Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/slab.h>
7#include <linux/blkdev.h>
8#include <linux/writeback.h>
9#include <linux/pagevec.h>
10#include "ctree.h"
11#include "transaction.h"
12#include "btrfs_inode.h"
13#include "extent_io.h"
14#include "disk-io.h"
15#include "compression.h"
16
17static struct kmem_cache *btrfs_ordered_extent_cache;
18
19static u64 entry_end(struct btrfs_ordered_extent *entry)
20{
21 if (entry->file_offset + entry->len < entry->file_offset)
22 return (u64)-1;
23 return entry->file_offset + entry->len;
24}
25
26/* returns NULL if the insertion worked, or it returns the node it did find
27 * in the tree
28 */
29static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
30 struct rb_node *node)
31{
32 struct rb_node **p = &root->rb_node;
33 struct rb_node *parent = NULL;
34 struct btrfs_ordered_extent *entry;
35
36 while (*p) {
37 parent = *p;
38 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
39
40 if (file_offset < entry->file_offset)
41 p = &(*p)->rb_left;
42 else if (file_offset >= entry_end(entry))
43 p = &(*p)->rb_right;
44 else
45 return parent;
46 }
47
48 rb_link_node(node, parent, p);
49 rb_insert_color(node, root);
50 return NULL;
51}
52
53static void ordered_data_tree_panic(struct inode *inode, int errno,
54 u64 offset)
55{
56 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
57 btrfs_panic(fs_info, errno,
58 "Inconsistency in ordered tree at offset %llu", offset);
59}
60
61/*
62 * look for a given offset in the tree, and if it can't be found return the
63 * first lesser offset
64 */
65static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
66 struct rb_node **prev_ret)
67{
68 struct rb_node *n = root->rb_node;
69 struct rb_node *prev = NULL;
70 struct rb_node *test;
71 struct btrfs_ordered_extent *entry;
72 struct btrfs_ordered_extent *prev_entry = NULL;
73
74 while (n) {
75 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
76 prev = n;
77 prev_entry = entry;
78
79 if (file_offset < entry->file_offset)
80 n = n->rb_left;
81 else if (file_offset >= entry_end(entry))
82 n = n->rb_right;
83 else
84 return n;
85 }
86 if (!prev_ret)
87 return NULL;
88
89 while (prev && file_offset >= entry_end(prev_entry)) {
90 test = rb_next(prev);
91 if (!test)
92 break;
93 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
94 rb_node);
95 if (file_offset < entry_end(prev_entry))
96 break;
97
98 prev = test;
99 }
100 if (prev)
101 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
102 rb_node);
103 while (prev && file_offset < entry_end(prev_entry)) {
104 test = rb_prev(prev);
105 if (!test)
106 break;
107 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
108 rb_node);
109 prev = test;
110 }
111 *prev_ret = prev;
112 return NULL;
113}
114
115/*
116 * helper to check if a given offset is inside a given entry
117 */
118static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
119{
120 if (file_offset < entry->file_offset ||
121 entry->file_offset + entry->len <= file_offset)
122 return 0;
123 return 1;
124}
125
126static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
127 u64 len)
128{
129 if (file_offset + len <= entry->file_offset ||
130 entry->file_offset + entry->len <= file_offset)
131 return 0;
132 return 1;
133}
134
135/*
136 * look find the first ordered struct that has this offset, otherwise
137 * the first one less than this offset
138 */
139static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
140 u64 file_offset)
141{
142 struct rb_root *root = &tree->tree;
143 struct rb_node *prev = NULL;
144 struct rb_node *ret;
145 struct btrfs_ordered_extent *entry;
146
147 if (tree->last) {
148 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
149 rb_node);
150 if (offset_in_entry(entry, file_offset))
151 return tree->last;
152 }
153 ret = __tree_search(root, file_offset, &prev);
154 if (!ret)
155 ret = prev;
156 if (ret)
157 tree->last = ret;
158 return ret;
159}
160
161/* allocate and add a new ordered_extent into the per-inode tree.
162 * file_offset is the logical offset in the file
163 *
164 * start is the disk block number of an extent already reserved in the
165 * extent allocation tree
166 *
167 * len is the length of the extent
168 *
169 * The tree is given a single reference on the ordered extent that was
170 * inserted.
