Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11#include <linux/device.h>
12#include <linux/err.h>
13#include <linux/fwnode.h>
14#include <linux/init.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/string.h>
18#include <linux/kdev_t.h>
19#include <linux/notifier.h>
20#include <linux/of.h>
21#include <linux/of_device.h>
22#include <linux/genhd.h>
23#include <linux/mutex.h>
24#include <linux/pm_runtime.h>
25#include <linux/netdevice.h>
26#include <linux/sched/signal.h>
27#include <linux/sysfs.h>
28
29#include "base.h"
30#include "power/power.h"
31
32#ifdef CONFIG_SYSFS_DEPRECATED
33#ifdef CONFIG_SYSFS_DEPRECATED_V2
34long sysfs_deprecated = 1;
35#else
36long sysfs_deprecated = 0;
37#endif
38static int __init sysfs_deprecated_setup(char *arg)
39{
40 return kstrtol(arg, 10, &sysfs_deprecated);
41}
42early_param("sysfs.deprecated", sysfs_deprecated_setup);
43#endif
44
45/* Device links support. */
46
47#ifdef CONFIG_SRCU
48static DEFINE_MUTEX(device_links_lock);
49DEFINE_STATIC_SRCU(device_links_srcu);
50
51static inline void device_links_write_lock(void)
52{
53 mutex_lock(&device_links_lock);
54}
55
56static inline void device_links_write_unlock(void)
57{
58 mutex_unlock(&device_links_lock);
59}
60
61int device_links_read_lock(void)
62{
63 return srcu_read_lock(&device_links_srcu);
64}
65
66void device_links_read_unlock(int idx)
67{
68 srcu_read_unlock(&device_links_srcu, idx);
69}
70#else /* !CONFIG_SRCU */
71static DECLARE_RWSEM(device_links_lock);
72
73static inline void device_links_write_lock(void)
74{
75 down_write(&device_links_lock);
76}
77
78static inline void device_links_write_unlock(void)
79{
80 up_write(&device_links_lock);
81}
82
83int device_links_read_lock(void)
84{
85 down_read(&device_links_lock);
86 return 0;
87}
88
89void device_links_read_unlock(int not_used)
90{
91 up_read(&device_links_lock);
92}
93#endif /* !CONFIG_SRCU */
94
95/**
96 * device_is_dependent - Check if one device depends on another one
97 * @dev: Device to check dependencies for.
98 * @target: Device to check against.
99 *
100 * Check if @target depends on @dev or any device dependent on it (its child or
101 * its consumer etc). Return 1 if that is the case or 0 otherwise.
102 */
103static int device_is_dependent(struct device *dev, void *target)
104{
105 struct device_link *link;
106 int ret;
107
108 if (WARN_ON(dev == target))
109 return 1;
110
111 ret = device_for_each_child(dev, target, device_is_dependent);
112 if (ret)
113 return ret;
114
115 list_for_each_entry(link, &dev->links.consumers, s_node) {
116 if (WARN_ON(link->consumer == target))
117 return 1;
118
119 ret = device_is_dependent(link->consumer, target);
120 if (ret)
121 break;
122 }
123 return ret;
124}
125
126static int device_reorder_to_tail(struct device *dev, void *not_used)
127{
128 struct device_link *link;
129
130 /*
131 * Devices that have not been registered yet will be put to the ends
132 * of the lists during the registration, so skip them here.
133 */
134 if (device_is_registered(dev))
135 devices_kset_move_last(dev);
136
137 if (device_pm_initialized(dev))
138 device_pm_move_last(dev);
139
140 device_for_each_child(dev, NULL, device_reorder_to_tail);
141 list_for_each_entry(link, &dev->links.consumers, s_node)
142 device_reorder_to_tail(link->consumer, NULL);
143
144 return 0;
145}
146
147/**
148 * device_pm_move_to_tail - Move set of devices to the end of device lists
149 * @dev: Device to move
150 *
151 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
152 *
153 * It moves the @dev along with all of its children and all of its consumers
154 * to the ends of the device_kset and dpm_list, recursively.
155 */
156void device_pm_move_to_tail(struct device *dev)
157{
158 int idx;
159
160 idx = device_links_read_lock();
161 device_pm_lock();
162 device_reorder_to_tail(dev, NULL);
163 device_pm_unlock();
164 device_links_read_unlock(idx);
165}
166
167/**
168 * device_link_add - Create a link between two devices.
169 * @consumer: Consumer end of the link.
170 * @supplier: Supplier end of the link.
171 * @flags: Link flags.
172 *
173 * The caller is responsible for the proper synchronization of the link creation
174 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
175 * runtime PM framework to take the link into account. Second, if the
176 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
177 * be forced into the active metastate and reference-counted upon the creation
178 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
179 * ignored.
