at v4.18 55 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/dax.h> 22#include <linux/buffer_head.h> 23#include <linux/swap.h> 24#include <linux/pagevec.h> 25#include <linux/writeback.h> 26#include <linux/mpage.h> 27#include <linux/mount.h> 28#include <linux/uio.h> 29#include <linux/namei.h> 30#include <linux/log2.h> 31#include <linux/cleancache.h> 32#include <linux/dax.h> 33#include <linux/badblocks.h> 34#include <linux/task_io_accounting_ops.h> 35#include <linux/falloc.h> 36#include <linux/uaccess.h> 37#include "internal.h" 38 39struct bdev_inode { 40 struct block_device bdev; 41 struct inode vfs_inode; 42}; 43 44static const struct address_space_operations def_blk_aops; 45 46static inline struct bdev_inode *BDEV_I(struct inode *inode) 47{ 48 return container_of(inode, struct bdev_inode, vfs_inode); 49} 50 51struct block_device *I_BDEV(struct inode *inode) 52{ 53 return &BDEV_I(inode)->bdev; 54} 55EXPORT_SYMBOL(I_BDEV); 56 57static void bdev_write_inode(struct block_device *bdev) 58{ 59 struct inode *inode = bdev->bd_inode; 60 int ret; 61 62 spin_lock(&inode->i_lock); 63 while (inode->i_state & I_DIRTY) { 64 spin_unlock(&inode->i_lock); 65 ret = write_inode_now(inode, true); 66 if (ret) { 67 char name[BDEVNAME_SIZE]; 68 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 69 "for block device %s (err=%d).\n", 70 bdevname(bdev, name), ret); 71 } 72 spin_lock(&inode->i_lock); 73 } 74 spin_unlock(&inode->i_lock); 75} 76 77/* Kill _all_ buffers and pagecache , dirty or not.. */ 78void kill_bdev(struct block_device *bdev) 79{ 80 struct address_space *mapping = bdev->bd_inode->i_mapping; 81 82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 83 return; 84 85 invalidate_bh_lrus(); 86 truncate_inode_pages(mapping, 0); 87} 88EXPORT_SYMBOL(kill_bdev); 89 90/* Invalidate clean unused buffers and pagecache. */ 91void invalidate_bdev(struct block_device *bdev) 92{ 93 struct address_space *mapping = bdev->bd_inode->i_mapping; 94 95 if (mapping->nrpages) { 96 invalidate_bh_lrus(); 97 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 98 invalidate_mapping_pages(mapping, 0, -1); 99 } 100 /* 99% of the time, we don't need to flush the cleancache on the bdev. 101 * But, for the strange corners, lets be cautious 102 */ 103 cleancache_invalidate_inode(mapping); 104} 105EXPORT_SYMBOL(invalidate_bdev); 106 107int set_blocksize(struct block_device *bdev, int size) 108{ 109 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 110 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 111 return -EINVAL; 112 113 /* Size cannot be smaller than the size supported by the device */ 114 if (size < bdev_logical_block_size(bdev)) 115 return -EINVAL; 116 117 /* Don't change the size if it is same as current */ 118 if (bdev->bd_block_size != size) { 119 sync_blockdev(bdev); 120 bdev->bd_block_size = size; 121 bdev->bd_inode->i_blkbits = blksize_bits(size); 122 kill_bdev(bdev); 123 } 124 return 0; 125} 126 127EXPORT_SYMBOL(set_blocksize); 128 129int sb_set_blocksize(struct super_block *sb, int size) 130{ 131 if (set_blocksize(sb->s_bdev, size)) 132 return 0; 133 /* If we get here, we know size is power of two 134 * and it's value is between 512 and PAGE_SIZE */ 135 sb->s_blocksize = size; 136 sb->s_blocksize_bits = blksize_bits(size); 137 return sb->s_blocksize; 138} 139 140EXPORT_SYMBOL(sb_set_blocksize); 141 142int sb_min_blocksize(struct super_block *sb, int size) 143{ 144 int minsize = bdev_logical_block_size(sb->s_bdev); 145 if (size < minsize) 146 size = minsize; 147 return sb_set_blocksize(sb, size); 148} 149 150EXPORT_SYMBOL(sb_min_blocksize); 151 152static int 153blkdev_get_block(struct inode *inode, sector_t iblock, 154 struct buffer_head *bh, int create) 155{ 156 bh->b_bdev = I_BDEV(inode); 157 bh->b_blocknr = iblock; 158 set_buffer_mapped(bh); 159 return 0; 160} 161 162static struct inode *bdev_file_inode(struct file *file) 163{ 164 return file->f_mapping->host; 165} 166 167static unsigned int dio_bio_write_op(struct kiocb *iocb) 168{ 169 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 170 171 /* avoid the need for a I/O completion work item */ 172 if (iocb->ki_flags & IOCB_DSYNC) 173 op |= REQ_FUA; 174 return op; 175} 176 177#define DIO_INLINE_BIO_VECS 4 178 179static void blkdev_bio_end_io_simple(struct bio *bio) 180{ 181 struct task_struct *waiter = bio->bi_private; 182 183 WRITE_ONCE(bio->bi_private, NULL); 184 wake_up_process(waiter); 185} 186 187static ssize_t 188__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 189 int nr_pages) 190{ 191 struct file *file = iocb->ki_filp; 192 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 193 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec; 194 loff_t pos = iocb->ki_pos; 195 bool should_dirty = false; 196 struct bio bio; 197 ssize_t ret; 198 blk_qc_t qc; 199 int i; 200 201 if ((pos | iov_iter_alignment(iter)) & 202 (bdev_logical_block_size(bdev) - 1)) 203 return -EINVAL; 204 205 if (nr_pages <= DIO_INLINE_BIO_VECS) 206 vecs = inline_vecs; 207 else { 208 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec), 209 GFP_KERNEL); 210 if (!vecs) 211 return -ENOMEM; 212 } 213 214 bio_init(&bio, vecs, nr_pages); 215 bio_set_dev(&bio, bdev); 216 bio.bi_iter.bi_sector = pos >> 9; 217 bio.bi_write_hint = iocb->ki_hint; 218 bio.bi_private = current; 219 bio.bi_end_io = blkdev_bio_end_io_simple; 220 bio.bi_ioprio = iocb->ki_ioprio; 221 222 ret = bio_iov_iter_get_pages(&bio, iter); 223 if (unlikely(ret)) 224 goto out; 225 ret = bio.bi_iter.bi_size; 226 227 if (iov_iter_rw(iter) == READ) { 228 bio.bi_opf = REQ_OP_READ; 229 if (iter_is_iovec(iter)) 230 should_dirty = true; 231 } else { 232 bio.bi_opf = dio_bio_write_op(iocb); 233 task_io_account_write(ret); 234 } 235 236 qc = submit_bio(&bio); 237 for (;;) { 238 set_current_state(TASK_UNINTERRUPTIBLE); 239 if (!READ_ONCE(bio.bi_private)) 240 break; 241 if (!(iocb->ki_flags & IOCB_HIPRI) || 242 !blk_poll(bdev_get_queue(bdev), qc)) 243 io_schedule(); 244 } 245 __set_current_state(TASK_RUNNING); 246 247 bio_for_each_segment_all(bvec, &bio, i) { 248 if (should_dirty && !PageCompound(bvec->bv_page)) 249 set_page_dirty_lock(bvec->bv_page); 250 put_page(bvec->bv_page); 251 } 252 253 if (unlikely(bio.bi_status)) 254 ret = blk_status_to_errno(bio.bi_status); 255 256out: 257 if (vecs != inline_vecs) 258 kfree(vecs); 259 260 bio_uninit(&bio); 261 262 return ret; 263} 264 265struct blkdev_dio { 266 union { 267 struct kiocb *iocb; 268 struct task_struct *waiter; 269 }; 270 size_t size; 271 atomic_t ref; 272 bool multi_bio : 1; 273 bool should_dirty : 1; 274 bool is_sync : 1; 275 struct bio bio; 276}; 277 278static struct bio_set blkdev_dio_pool; 279 280static void blkdev_bio_end_io(struct bio *bio) 281{ 282 struct blkdev_dio *dio = bio->bi_private; 283 bool should_dirty = dio->should_dirty; 284 285 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) { 286 if (bio->bi_status && !dio->bio.bi_status) 287 dio->bio.bi_status = bio->bi_status; 288 } else { 289 if (!dio->is_sync) { 290 struct kiocb *iocb = dio->iocb; 291 ssize_t ret; 292 293 if (likely(!dio->bio.bi_status)) { 294 ret = dio->size; 295 iocb->ki_pos += ret; 296 } else { 297 ret = blk_status_to_errno(dio->bio.bi_status); 298 } 299 300 dio->iocb->ki_complete(iocb, ret, 0); 301 bio_put(&dio->bio); 302 } else { 303 struct task_struct *waiter = dio->waiter; 304 305 WRITE_ONCE(dio->waiter, NULL); 306 wake_up_process(waiter); 307 } 308 } 309 310 if (should_dirty) { 311 bio_check_pages_dirty(bio); 312 } else { 313 struct bio_vec *bvec; 314 