171 */
172static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
173 u64 start, u64 len, u64 disk_len,
174 int type, int dio, int compress_type)
175{
176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
177 struct btrfs_root *root = BTRFS_I(inode)->root;
178 struct btrfs_ordered_inode_tree *tree;
179 struct rb_node *node;
180 struct btrfs_ordered_extent *entry;
181
182 tree = &BTRFS_I(inode)->ordered_tree;
183 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
184 if (!entry)
185 return -ENOMEM;
186
187 entry->file_offset = file_offset;
188 entry->start = start;
189 entry->len = len;
190 entry->disk_len = disk_len;
191 entry->bytes_left = len;
192 entry->inode = igrab(inode);
193 entry->compress_type = compress_type;
194 entry->truncated_len = (u64)-1;
195 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
196 set_bit(type, &entry->flags);
197
198 if (dio)
199 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
200
201 /* one ref for the tree */
202 refcount_set(&entry->refs, 1);
203 init_waitqueue_head(&entry->wait);
204 INIT_LIST_HEAD(&entry->list);
205 INIT_LIST_HEAD(&entry->root_extent_list);
206 INIT_LIST_HEAD(&entry->work_list);
207 init_completion(&entry->completion);
208 INIT_LIST_HEAD(&entry->log_list);
209 INIT_LIST_HEAD(&entry->trans_list);
210
211 trace_btrfs_ordered_extent_add(inode, entry);
212
213 spin_lock_irq(&tree->lock);
214 node = tree_insert(&tree->tree, file_offset,
215 &entry->rb_node);
216 if (node)
217 ordered_data_tree_panic(inode, -EEXIST, file_offset);
218 spin_unlock_irq(&tree->lock);
219
220 spin_lock(&root->ordered_extent_lock);
221 list_add_tail(&entry->root_extent_list,
222 &root->ordered_extents);
223 root->nr_ordered_extents++;
224 if (root->nr_ordered_extents == 1) {
225 spin_lock(&fs_info->ordered_root_lock);
226 BUG_ON(!list_empty(&root->ordered_root));
227 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
228 spin_unlock(&fs_info->ordered_root_lock);
229 }
230 spin_unlock(&root->ordered_extent_lock);
231
232 /*
233 * We don't need the count_max_extents here, we can assume that all of
234 * that work has been done at higher layers, so this is truly the
235 * smallest the extent is going to get.
236 */
237 spin_lock(&BTRFS_I(inode)->lock);
238 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
239 spin_unlock(&BTRFS_I(inode)->lock);
240
241 return 0;
242}
243
244int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
245 u64 start, u64 len, u64 disk_len, int type)
246{
247 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
248 disk_len, type, 0,
249 BTRFS_COMPRESS_NONE);
250}
251
252int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
253 u64 start, u64 len, u64 disk_len, int type)
254{
255 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
256 disk_len, type, 1,
257 BTRFS_COMPRESS_NONE);
258}
259
260int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
261 u64 start, u64 len, u64 disk_len,
262 int type, int compress_type)
263{
264 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
265 disk_len, type, 0,
266 compress_type);
267}
268
269/*
270 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
271 * when an ordered extent is finished. If the list covers more than one
272 * ordered extent, it is split across multiples.
273 */
274void btrfs_add_ordered_sum(struct inode *inode,
275 struct btrfs_ordered_extent *entry,
276 struct btrfs_ordered_sum *sum)
277{
278 struct btrfs_ordered_inode_tree *tree;
279
280 tree = &BTRFS_I(inode)->ordered_tree;
281 spin_lock_irq(&tree->lock);
282 list_add_tail(&sum->list, &entry->list);
283 spin_unlock_irq(&tree->lock);
284}
285
286/*
287 * this is used to account for finished IO across a given range
288 * of the file. The IO may span ordered extents. If
289 * a given ordered_extent is completely done, 1 is returned, otherwise
290 * 0.
291 *
292 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
293 * to make sure this function only returns 1 once for a given ordered extent.
294 *
295 * file_offset is updated to one byte past the range that is recorded as
296 * complete. This allows you to walk forward in the file.