180 *
181 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
182 * when the consumer device driver unbinds from it. The combination of both
183 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
184 * to be returned.
185 *
186 * A side effect of the link creation is re-ordering of dpm_list and the
187 * devices_kset list by moving the consumer device and all devices depending
188 * on it to the ends of these lists (that does not happen to devices that have
189 * not been registered when this function is called).
190 *
191 * The supplier device is required to be registered when this function is called
192 * and NULL will be returned if that is not the case. The consumer device need
193 * not be registered, however.
194 */
195struct device_link *device_link_add(struct device *consumer,
196 struct device *supplier, u32 flags)
197{
198 struct device_link *link;
199
200 if (!consumer || !supplier ||
201 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
202 return NULL;
203
204 device_links_write_lock();
205 device_pm_lock();
206
207 /*
208 * If the supplier has not been fully registered yet or there is a
209 * reverse dependency between the consumer and the supplier already in
210 * the graph, return NULL.
211 */
212 if (!device_pm_initialized(supplier)
213 || device_is_dependent(consumer, supplier)) {
214 link = NULL;
215 goto out;
216 }
217
218 list_for_each_entry(link, &supplier->links.consumers, s_node)
219 if (link->consumer == consumer) {
220 kref_get(&link->kref);
221 goto out;
222 }
223
224 link = kzalloc(sizeof(*link), GFP_KERNEL);
225 if (!link)
226 goto out;
227
228 if (flags & DL_FLAG_PM_RUNTIME) {
229 if (flags & DL_FLAG_RPM_ACTIVE) {
230 if (pm_runtime_get_sync(supplier) < 0) {
231 pm_runtime_put_noidle(supplier);
232 kfree(link);
233 link = NULL;
234 goto out;
235 }
236 link->rpm_active = true;
237 }
238 pm_runtime_new_link(consumer);
239 /*
240 * If the link is being added by the consumer driver at probe
241 * time, balance the decrementation of the supplier's runtime PM
242 * usage counter after consumer probe in driver_probe_device().
243 */
244 if (consumer->links.status == DL_DEV_PROBING)
245 pm_runtime_get_noresume(supplier);
246 }
247 get_device(supplier);
248 link->supplier = supplier;
249 INIT_LIST_HEAD(&link->s_node);
250 get_device(consumer);
251 link->consumer = consumer;
252 INIT_LIST_HEAD(&link->c_node);
253 link->flags = flags;
254 kref_init(&link->kref);
255
256 /* Determine the initial link state. */
257 if (flags & DL_FLAG_STATELESS) {
258 link->status = DL_STATE_NONE;
259 } else {
260 switch (supplier->links.status) {
261 case DL_DEV_DRIVER_BOUND:
262 switch (consumer->links.status) {
263 case DL_DEV_PROBING:
264 /*
265 * Some callers expect the link creation during
266 * consumer driver probe to resume the supplier
267 * even without DL_FLAG_RPM_ACTIVE.
268 */
269 if (flags & DL_FLAG_PM_RUNTIME)
270 pm_runtime_resume(supplier);
271
272 link->status = DL_STATE_CONSUMER_PROBE;
273 break;
274 case DL_DEV_DRIVER_BOUND:
275 link->status = DL_STATE_ACTIVE;
276 break;
277 default:
278 link->status = DL_STATE_AVAILABLE;
279 break;
280 }
281 break;
282 case DL_DEV_UNBINDING:
283 link->status = DL_STATE_SUPPLIER_UNBIND;
284 break;
285 default:
286 link->status = DL_STATE_DORMANT;
287 break;
288 }
289 }
290
291 /*
292 * Move the consumer and all of the devices depending on it to the end
293 * of dpm_list and the devices_kset list.
294 *
295 * It is necessary to hold dpm_list locked throughout all that or else
296 * we may end up suspending with a wrong ordering of it.