int i; 315 316 bio_for_each_segment_all(bvec, bio, i) 317 put_page(bvec->bv_page); 318 bio_put(bio); 319 } 320} 321 322static ssize_t 323__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 324{ 325 struct file *file = iocb->ki_filp; 326 struct inode *inode = bdev_file_inode(file); 327 struct block_device *bdev = I_BDEV(inode); 328 struct blk_plug plug; 329 struct blkdev_dio *dio; 330 struct bio *bio; 331 bool is_read = (iov_iter_rw(iter) == READ), is_sync; 332 loff_t pos = iocb->ki_pos; 333 blk_qc_t qc = BLK_QC_T_NONE; 334 int ret = 0; 335 336 if ((pos | iov_iter_alignment(iter)) & 337 (bdev_logical_block_size(bdev) - 1)) 338 return -EINVAL; 339 340 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool); 341 bio_get(bio); /* extra ref for the completion handler */ 342 343 dio = container_of(bio, struct blkdev_dio, bio); 344 dio->is_sync = is_sync = is_sync_kiocb(iocb); 345 if (dio->is_sync) 346 dio->waiter = current; 347 else 348 dio->iocb = iocb; 349 350 dio->size = 0; 351 dio->multi_bio = false; 352 dio->should_dirty = is_read && (iter->type == ITER_IOVEC); 353 354 blk_start_plug(&plug); 355 for (;;) { 356 bio_set_dev(bio, bdev); 357 bio->bi_iter.bi_sector = pos >> 9; 358 bio->bi_write_hint = iocb->ki_hint; 359 bio->bi_private = dio; 360 bio->bi_end_io = blkdev_bio_end_io; 361 bio->bi_ioprio = iocb->ki_ioprio; 362 363 ret = bio_iov_iter_get_pages(bio, iter); 364 if (unlikely(ret)) { 365 bio->bi_status = BLK_STS_IOERR; 366 bio_endio(bio); 367 break; 368 } 369 370 if (is_read) { 371 bio->bi_opf = REQ_OP_READ; 372 if (dio->should_dirty) 373 bio_set_pages_dirty(bio); 374 } else { 375 bio->bi_opf = dio_bio_write_op(iocb); 376 task_io_account_write(bio->bi_iter.bi_size); 377 } 378 379 dio->size += bio->bi_iter.bi_size; 380 pos += bio->bi_iter.bi_size; 381 382 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 383 if (!nr_pages) { 384 qc = submit_bio(bio); 385 break; 386 } 387 388 if (!dio->multi_bio) { 389 dio->multi_bio = true; 390 atomic_set(&dio->ref, 2); 391 } else { 392 atomic_inc(&dio->ref); 393 } 394 395 submit_bio(bio); 396 bio = bio_alloc(GFP_KERNEL, nr_pages); 397 } 398 blk_finish_plug(&plug); 399 400 if (!is_sync) 401 return -EIOCBQUEUED; 402 403 for (;;) { 404 set_current_state(TASK_UNINTERRUPTIBLE); 405 if (!READ_ONCE(dio->waiter)) 406 break; 407 408 if (!(iocb->ki_flags & IOCB_HIPRI) || 409 !blk_poll(bdev_get_queue(bdev), qc)) 410 io_schedule(); 411 } 412 __set_current_state(TASK_RUNNING); 413 414 if (!ret) 415 ret = blk_status_to_errno(dio->bio.bi_status); 416 if (likely(!ret)) 417 ret = dio->size; 418 419 bio_put(&dio->bio); 420 return ret; 421} 422 423static ssize_t 424blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 425{ 426 int nr_pages; 427 428 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 429 if (!nr_pages) 430 return 0; 431 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 432 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 433 434 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 435} 436 437static __init int blkdev_init(void) 438{ 439 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS); 440} 441module_init(blkdev_init); 442 443int __sync_blockdev(struct block_device *bdev, int wait) 444{ 445 if (!bdev) 446 return 0; 447 if (!wait) 448 return filemap_flush(bdev->bd_inode->i_mapping); 449 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 450} 451 452/* 453 * Write out and wait upon all the dirty data associated with a block 454 * device via its mapping. Does not take the superblock lock. 455 */ 456int sync_blockdev(struct block_device *bdev) 457{ 458 return __sync_blockdev(bdev, 1); 459} 460EXPORT_SYMBOL(sync_blockdev); 461 462/* 463 * Write out and wait upon all dirty data associated with this 464 * device. Filesystem data as well as the underlying block 465 * device. Takes the superblock lock. 466 */ 467int fsync_bdev(struct block_device *bdev) 468{ 469 struct super_block *sb = get_super(bdev); 470 if (sb) { 471 int res = sync_filesystem(sb); 472 drop_super(sb); 473 return res; 474 } 475 return sync_blockdev(bdev); 476} 477EXPORT_SYMBOL(fsync_bdev); 478 479/** 480 * freeze_bdev -- lock a filesystem and force it into a consistent state 481 * @bdev: blockdevice to lock 482 * 483 * If a superblock is found on this device, we take the s_umount semaphore 484 * on it to make sure nobody unmounts until the snapshot creation is done. 485 * The reference counter (bd_fsfreeze_count) guarantees that only the last 486 * unfreeze process can unfreeze the frozen filesystem actually when multiple 487 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 488 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 489 * actually. 490 */ 491struct super_block *freeze_bdev(struct block_device *bdev) 492{ 493 struct super_block *sb; 494 int error = 0; 495 496 mutex_lock(&bdev->bd_fsfreeze_mutex); 497 if (++bdev->bd_fsfreeze_count > 1) { 498 /* 499 * We don't even need to grab a reference - the first call 500 * to freeze_bdev grab an active reference and only the last 501 * thaw_bdev drops it. 502 */ 503 sb = get_super(bdev); 504 if (sb) 505 drop_super(sb); 506 mutex_unlock(&bdev->bd_fsfreeze_mutex); 507 return sb; 508 } 509 510 sb = get_active_super(bdev); 511 if (!sb) 512 goto out; 513 if (sb->s_op->freeze_super) 514 error = sb->s_op->freeze_super(sb); 515 else 516 error = freeze_super(sb); 517 if (error) { 518 deactivate_super(sb); 519 bdev->bd_fsfreeze_count--; 520 mutex_unlock(&bdev->bd_fsfreeze_mutex); 521 return ERR_PTR(error); 522 } 523 deactivate_super(sb); 524 out: 525 sync_blockdev(bdev); 526 mutex_unlock(&bdev->bd_fsfreeze_mutex); 527 return sb; /* thaw_bdev releases s->s_umount */ 528} 529EXPORT_SYMBOL(freeze_bdev); 530 531/** 532 * thaw_bdev -- unlock filesystem 533 * @bdev: blockdevice to unlock 534 * @sb: associated superblock 535 * 536 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 537 */ 538int thaw_bdev(struct block_device *bdev, struct super_block *sb) 539{ 540 int error = -EINVAL; 541 542 mutex_lock(&bdev->bd_fsfreeze_mutex); 543 if (!bdev->bd_fsfreeze_count) 544 goto out; 545 546 error = 0; 547 if (--bdev->bd_fsfreeze_count > 0) 548 goto out; 549 550 if (!sb) 551 goto out; 552 553 if (sb->s_op->thaw_super) 554 error = sb->s_op->thaw_super(sb); 555 else 556 error = thaw_super(sb); 557 if (error) 558 bdev->bd_fsfreeze_count++; 559out: 560 mutex_unlock(&bdev->bd_fsfreeze_mutex); 561 return error; 562} 563EXPORT_SYMBOL(thaw_bdev); 564 565static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 566{ 567 return block_write_full_page(page, blkdev_get_block, wbc); 568} 569 570static int blkdev_readpage(struct file * file, struct page * page) 571{ 572 return block_read_full_page(page, blkdev_get_block); 573} 574 575static int blkdev_readpages(struct file *file, struct address_space *mapping, 576 struct list_head *pages, unsigned nr_pages) 577{ 578 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 579} 580 581static int blkdev_write_begin(struct file *file, struct address_space *mapping, 582 loff_t pos, unsigned len, unsigned flags, 583 struct page **pagep, void **fsdata) 584{ 585 return block_write_begin(mapping, pos, len, flags, pagep, 586 blkdev_get_block); 587} 588 589static int blkdev_write_end(struct file *file, struct address_space *mapping, 590 loff_t pos, unsigned len, unsigned copied, 591 struct page *page, void *fsdata) 592{ 593 int ret; 594 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 595 596 unlock_page(page); 597 put_page(page); 598 599 return ret; 600} 601 602/* 603 * private llseek: 604 * for a block special file file_inode(file)->i_size is zero 605 * so we compute the size by hand (just as in block_read/write above) 606 */ 607static loff_t block_llseek(struct file *file, loff_t offset, int whence) 608{ 609 struct inode *bd_inode = bdev_file_inode(file); 610 loff_t retval; 611 612 inode_lock(bd_inode); 613 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 614 inode_unlock(bd_inode); 615 return retval; 616} 617 618int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 619{ 620 struct inode *bd_inode = bdev_file_inode(filp); 621 struct block_device *bdev = I_BDEV(bd_inode); 622 int error; 623 624 error = file_write_and_wait_range(filp, start, end); 625 if (error) 626 return error; 627 628 /* 629 * There is no need to serialise calls to blkdev_issue_flush with 630 * i_mutex and doing so causes performance issues with concurrent 631 * O_SYNC writers to a block device. 