(req_op(rq)); 288} 289 290static inline bool blk_rq_is_private(struct request *rq) 291{ 292 return blk_op_is_private(req_op(rq)); 293} 294 295static inline bool blk_rq_is_passthrough(struct request *rq) 296{ 297 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 298} 299 300static inline bool bio_is_passthrough(struct bio *bio) 301{ 302 unsigned op = bio_op(bio); 303 304 return blk_op_is_scsi(op) || blk_op_is_private(op); 305} 306 307static inline unsigned short req_get_ioprio(struct request *req) 308{ 309 return req->ioprio; 310} 311 312#include <linux/elevator.h> 313 314struct blk_queue_ctx; 315 316typedef void (request_fn_proc) (struct request_queue *q); 317typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 318typedef bool (poll_q_fn) (struct request_queue *q, blk_qc_t); 319typedef int (prep_rq_fn) (struct request_queue *, struct request *); 320typedef void (unprep_rq_fn) (struct request_queue *, struct request *); 321 322struct bio_vec; 323typedef void (softirq_done_fn)(struct request *); 324typedef int (dma_drain_needed_fn)(struct request *); 325typedef int (lld_busy_fn) (struct request_queue *q); 326typedef int (bsg_job_fn) (struct bsg_job *); 327typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t); 328typedef void (exit_rq_fn)(struct request_queue *, struct request *); 329 330enum blk_eh_timer_return { 331 BLK_EH_DONE, /* drivers has completed the command */ 332 BLK_EH_RESET_TIMER, /* reset timer and try again */ 333}; 334 335typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *); 336 337enum blk_queue_state { 338 Queue_down, 339 Queue_up, 340}; 341 342struct blk_queue_tag { 343 struct request **tag_index; /* map of busy tags */ 344 unsigned long *tag_map; /* bit map of free/busy tags */ 345 int max_depth; /* what we will send to device */ 346 int real_max_depth; /* what the array can hold */ 347 atomic_t refcnt; /* map can be shared */ 348 int alloc_policy; /* tag allocation policy */ 349 int next_tag; /* next tag */ 350}; 351#define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 352#define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 353 354#define BLK_SCSI_MAX_CMDS (256) 355#define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 356 357/* 358 * Zoned block device models (zoned limit). 359 */ 360enum blk_zoned_model { 361 BLK_ZONED_NONE, /* Regular block device */ 362 BLK_ZONED_HA, /* Host-aware zoned block device */ 363 BLK_ZONED_HM, /* Host-managed zoned block device */ 364}; 365 366struct queue_limits { 367 unsigned long bounce_pfn; 368 unsigned long seg_boundary_mask; 369 unsigned long virt_boundary_mask; 370 371 unsigned int max_hw_sectors; 372 unsigned int max_dev_sectors; 373 unsigned int chunk_sectors; 374 unsigned int max_sectors; 375 unsigned int max_segment_size; 376 unsigned int physical_block_size; 377 unsigned int alignment_offset; 378 unsigned int io_min; 379 unsigned int io_opt; 380 unsigned int max_discard_sectors; 381 unsigned int max_hw_discard_sectors; 382 unsigned int max_write_same_sectors; 383 unsigned int max_write_zeroes_sectors; 384 unsigned int discard_granularity; 385 unsigned int discard_alignment; 386 387 unsigned short logical_block_size; 388 unsigned short max_segments; 389 unsigned short max_integrity_segments; 390 unsigned short max_discard_segments; 391 392 unsigned char misaligned; 393 unsigned char discard_misaligned; 394 unsigned char cluster; 395 unsigned char raid_partial_stripes_expensive; 396 enum blk_zoned_model zoned; 397}; 398 399#ifdef CONFIG_BLK_DEV_ZONED 400 401struct blk_zone_report_hdr { 402 unsigned int nr_zones; 403 u8 padding[60]; 404}; 405 406extern int blkdev_report_zones(struct block_device *bdev, 407 sector_t sector, struct blk_zone *zones, 408 unsigned int *nr_zones, gfp_t gfp_mask); 409extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors, 410 sector_t nr_sectors, gfp_t gfp_mask); 411 412extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 413 unsigned int cmd, unsigned long arg); 414extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode, 415 unsigned int cmd, unsigned long arg); 416 417#else /* CONFIG_BLK_DEV_ZONED */ 418 419static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 420 fmode_t mode, unsigned int cmd, 421 unsigned long arg) 422{ 423 return -ENOTTY; 424} 425 426static inline int blkdev_reset_zones_ioctl(struct block_device *bdev, 427 fmode_t mode, unsigned int cmd, 428 unsigned long arg) 429{ 430 return -ENOTTY; 431} 432 433#endif /* CONFIG_BLK_DEV_ZONED */ 434 435struct request_queue { 436 /* 437 * Together with queue_head for cacheline sharing 438 */ 439 struct list_head queue_head; 440 struct request *last_merge; 441 struct elevator_queue *elevator; 442 int nr_rqs[2]; /* # allocated [a]sync rqs */ 443 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */ 444 445 atomic_t shared_hctx_restart; 446 447 struct blk_queue_stats *stats; 448 struct rq_wb *rq_wb; 449 450 /* 451 * If blkcg is not used, @q->root_rl serves all requests. If blkcg 452 * is used, root blkg allocates from @q->root_rl and all other 453 * blkgs from their own blkg->rl. Which one to use should be 454 * determined using bio_request_list(). 455 */ 456 struct request_list root_rl; 457 458 request_fn_proc *request_fn; 459 make_request_fn *make_request_fn; 460 poll_q_fn *poll_fn; 461 prep_rq_fn *prep_rq_fn; 462 unprep_rq_fn *unprep_rq_fn; 463 softirq_done_fn *softirq_done_fn; 464 rq_timed_out_fn *rq_timed_out_fn; 465 dma_drain_needed_fn *dma_drain_needed; 466 lld_busy_fn *lld_busy_fn; 467 /* Called just after a request is allocated */ 468 init_rq_fn *init_rq_fn; 469 /* Called just before a request is freed */ 470 exit_rq_fn *exit_rq_fn; 471 /* Called from inside blk_get_request() */ 472 void (*initialize_rq_fn)(struct request *rq); 473 474 const struct blk_mq_ops *mq_ops; 475 476 unsigned int *mq_map; 477 478 /* sw queues */ 479 struct blk_mq_ctx __percpu *queue_ctx; 480 unsigned int nr_queues; 481 482 unsigned int queue_depth; 483 484 /* hw dispatch queues */ 485 struct blk_mq_hw_ctx **queue_hw_ctx; 486 unsigned int nr_hw_queues; 487 488 /* 489 * Dispatch queue sorting 490 */ 491 sector_t end_sector; 492 struct request *boundary_rq; 493 494 /* 495 * Delayed queue handling 496 */ 497 struct delayed_work delay_work; 498 499 struct backing_dev_info *backing_dev_info; 500 501 /* 502 * The queue owner gets to use this for whatever they like. 503 * ll_rw_blk doesn't touch it. 504 */ 505 void *queuedata; 506 507 /* 508 * various queue flags, see QUEUE_* below 509 */ 510 unsigned long queue_flags; 511 512 /* 513 * ida allocated id for this queue. Used to index queues from 514 * ioctx. 