297 */
298 device_reorder_to_tail(consumer, NULL);
299
300 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
301 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
302
303 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
304
305 out:
306 device_pm_unlock();
307 device_links_write_unlock();
308 return link;
309}
310EXPORT_SYMBOL_GPL(device_link_add);
311
312static void device_link_free(struct device_link *link)
313{
314 put_device(link->consumer);
315 put_device(link->supplier);
316 kfree(link);
317}
318
319#ifdef CONFIG_SRCU
320static void __device_link_free_srcu(struct rcu_head *rhead)
321{
322 device_link_free(container_of(rhead, struct device_link, rcu_head));
323}
324
325static void __device_link_del(struct kref *kref)
326{
327 struct device_link *link = container_of(kref, struct device_link, kref);
328
329 dev_info(link->consumer, "Dropping the link to %s\n",
330 dev_name(link->supplier));
331
332 if (link->flags & DL_FLAG_PM_RUNTIME)
333 pm_runtime_drop_link(link->consumer);
334
335 list_del_rcu(&link->s_node);
336 list_del_rcu(&link->c_node);
337 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
338}
339#else /* !CONFIG_SRCU */
340static void __device_link_del(struct kref *kref)
341{
342 struct device_link *link = container_of(kref, struct device_link, kref);
343
344 dev_info(link->consumer, "Dropping the link to %s\n",
345 dev_name(link->supplier));
346
347 if (link->flags & DL_FLAG_PM_RUNTIME)
348 pm_runtime_drop_link(link->consumer);
349
350 list_del(&link->s_node);
351 list_del(&link->c_node);
352 device_link_free(link);
353}
354#endif /* !CONFIG_SRCU */
355
356/**
357 * device_link_del - Delete a link between two devices.
358 * @link: Device link to delete.
359 *
360 * The caller must ensure proper synchronization of this function with runtime
361 * PM. If the link was added multiple times, it needs to be deleted as often.
362 * Care is required for hotplugged devices: Their links are purged on removal
363 * and calling device_link_del() is then no longer allowed.
364 */
365void device_link_del(struct device_link *link)
366{
367 device_links_write_lock();
368 device_pm_lock();
369 kref_put(&link->kref, __device_link_del);
370 device_pm_unlock();
371 device_links_write_unlock();
372}
373EXPORT_SYMBOL_GPL(device_link_del);
374
375static void device_links_missing_supplier(struct device *dev)
376{
377 struct device_link *link;
378
379 list_for_each_entry(link, &dev->links.suppliers, c_node)
380 if (link->status == DL_STATE_CONSUMER_PROBE)
381 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
382}
383
384/**
385 * device_links_check_suppliers - Check presence of supplier drivers.
386 * @dev: Consumer device.
387 *
388 * Check links from this device to any suppliers. Walk the list of the device's
389 * links to suppliers and see if all of them are available. If not, simply
390 * return -EPROBE_DEFER.
391 *
392 * We need to guarantee that the supplier will not go away after the check has
393 * been positive here. It only can go away in __device_release_driver() and
394 * that function checks the device's links to consumers. This means we need to
395 * mark the link as "consumer probe in progress" to make the supplier removal
396 * wait for us to complete (or bad things may happen).
397 *
398 * Links with the DL_FLAG_STATELESS flag set are ignored.
399 */
400int device_links_check_suppliers(struct device *dev)
401{
402 struct device_link *link;
403 int ret = 0;
404
405 device_links_write_lock();
406
407 list_for_each_entry(link, &dev->links.suppliers, c_node) {
408 if (link->flags & DL_FLAG_STATELESS)
409 continue;
410
411 if (link->status != DL_STATE_AVAILABLE) {
412 device_links_missing_supplier(dev);
413 ret = -EPROBE_DEFER;
414 break;
415 }
416 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
417 }
418 dev->links.status = DL_DEV_PROBING;
419
420 device_links_write_unlock();
421 return ret;
422}
423
424/**
425 * device_links_driver_bound - Update device links after probing its driver.
426 * @dev: Device to update the links for.
427 *
428 * The probe has been successful, so update links from this device to any
429 * consumers by changing their status to "available".
430 *
431 * Also change the status of @dev's links to suppliers to "active".
432 *
433 * Links with the DL_FLAG_STATELESS flag set are ignored.
434 */
435void device_links_driver_bound(struct device *dev)
436{
437 struct device_link *link;
438
439 device_links_write_lock();
440
441 list_for_each_entry(link, &dev->links.consumers, s_node) {
442 if (link->flags & DL_FLAG_STATELESS)
443 continue;
444
445 WARN_ON(link->status != DL_STATE_DORMANT);
446 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
447 }
448
449 list_for_each_entry(link, &dev->links.suppliers, c_node) {
450 if (link->flags & DL_FLAG_STATELESS)
451 continue;
452
453 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
454 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
455 }
456
457 dev->links.status = DL_DEV_DRIVER_BOUND;
458
459 device_links_write_unlock();
460}
461
462/**
463 * __device_links_no_driver - Update links of a device without a driver.
464 * @dev: Device without a drvier.
465 *
466 * Delete all non-persistent links from this device to any suppliers.
467 *
468 * Persistent links stay around, but their status is changed to "available",
469 * unless they already are in the "supplier unbind in progress" state in which
470 * case they need not be updated.
471 *
472 * Links with the DL_FLAG_STATELESS flag set are ignored.