632 */ 633 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 634 if (error == -EOPNOTSUPP) 635 error = 0; 636 637 return error; 638} 639EXPORT_SYMBOL(blkdev_fsync); 640 641/** 642 * bdev_read_page() - Start reading a page from a block device 643 * @bdev: The device to read the page from 644 * @sector: The offset on the device to read the page to (need not be aligned) 645 * @page: The page to read 646 * 647 * On entry, the page should be locked. It will be unlocked when the page 648 * has been read. If the block driver implements rw_page synchronously, 649 * that will be true on exit from this function, but it need not be. 650 * 651 * Errors returned by this function are usually "soft", eg out of memory, or 652 * queue full; callers should try a different route to read this page rather 653 * than propagate an error back up the stack. 654 * 655 * Return: negative errno if an error occurs, 0 if submission was successful. 656 */ 657int bdev_read_page(struct block_device *bdev, sector_t sector, 658 struct page *page) 659{ 660 const struct block_device_operations *ops = bdev->bd_disk->fops; 661 int result = -EOPNOTSUPP; 662 663 if (!ops->rw_page || bdev_get_integrity(bdev)) 664 return result; 665 666 result = blk_queue_enter(bdev->bd_queue, 0); 667 if (result) 668 return result; 669 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false); 670 blk_queue_exit(bdev->bd_queue); 671 return result; 672} 673EXPORT_SYMBOL_GPL(bdev_read_page); 674 675/** 676 * bdev_write_page() - Start writing a page to a block device 677 * @bdev: The device to write the page to 678 * @sector: The offset on the device to write the page to (need not be aligned) 679 * @page: The page to write 680 * @wbc: The writeback_control for the write 681 * 682 * On entry, the page should be locked and not currently under writeback. 683 * On exit, if the write started successfully, the page will be unlocked and 684 * under writeback. If the write failed already (eg the driver failed to 685 * queue the page to the device), the page will still be locked. If the 686 * caller is a ->writepage implementation, it will need to unlock the page. 687 * 688 * Errors returned by this function are usually "soft", eg out of memory, or 689 * queue full; callers should try a different route to write this page rather 690 * than propagate an error back up the stack. 691 * 692 * Return: negative errno if an error occurs, 0 if submission was successful. 693 */ 694int bdev_write_page(struct block_device *bdev, sector_t sector, 695 struct page *page, struct writeback_control *wbc) 696{ 697 int result; 698 const struct block_device_operations *ops = bdev->bd_disk->fops; 699 700 if (!ops->rw_page || bdev_get_integrity(bdev)) 701 return -EOPNOTSUPP; 702 result = blk_queue_enter(bdev->bd_queue, 0); 703 if (result) 704 return result; 705 706 set_page_writeback(page); 707 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true); 708 if (result) { 709 end_page_writeback(page); 710 } else { 711 clean_page_buffers(page); 712 unlock_page(page); 713 } 714 blk_queue_exit(bdev->bd_queue); 715 return result; 716} 717EXPORT_SYMBOL_GPL(bdev_write_page); 718 719/* 720 * pseudo-fs 721 */ 722 723static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 724static struct kmem_cache * bdev_cachep __read_mostly; 725 726static struct inode *bdev_alloc_inode(struct super_block *sb) 727{ 728 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 729 if (!ei) 730 return NULL; 731 return &ei->vfs_inode; 732} 733 734static void bdev_i_callback(struct rcu_head *head) 735{ 736 struct inode *inode = container_of(head, struct inode, i_rcu); 737 struct bdev_inode *bdi = BDEV_I(inode); 738 739 kmem_cache_free(bdev_cachep, bdi); 740} 741 742static void bdev_destroy_inode(struct inode *inode) 743{ 744 call_rcu(&inode->i_rcu, bdev_i_callback); 745} 746 747static void init_once(void *foo) 748{ 749 struct bdev_inode *ei = (struct bdev_inode *) foo; 750 struct block_device *bdev = &ei->bdev; 751 752 memset(bdev, 0, sizeof(*bdev)); 753 mutex_init(&bdev->bd_mutex); 754 INIT_LIST_HEAD(&bdev->bd_list); 755#ifdef CONFIG_SYSFS 756 INIT_LIST_HEAD(&bdev->bd_holder_disks); 757#endif 758 bdev->bd_bdi = &noop_backing_dev_info; 759 inode_init_once(&ei->vfs_inode); 760 /* Initialize mutex for freeze. */ 761 mutex_init(&bdev->bd_fsfreeze_mutex); 762} 763 764static void bdev_evict_inode(struct inode *inode) 765{ 766 struct block_device *bdev = &BDEV_I(inode)->bdev; 767 truncate_inode_pages_final(&inode->i_data); 768 invalidate_inode_buffers(inode); /* is it needed here? */ 769 clear_inode(inode); 770 spin_lock(&bdev_lock); 771 list_del_init(&bdev->bd_list); 772 spin_unlock(&bdev_lock); 773 /* Detach inode from wb early as bdi_put() may free bdi->wb */ 774 inode_detach_wb(inode); 775 if (bdev->bd_bdi != &noop_backing_dev_info) { 776 bdi_put(bdev->bd_bdi); 777 bdev->bd_bdi = &noop_backing_dev_info; 778 } 779} 780 781static const struct super_operations bdev_sops = { 782 .statfs = simple_statfs, 783 .alloc_inode = bdev_alloc_inode, 784 .destroy_inode = bdev_destroy_inode, 785 .drop_inode = generic_delete_inode, 786 .evict_inode = bdev_evict_inode, 787}; 788 789static struct dentry *bd_mount(struct file_system_type *fs_type, 790 int flags, const char *dev_name, void *data) 791{ 792 struct dentry *dent; 793 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 794 if (!IS_ERR(dent)) 795 dent->d_sb->s_iflags |= SB_I_CGROUPWB; 796 return dent; 797} 798 799static struct file_system_type bd_type = { 800 .name = "bdev", 801 .mount = bd_mount, 802 .kill_sb = kill_anon_super, 803}; 804 805struct super_block *blockdev_superblock __read_mostly; 806EXPORT_SYMBOL_GPL(blockdev_superblock); 807 808void __init bdev_cache_init(void) 809{ 810 int err; 811 static struct vfsmount *bd_mnt; 812 813 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 814 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 815 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 816 init_once); 817 err = register_filesystem(&bd_type); 818 if (err) 819 panic("Cannot register bdev pseudo-fs"); 820 bd_mnt = kern_mount(&bd_type); 821 if (IS_ERR(bd_mnt)) 822 panic("Cannot create bdev pseudo-fs"); 823 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 824} 825 826/* 827 * Most likely _very_ bad one - but then it's hardly critical for small 828 * /dev and can be fixed when somebody will need really large one. 829 * Keep in mind that it will be fed through icache hash function too. 830 */ 831static inline unsigned long hash(dev_t dev) 832{ 833 return MAJOR(dev)+MINOR(dev); 834} 835 836static int bdev_test(struct inode *inode, void *data) 837{ 838 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 839} 840 841static int bdev_set(struct inode *inode, void *data) 842{ 843 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 844 return 0; 845} 846 847static LIST_HEAD(all_bdevs); 848 849/* 850 * If there is a bdev inode for this device, unhash it so that it gets evicted 851 * as soon as last inode reference is dropped. 