297 */
298int btrfs_dec_test_first_ordered_pending(struct inode *inode,
299 struct btrfs_ordered_extent **cached,
300 u64 *file_offset, u64 io_size, int uptodate)
301{
302 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
303 struct btrfs_ordered_inode_tree *tree;
304 struct rb_node *node;
305 struct btrfs_ordered_extent *entry = NULL;
306 int ret;
307 unsigned long flags;
308 u64 dec_end;
309 u64 dec_start;
310 u64 to_dec;
311
312 tree = &BTRFS_I(inode)->ordered_tree;
313 spin_lock_irqsave(&tree->lock, flags);
314 node = tree_search(tree, *file_offset);
315 if (!node) {
316 ret = 1;
317 goto out;
318 }
319
320 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
321 if (!offset_in_entry(entry, *file_offset)) {
322 ret = 1;
323 goto out;
324 }
325
326 dec_start = max(*file_offset, entry->file_offset);
327 dec_end = min(*file_offset + io_size, entry->file_offset +
328 entry->len);
329 *file_offset = dec_end;
330 if (dec_start > dec_end) {
331 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
332 dec_start, dec_end);
333 }
334 to_dec = dec_end - dec_start;
335 if (to_dec > entry->bytes_left) {
336 btrfs_crit(fs_info,
337 "bad ordered accounting left %llu size %llu",
338 entry->bytes_left, to_dec);
339 }
340 entry->bytes_left -= to_dec;
341 if (!uptodate)
342 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
343
344 if (entry->bytes_left == 0) {
345 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
346 /* test_and_set_bit implies a barrier */
347 cond_wake_up_nomb(&entry->wait);
348 } else {
349 ret = 1;
350 }
351out:
352 if (!ret && cached && entry) {
353 *cached = entry;
354 refcount_inc(&entry->refs);
355 }
356 spin_unlock_irqrestore(&tree->lock, flags);
357 return ret == 0;
358}
359
360/*
361 * this is used to account for finished IO across a given range
362 * of the file. The IO should not span ordered extents. If
363 * a given ordered_extent is completely done, 1 is returned, otherwise
364 * 0.
365 *
366 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
367 * to make sure this function only returns 1 once for a given ordered extent.
368 */
369int btrfs_dec_test_ordered_pending(struct inode *inode,
370 struct btrfs_ordered_extent **cached,
371 u64 file_offset, u64 io_size, int uptodate)
372{
373 struct btrfs_ordered_inode_tree *tree;
374 struct rb_node *node;
375 struct btrfs_ordered_extent *entry = NULL;
376 unsigned long flags;
377 int ret;
378
379 tree = &BTRFS_I(inode)->ordered_tree;
380 spin_lock_irqsave(&tree->lock, flags);
381 if (cached && *cached) {
382 entry = *cached;
383 goto have_entry;
384 }
385
386 node = tree_search(tree, file_offset);
387 if (!node) {
388 ret = 1;
389 goto out;
390 }
391
392 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
393have_entry:
394 if (!offset_in_entry(entry, file_offset)) {
395 ret = 1;
396 goto out;
397 }
398
399 if (io_size > entry->bytes_left) {
400 btrfs_crit(BTRFS_I(inode)->root->fs_info,
401 "bad ordered accounting left %llu size %llu",
402 entry->bytes_left, io_size);
403 }
404 entry->bytes_left -= io_size;
405 if (!uptodate)
406 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
407
408 if (entry->bytes_left == 0) {
409 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
410 /* test_and_set_bit implies a barrier */
411 cond_wake_up_nomb(&entry->wait);
412 } else {
413 ret = 1;
414 }
415out:
416 if (!ret && cached && entry) {
417 *cached = entry;
418 refcount_inc(&entry->refs);
419 }
420 spin_unlock_irqrestore(&tree->lock, flags);
421 return ret == 0;
422}
423
424/* Needs to either be called under a log transaction or the log_mutex */
425void btrfs_get_logged_extents(struct btrfs_inode *inode,
426 struct list_head *logged_list,
427 const loff_t start,
428 const loff_t end)
429{
430 struct btrfs_ordered_inode_tree *tree;
431 struct btrfs_ordered_extent *ordered;
432 struct rb_node *n;
433 struct rb_node *prev;
434
435 tree = &inode->ordered_tree;
436 spin_lock_irq(&tree->lock);
437 n = __tree_search(&tree->tree, end, &prev);
438 if (!n)
439 n = prev;
440 for (; n; n = rb_prev(n)) {
441 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
442 if (ordered->file_offset > end)
443 continue;
444 if (entry_end(ordered) <= start)
445 break;
446 if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