515 */ 516 int id; 517 518 /* 519 * queue needs bounce pages for pages above this limit 520 */ 521 gfp_t bounce_gfp; 522 523 /* 524 * protects queue structures from reentrancy. ->__queue_lock should 525 * _never_ be used directly, it is queue private. always use 526 * ->queue_lock. 527 */ 528 spinlock_t __queue_lock; 529 spinlock_t *queue_lock; 530 531 /* 532 * queue kobject 533 */ 534 struct kobject kobj; 535 536 /* 537 * mq queue kobject 538 */ 539 struct kobject mq_kobj; 540 541#ifdef CONFIG_BLK_DEV_INTEGRITY 542 struct blk_integrity integrity; 543#endif /* CONFIG_BLK_DEV_INTEGRITY */ 544 545#ifdef CONFIG_PM 546 struct device *dev; 547 int rpm_status; 548 unsigned int nr_pending; 549#endif 550 551 /* 552 * queue settings 553 */ 554 unsigned long nr_requests; /* Max # of requests */ 555 unsigned int nr_congestion_on; 556 unsigned int nr_congestion_off; 557 unsigned int nr_batching; 558 559 unsigned int dma_drain_size; 560 void *dma_drain_buffer; 561 unsigned int dma_pad_mask; 562 unsigned int dma_alignment; 563 564 struct blk_queue_tag *queue_tags; 565 566 unsigned int nr_sorted; 567 unsigned int in_flight[2]; 568 569 /* 570 * Number of active block driver functions for which blk_drain_queue() 571 * must wait. Must be incremented around functions that unlock the 572 * queue_lock internally, e.g. scsi_request_fn(). 573 */ 574 unsigned int request_fn_active; 575 576 unsigned int rq_timeout; 577 int poll_nsec; 578 579 struct blk_stat_callback *poll_cb; 580 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 581 582 struct timer_list timeout; 583 struct work_struct timeout_work; 584 struct list_head timeout_list; 585 586 struct list_head icq_list; 587#ifdef CONFIG_BLK_CGROUP 588 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 589 struct blkcg_gq *root_blkg; 590 struct list_head blkg_list; 591#endif 592 593 struct queue_limits limits; 594 595 /* 596 * Zoned block device information for request dispatch control. 597 * nr_zones is the total number of zones of the device. This is always 598 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones 599 * bits which indicates if a zone is conventional (bit clear) or 600 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones 601 * bits which indicates if a zone is write locked, that is, if a write 602 * request targeting the zone was dispatched. All three fields are 603 * initialized by the low level device driver (e.g. scsi/sd.c). 604 * Stacking drivers (device mappers) may or may not initialize 605 * these fields. 606 * 607 * Reads of this information must be protected with blk_queue_enter() / 608 * blk_queue_exit(). Modifying this information is only allowed while 609 * no requests are being processed. See also blk_mq_freeze_queue() and 610 * blk_mq_unfreeze_queue(). 611 */ 612 unsigned int nr_zones; 613 unsigned long *seq_zones_bitmap; 614 unsigned long *seq_zones_wlock; 615 616 /* 617 * sg stuff 618 */ 619 unsigned int sg_timeout; 620 unsigned int sg_reserved_size; 621 int node; 622#ifdef CONFIG_BLK_DEV_IO_TRACE 623 struct blk_trace *blk_trace; 624 struct mutex blk_trace_mutex; 625#endif 626 /* 627 * for flush operations 628 */ 629 struct blk_flush_queue *fq; 630 631 struct list_head requeue_list; 632 spinlock_t requeue_lock; 633 struct delayed_work requeue_work; 634 635 struct mutex sysfs_lock; 636 637 int bypass_depth; 638 atomic_t mq_freeze_depth; 639 640#if defined(CONFIG_BLK_DEV_BSG) 641 bsg_job_fn *bsg_job_fn; 642 struct bsg_class_device bsg_dev; 643#endif 644 645#ifdef CONFIG_BLK_DEV_THROTTLING 646 /* Throttle data */ 647 struct throtl_data *td; 648#endif 649 struct rcu_head rcu_head; 650 wait_queue_head_t mq_freeze_wq; 651 struct percpu_ref q_usage_counter; 652 struct list_head all_q_node; 653 654 struct blk_mq_tag_set *tag_set; 655 struct list_head tag_set_list; 656 struct bio_set bio_split; 657 658#ifdef CONFIG_BLK_DEBUG_FS 659 struct dentry *debugfs_dir; 660 struct dentry *sched_debugfs_dir; 661#endif 662 663 bool mq_sysfs_init_done; 664 665 size_t cmd_size; 666 void *rq_alloc_data; 667 668 struct work_struct release_work; 669 670#define BLK_MAX_WRITE_HINTS 5 671 u64 write_hints[BLK_MAX_WRITE_HINTS]; 672}; 673 674#define QUEUE_FLAG_QUEUED 0 /* uses generic tag queueing */ 675#define QUEUE_FLAG_STOPPED 1 /* queue is stopped */ 676#define QUEUE_FLAG_DYING 2 /* queue being torn down */ 677#define QUEUE_FLAG_BYPASS 3 /* act as dumb FIFO queue */ 678#define QUEUE_FLAG_BIDI 4 /* queue supports bidi requests */ 679#define QUEUE_FLAG_NOMERGES 5 /* disable merge attempts */ 680#define QUEUE_FLAG_SAME_COMP 6 /* complete on same CPU-group */ 681#define QUEUE_FLAG_FAIL_IO 7 /* fake timeout */ 682#define QUEUE_FLAG_NONROT 9 /* non-rotational device (SSD) */ 683#define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 684#define QUEUE_FLAG_IO_STAT 10 /* do IO stats */ 685#define QUEUE_FLAG_DISCARD 11 /* supports DISCARD */ 686#define QUEUE_FLAG_NOXMERGES 12 /* No extended merges */ 687#define QUEUE_FLAG_ADD_RANDOM 13 /* Contributes to random pool */ 688#define QUEUE_FLAG_SECERASE 14 /* supports secure erase */ 689#define QUEUE_FLAG_SAME_FORCE 15 /* force complete on same CPU */ 690#define QUEUE_FLAG_DEAD 16 /* queue tear-down finished */ 691#define QUEUE_FLAG_INIT_DONE 17 /* queue is initialized */ 692#define QUEUE_FLAG_NO_SG_MERGE 18 /* don't attempt to merge SG segments*/ 693#define QUEUE_FLAG_POLL 19 /* IO polling enabled if set */ 694#define QUEUE_FLAG_WC 20 /* Write back caching */ 695#define QUEUE_FLAG_FUA 21 /* device supports FUA writes */ 696#define QUEUE_FLAG_FLUSH_NQ 22 /* flush not queueuable */ 697#define QUEUE_FLAG_DAX 23 /* device supports DAX */ 698#define QUEUE_FLAG_STATS 24 /* track rq completion times */ 699#define QUEUE_FLAG_POLL_STATS 25 /* collecting stats for hybrid polling */ 700#define QUEUE_FLAG_REGISTERED 26 /* queue has been registered to a disk */ 701#define QUEUE_FLAG_SCSI_PASSTHROUGH 27 /* queue supports SCSI commands */ 702#define QUEUE_FLAG_QUIESCED 28 /* queue has been quiesced */ 703#define QUEUE_FLAG_PREEMPT_ONLY 29 /* only process REQ_PREEMPT requests */ 704 705#define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 706 (1 << QUEUE_FLAG_SAME_COMP) | \ 707 (1 << QUEUE_FLAG_ADD_RANDOM)) 708 709#define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 710 (1 << QUEUE_FLAG_SAME_COMP) | \ 711 (1 << QUEUE_FLAG_POLL)) 712 713void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 714void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 715bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 716bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q); 717 718#define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags) 719#define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 720#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 721#define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 722#define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags) 723#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 724#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 725#define blk_queue_noxmerges(q) \ 726 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 727#define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 728#define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 729#define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 730#define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 731#define blk_queue_secure_erase(q) \ 732 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 733#define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 734#define blk_queue_scsi_passthrough(q) \ 735 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 