852 */ 853void bdev_unhash_inode(dev_t dev) 854{ 855 struct inode *inode; 856 857 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev); 858 if (inode) { 859 remove_inode_hash(inode); 860 iput(inode); 861 } 862} 863 864struct block_device *bdget(dev_t dev) 865{ 866 struct block_device *bdev; 867 struct inode *inode; 868 869 inode = iget5_locked(blockdev_superblock, hash(dev), 870 bdev_test, bdev_set, &dev); 871 872 if (!inode) 873 return NULL; 874 875 bdev = &BDEV_I(inode)->bdev; 876 877 if (inode->i_state & I_NEW) { 878 bdev->bd_contains = NULL; 879 bdev->bd_super = NULL; 880 bdev->bd_inode = inode; 881 bdev->bd_block_size = i_blocksize(inode); 882 bdev->bd_part_count = 0; 883 bdev->bd_invalidated = 0; 884 inode->i_mode = S_IFBLK; 885 inode->i_rdev = dev; 886 inode->i_bdev = bdev; 887 inode->i_data.a_ops = &def_blk_aops; 888 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 889 spin_lock(&bdev_lock); 890 list_add(&bdev->bd_list, &all_bdevs); 891 spin_unlock(&bdev_lock); 892 unlock_new_inode(inode); 893 } 894 return bdev; 895} 896 897EXPORT_SYMBOL(bdget); 898 899/** 900 * bdgrab -- Grab a reference to an already referenced block device 901 * @bdev: Block device to grab a reference to. 902 */ 903struct block_device *bdgrab(struct block_device *bdev) 904{ 905 ihold(bdev->bd_inode); 906 return bdev; 907} 908EXPORT_SYMBOL(bdgrab); 909 910long nr_blockdev_pages(void) 911{ 912 struct block_device *bdev; 913 long ret = 0; 914 spin_lock(&bdev_lock); 915 list_for_each_entry(bdev, &all_bdevs, bd_list) { 916 ret += bdev->bd_inode->i_mapping->nrpages; 917 } 918 spin_unlock(&bdev_lock); 919 return ret; 920} 921 922void bdput(struct block_device *bdev) 923{ 924 iput(bdev->bd_inode); 925} 926 927EXPORT_SYMBOL(bdput); 928 929static struct block_device *bd_acquire(struct inode *inode) 930{ 931 struct block_device *bdev; 932 933 spin_lock(&bdev_lock); 934 bdev = inode->i_bdev; 935 if (bdev && !inode_unhashed(bdev->bd_inode)) { 936 bdgrab(bdev); 937 spin_unlock(&bdev_lock); 938 return bdev; 939 } 940 spin_unlock(&bdev_lock); 941 942 /* 943 * i_bdev references block device inode that was already shut down 944 * (corresponding device got removed). Remove the reference and look 945 * up block device inode again just in case new device got 946 * reestablished under the same device number. 947 */ 948 if (bdev) 949 bd_forget(inode); 950 951 bdev = bdget(inode->i_rdev); 952 if (bdev) { 953 spin_lock(&bdev_lock); 954 if (!inode->i_bdev) { 955 /* 956 * We take an additional reference to bd_inode, 957 * and it's released in clear_inode() of inode. 958 * So, we can access it via ->i_mapping always 959 * without igrab(). 960 */ 961 bdgrab(bdev); 962 inode->i_bdev = bdev; 963 inode->i_mapping = bdev->bd_inode->i_mapping; 964 } 965 spin_unlock(&bdev_lock); 966 } 967 return bdev; 968} 969 970/* Call when you free inode */ 971 972void bd_forget(struct inode *inode) 973{ 974 struct block_device *bdev = NULL; 975 976 spin_lock(&bdev_lock); 977 if (!sb_is_blkdev_sb(inode->i_sb)) 978 bdev = inode->i_bdev; 979 inode->i_bdev = NULL; 980 inode->i_mapping = &inode->i_data; 981 spin_unlock(&bdev_lock); 982 983 if (bdev) 984 bdput(bdev); 985} 986 987/** 988 * bd_may_claim - test whether a block device can be claimed 989 * @bdev: block device of interest 990 * @whole: whole block device containing @bdev, may equal @bdev 991 * @holder: holder trying to claim @bdev 992 * 993 * Test whether @bdev can be claimed by @holder. 994 * 995 * CONTEXT: 996 * spin_lock(&bdev_lock). 997 * 998 * RETURNS: 999 * %true if @bdev can be claimed, %false otherwise. 1000 */ 1001static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1002 void *holder) 1003{ 1004 if (bdev->bd_holder == holder) 1005 return true; /* already a holder */ 1006 else if (bdev->bd_holder != NULL) 1007 return false; /* held by someone else */ 1008 else if (whole == bdev) 1009 return true; /* is a whole device which isn't held */ 1010 1011 else if (whole->bd_holder == bd_may_claim) 1012 return true; /* is a partition of a device that is being partitioned */ 1013 else if (whole->bd_holder != NULL) 1014 return false; /* is a partition of a held device */ 1015 else 1016 return true; /* is a partition of an un-held device */ 1017} 1018 1019/** 1020 * bd_prepare_to_claim - prepare to claim a block device 1021 * @bdev: block device of interest 1022 * @whole: the whole device containing @bdev, may equal @bdev 1023 * @holder: holder trying to claim @bdev 1024 * 1025 * Prepare to claim @bdev. This function fails if @bdev is already 1026 * claimed by another holder and waits if another claiming is in 1027 * progress. This function doesn't actually claim. On successful 1028 * return, the caller has ownership of bd_claiming and bd_holder[s]. 1029 * 1030 * CONTEXT: 1031 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 1032 * it multiple times. 1033 * 1034 * RETURNS: 1035 * 0 if @bdev can be claimed, -EBUSY otherwise. 1036 */ 1037static int bd_prepare_to_claim(struct block_device *bdev, 1038 struct block_device *whole, void *holder) 1039{ 1040retry: 1041 /* if someone else claimed, fail */ 1042 if (!bd_may_claim(bdev, whole, holder)) 1043 return -EBUSY; 1044 1045 /* if claiming is already in progress, wait for it to finish */ 1046 if (whole->bd_claiming) { 1047 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1048 DEFINE_WAIT(wait); 1049 1050 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1051 spin_unlock(&bdev_lock); 1052 schedule(); 1053 finish_wait(wq, &wait); 1054 spin_lock(&bdev_lock); 1055 goto retry; 1056 } 1057 1058 /* yay, all mine */ 1059 return 0; 1060} 1061 1062static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno) 1063{ 1064 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno); 1065 1066 if (!disk) 1067 return NULL; 1068 /* 1069 * Now that we hold gendisk reference we make sure bdev we looked up is 1070 * not stale. If it is, it means device got removed and created before 1071 * we looked up gendisk and we fail open in such case. Associating 1072 * unhashed bdev with newly created gendisk could lead to two bdevs 1073 * (and thus two independent caches) being associated with one device 1074 * which is bad. 1075 */ 1076 if (inode_unhashed(bdev->bd_inode)) { 1077 put_disk_and_module(disk); 1078 return NULL; 1079 } 1080 return disk; 1081} 1082 1083/** 1084 * bd_start_claiming - start claiming a block device 1085 * @bdev: block device of interest 1086 * @holder: holder trying to claim @bdev 1087 * 1088 * @bdev is about to be opened exclusively. Check @bdev can be opened 1089 * exclusively and mark that an exclusive open is in progress. Each 1090 * successful call to this function must be matched with a call to 1091 * either bd_finish_claiming() or bd_abort_claiming() (which do not 1092 * fail). 1093 * 1094 * This function is used to gain exclusive access to the block device 1095 * without actually causing other exclusive open attempts to fail. It 1096 * should be used when the open sequence itself requires exclusive 1097 * access but may subsequently fail. 1098 * 1099 * CONTEXT: 1100 * Might sleep. 