447 continue;
448 list_add(&ordered->log_list, logged_list);
449 refcount_inc(&ordered->refs);
450 }
451 spin_unlock_irq(&tree->lock);
452}
453
454void btrfs_put_logged_extents(struct list_head *logged_list)
455{
456 struct btrfs_ordered_extent *ordered;
457
458 while (!list_empty(logged_list)) {
459 ordered = list_first_entry(logged_list,
460 struct btrfs_ordered_extent,
461 log_list);
462 list_del_init(&ordered->log_list);
463 btrfs_put_ordered_extent(ordered);
464 }
465}
466
467void btrfs_submit_logged_extents(struct list_head *logged_list,
468 struct btrfs_root *log)
469{
470 int index = log->log_transid % 2;
471
472 spin_lock_irq(&log->log_extents_lock[index]);
473 list_splice_tail(logged_list, &log->logged_list[index]);
474 spin_unlock_irq(&log->log_extents_lock[index]);
475}
476
477void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
478 struct btrfs_root *log, u64 transid)
479{
480 struct btrfs_ordered_extent *ordered;
481 int index = transid % 2;
482
483 spin_lock_irq(&log->log_extents_lock[index]);
484 while (!list_empty(&log->logged_list[index])) {
485 struct inode *inode;
486 ordered = list_first_entry(&log->logged_list[index],
487 struct btrfs_ordered_extent,
488 log_list);
489 list_del_init(&ordered->log_list);
490 inode = ordered->inode;
491 spin_unlock_irq(&log->log_extents_lock[index]);
492
493 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
494 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
495 u64 start = ordered->file_offset;
496 u64 end = ordered->file_offset + ordered->len - 1;
497
498 WARN_ON(!inode);
499 filemap_fdatawrite_range(inode->i_mapping, start, end);
500 }
501 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
502 &ordered->flags));
503
504 /*
505 * In order to keep us from losing our ordered extent
506 * information when committing the transaction we have to make
507 * sure that any logged extents are completed when we go to
508 * commit the transaction. To do this we simply increase the
509 * current transactions pending_ordered counter and decrement it
510 * when the ordered extent completes.
511 */
512 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
513 struct btrfs_ordered_inode_tree *tree;
514
515 tree = &BTRFS_I(inode)->ordered_tree;
516 spin_lock_irq(&tree->lock);
517 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
518 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
519 atomic_inc(&trans->transaction->pending_ordered);
520 }
521 spin_unlock_irq(&tree->lock);
522 }
523 btrfs_put_ordered_extent(ordered);
524 spin_lock_irq(&log->log_extents_lock[index]);
525 }
526 spin_unlock_irq(&log->log_extents_lock[index]);
527}
528
529void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
530{
531 struct btrfs_ordered_extent *ordered;
532 int index = transid % 2;
533
534 spin_lock_irq(&log->log_extents_lock[index]);
535 while (!list_empty(&log->logged_list[index])) {
536 ordered = list_first_entry(&log->logged_list[index],
537 struct btrfs_ordered_extent,
538 log_list);
539 list_del_init(&ordered->log_list);
540 spin_unlock_irq(&log->log_extents_lock[index]);
541 btrfs_put_ordered_extent(ordered);
542 spin_lock_irq(&log->log_extents_lock[index]);
543 }
544 spin_unlock_irq(&log->log_extents_lock[index]);
545}
546
547/*
548 * used to drop a reference on an ordered extent. This will free
549 * the extent if the last reference is dropped
550 */
551void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
552{
553 struct list_head *cur;
554 struct btrfs_ordered_sum *sum;
555
556 trace_btrfs_ordered_extent_put(entry->inode, entry);
557
558 if (refcount_dec_and_test(&entry->refs)) {
559 ASSERT(list_empty(&entry->log_list));
560 ASSERT(list_empty(&entry->trans_list));
561 ASSERT(list_empty(&entry->root_extent_list));
562 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
563 if (entry->inode)
564 btrfs_add_delayed_iput(entry->inode);
565 while (!list_empty(&entry->list)) {
566 cur = entry->list.next;
567 sum = list_entry(cur, struct btrfs_ordered_sum, list);
568 list_del(&sum->list);
569 kfree(sum);
570 }
571 kmem_cache_free(btrfs_ordered_extent_cache, entry);
572 }
573}
574
575/*
576 * remove an ordered extent from the tree. No references are dropped
577 * and waiters are woken up.