736 737#define blk_noretry_request(rq) \ 738 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 739 REQ_FAILFAST_DRIVER)) 740#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 741#define blk_queue_preempt_only(q) \ 742 test_bit(QUEUE_FLAG_PREEMPT_ONLY, &(q)->queue_flags) 743#define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 744 745extern int blk_set_preempt_only(struct request_queue *q); 746extern void blk_clear_preempt_only(struct request_queue *q); 747 748static inline int queue_in_flight(struct request_queue *q) 749{ 750 return q->in_flight[0] + q->in_flight[1]; 751} 752 753static inline bool blk_account_rq(struct request *rq) 754{ 755 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 756} 757 758#define blk_rq_cpu_valid(rq) ((rq)->cpu != -1) 759#define blk_bidi_rq(rq) ((rq)->next_rq != NULL) 760/* rq->queuelist of dequeued request must be list_empty() */ 761#define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist)) 762 763#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 764 765#define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 766 767/* 768 * Driver can handle struct request, if it either has an old style 769 * request_fn defined, or is blk-mq based. 770 */ 771static inline bool queue_is_rq_based(struct request_queue *q) 772{ 773 return q->request_fn || q->mq_ops; 774} 775 776static inline unsigned int blk_queue_cluster(struct request_queue *q) 777{ 778 return q->limits.cluster; 779} 780 781static inline enum blk_zoned_model 782blk_queue_zoned_model(struct request_queue *q) 783{ 784 return q->limits.zoned; 785} 786 787static inline bool blk_queue_is_zoned(struct request_queue *q) 788{ 789 switch (blk_queue_zoned_model(q)) { 790 case BLK_ZONED_HA: 791 case BLK_ZONED_HM: 792 return true; 793 default: 794 return false; 795 } 796} 797 798static inline unsigned int blk_queue_zone_sectors(struct request_queue *q) 799{ 800 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 801} 802 803static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 804{ 805 return q->nr_zones; 806} 807 808static inline unsigned int blk_queue_zone_no(struct request_queue *q, 809 sector_t sector) 810{ 811 if (!blk_queue_is_zoned(q)) 812 return 0; 813 return sector >> ilog2(q->limits.chunk_sectors); 814} 815 816static inline bool blk_queue_zone_is_seq(struct request_queue *q, 817 sector_t sector) 818{ 819 if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap) 820 return false; 821 return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap); 822} 823 824static inline bool rq_is_sync(struct request *rq) 825{ 826 return op_is_sync(rq->cmd_flags); 827} 828 829static inline bool blk_rl_full(struct request_list *rl, bool sync) 830{ 831 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 832 833 return rl->flags & flag; 834} 835 836static inline void blk_set_rl_full(struct request_list *rl, bool sync) 837{ 838 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 839 840 rl->flags |= flag; 841} 842 843static inline void blk_clear_rl_full(struct request_list *rl, bool sync) 844{ 845 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 846 847 rl->flags &= ~flag; 848} 849 850static inline bool rq_mergeable(struct request *rq) 851{ 852 if (blk_rq_is_passthrough(rq)) 853 return false; 854 855 if (req_op(rq) == REQ_OP_FLUSH) 856 return false; 857 858 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 859 return false; 860 861 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 862 return false; 863 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 864 return false; 865 866 return true; 867} 868 869static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 870{ 871 if (bio_page(a) == bio_page(b) && 872 bio_offset(a) == bio_offset(b)) 873 return true; 874 875 return false; 876} 877 878static inline unsigned int blk_queue_depth(struct request_queue *q) 879{ 880 if (q->queue_depth) 881 return q->queue_depth; 882 883 return q->nr_requests; 884} 885 886/* 887 * q->prep_rq_fn return values 888 */ 889enum { 890 BLKPREP_OK, /* serve it */ 891 BLKPREP_KILL, /* fatal error, kill, return -EIO */ 892 BLKPREP_DEFER, /* leave on queue */ 893 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */ 894}; 895 896extern unsigned long blk_max_low_pfn, blk_max_pfn; 897 898/* 899 * standard bounce addresses: 900 * 901 * BLK_BOUNCE_HIGH : bounce all highmem pages 902 * BLK_BOUNCE_ANY : don't bounce anything 903 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 904 */ 905 906#if BITS_PER_LONG == 32 907#define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 908#else 909#define BLK_BOUNCE_HIGH -1ULL 910#endif 911#define BLK_BOUNCE_ANY (-1ULL) 912#define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 913 914/* 915 * default timeout for SG_IO if none specified 916 */ 917#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 918#define BLK_MIN_SG_TIMEOUT (7 * HZ) 919 920struct rq_map_data { 921 struct page **pages; 922 int page_order; 923 int nr_entries; 924 unsigned long offset; 925 int null_mapped; 926 int from_user; 927}; 928 929struct req_iterator { 930 struct bvec_iter iter; 931 struct bio *bio; 932}; 933 934/* This should not be used directly - use rq_for_each_segment */ 935#define for_each_bio(_bio) \ 936 for (; _bio; _bio = _bio->bi_next) 937#define __rq_for_each_bio(_bio, rq) \ 938 if ((rq->bio)) \ 939 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 940 941#define rq_for_each_segment(bvl, _rq, _iter) \ 942 __rq_for_each_bio(_iter.bio, _rq) \ 943 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 944 945#define rq_iter_last(bvec, _iter) \ 946 (_iter.bio->bi_next == NULL && \ 947 bio_iter_last(bvec, _iter.iter)) 948 949#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 950# error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 951#endif 952#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 953extern void rq_flush_dcache_pages(struct request *rq); 954#else 955static inline void rq_flush_dcache_pages(struct request *rq) 956{ 957} 958#endif 959 960extern int blk_register_queue(struct gendisk *disk); 961extern void blk_unregister_queue(struct gendisk *disk); 962extern blk_qc_t generic_make_request(struct bio *bio); 963extern blk_qc_t direct_make_request(struct bio *bio); 964extern void blk_rq_init(struct request_queue *q, struct request *rq); 965extern void blk_init_request_from_bio(struct request *req, struct bio *bio); 966extern void blk_put_request(struct request *); 967extern void __blk_put_request(struct request_queue *, struct request *); 968extern struct request *blk_get_request(struct request_queue *, unsigned int op, 969 blk_mq_req_flags_t flags); 970extern void blk_requeue_request(struct request_queue *, struct request *); 971extern int blk_lld_busy(struct request_queue *q); 972extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 973 struct bio_set *bs, gfp_t gfp_mask, 974 int (*bio_ctr)(struct bio *, struct bio *, void *), 975 void *data); 976extern void blk_rq_unprep_clone(struct request *rq); 977extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 978 struct request *rq); 979extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 