1101 * 1102 * RETURNS: 1103 * Pointer to the block device containing @bdev on success, ERR_PTR() 1104 * value on failure. 1105 */ 1106static struct block_device *bd_start_claiming(struct block_device *bdev, 1107 void *holder) 1108{ 1109 struct gendisk *disk; 1110 struct block_device *whole; 1111 int partno, err; 1112 1113 might_sleep(); 1114 1115 /* 1116 * @bdev might not have been initialized properly yet, look up 1117 * and grab the outer block device the hard way. 1118 */ 1119 disk = bdev_get_gendisk(bdev, &partno); 1120 if (!disk) 1121 return ERR_PTR(-ENXIO); 1122 1123 /* 1124 * Normally, @bdev should equal what's returned from bdget_disk() 1125 * if partno is 0; however, some drivers (floppy) use multiple 1126 * bdev's for the same physical device and @bdev may be one of the 1127 * aliases. Keep @bdev if partno is 0. This means claimer 1128 * tracking is broken for those devices but it has always been that 1129 * way. 1130 */ 1131 if (partno) 1132 whole = bdget_disk(disk, 0); 1133 else 1134 whole = bdgrab(bdev); 1135 1136 put_disk_and_module(disk); 1137 if (!whole) 1138 return ERR_PTR(-ENOMEM); 1139 1140 /* prepare to claim, if successful, mark claiming in progress */ 1141 spin_lock(&bdev_lock); 1142 1143 err = bd_prepare_to_claim(bdev, whole, holder); 1144 if (err == 0) { 1145 whole->bd_claiming = holder; 1146 spin_unlock(&bdev_lock); 1147 return whole; 1148 } else { 1149 spin_unlock(&bdev_lock); 1150 bdput(whole); 1151 return ERR_PTR(err); 1152 } 1153} 1154 1155#ifdef CONFIG_SYSFS 1156struct bd_holder_disk { 1157 struct list_head list; 1158 struct gendisk *disk; 1159 int refcnt; 1160}; 1161 1162static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1163 struct gendisk *disk) 1164{ 1165 struct bd_holder_disk *holder; 1166 1167 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1168 if (holder->disk == disk) 1169 return holder; 1170 return NULL; 1171} 1172 1173static int add_symlink(struct kobject *from, struct kobject *to) 1174{ 1175 return sysfs_create_link(from, to, kobject_name(to)); 1176} 1177 1178static void del_symlink(struct kobject *from, struct kobject *to) 1179{ 1180 sysfs_remove_link(from, kobject_name(to)); 1181} 1182 1183/** 1184 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1185 * @bdev: the claimed slave bdev 1186 * @disk: the holding disk 1187 * 1188 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1189 * 1190 * This functions creates the following sysfs symlinks. 1191 * 1192 * - from "slaves" directory of the holder @disk to the claimed @bdev 1193 * - from "holders" directory of the @bdev to the holder @disk 1194 * 1195 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1196 * passed to bd_link_disk_holder(), then: 1197 * 1198 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1199 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1200 * 1201 * The caller must have claimed @bdev before calling this function and 1202 * ensure that both @bdev and @disk are valid during the creation and 1203 * lifetime of these symlinks. 1204 * 1205 * CONTEXT: 1206 * Might sleep. 1207 * 1208 * RETURNS: 1209 * 0 on success, -errno on failure. 1210 */ 1211int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1212{ 1213 struct bd_holder_disk *holder; 1214 int ret = 0; 1215 1216 mutex_lock(&bdev->bd_mutex); 1217 1218 WARN_ON_ONCE(!bdev->bd_holder); 1219 1220 /* FIXME: remove the following once add_disk() handles errors */ 1221 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1222 goto out_unlock; 1223 1224 holder = bd_find_holder_disk(bdev, disk); 1225 if (holder) { 1226 holder->refcnt++; 1227 goto out_unlock; 1228 } 1229 1230 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1231 if (!holder) { 1232 ret = -ENOMEM; 1233 goto out_unlock; 1234 } 1235 1236 INIT_LIST_HEAD(&holder->list); 1237 holder->disk = disk; 1238 holder->refcnt = 1; 1239 1240 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1241 if (ret) 1242 goto out_free; 1243 1244 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1245 if (ret) 1246 goto out_del; 1247 /* 1248 * bdev could be deleted beneath us which would implicitly destroy 1249 * the holder directory. Hold on to it. 1250 */ 1251 kobject_get(bdev->bd_part->holder_dir); 1252 1253 list_add(&holder->list, &bdev->bd_holder_disks); 1254 goto out_unlock; 1255 1256out_del: 1257 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1258out_free: 1259 kfree(holder); 1260out_unlock: 1261 mutex_unlock(&bdev->bd_mutex); 1262 return ret; 1263} 1264EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1265 1266/** 1267 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1268 * @bdev: the calimed slave bdev 1269 * @disk: the holding disk 1270 * 1271 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1272 * 1273 * CONTEXT: 1274 * Might sleep. 1275 */ 1276void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1277{ 1278 struct bd_holder_disk *holder; 1279 1280 mutex_lock(&bdev->bd_mutex); 1281 1282 holder = bd_find_holder_disk(bdev, disk); 1283 1284 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1285 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1286 del_symlink(bdev->bd_part->holder_dir, 1287 &disk_to_dev(disk)->kobj); 1288 kobject_put(bdev->bd_part->holder_dir); 1289 list_del_init(&holder->list); 1290 kfree(holder); 1291 } 1292 1293 mutex_unlock(&bdev->bd_mutex); 1294} 1295EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1296#endif 1297 1298/** 1299 * flush_disk - invalidates all buffer-cache entries on a disk 1300 * 1301 * @bdev: struct block device to be flushed 1302 * @kill_dirty: flag to guide handling of dirty inodes 1303 * 1304 * Invalidates all buffer-cache entries on a disk. It should be called 1305 * when a disk has been changed -- either by a media change or online 1306 * resize. 1307 */ 1308static void flush_disk(struct block_device *bdev, bool kill_dirty) 1309{ 1310 if (__invalidate_device(bdev, kill_dirty)) { 1311 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1312 "resized disk %s\n", 1313 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1314 } 1315 1316 if (!bdev->bd_disk) 1317 return; 1318 if (disk_part_scan_enabled(bdev->bd_disk)) 1319 bdev->bd_invalidated = 1; 1320} 1321 1322/** 1323 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1324 * @disk: struct gendisk to check 1325 * @bdev: struct bdev to adjust. 1326 * @verbose: if %true log a message about a size change if there is any 1327 * 1328 * This routine checks to see if the bdev size does not match the disk size 1329 * and adjusts it if it differs. When shrinking the bdev size, its all caches 1330 * are freed. 1331 */ 1332void check_disk_size_change(struct gendisk *disk, struct block_device *bdev, 1333 bool verbose) 1334{ 1335 loff_t disk_size, bdev_size; 1336 1337 disk_size = (loff_t)get_capacity(disk) << 9; 1338 bdev_size = i_size_read(bdev->bd_inode); 1339 if (disk_size != bdev_size) { 1340 if (verbose) { 1341 printk(KERN_INFO 1342 "%s: detected capacity change from %lld to %lld\n", 1343 disk->disk_name, bdev_size, disk_size); 1344 } 1345 i_size_write(bdev->bd_inode, disk_size); 1346 if (bdev_size > disk_size) 1347 flush_disk(bdev, false); 1348 } 1349} 1350 1351/** 1352 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1353 * @disk: struct gendisk to be revalidated 1354 * 1355 * This routine is a wrapper for lower-level driver's revalidate_disk 1356 * call-backs. It is used to do common pre and post operations needed 1357 * for all revalidate_disk operations. 