578 */
579void btrfs_remove_ordered_extent(struct inode *inode,
580 struct btrfs_ordered_extent *entry)
581{
582 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
583 struct btrfs_ordered_inode_tree *tree;
584 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
585 struct btrfs_root *root = btrfs_inode->root;
586 struct rb_node *node;
587 bool dec_pending_ordered = false;
588
589 /* This is paired with btrfs_add_ordered_extent. */
590 spin_lock(&btrfs_inode->lock);
591 btrfs_mod_outstanding_extents(btrfs_inode, -1);
592 spin_unlock(&btrfs_inode->lock);
593 if (root != fs_info->tree_root)
594 btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
595
596 tree = &btrfs_inode->ordered_tree;
597 spin_lock_irq(&tree->lock);
598 node = &entry->rb_node;
599 rb_erase(node, &tree->tree);
600 RB_CLEAR_NODE(node);
601 if (tree->last == node)
602 tree->last = NULL;
603 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
604 if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
605 dec_pending_ordered = true;
606 spin_unlock_irq(&tree->lock);
607
608 /*
609 * The current running transaction is waiting on us, we need to let it
610 * know that we're complete and wake it up.
611 */
612 if (dec_pending_ordered) {
613 struct btrfs_transaction *trans;
614
615 /*
616 * The checks for trans are just a formality, it should be set,
617 * but if it isn't we don't want to deref/assert under the spin
618 * lock, so be nice and check if trans is set, but ASSERT() so
619 * if it isn't set a developer will notice.
620 */
621 spin_lock(&fs_info->trans_lock);
622 trans = fs_info->running_transaction;
623 if (trans)
624 refcount_inc(&trans->use_count);
625 spin_unlock(&fs_info->trans_lock);
626
627 ASSERT(trans);
628 if (trans) {
629 if (atomic_dec_and_test(&trans->pending_ordered))
630 wake_up(&trans->pending_wait);
631 btrfs_put_transaction(trans);
632 }
633 }
634
635 spin_lock(&root->ordered_extent_lock);
636 list_del_init(&entry->root_extent_list);
637 root->nr_ordered_extents--;
638
639 trace_btrfs_ordered_extent_remove(inode, entry);
640
641 if (!root->nr_ordered_extents) {
642 spin_lock(&fs_info->ordered_root_lock);
643 BUG_ON(list_empty(&root->ordered_root));
644 list_del_init(&root->ordered_root);
645 spin_unlock(&fs_info->ordered_root_lock);
646 }
647 spin_unlock(&root->ordered_extent_lock);
648 wake_up(&entry->wait);
649}
650
651static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
652{
653 struct btrfs_ordered_extent *ordered;
654
655 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
656 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
657 complete(&ordered->completion);
658}
659
660/*
661 * wait for all the ordered extents in a root. This is done when balancing
662 * space between drives.
663 */
664u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
665 const u64 range_start, const u64 range_len)
666{
667 struct btrfs_fs_info *fs_info = root->fs_info;
668 LIST_HEAD(splice);
669 LIST_HEAD(skipped);
670 LIST_HEAD(works);
671 struct btrfs_ordered_extent *ordered, *next;
672 u64 count = 0;
673 const u64 range_end = range_start + range_len;
674
675 mutex_lock(&root->ordered_extent_mutex);
676 spin_lock(&root->ordered_extent_lock);
677 list_splice_init(&root->ordered_extents, &splice);
678 while (!list_empty(&splice) && nr) {
679 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
680 root_extent_list);
681
682 if (range_end <= ordered->start ||
683 ordered->start + ordered->disk_len <= range_start) {
684 list_move_tail(&ordered->root_extent_list, &skipped);
685 cond_resched_lock(&root->ordered_extent_lock);
686 continue;
687 }
688
689 list_move_tail(&ordered->root_extent_list,
690 &root->ordered_extents);
691 refcount_inc(&ordered->refs);
692 spin_unlock(&root->ordered_extent_lock);
693
694 btrfs_init_work(&ordered->flush_work,
695 btrfs_flush_delalloc_helper,
696 btrfs_run_ordered_extent_work, NULL, NULL);
697 list_add_tail(&ordered->work_list, &works);
698 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
699
700 cond_resched();
701 spin_lock(&root->ordered_extent_lock);
702 if (nr != U64_MAX)
703 nr--;
704 count++;
705 }
706 list_splice_tail(&skipped, &root->ordered_extents);
707 list_splice_tail(&splice, &root->ordered_extents);
708 spin_unlock(&root->ordered_extent_lock);
709
710 list_for_each_entry_safe(ordered, next, &works, work_list) {
711 list_del_init(&ordered->work_list);
712 wait_for_completion(&ordered->completion);
713 btrfs_put_ordered_extent(ordered);
714 cond_resched();
715 }
716 mutex_unlock(&root->ordered_extent_mutex);
717
718 return count;
719}
720
721u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