980extern void blk_delay_queue(struct request_queue *, unsigned long); 981extern void blk_queue_split(struct request_queue *, struct bio **); 982extern void blk_recount_segments(struct request_queue *, struct bio *); 983extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 984extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 985 unsigned int, void __user *); 986extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 987 unsigned int, void __user *); 988extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 989 struct scsi_ioctl_command __user *); 990 991extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 992extern void blk_queue_exit(struct request_queue *q); 993extern void blk_start_queue(struct request_queue *q); 994extern void blk_start_queue_async(struct request_queue *q); 995extern void blk_stop_queue(struct request_queue *q); 996extern void blk_sync_queue(struct request_queue *q); 997extern void __blk_stop_queue(struct request_queue *q); 998extern void __blk_run_queue(struct request_queue *q); 999extern void __blk_run_queue_uncond(struct request_queue *q); 1000extern void blk_run_queue(struct request_queue *); 1001extern void blk_run_queue_async(struct request_queue *q); 1002extern int blk_rq_map_user(struct request_queue *, struct request *, 1003 struct rq_map_data *, void __user *, unsigned long, 1004 gfp_t); 1005extern int blk_rq_unmap_user(struct bio *); 1006extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 1007extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 1008 struct rq_map_data *, const struct iov_iter *, 1009 gfp_t); 1010extern void blk_execute_rq(struct request_queue *, struct gendisk *, 1011 struct request *, int); 1012extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 1013 struct request *, int, rq_end_io_fn *); 1014 1015int blk_status_to_errno(blk_status_t status); 1016blk_status_t errno_to_blk_status(int errno); 1017 1018bool blk_poll(struct request_queue *q, blk_qc_t cookie); 1019 1020static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 1021{ 1022 return bdev->bd_disk->queue; /* this is never NULL */ 1023} 1024 1025/* 1026 * The basic unit of block I/O is a sector. It is used in a number of contexts 1027 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 1028 * bytes. Variables of type sector_t represent an offset or size that is a 1029 * multiple of 512 bytes. Hence these two constants. 1030 */ 1031#ifndef SECTOR_SHIFT 1032#define SECTOR_SHIFT 9 1033#endif 1034#ifndef SECTOR_SIZE 1035#define SECTOR_SIZE (1 << SECTOR_SHIFT) 1036#endif 1037 1038/* 1039 * blk_rq_pos() : the current sector 1040 * blk_rq_bytes() : bytes left in the entire request 1041 * blk_rq_cur_bytes() : bytes left in the current segment 1042 * blk_rq_err_bytes() : bytes left till the next error boundary 1043 * blk_rq_sectors() : sectors left in the entire request 1044 * blk_rq_cur_sectors() : sectors left in the current segment 1045 */ 1046static inline sector_t blk_rq_pos(const struct request *rq) 1047{ 1048 return rq->__sector; 1049} 1050 1051static inline unsigned int blk_rq_bytes(const struct request *rq) 1052{ 1053 return rq->__data_len; 1054} 1055 1056static inline int blk_rq_cur_bytes(const struct request *rq) 1057{ 1058 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 1059} 1060 1061extern unsigned int blk_rq_err_bytes(const struct request *rq); 1062 1063static inline unsigned int blk_rq_sectors(const struct request *rq) 1064{ 1065 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 1066} 1067 1068static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1069{ 1070 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 1071} 1072 1073static inline unsigned int blk_rq_zone_no(struct request *rq) 1074{ 1075 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 1076} 1077 1078static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1079{ 1080 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 1081} 1082 1083/* 1084 * Some commands like WRITE SAME have a payload or data transfer size which 1085 * is different from the size of the request. Any driver that supports such 1086 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1087 * calculate the data transfer size. 1088 */ 1089static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1090{ 1091 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1092 return rq->special_vec.bv_len; 1093 return blk_rq_bytes(rq); 1094} 1095 1096static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1097 int op) 1098{ 1099 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1100 return min(q->limits.max_discard_sectors, 1101 UINT_MAX >> SECTOR_SHIFT); 1102 1103 if (unlikely(op == REQ_OP_WRITE_SAME)) 1104 return q->limits.max_write_same_sectors; 1105 1106 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1107 return q->limits.max_write_zeroes_sectors; 1108 1109 return q->limits.max_sectors; 1110} 1111 1112/* 1113 * Return maximum size of a request at given offset. Only valid for 1114 * file system requests. 1115 */ 1116static inline unsigned int blk_max_size_offset(struct request_queue *q, 1117 sector_t offset) 1118{ 1119 if (!q->limits.chunk_sectors) 1120 return q->limits.max_sectors; 1121 1122 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors - 1123 (offset & (q->limits.chunk_sectors - 1)))); 1124} 1125 1126static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1127 sector_t offset) 1128{ 1129 struct request_queue *q = rq->q; 1130 1131 if (blk_rq_is_passthrough(rq)) 1132 return q->limits.max_hw_sectors; 1133 1134 if (!q->limits.chunk_sectors || 1135 req_op(rq) == REQ_OP_DISCARD || 1136 req_op(rq) == REQ_OP_SECURE_ERASE) 1137 return blk_queue_get_max_sectors(q, req_op(rq)); 1138 1139 return min(blk_max_size_offset(q, offset), 1140 blk_queue_get_max_sectors(q, req_op(rq))); 1141} 1142 1143static inline unsigned int blk_rq_count_bios(struct request *rq) 1144{ 1145 unsigned int nr_bios = 0; 1146 struct bio *bio; 1147 1148 __rq_for_each_bio(bio, rq) 1149 nr_bios++; 1150 1151 return nr_bios; 1152} 1153 1154/* 1155 * Request issue related functions. 1156 */ 1157extern struct request *blk_peek_request(struct request_queue *q); 1158extern void blk_start_request(struct request *rq); 1159extern struct request *blk_fetch_request(struct request_queue *q); 1160 1161void blk_steal_bios(struct bio_list *list, struct request *rq); 1162 1163/* 1164 * Request completion related functions. 1165 * 1166 * blk_update_request() completes given number of bytes and updates 1167 * the request without completing it. 1168 * 1169 * blk_end_request() and friends. __blk_end_request() must be called 1170 * with the request queue spinlock acquired. 1171 * 1172 * Several drivers define their own end_request and call 1173 * blk_end_request() for parts of the original function. 1174 * This prevents code duplication in drivers. 