1358 */ 1359int revalidate_disk(struct gendisk *disk) 1360{ 1361 struct block_device *bdev; 1362 int ret = 0; 1363 1364 if (disk->fops->revalidate_disk) 1365 ret = disk->fops->revalidate_disk(disk); 1366 bdev = bdget_disk(disk, 0); 1367 if (!bdev) 1368 return ret; 1369 1370 mutex_lock(&bdev->bd_mutex); 1371 check_disk_size_change(disk, bdev, ret == 0); 1372 bdev->bd_invalidated = 0; 1373 mutex_unlock(&bdev->bd_mutex); 1374 bdput(bdev); 1375 return ret; 1376} 1377EXPORT_SYMBOL(revalidate_disk); 1378 1379/* 1380 * This routine checks whether a removable media has been changed, 1381 * and invalidates all buffer-cache-entries in that case. This 1382 * is a relatively slow routine, so we have to try to minimize using 1383 * it. Thus it is called only upon a 'mount' or 'open'. This 1384 * is the best way of combining speed and utility, I think. 1385 * People changing diskettes in the middle of an operation deserve 1386 * to lose :-) 1387 */ 1388int check_disk_change(struct block_device *bdev) 1389{ 1390 struct gendisk *disk = bdev->bd_disk; 1391 const struct block_device_operations *bdops = disk->fops; 1392 unsigned int events; 1393 1394 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1395 DISK_EVENT_EJECT_REQUEST); 1396 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1397 return 0; 1398 1399 flush_disk(bdev, true); 1400 if (bdops->revalidate_disk) 1401 bdops->revalidate_disk(bdev->bd_disk); 1402 return 1; 1403} 1404 1405EXPORT_SYMBOL(check_disk_change); 1406 1407void bd_set_size(struct block_device *bdev, loff_t size) 1408{ 1409 unsigned bsize = bdev_logical_block_size(bdev); 1410 1411 inode_lock(bdev->bd_inode); 1412 i_size_write(bdev->bd_inode, size); 1413 inode_unlock(bdev->bd_inode); 1414 while (bsize < PAGE_SIZE) { 1415 if (size & bsize) 1416 break; 1417 bsize <<= 1; 1418 } 1419 bdev->bd_block_size = bsize; 1420 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1421} 1422EXPORT_SYMBOL(bd_set_size); 1423 1424static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1425 1426/* 1427 * bd_mutex locking: 1428 * 1429 * mutex_lock(part->bd_mutex) 1430 * mutex_lock_nested(whole->bd_mutex, 1) 1431 */ 1432 1433static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1434{ 1435 struct gendisk *disk; 1436 int ret; 1437 int partno; 1438 int perm = 0; 1439 bool first_open = false; 1440 1441 if (mode & FMODE_READ) 1442 perm |= MAY_READ; 1443 if (mode & FMODE_WRITE) 1444 perm |= MAY_WRITE; 1445 /* 1446 * hooks: /n/, see "layering violations". 1447 */ 1448 if (!for_part) { 1449 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1450 if (ret != 0) { 1451 bdput(bdev); 1452 return ret; 1453 } 1454 } 1455 1456 restart: 1457 1458 ret = -ENXIO; 1459 disk = bdev_get_gendisk(bdev, &partno); 1460 if (!disk) 1461 goto out; 1462 1463 disk_block_events(disk); 1464 mutex_lock_nested(&bdev->bd_mutex, for_part); 1465 if (!bdev->bd_openers) { 1466 first_open = true; 1467 bdev->bd_disk = disk; 1468 bdev->bd_queue = disk->queue; 1469 bdev->bd_contains = bdev; 1470 bdev->bd_partno = partno; 1471 1472 if (!partno) { 1473 ret = -ENXIO; 1474 bdev->bd_part = disk_get_part(disk, partno); 1475 if (!bdev->bd_part) 1476 goto out_clear; 1477 1478 ret = 0; 1479 if (disk->fops->open) { 1480 ret = disk->fops->open(bdev, mode); 1481 if (ret == -ERESTARTSYS) { 1482 /* Lost a race with 'disk' being 1483 * deleted, try again. 1484 * See md.c 1485 */ 1486 disk_put_part(bdev->bd_part); 1487 bdev->bd_part = NULL; 1488 bdev->bd_disk = NULL; 1489 bdev->bd_queue = NULL; 1490 mutex_unlock(&bdev->bd_mutex); 1491 disk_unblock_events(disk); 1492 put_disk_and_module(disk); 1493 goto restart; 1494 } 1495 } 1496 1497 if (!ret) 1498 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1499 1500 /* 1501 * If the device is invalidated, rescan partition 1502 * if open succeeded or failed with -ENOMEDIUM. 1503 * The latter is necessary to prevent ghost 1504 * partitions on a removed medium. 1505 */ 1506 if (bdev->bd_invalidated) { 1507 if (!ret) 1508 rescan_partitions(disk, bdev); 1509 else if (ret == -ENOMEDIUM) 1510 invalidate_partitions(disk, bdev); 1511 } 1512 1513 if (ret) 1514 goto out_clear; 1515 } else { 1516 struct block_device *whole; 1517 whole = bdget_disk(disk, 0); 1518 ret = -ENOMEM; 1519 if (!whole) 1520 goto out_clear; 1521 BUG_ON(for_part); 1522 ret = __blkdev_get(whole, mode, 1); 1523 if (ret) 1524 goto out_clear; 1525 bdev->bd_contains = whole; 1526 bdev->bd_part = disk_get_part(disk, partno); 1527 if (!(disk->flags & GENHD_FL_UP) || 1528 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1529 ret = -ENXIO; 1530 goto out_clear; 1531 } 1532 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1533 } 1534 1535 if (bdev->bd_bdi == &noop_backing_dev_info) 1536 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info); 1537 } else { 1538 if (bdev->bd_contains == bdev) { 1539 ret = 0; 1540 if (bdev->bd_disk->fops->open) 1541 ret = bdev->bd_disk->fops->open(bdev, mode); 1542 /* the same as first opener case, read comment there */ 1543 if (bdev->bd_invalidated) { 1544 if (!ret) 1545 rescan_partitions(bdev->bd_disk, bdev); 1546 else if (ret == -ENOMEDIUM) 1547 invalidate_partitions(bdev->bd_disk, bdev); 1548 } 1549 if (ret) 1550 goto out_unlock_bdev; 1551 } 1552 } 1553 bdev->bd_openers++; 1554 if (for_part) 1555 bdev->bd_part_count++; 1556 mutex_unlock(&bdev->bd_mutex); 1557 disk_unblock_events(disk); 1558 /* only one opener holds refs to the module and disk */ 1559 if (!first_open) 1560 put_disk_and_module(disk); 1561 return 0; 1562 1563 out_clear: 1564 disk_put_part(bdev->bd_part); 1565 bdev->bd_disk = NULL; 1566 bdev->bd_part = NULL; 1567 bdev->bd_queue = NULL; 1568 if (bdev != bdev->bd_contains) 1569 __blkdev_put(bdev->bd_contains, mode, 1); 1570 bdev->bd_contains = NULL; 1571 out_unlock_bdev: 1572 mutex_unlock(&bdev->bd_mutex); 1573 disk_unblock_events(disk); 1574 put_disk_and_module(disk); 1575 out: 1576 bdput(bdev); 1577 1578 return ret; 1579} 1580 1581/** 1582 * blkdev_get - open a block device 1583 * @bdev: block_device to open 1584 * @mode: FMODE_* mask 1585 * @holder: exclusive holder identifier 1586 * 1587 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1588 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1589 * @holder is invalid. Exclusive opens may nest for the same @holder. 1590 * 1591 * On success, the reference count of @bdev is unchanged. On failure, 1592 * @bdev is put. 1593 * 1594 * CONTEXT: 1595 * Might sleep. 1596 * 1597 * RETURNS: 1598 * 0 on success, -errno on failure. 1599 */ 1600int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1601{ 1602 struct block_device *whole = NULL; 1603 int res; 1604 1605 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1606 1607 if ((mode & FMODE_EXCL) && holder) { 1608 whole = bd_start_claiming(bdev, holder); 1609 if (IS_ERR(whole)) { 1610 bdput(bdev); 1611 return PTR_ERR(whole); 1612 } 1613 } 1614 1615 res = __blkdev_get(bdev, mode, 0); 1616 1617 if (whole) { 1618 struct gendisk *disk = whole->bd_disk; 1619 1620 /* finish claiming */ 1621 mutex_lock(&bdev->bd_mutex); 1622 spin_lock(&bdev_lock); 1623 1624 if (!res) { 1625 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1626 /* 1627 * Note that for a whole device bd_holders 1628 * will be incremented twice, and bd_holder 1629 * will be set to bd_may_claim before being 1630 * set to holder 1631 */ 1632 whole->bd_holders++; 1633 whole->bd_holder = bd_may_claim; 1634 bdev->bd_holders++; 1635 bdev->bd_holder = holder; 1636 } 1637 1638 /* tell others that we're done */ 1639 BUG_ON(whole->bd_claiming != holder); 1640 whole->bd_claiming = NULL; 1641 wake_up_bit(&whole->bd_claiming, 0); 1642 1643 spin_unlock(&bdev_lock); 1644 1645 /* 1646 * Block event polling for write claims if requested. Any 1647 * write holder makes the write_holder state stick until 1648 * all are released. This is good enough and tracking 1649 * individual writeable reference is too fragile given the 1650 * way @mode is used in blkdev_get/put(). 