722 const u64 range_start, const u64 range_len)
723{
724 struct btrfs_root *root;
725 struct list_head splice;
726 u64 total_done = 0;
727 u64 done;
728
729 INIT_LIST_HEAD(&splice);
730
731 mutex_lock(&fs_info->ordered_operations_mutex);
732 spin_lock(&fs_info->ordered_root_lock);
733 list_splice_init(&fs_info->ordered_roots, &splice);
734 while (!list_empty(&splice) && nr) {
735 root = list_first_entry(&splice, struct btrfs_root,
736 ordered_root);
737 root = btrfs_grab_fs_root(root);
738 BUG_ON(!root);
739 list_move_tail(&root->ordered_root,
740 &fs_info->ordered_roots);
741 spin_unlock(&fs_info->ordered_root_lock);
742
743 done = btrfs_wait_ordered_extents(root, nr,
744 range_start, range_len);
745 btrfs_put_fs_root(root);
746 total_done += done;
747
748 spin_lock(&fs_info->ordered_root_lock);
749 if (nr != U64_MAX) {
750 nr -= done;
751 }
752 }
753 list_splice_tail(&splice, &fs_info->ordered_roots);
754 spin_unlock(&fs_info->ordered_root_lock);
755 mutex_unlock(&fs_info->ordered_operations_mutex);
756
757 return total_done;
758}
759
760/*
761 * Used to start IO or wait for a given ordered extent to finish.
762 *
763 * If wait is one, this effectively waits on page writeback for all the pages
764 * in the extent, and it waits on the io completion code to insert
765 * metadata into the btree corresponding to the extent
766 */
767void btrfs_start_ordered_extent(struct inode *inode,
768 struct btrfs_ordered_extent *entry,
769 int wait)
770{
771 u64 start = entry->file_offset;
772 u64 end = start + entry->len - 1;
773
774 trace_btrfs_ordered_extent_start(inode, entry);
775
776 /*
777 * pages in the range can be dirty, clean or writeback. We
778 * start IO on any dirty ones so the wait doesn't stall waiting
779 * for the flusher thread to find them
780 */
781 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
782 filemap_fdatawrite_range(inode->i_mapping, start, end);
783 if (wait) {
784 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
785 &entry->flags));
786 }
787}
788
789/*
790 * Used to wait on ordered extents across a large range of bytes.
791 */
792int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
793{
794 int ret = 0;
795 int ret_wb = 0;
796 u64 end;
797 u64 orig_end;
798 struct btrfs_ordered_extent *ordered;
799
800 if (start + len < start) {
801 orig_end = INT_LIMIT(loff_t);
802 } else {
803 orig_end = start + len - 1;
804 if (orig_end > INT_LIMIT(loff_t))
805 orig_end = INT_LIMIT(loff_t);
806 }
807
808 /* start IO across the range first to instantiate any delalloc
809 * extents
810 */
811 ret = btrfs_fdatawrite_range(inode, start, orig_end);
812 if (ret)
813 return ret;
814
815 /*
816 * If we have a writeback error don't return immediately. Wait first
817 * for any ordered extents that haven't completed yet. This is to make
818 * sure no one can dirty the same page ranges and call writepages()
819 * before the ordered extents complete - to avoid failures (-EEXIST)
820 * when adding the new ordered extents to the ordered tree.
821 */
822 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
823
824 end = orig_end;
825 while (1) {
826 ordered = btrfs_lookup_first_ordered_extent(inode, end);
827 if (!ordered)
828 break;
829 if (ordered->file_offset > orig_end) {
830 btrfs_put_ordered_extent(ordered);
831 break;
832 }
833 if (ordered->file_offset + ordered->len <= start) {
834 btrfs_put_ordered_extent(ordered);
835 break;
836 }
837 btrfs_start_ordered_extent(inode, ordered, 1);
838 end = ordered->file_offset;
839 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
840 ret = -EIO;
841 btrfs_put_ordered_extent(ordered);
842 if (ret || end == 0 || end == start)
843 break;
844 end--;
845 }
846 return ret_wb ? ret_wb : ret;
847}
848
849/*
850 * find an ordered extent corresponding to file_offset. return NULL if
851 * nothing is found, otherwise take a reference on the extent and return it
852 */
853struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
854 u64 file_offset)
855{
856 struct btrfs_ordered_inode_tree *tree;
857 struct rb_node *node;
858 struct btrfs_ordered_extent *entry = NULL;
859
860 tree = &BTRFS_I(inode)->ordered_tree;
861 spin_lock_irq(&tree->lock);
862 node = tree_search(tree, file_offset);
863 if (!node)
864 goto out;
865
866 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
867 if (!offset_in_entry(entry, file_offset))
868 entry = NULL;
869 if (entry)
870 refcount_inc(&entry->refs);
871out:
872 spin_unlock_irq(&tree->lock);
873 return entry;
874}
875
876/* Since the DIO code tries to lock a wide area we need to look for any ordered
877 * extents that exist in the range, rather than just the start of the range.