1175 */ 1176extern bool blk_update_request(struct request *rq, blk_status_t error, 1177 unsigned int nr_bytes); 1178extern void blk_finish_request(struct request *rq, blk_status_t error); 1179extern bool blk_end_request(struct request *rq, blk_status_t error, 1180 unsigned int nr_bytes); 1181extern void blk_end_request_all(struct request *rq, blk_status_t error); 1182extern bool __blk_end_request(struct request *rq, blk_status_t error, 1183 unsigned int nr_bytes); 1184extern void __blk_end_request_all(struct request *rq, blk_status_t error); 1185extern bool __blk_end_request_cur(struct request *rq, blk_status_t error); 1186 1187extern void blk_complete_request(struct request *); 1188extern void __blk_complete_request(struct request *); 1189extern void blk_abort_request(struct request *); 1190extern void blk_unprep_request(struct request *); 1191 1192/* 1193 * Access functions for manipulating queue properties 1194 */ 1195extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn, 1196 spinlock_t *lock, int node_id); 1197extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *); 1198extern int blk_init_allocated_queue(struct request_queue *); 1199extern void blk_cleanup_queue(struct request_queue *); 1200extern void blk_queue_make_request(struct request_queue *, make_request_fn *); 1201extern void blk_queue_bounce_limit(struct request_queue *, u64); 1202extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1203extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1204extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1205extern void blk_queue_max_discard_segments(struct request_queue *, 1206 unsigned short); 1207extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1208extern void blk_queue_max_discard_sectors(struct request_queue *q, 1209 unsigned int max_discard_sectors); 1210extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1211 unsigned int max_write_same_sectors); 1212extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1213 unsigned int max_write_same_sectors); 1214extern void blk_queue_logical_block_size(struct request_queue *, unsigned short); 1215extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1216extern void blk_queue_alignment_offset(struct request_queue *q, 1217 unsigned int alignment); 1218extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1219extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1220extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1221extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1222extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1223extern void blk_set_default_limits(struct queue_limits *lim); 1224extern void blk_set_stacking_limits(struct queue_limits *lim); 1225extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1226 sector_t offset); 1227extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1228 sector_t offset); 1229extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1230 sector_t offset); 1231extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1232extern void blk_queue_dma_pad(struct request_queue *, unsigned int); 1233extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1234extern int blk_queue_dma_drain(struct request_queue *q, 1235 dma_drain_needed_fn *dma_drain_needed, 1236 void *buf, unsigned int size); 1237extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn); 1238extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1239extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1240extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn); 1241extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn); 1242extern void blk_queue_dma_alignment(struct request_queue *, int); 1243extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1244extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *); 1245extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *); 1246extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1247extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable); 1248extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1249 1250/* 1251 * Number of physical segments as sent to the device. 1252 * 1253 * Normally this is the number of discontiguous data segments sent by the 1254 * submitter. But for data-less command like discard we might have no 1255 * actual data segments submitted, but the driver might have to add it's 1256 * own special payload. In that case we still return 1 here so that this 1257 * special payload will be mapped. 1258 */ 1259static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1260{ 1261 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1262 return 1; 1263 return rq->nr_phys_segments; 1264} 1265 1266/* 1267 * Number of discard segments (or ranges) the driver needs to fill in. 1268 * Each discard bio merged into a request is counted as one segment. 1269 */ 1270static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1271{ 1272 return max_t(unsigned short, rq->nr_phys_segments, 1); 1273} 1274 1275extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *); 1276extern void blk_dump_rq_flags(struct request *, char *); 1277extern long nr_blockdev_pages(void); 1278 1279bool __must_check blk_get_queue(struct request_queue *); 1280struct request_queue *blk_alloc_queue(gfp_t); 1281struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id, 1282 spinlock_t *lock); 1283extern void blk_put_queue(struct request_queue *); 1284extern void blk_set_queue_dying(struct request_queue *); 1285 1286/* 1287 * block layer runtime pm functions 1288 */ 1289#ifdef CONFIG_PM 1290extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev); 1291extern int blk_pre_runtime_suspend(struct request_queue *q); 1292extern void blk_post_runtime_suspend(struct request_queue *q, int err); 1293extern void blk_pre_runtime_resume(struct request_queue *q); 1294extern void blk_post_runtime_resume(struct request_queue *q, int err); 1295extern void blk_set_runtime_active(struct request_queue *q); 1296#else 1297static inline void blk_pm_runtime_init(struct request_queue *q, 1298 struct device *dev) {} 1299static inline int blk_pre_runtime_suspend(struct request_queue *q) 1300{ 1301 return -ENOSYS; 1302} 1303static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {} 1304static inline void blk_pre_runtime_resume(struct request_queue *q) {} 1305static inline void blk_post_runtime_resume(struct request_queue *q, int err) {} 1306static inline void blk_set_runtime_active(struct request_queue *q) {} 1307#endif 1308 1309/* 1310 * blk_plug permits building a queue of related requests by holding the I/O 1311 * fragments for a short period. This allows merging of sequential requests 1312 * into single larger request. As the requests are moved from a per-task list to 1313 * the device's request_queue in a batch, this results in improved scalability 1314 * as the lock contention for request_queue lock is reduced. 1315 * 1316 * It is ok not to disable preemption when adding the request to the plug list 1317 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1318 * the plug list when the task sleeps by itself. For details, please see 1319 * schedule() where blk_schedule_flush_plug() is called. 