1651 */ 1652 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1653 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1654 bdev->bd_write_holder = true; 1655 disk_block_events(disk); 1656 } 1657 1658 mutex_unlock(&bdev->bd_mutex); 1659 bdput(whole); 1660 } 1661 1662 return res; 1663} 1664EXPORT_SYMBOL(blkdev_get); 1665 1666/** 1667 * blkdev_get_by_path - open a block device by name 1668 * @path: path to the block device to open 1669 * @mode: FMODE_* mask 1670 * @holder: exclusive holder identifier 1671 * 1672 * Open the blockdevice described by the device file at @path. @mode 1673 * and @holder are identical to blkdev_get(). 1674 * 1675 * On success, the returned block_device has reference count of one. 1676 * 1677 * CONTEXT: 1678 * Might sleep. 1679 * 1680 * RETURNS: 1681 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1682 */ 1683struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1684 void *holder) 1685{ 1686 struct block_device *bdev; 1687 int err; 1688 1689 bdev = lookup_bdev(path); 1690 if (IS_ERR(bdev)) 1691 return bdev; 1692 1693 err = blkdev_get(bdev, mode, holder); 1694 if (err) 1695 return ERR_PTR(err); 1696 1697 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1698 blkdev_put(bdev, mode); 1699 return ERR_PTR(-EACCES); 1700 } 1701 1702 return bdev; 1703} 1704EXPORT_SYMBOL(blkdev_get_by_path); 1705 1706/** 1707 * blkdev_get_by_dev - open a block device by device number 1708 * @dev: device number of block device to open 1709 * @mode: FMODE_* mask 1710 * @holder: exclusive holder identifier 1711 * 1712 * Open the blockdevice described by device number @dev. @mode and 1713 * @holder are identical to blkdev_get(). 1714 * 1715 * Use it ONLY if you really do not have anything better - i.e. when 1716 * you are behind a truly sucky interface and all you are given is a 1717 * device number. _Never_ to be used for internal purposes. If you 1718 * ever need it - reconsider your API. 1719 * 1720 * On success, the returned block_device has reference count of one. 1721 * 1722 * CONTEXT: 1723 * Might sleep. 1724 * 1725 * RETURNS: 1726 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1727 */ 1728struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1729{ 1730 struct block_device *bdev; 1731 int err; 1732 1733 bdev = bdget(dev); 1734 if (!bdev) 1735 return ERR_PTR(-ENOMEM); 1736 1737 err = blkdev_get(bdev, mode, holder); 1738 if (err) 1739 return ERR_PTR(err); 1740 1741 return bdev; 1742} 1743EXPORT_SYMBOL(blkdev_get_by_dev); 1744 1745static int blkdev_open(struct inode * inode, struct file * filp) 1746{ 1747 struct block_device *bdev; 1748 1749 /* 1750 * Preserve backwards compatibility and allow large file access 1751 * even if userspace doesn't ask for it explicitly. Some mkfs 1752 * binary needs it. We might want to drop this workaround 1753 * during an unstable branch. 1754 */ 1755 filp->f_flags |= O_LARGEFILE; 1756 1757 filp->f_mode |= FMODE_NOWAIT; 1758 1759 if (filp->f_flags & O_NDELAY) 1760 filp->f_mode |= FMODE_NDELAY; 1761 if (filp->f_flags & O_EXCL) 1762 filp->f_mode |= FMODE_EXCL; 1763 if ((filp->f_flags & O_ACCMODE) == 3) 1764 filp->f_mode |= FMODE_WRITE_IOCTL; 1765 1766 bdev = bd_acquire(inode); 1767 if (bdev == NULL) 1768 return -ENOMEM; 1769 1770 filp->f_mapping = bdev->bd_inode->i_mapping; 1771 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping); 1772 1773 return blkdev_get(bdev, filp->f_mode, filp); 1774} 1775 1776static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1777{ 1778 struct gendisk *disk = bdev->bd_disk; 1779 struct block_device *victim = NULL; 1780 1781 mutex_lock_nested(&bdev->bd_mutex, for_part); 1782 if (for_part) 1783 bdev->bd_part_count--; 1784 1785 if (!--bdev->bd_openers) { 1786 WARN_ON_ONCE(bdev->bd_holders); 1787 sync_blockdev(bdev); 1788 kill_bdev(bdev); 1789 1790 bdev_write_inode(bdev); 1791 } 1792 if (bdev->bd_contains == bdev) { 1793 if (disk->fops->release) 1794 disk->fops->release(disk, mode); 1795 } 1796 if (!bdev->bd_openers) { 1797 disk_put_part(bdev->bd_part); 1798 bdev->bd_part = NULL; 1799 bdev->bd_disk = NULL; 1800 if (bdev != bdev->bd_contains) 1801 victim = bdev->bd_contains; 1802 bdev->bd_contains = NULL; 1803 1804 put_disk_and_module(disk); 1805 } 1806 mutex_unlock(&bdev->bd_mutex); 1807 bdput(bdev); 1808 if (victim) 1809 __blkdev_put(victim, mode, 1); 1810} 1811 1812void blkdev_put(struct block_device *bdev, fmode_t mode) 1813{ 1814 mutex_lock(&bdev->bd_mutex); 1815 1816 if (mode & FMODE_EXCL) { 1817 bool bdev_free; 1818 1819 /* 1820 * Release a claim on the device. The holder fields 1821 * are protected with bdev_lock. bd_mutex is to 1822 * synchronize disk_holder unlinking. 1823 */ 1824 spin_lock(&bdev_lock); 1825 1826 WARN_ON_ONCE(--bdev->bd_holders < 0); 1827 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1828 1829 /* bd_contains might point to self, check in a separate step */ 1830 if ((bdev_free = !bdev->bd_holders)) 1831 bdev->bd_holder = NULL; 1832 if (!bdev->bd_contains->bd_holders) 1833 bdev->bd_contains->bd_holder = NULL; 1834 1835 spin_unlock(&bdev_lock); 1836 1837 /* 1838 * If this was the last claim, remove holder link and 1839 * unblock evpoll if it was a write holder. 1840 */ 1841 if (bdev_free && bdev->bd_write_holder) { 1842 disk_unblock_events(bdev->bd_disk); 1843 bdev->bd_write_holder = false; 1844 } 1845 } 1846 1847 /* 1848 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1849 * event. This is to ensure detection of media removal commanded 1850 * from userland - e.g. eject(1). 1851 */ 1852 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1853 1854 mutex_unlock(&bdev->bd_mutex); 1855 1856 __blkdev_put(bdev, mode, 0); 1857} 1858EXPORT_SYMBOL(blkdev_put); 1859 1860static int blkdev_close(struct inode * inode, struct file * filp) 1861{ 1862 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1863 blkdev_put(bdev, filp->f_mode); 1864 return 0; 1865} 1866 1867static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1868{ 1869 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1870 fmode_t mode = file->f_mode; 1871 1872 /* 1873 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1874 * to updated it before every ioctl. 1875 */ 1876 if (file->f_flags & O_NDELAY) 1877 mode |= FMODE_NDELAY; 1878 else 1879 mode &= ~FMODE_NDELAY; 1880 1881 return blkdev_ioctl(bdev, mode, cmd, arg); 1882} 1883 1884/* 1885 * Write data to the block device. Only intended for the block device itself 1886 * and the raw driver which basically is a fake block device. 