878 */
879struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
880 struct btrfs_inode *inode, u64 file_offset, u64 len)
881{
882 struct btrfs_ordered_inode_tree *tree;
883 struct rb_node *node;
884 struct btrfs_ordered_extent *entry = NULL;
885
886 tree = &inode->ordered_tree;
887 spin_lock_irq(&tree->lock);
888 node = tree_search(tree, file_offset);
889 if (!node) {
890 node = tree_search(tree, file_offset + len);
891 if (!node)
892 goto out;
893 }
894
895 while (1) {
896 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
897 if (range_overlaps(entry, file_offset, len))
898 break;
899
900 if (entry->file_offset >= file_offset + len) {
901 entry = NULL;
902 break;
903 }
904 entry = NULL;
905 node = rb_next(node);
906 if (!node)
907 break;
908 }
909out:
910 if (entry)
911 refcount_inc(&entry->refs);
912 spin_unlock_irq(&tree->lock);
913 return entry;
914}
915
916bool btrfs_have_ordered_extents_in_range(struct inode *inode,
917 u64 file_offset,
918 u64 len)
919{
920 struct btrfs_ordered_extent *oe;
921
922 oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len);
923 if (oe) {
924 btrfs_put_ordered_extent(oe);
925 return true;
926 }
927 return false;
928}
929
930/*
931 * lookup and return any extent before 'file_offset'. NULL is returned
932 * if none is found
933 */
934struct btrfs_ordered_extent *
935btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
936{
937 struct btrfs_ordered_inode_tree *tree;
938 struct rb_node *node;
939 struct btrfs_ordered_extent *entry = NULL;
940
941 tree = &BTRFS_I(inode)->ordered_tree;
942 spin_lock_irq(&tree->lock);
943 node = tree_search(tree, file_offset);
944 if (!node)
945 goto out;
946
947 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
948 refcount_inc(&entry->refs);
949out:
950 spin_unlock_irq(&tree->lock);
951 return entry;
952}
953
954/*
955 * After an extent is done, call this to conditionally update the on disk
956 * i_size. i_size is updated to cover any fully written part of the file.
957 */
958int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
959 struct btrfs_ordered_extent *ordered)
960{
961 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
962 u64 disk_i_size;
963 u64 new_i_size;
964 u64 i_size = i_size_read(inode);
965 struct rb_node *node;
966 struct rb_node *prev = NULL;
967 struct btrfs_ordered_extent *test;
968 int ret = 1;
969 u64 orig_offset = offset;
970
971 spin_lock_irq(&tree->lock);
972 if (ordered) {
973 offset = entry_end(ordered);
974 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
975 offset = min(offset,
976 ordered->file_offset +
977 ordered->truncated_len);
978 } else {
979 offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
980 }
981 disk_i_size = BTRFS_I(inode)->disk_i_size;
982
983 /*
984 * truncate file.
985 * If ordered is not NULL, then this is called from endio and
986 * disk_i_size will be updated by either truncate itself or any
987 * in-flight IOs which are inside the disk_i_size.
988 *
989 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
990 * fails somehow, we need to make sure we have a precise disk_i_size by
991 * updating it as usual.
992 *
993 */
994 if (!ordered && disk_i_size > i_size) {
995 BTRFS_I(inode)->disk_i_size = orig_offset;
996 ret = 0;
997 goto out;
998 }
999
1000 /*
1001 * if the disk i_size is already at the inode->i_size, or
1002 * this ordered extent is inside the disk i_size, we're done
1003 */
1004 if (disk_i_size == i_size)
1005 goto out;
1006
1007 /*
1008 * We still need to update disk_i_size if outstanding_isize is greater
1009 * than disk_i_size.