1320 */ 1321struct blk_plug { 1322 struct list_head list; /* requests */ 1323 struct list_head mq_list; /* blk-mq requests */ 1324 struct list_head cb_list; /* md requires an unplug callback */ 1325}; 1326#define BLK_MAX_REQUEST_COUNT 16 1327#define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1328 1329struct blk_plug_cb; 1330typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1331struct blk_plug_cb { 1332 struct list_head list; 1333 blk_plug_cb_fn callback; 1334 void *data; 1335}; 1336extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1337 void *data, int size); 1338extern void blk_start_plug(struct blk_plug *); 1339extern void blk_finish_plug(struct blk_plug *); 1340extern void blk_flush_plug_list(struct blk_plug *, bool); 1341 1342static inline void blk_flush_plug(struct task_struct *tsk) 1343{ 1344 struct blk_plug *plug = tsk->plug; 1345 1346 if (plug) 1347 blk_flush_plug_list(plug, false); 1348} 1349 1350static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1351{ 1352 struct blk_plug *plug = tsk->plug; 1353 1354 if (plug) 1355 blk_flush_plug_list(plug, true); 1356} 1357 1358static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1359{ 1360 struct blk_plug *plug = tsk->plug; 1361 1362 return plug && 1363 (!list_empty(&plug->list) || 1364 !list_empty(&plug->mq_list) || 1365 !list_empty(&plug->cb_list)); 1366} 1367 1368/* 1369 * tag stuff 1370 */ 1371extern int blk_queue_start_tag(struct request_queue *, struct request *); 1372extern struct request *blk_queue_find_tag(struct request_queue *, int); 1373extern void blk_queue_end_tag(struct request_queue *, struct request *); 1374extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int); 1375extern void blk_queue_free_tags(struct request_queue *); 1376extern int blk_queue_resize_tags(struct request_queue *, int); 1377extern struct blk_queue_tag *blk_init_tags(int, int); 1378extern void blk_free_tags(struct blk_queue_tag *); 1379 1380static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt, 1381 int tag) 1382{ 1383 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth)) 1384 return NULL; 1385 return bqt->tag_index[tag]; 1386} 1387 1388extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); 1389extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1390 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1391 1392#define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1393 1394extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1395 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1396extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1397 sector_t nr_sects, gfp_t gfp_mask, int flags, 1398 struct bio **biop); 1399 1400#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1401#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1402 1403extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1404 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1405 unsigned flags); 1406extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1407 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1408 1409static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1410 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1411{ 1412 return blkdev_issue_discard(sb->s_bdev, 1413 block << (sb->s_blocksize_bits - 1414 SECTOR_SHIFT), 1415 nr_blocks << (sb->s_blocksize_bits - 1416 SECTOR_SHIFT), 1417 gfp_mask, flags); 1418} 1419static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1420 sector_t nr_blocks, gfp_t gfp_mask) 1421{ 1422 return blkdev_issue_zeroout(sb->s_bdev, 1423 block << (sb->s_blocksize_bits - 1424 SECTOR_SHIFT), 1425 nr_blocks << (sb->s_blocksize_bits - 1426 SECTOR_SHIFT), 1427 gfp_mask, 0); 1428} 1429 1430extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1431 1432enum blk_default_limits { 1433 BLK_MAX_SEGMENTS = 128, 1434 BLK_SAFE_MAX_SECTORS = 255, 1435 BLK_DEF_MAX_SECTORS = 2560, 1436 BLK_MAX_SEGMENT_SIZE = 65536, 1437 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1438}; 1439 1440#define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist) 1441 1442static inline unsigned long queue_segment_boundary(struct request_queue *q) 1443{ 1444 return q->limits.seg_boundary_mask; 1445} 1446 1447static inline unsigned long queue_virt_boundary(struct request_queue *q) 1448{ 1449 return q->limits.virt_boundary_mask; 1450} 1451 1452static inline unsigned int queue_max_sectors(struct request_queue *q) 1453{ 1454 return q->limits.max_sectors; 1455} 1456 1457static inline unsigned int queue_max_hw_sectors(struct request_queue *q) 1458{ 1459 return q->limits.max_hw_sectors; 1460} 1461 1462static inline unsigned short queue_max_segments(struct request_queue *q) 1463{ 1464 return q->limits.max_segments; 1465} 1466 1467static inline unsigned short queue_max_discard_segments(struct request_queue *q) 1468{ 1469 return q->limits.max_discard_segments; 1470} 1471 1472static inline unsigned int queue_max_segment_size(struct request_queue *q) 1473{ 1474 return q->limits.max_segment_size; 1475} 1476 1477static inline unsigned short queue_logical_block_size(struct request_queue *q) 1478{ 1479 int retval = 512; 1480 1481 if (q && q->limits.logical_block_size) 1482 retval = q->limits.logical_block_size; 1483 1484 return retval; 1485} 1486 1487static inline unsigned short bdev_logical_block_size(struct block_device *bdev) 1488{ 1489 return queue_logical_block_size(bdev_get_queue(bdev)); 1490} 1491 1492static inline unsigned int queue_physical_block_size(struct request_queue *q) 1493{ 1494 return q->limits.physical_block_size; 1495} 1496 1497static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1498{ 1499 return queue_physical_block_size(bdev_get_queue(bdev)); 1500} 1501 1502static inline unsigned int queue_io_min(struct request_queue *q) 1503{ 1504 return q->limits.io_min; 1505} 1506 1507static inline int bdev_io_min(struct block_device *bdev) 1508{ 1509 return queue_io_min(bdev_get_queue(bdev)); 1510} 1511 1512static inline unsigned int queue_io_opt(struct request_queue *q) 1513{ 1514 return q->limits.io_opt; 1515} 1516 1517static inline int bdev_io_opt(struct block_device *bdev) 1518{ 1519 return queue_io_opt(bdev_get_queue(bdev)); 1520} 1521 1522static inline int queue_alignment_offset(struct request_queue *q) 1523{ 1524 if (q->limits.misaligned) 1525 return -1; 1526 1527 return q->limits.alignment_offset; 1528} 1529 1530static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1531{ 1532 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1533 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1534 << SECTOR_SHIFT; 1535 1536 return (granularity + lim->alignment_offset - alignment) % granularity; 1537} 1538 1539static inline int bdev_alignment_offset(struct block_device *bdev) 1540{ 1541 struct request_queue *q = bdev_get_queue(bdev); 1542 1543 if (q->limits.misaligned) 1544 return -1; 1545 1546 if (bdev != bdev->bd_contains) 1547 return bdev->bd_part->alignment_offset; 1548 1549 return q->limits.alignment_offset; 1550} 1551 1552static inline int queue_discard_alignment(struct request_queue *q) 1553{ 1554 if (q->limits.discard_misaligned) 1555 return -1; 1556 1557 return q->limits.discard_alignment; 1558} 1559 1560static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1561{ 1562 unsigned int alignment, granularity, offset; 1563 1564 if (!lim->max_discard_sectors) 1565 return 0; 1566 1567 /* Why are these in bytes, not sectors? */ 1568 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1569 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1570 if (!granularity) 1571 return 0; 1572 1573 /* Offset of the partition start in 'granularity' sectors */ 1574 offset = sector_div(sector, granularity); 1575 1576 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1577 offset = (granularity + alignment - offset) % granularity; 1578 1579 /* Turn it back into bytes, gaah */ 1580 return offset << SECTOR_SHIFT; 1581} 1582 1583static inline int bdev_discard_alignment(struct block_device *bdev) 1584{ 1585 struct request_queue *q = bdev_get_queue(bdev); 1586 1587 if (bdev != bdev->bd_contains) 1588 return bdev->bd_part->discard_alignment; 1589 1590 return q->limits.discard_alignment; 1591} 1592 1593static inline unsigned int bdev_write_same(struct block_device *bdev) 1594{ 1595 struct request_queue *q = bdev_get_queue(bdev); 1596 1597 if (q) 1598 return q->limits.max_write_same_sectors; 1599 1600 return 0; 1601} 1602 1603static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1604{ 1605 struct request_queue *q = bdev_get_queue(bdev); 1606 1607 if (q) 1608 return q->limits.max_write_zeroes_sectors; 1609 1610 return 0; 1611} 1612 1613static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1614{ 1615 struct request_queue *q = bdev_get_queue(bdev); 1616 1617 if (q) 1618 return blk_queue_zoned_model(q); 1619 1620 return BLK_ZONED_NONE; 1621} 1622 1623static inline bool bdev_is_zoned(struct block_device *bdev) 1624{ 1625 struct request_queue *q = bdev_get_queue(bdev); 1626 1627 if (q) 1628 return blk_queue_is_zoned(q); 1629 1630 return false; 1631} 1632 1633static inline unsigned int bdev_zone_sectors(struct block_device *bdev) 1634{ 1635 struct request_queue *q = bdev_get_queue(bdev); 1636 1637 if (q) 1638 return blk_queue_zone_sectors(q); 1639 return 0; 1640} 1641 1642static inline unsigned int bdev_nr_zones(struct block_device *bdev) 1643{ 1644 struct request_queue *q = bdev_get_queue(bdev); 1645 1646 if (q) 1647 return blk_queue_nr_zones(q); 1648 return 0; 1649} 1650 1651static inline int queue_dma_alignment(struct request_queue *q) 1652{ 1653 return q ? q->dma_alignment : 511; 1654} 1655 1656static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1657 unsigned int len) 1658{ 1659 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1660 return !(addr & alignment) && !(len & alignment); 1661} 1662 1663/* assumes size > 256 */ 1664static inline unsigned int blksize_bits(unsigned int size) 1665{ 1666 unsigned int bits = 8; 1667 do { 1668 bits++; 1669 size >>= 1; 1670 } while (size > 256); 1671 return bits; 1672} 1673 1674static inline unsigned int block_size(struct block_device *bdev) 1675{ 1676 return bdev->bd_block_size; 1677} 1678 1679static inline bool queue_flush_queueable(struct request_queue *q) 1680{ 1681 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags); 1682} 1683 1684typedef struct {struct page *v;} Sector; 1685 1686unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *); 1687 1688static inline void put_dev_sector(Sector p) 1689{ 1690 put_page(p.v); 1691} 1692 1693static inline bool __bvec_gap_to_prev(struct request_queue *q, 1694 struct bio_vec *bprv, unsigned int offset) 1695{ 1696 return offset || 1697 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); 1698} 1699 1700/* 1701 * Check if adding a bio_vec after bprv with offset would create a gap in 1702 * the SG list. Most drivers don't care about this, but some do. 1703 */ 1704static inline bool bvec_gap_to_prev(struct request_queue *q, 1705 struct bio_vec *bprv, unsigned int offset) 1706{ 1707 if (!queue_virt_boundary(q)) 1708 return false; 1709 return __bvec_gap_to_prev(q, bprv, offset); 1710} 1711 1712/* 1713 * Check if the two bvecs from two bios can be merged to one segment. 1714 * If yes, no need to check gap between the two bios since the 1st bio 1715 * and the 1st bvec in the 2nd bio can be handled in one segment. 1716 */ 1717static inline bool bios_segs_mergeable(struct request_queue *q, 1718 struct bio *prev, struct bio_vec *prev_last_bv, 1719 struct bio_vec *next_first_bv) 1720{ 1721 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv)) 1722 return false; 1723 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv)) 1724 return false; 1725 if (prev->bi_seg_back_size + next_first_bv->bv_len > 1726 queue_max_segment_size(q)) 1727 return false; 1728 return true; 1729} 1730 1731static inline bool bio_will_gap(struct request_queue *q, 1732 struct request *prev_rq, 1733 struct bio *prev, 1734 struct bio *next) 1735{ 1736 if (bio_has_data(prev) && queue_virt_boundary(q)) { 1737 struct bio_vec pb, nb; 1738 1739 /* 1740 * don't merge if the 1st bio starts with non-zero 1741 * offset, otherwise it is quite difficult to respect 1742 * sg gap limit. We work hard to merge a huge number of small 1743 * single bios in case of mkfs. 1744 */ 1745 if (prev_rq) 1746 bio_get_first_bvec(prev_rq->bio, &pb); 1747 else 1748 bio_get_first_bvec(prev, &pb); 1749 if (pb.bv_offset) 1750 return true; 1751 1752 /* 1753 * We don't need to worry about the situation that the 1754 * merged segment ends in unaligned virt boundary: 1755 * 1756 * - if 'pb' ends aligned, the merged segment ends aligned 1757 * - if 'pb' ends unaligned, the next bio must include 1758 * one single bvec of 'nb', otherwise the 'nb' can't 1759 * merge with 'pb' 1760 */ 1761 bio_get_last_bvec(prev, &pb); 1762 bio_get_first_bvec(next, &nb); 1763 1764 if (!bios_segs_mergeable(q, prev, &pb, &nb)) 1765 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 1766 } 1767 1768 return false; 1769} 1770 1771static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 1772{ 1773 return bio_will_gap(req->q, req, req->biotail, bio); 1774} 1775 1776static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 1777{ 1778 return bio_will_gap(req->q, NULL, bio, req->bio); 1779} 1780 1781int kblockd_schedule_work(struct work_struct *work); 1782int kblockd_schedule_work_on(int cpu, struct work_struct *work); 1783int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1784 1785#define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1786 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1787#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1788 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1789 1790#if defined(CONFIG_BLK_DEV_INTEGRITY) 1791 1792enum blk_integrity_flags { 1793 BLK_INTEGRITY_VERIFY = 1 << 0, 1794 BLK_INTEGRITY_GENERATE = 1 << 1, 1795 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1796 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1797}; 1798 1799struct blk_integrity_iter { 1800 void *prot_buf; 1801 void *data_buf; 1802 sector_t seed; 1803 unsigned int data_size; 1804 unsigned short interval; 1805 const char *disk_name; 1806}; 1807 1808typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1809 1810struct blk_integrity_profile { 1811 integrity_processing_fn *generate_fn; 1812 integrity_processing_fn *verify_fn; 1813 const char *name; 1814}; 1815 1816extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1817extern