1887 * 1888 * Does not take i_mutex for the write and thus is not for general purpose 1889 * use. 1890 */ 1891ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1892{ 1893 struct file *file = iocb->ki_filp; 1894 struct inode *bd_inode = bdev_file_inode(file); 1895 loff_t size = i_size_read(bd_inode); 1896 struct blk_plug plug; 1897 ssize_t ret; 1898 1899 if (bdev_read_only(I_BDEV(bd_inode))) 1900 return -EPERM; 1901 1902 if (!iov_iter_count(from)) 1903 return 0; 1904 1905 if (iocb->ki_pos >= size) 1906 return -ENOSPC; 1907 1908 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT) 1909 return -EOPNOTSUPP; 1910 1911 iov_iter_truncate(from, size - iocb->ki_pos); 1912 1913 blk_start_plug(&plug); 1914 ret = __generic_file_write_iter(iocb, from); 1915 if (ret > 0) 1916 ret = generic_write_sync(iocb, ret); 1917 blk_finish_plug(&plug); 1918 return ret; 1919} 1920EXPORT_SYMBOL_GPL(blkdev_write_iter); 1921 1922ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1923{ 1924 struct file *file = iocb->ki_filp; 1925 struct inode *bd_inode = bdev_file_inode(file); 1926 loff_t size = i_size_read(bd_inode); 1927 loff_t pos = iocb->ki_pos; 1928 1929 if (pos >= size) 1930 return 0; 1931 1932 size -= pos; 1933 iov_iter_truncate(to, size); 1934 return generic_file_read_iter(iocb, to); 1935} 1936EXPORT_SYMBOL_GPL(blkdev_read_iter); 1937 1938/* 1939 * Try to release a page associated with block device when the system 1940 * is under memory pressure. 1941 */ 1942static int blkdev_releasepage(struct page *page, gfp_t wait) 1943{ 1944 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1945 1946 if (super && super->s_op->bdev_try_to_free_page) 1947 return super->s_op->bdev_try_to_free_page(super, page, wait); 1948 1949 return try_to_free_buffers(page); 1950} 1951 1952static int blkdev_writepages(struct address_space *mapping, 1953 struct writeback_control *wbc) 1954{ 1955 return generic_writepages(mapping, wbc); 1956} 1957 1958static const struct address_space_operations def_blk_aops = { 1959 .readpage = blkdev_readpage, 1960 .readpages = blkdev_readpages, 1961 .writepage = blkdev_writepage, 1962 .write_begin = blkdev_write_begin, 1963 .write_end = blkdev_write_end, 1964 .writepages = blkdev_writepages, 1965 .releasepage = blkdev_releasepage, 1966 .direct_IO = blkdev_direct_IO, 1967 .is_dirty_writeback = buffer_check_dirty_writeback, 1968}; 1969 1970#define BLKDEV_FALLOC_FL_SUPPORTED \ 1971 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 1972 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 1973 1974static long blkdev_fallocate(struct file *file, int mode, loff_t start, 1975 loff_t len) 1976{ 1977 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1978 struct address_space *mapping; 1979 loff_t end = start + len - 1; 1980 loff_t isize; 1981 int error; 1982 1983 /* Fail if we don't recognize the flags. */ 1984 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 1985 return -EOPNOTSUPP; 1986 1987 /* Don't go off the end of the device. */ 1988 isize = i_size_read(bdev->bd_inode); 1989 if (start >= isize) 1990 return -EINVAL; 1991 if (end >= isize) { 1992 if (mode & FALLOC_FL_KEEP_SIZE) { 1993 len = isize - start; 1994 end = start + len - 1; 1995 } else 1996 return -EINVAL; 1997 } 1998 1999 /* 2000 * Don't allow IO that isn't aligned to logical block size. 2001 */ 2002 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 2003 return -EINVAL; 2004 2005 /* Invalidate the page cache, including dirty pages. */ 2006 mapping = bdev->bd_inode->i_mapping; 2007 truncate_inode_pages_range(mapping, start, end); 2008 2009 switch (mode) { 2010 case FALLOC_FL_ZERO_RANGE: 2011 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 2012 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2013 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); 2014 break; 2015 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 2016 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2017 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK); 2018 break; 2019 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 2020 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2021 GFP_KERNEL, 0); 2022 break; 2023 default: 2024 return -EOPNOTSUPP; 2025 } 2026 if (error) 2027 return error; 2028 2029 /* 2030 * Invalidate again; if someone wandered in and dirtied a page, 2031 * the caller will be given -EBUSY. The third argument is 2032 * inclusive, so the rounding here is safe. 2033 */ 2034 return invalidate_inode_pages2_range(mapping, 2035 start >> PAGE_SHIFT, 2036 end >> PAGE_SHIFT); 2037} 2038 2039const struct file_operations def_blk_fops = { 2040 .open = blkdev_open, 2041 .release = blkdev_close, 2042 .llseek = block_llseek, 2043 .read_iter = blkdev_read_iter, 2044 .write_iter = blkdev_write_iter, 2045 .mmap = generic_file_mmap, 2046 .fsync = blkdev_fsync, 2047 .unlocked_ioctl = block_ioctl, 2048#ifdef CONFIG_COMPAT 2049 .compat_ioctl = compat_blkdev_ioctl, 2050#endif 2051 .splice_read = generic_file_splice_read, 2052 .splice_write = iter_file_splice_write, 2053 .fallocate = blkdev_fallocate, 2054}; 2055 2056int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 2057{ 2058 int res; 2059 mm_segment_t old_fs = get_fs(); 2060 set_fs(KERNEL_DS); 2061 res = blkdev_ioctl(bdev, 0, cmd, arg); 2062 set_fs(old_fs); 2063 return res; 2064} 2065 2066EXPORT_SYMBOL(ioctl_by_bdev); 2067 2068/** 2069 * lookup_bdev - lookup a struct block_device by name 2070 * @pathname: special file representing the block device 2071 * 2072 * Get a reference to the blockdevice at @pathname in the current 2073 * namespace if possible and return it. Return ERR_PTR(error) 2074 * otherwise. 2075 */ 2076struct block_device *lookup_bdev(const char *pathname) 2077{ 2078 struct block_device *bdev; 2079 struct inode *inode; 2080 struct path path; 2081 int error; 2082 2083 if (!pathname || !*pathname) 2084 return ERR_PTR(-EINVAL); 2085 2086 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2087 if (error) 2088 return ERR_PTR(error); 2089 2090 inode = d_backing_inode(path.dentry); 2091 error = -ENOTBLK; 2092 if (!S_ISBLK(inode->i_mode)) 2093 goto fail; 2094 error = -EACCES; 2095 if (!may_open_dev(&path)) 2096 goto fail; 2097 error = -ENOMEM; 2098 bdev = bd_acquire(inode); 2099 if (!bdev) 2100 goto fail; 2101out: 2102 path_put(&path); 2103 return bdev; 2104fail: 2105 bdev = ERR_PTR(error); 2106 goto out; 2107} 2108EXPORT_SYMBOL(lookup_bdev); 2109 2110int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2111{ 2112 struct super_block *sb = get_super(bdev); 2113 int res = 0; 2114 2115 if (sb) { 2116 /* 2117 * no need to lock the super, get_super holds the 2118 * read mutex so the filesystem cannot go away 2119 * under us (->put_super runs with the write lock 2120 * hold). 2121 */ 2122 shrink_dcache_sb(sb); 2123 res = invalidate_inodes(sb, kill_dirty); 2124 drop_super(sb); 2125 } 2126 invalidate_bdev(bdev); 2127 return res; 2128} 2129EXPORT_SYMBOL(__invalidate_device); 2130 2131void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2132{ 2133 struct inode *inode, *old_inode = NULL; 2134 2135 spin_lock(&blockdev_superblock->s_inode_list_lock); 2136 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2137 struct address_space *mapping = inode->i_mapping; 2138 struct block_device *bdev; 2139 2140 spin_lock(&inode->i_lock); 2141 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2142 mapping->nrpages == 0) { 2143 spin_unlock(&inode->i_lock); 2144 continue; 2145 } 2146 __iget(inode); 2147 spin_unlock(&inode->i_lock); 2148 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2149 /* 2150 * We hold a reference to 'inode' so it couldn't have been 2151 * removed from s_inodes list while we dropped the 2152 * s_inode_list_lock We cannot iput the inode now as we can 2153 * be holding the last reference and we cannot iput it under 2154 * s_inode_list_lock. So we keep the reference and iput it 2155 * later. 2156 */ 2157 iput(old_inode); 2158 old_inode = inode; 2159 bdev = I_BDEV(inode); 2160 2161 mutex_lock(&bdev->bd_mutex); 2162 if (bdev->bd_openers) 2163 func(bdev, arg); 2164 mutex_unlock(&bdev->bd_mutex); 2165 2166 spin_lock(&blockdev_superblock->s_inode_list_lock); 2167 } 2168 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2169 iput(old_inode); 2170}