1010 */
1011 if (offset <= disk_i_size &&
1012 (!ordered || ordered->outstanding_isize <= disk_i_size))
1013 goto out;
1014
1015 /*
1016 * walk backward from this ordered extent to disk_i_size.
1017 * if we find an ordered extent then we can't update disk i_size
1018 * yet
1019 */
1020 if (ordered) {
1021 node = rb_prev(&ordered->rb_node);
1022 } else {
1023 prev = tree_search(tree, offset);
1024 /*
1025 * we insert file extents without involving ordered struct,
1026 * so there should be no ordered struct cover this offset
1027 */
1028 if (prev) {
1029 test = rb_entry(prev, struct btrfs_ordered_extent,
1030 rb_node);
1031 BUG_ON(offset_in_entry(test, offset));
1032 }
1033 node = prev;
1034 }
1035 for (; node; node = rb_prev(node)) {
1036 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1037
1038 /* We treat this entry as if it doesn't exist */
1039 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1040 continue;
1041
1042 if (entry_end(test) <= disk_i_size)
1043 break;
1044 if (test->file_offset >= i_size)
1045 break;
1046
1047 /*
1048 * We don't update disk_i_size now, so record this undealt
1049 * i_size. Or we will not know the real i_size.
1050 */
1051 if (test->outstanding_isize < offset)
1052 test->outstanding_isize = offset;
1053 if (ordered &&
1054 ordered->outstanding_isize > test->outstanding_isize)
1055 test->outstanding_isize = ordered->outstanding_isize;
1056 goto out;
1057 }
1058 new_i_size = min_t(u64, offset, i_size);
1059
1060 /*
1061 * Some ordered extents may completed before the current one, and
1062 * we hold the real i_size in ->outstanding_isize.
1063 */
1064 if (ordered && ordered->outstanding_isize > new_i_size)
1065 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1066 BTRFS_I(inode)->disk_i_size = new_i_size;
1067 ret = 0;
1068out:
1069 /*
1070 * We need to do this because we can't remove ordered extents until
1071 * after the i_disk_size has been updated and then the inode has been
1072 * updated to reflect the change, so we need to tell anybody who finds
1073 * this ordered extent that we've already done all the real work, we
1074 * just haven't completed all the other work.
1075 */
1076 if (ordered)
1077 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1078 spin_unlock_irq(&tree->lock);
1079 return ret;
1080}
1081
1082/*
1083 * search the ordered extents for one corresponding to 'offset' and
1084 * try to find a checksum. This is used because we allow pages to
1085 * be reclaimed before their checksum is actually put into the btree
1086 */
1087int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1088 u32 *sum, int len)
1089{
1090 struct btrfs_ordered_sum *ordered_sum;
1091 struct btrfs_ordered_extent *ordered;
1092 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1093 unsigned long num_sectors;
1094 unsigned long i;
1095 u32 sectorsize = btrfs_inode_sectorsize(inode);
1096 int index = 0;
1097
1098 ordered = btrfs_lookup_ordered_extent(inode, offset);
1099 if (!ordered)
1100 return 0;
1101
1102 spin_lock_irq(&tree->lock);
1103 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1104 if (disk_bytenr >= ordered_sum->bytenr &&
1105 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1106 i = (disk_bytenr - ordered_sum->bytenr) >>
1107 inode->i_sb->s_blocksize_bits;
1108 num_sectors = ordered_sum->len >>
1109 inode->i_sb->s_blocksize_bits;
1110 num_sectors = min_t(int, len - index, num_sectors - i);
1111 memcpy(sum + index, ordered_sum->sums + i,
1112 num_sectors);
1113
1114 index += (int)num_sectors;
1115 if (index == len)
1116 goto out;
1117 disk_bytenr += num_sectors * sectorsize;
1118 }
1119 }
1120out:
1121 spin_unlock_irq(&tree->lock);
1122 btrfs_put_ordered_extent(ordered);
1123 return index;
1124}
1125
1126int __init ordered_data_init(void)
1127{
1128 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1129 sizeof(struct btrfs_ordered_extent), 0,
1130 SLAB_MEM_SPREAD,
1131 NULL);
1132 if (!btrfs_ordered_extent_cache)
1133 return -ENOMEM;
1134
1135 return 0;
1136}
1137
1138void __cold ordered_data_exit(void)
1139{
1140 kmem_cache_destroy(btrfs_ordered_extent_cache);
1141}