void blk_integrity_unregister(struct gendisk *); 1818extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1819extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1820 struct scatterlist *); 1821extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1822extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1823 struct request *); 1824extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1825 struct bio *); 1826 1827static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1828{ 1829 struct blk_integrity *bi = &disk->queue->integrity; 1830 1831 if (!bi->profile) 1832 return NULL; 1833 1834 return bi; 1835} 1836 1837static inline 1838struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1839{ 1840 return blk_get_integrity(bdev->bd_disk); 1841} 1842 1843static inline bool blk_integrity_rq(struct request *rq) 1844{ 1845 return rq->cmd_flags & REQ_INTEGRITY; 1846} 1847 1848static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1849 unsigned int segs) 1850{ 1851 q->limits.max_integrity_segments = segs; 1852} 1853 1854static inline unsigned short 1855queue_max_integrity_segments(struct request_queue *q) 1856{ 1857 return q->limits.max_integrity_segments; 1858} 1859 1860static inline bool integrity_req_gap_back_merge(struct request *req, 1861 struct bio *next) 1862{ 1863 struct bio_integrity_payload *bip = bio_integrity(req->bio); 1864 struct bio_integrity_payload *bip_next = bio_integrity(next); 1865 1866 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1867 bip_next->bip_vec[0].bv_offset); 1868} 1869 1870static inline bool integrity_req_gap_front_merge(struct request *req, 1871 struct bio *bio) 1872{ 1873 struct bio_integrity_payload *bip = bio_integrity(bio); 1874 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 1875 1876 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1877 bip_next->bip_vec[0].bv_offset); 1878} 1879 1880#else /* CONFIG_BLK_DEV_INTEGRITY */ 1881 1882struct bio; 1883struct block_device; 1884struct gendisk; 1885struct blk_integrity; 1886 1887static inline int blk_integrity_rq(struct request *rq) 1888{ 1889 return 0; 1890} 1891static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1892 struct bio *b) 1893{ 1894 return 0; 1895} 1896static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1897 struct bio *b, 1898 struct scatterlist *s) 1899{ 1900 return 0; 1901} 1902static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1903{ 1904 return NULL; 1905} 1906static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1907{ 1908 return NULL; 1909} 1910static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1911{ 1912 return 0; 1913} 1914static inline void blk_integrity_register(struct gendisk *d, 1915 struct blk_integrity *b) 1916{ 1917} 1918static inline void blk_integrity_unregister(struct gendisk *d) 1919{ 1920} 1921static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1922 unsigned int segs) 1923{ 1924} 1925static inline unsigned short queue_max_integrity_segments(struct request_queue *q) 1926{ 1927 return 0; 1928} 1929static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1930 struct request *r1, 1931 struct request *r2) 1932{ 1933 return true; 1934} 1935static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1936 struct request *r, 1937 struct bio *b) 1938{ 1939 return true; 1940} 1941 1942static inline bool integrity_req_gap_back_merge(struct request *req, 1943 struct bio *next) 1944{ 1945 return false; 1946} 1947static inline bool integrity_req_gap_front_merge(struct request *req, 1948 struct bio *bio) 1949{ 1950 return false; 1951} 1952 1953#endif /* CONFIG_BLK_DEV_INTEGRITY */ 1954 1955struct block_device_operations { 1956 int (*open) (struct block_device *, fmode_t); 1957 void (*release) (struct gendisk *, fmode_t); 1958 int (*rw_page)(struct block_device *, sector_t, struct page *, bool); 1959 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1960 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1961 unsigned int (*check_events) (struct gendisk *disk, 1962 unsigned int clearing); 1963 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 1964 int (*media_changed) (struct gendisk *); 1965 void (*unlock_native_capacity) (struct gendisk *); 1966 int (*revalidate_disk) (struct gendisk *); 1967 int (*getgeo)(struct block_device *, struct hd_geometry *); 1968 /* this callback is with swap_lock and sometimes page table lock held */ 1969 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1970 struct module *owner; 1971 const struct pr_ops *pr_ops; 1972}; 1973 1974extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1975 unsigned long); 1976extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1977extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1978 struct writeback_control *); 1979 1980#ifdef CONFIG_BLK_DEV_ZONED 1981bool blk_req_needs_zone_write_lock(struct request *rq); 1982void __blk_req_zone_write_lock(struct request *rq); 1983void __blk_req_zone_write_unlock(struct request *rq); 1984 1985static inline void blk_req_zone_write_lock(struct request *rq) 1986{ 1987 if (blk_req_needs_zone_write_lock(rq)) 1988 __blk_req_zone_write_lock(rq); 1989} 1990 1991static inline void blk_req_zone_write_unlock(struct request *rq) 1992{ 1993 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1994 __blk_req_zone_write_unlock(rq); 1995} 1996 1997static inline bool blk_req_zone_is_write_locked(struct request *rq) 1998{ 1999 return rq->q->seq_zones_wlock && 2000 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 2001} 2002 2003static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 2004{ 2005 if (!blk_req_needs_zone_write_lock(rq)) 2006 return true; 2007 return !blk_req_zone_is_write_locked(rq); 2008} 2009#else 2010static inline bool blk_req_needs_zone_write_lock(struct request *rq) 2011{ 2012 return false; 2013} 2014 2015static inline void blk_req_zone_write_lock(struct request *rq) 2016{ 2017} 2018 2019static inline void blk_req_zone_write_unlock(struct request *rq) 2020{ 2021} 2022static inline bool blk_req_zone_is_write_locked(struct request *rq) 2023{ 2024 return false; 2025} 2026 2027static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 2028{ 2029 return true; 2030} 2031#endif /* CONFIG_BLK_DEV_ZONED */ 2032 2033#else /* CONFIG_BLOCK */ 2034 2035struct block_device; 2036 2037/* 2038 * stubs for when the block layer is configured out 2039 */ 2040#define buffer_heads_over_limit 0 2041 2042static inline long nr_blockdev_pages(void) 2043{ 2044 return 0; 2045} 2046 2047struct blk_plug { 2048}; 2049 2050static inline void blk_start_plug(struct blk_plug *plug) 2051{ 2052} 2053 2054static inline void blk_finish_plug(struct blk_plug *plug) 2055{ 2056} 2057 2058static inline void blk_flush_plug(struct task_struct *task) 2059{ 2060} 2061 2062static inline void blk_schedule_flush_plug(struct task_struct *task) 2063{ 2064} 2065 2066 2067static inline bool blk_needs_flush_plug(struct task_struct *tsk) 2068{ 2069 return false; 2070} 2071 2072static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 2073 sector_t *error_sector) 2074{ 2075 return 0; 2076} 2077 2078#endif /* CONFIG_BLOCK */ 2079 2080#endif