473 */
474static void __device_links_no_driver(struct device *dev)
475{
476 struct device_link *link, *ln;
477
478 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
479 if (link->flags & DL_FLAG_STATELESS)
480 continue;
481
482 if (link->flags & DL_FLAG_AUTOREMOVE)
483 kref_put(&link->kref, __device_link_del);
484 else if (link->status != DL_STATE_SUPPLIER_UNBIND)
485 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
486 }
487
488 dev->links.status = DL_DEV_NO_DRIVER;
489}
490
491void device_links_no_driver(struct device *dev)
492{
493 device_links_write_lock();
494 __device_links_no_driver(dev);
495 device_links_write_unlock();
496}
497
498/**
499 * device_links_driver_cleanup - Update links after driver removal.
500 * @dev: Device whose driver has just gone away.
501 *
502 * Update links to consumers for @dev by changing their status to "dormant" and
503 * invoke %__device_links_no_driver() to update links to suppliers for it as
504 * appropriate.
505 *
506 * Links with the DL_FLAG_STATELESS flag set are ignored.
507 */
508void device_links_driver_cleanup(struct device *dev)
509{
510 struct device_link *link;
511
512 device_links_write_lock();
513
514 list_for_each_entry(link, &dev->links.consumers, s_node) {
515 if (link->flags & DL_FLAG_STATELESS)
516 continue;
517
518 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
519 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
520 WRITE_ONCE(link->status, DL_STATE_DORMANT);
521 }
522
523 __device_links_no_driver(dev);
524
525 device_links_write_unlock();
526}
527
528/**
529 * device_links_busy - Check if there are any busy links to consumers.
530 * @dev: Device to check.
531 *
532 * Check each consumer of the device and return 'true' if its link's status
533 * is one of "consumer probe" or "active" (meaning that the given consumer is
534 * probing right now or its driver is present). Otherwise, change the link
535 * state to "supplier unbind" to prevent the consumer from being probed
536 * successfully going forward.
537 *
538 * Return 'false' if there are no probing or active consumers.
539 *
540 * Links with the DL_FLAG_STATELESS flag set are ignored.
541 */
542bool device_links_busy(struct device *dev)
543{
544 struct device_link *link;
545 bool ret = false;
546
547 device_links_write_lock();
548
549 list_for_each_entry(link, &dev->links.consumers, s_node) {
550 if (link->flags & DL_FLAG_STATELESS)
551 continue;
552
553 if (link->status == DL_STATE_CONSUMER_PROBE
554 || link->status == DL_STATE_ACTIVE) {
555 ret = true;
556 break;
557 }
558 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
559 }
560
561 dev->links.status = DL_DEV_UNBINDING;
562
563 device_links_write_unlock();
564 return ret;
565}
566
567/**
568 * device_links_unbind_consumers - Force unbind consumers of the given device.
569 * @dev: Device to unbind the consumers of.
570 *
571 * Walk the list of links to consumers for @dev and if any of them is in the
572 * "consumer probe" state, wait for all device probes in progress to complete
573 * and start over.
574 *
575 * If that's not the case, change the status of the link to "supplier unbind"
576 * and check if the link was in the "active" state. If so, force the consumer
577 * driver to unbind and start over (the consumer will not re-probe as we have
578 * changed the state of the link already).
579 *
580 * Links with the DL_FLAG_STATELESS flag set are ignored.
581 */
582void device_links_unbind_consumers(struct device *dev)
583{
584 struct device_link *link;
585
586 start:
587 device_links_write_lock();
588
589 list_for_each_entry(link, &dev->links.consumers, s_node) {
590 enum device_link_state status;
591
592 if (link->flags & DL_FLAG_STATELESS)
593 continue;
594
595 status = link->status;
596 if (status == DL_STATE_CONSUMER_PROBE) {
597 device_links_write_unlock();
598
599 wait_for_device_probe();
600 goto start;
601 }
602 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
603 if (status == DL_STATE_ACTIVE) {
604 struct device *consumer = link->consumer;
605
606 get_device(consumer);
607
608 device_links_write_unlock();
609
610 device_release_driver_internal(consumer, NULL,
611 consumer->parent);
612 put_device(consumer);
613 goto start;
614 }
615 }
616
617 device_links_write_unlock();
618}
619
620/**
621 * device_links_purge - Delete existing links to other devices.
622 * @dev: Target device.
623 */
624static void device_links_purge(struct device *dev)
625{
626 struct device_link *link, *ln;
627
628 /*
629 * Delete all of the remaining links from this device to any other
630 * devices (either consumers or suppliers).
631 */
632 device_links_write_lock();
633
634 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
635 WARN_ON(link->status == DL_STATE_ACTIVE);
636 __device_link_del(&link->kref);
637 }
638
639 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
640 WARN_ON(link->status != DL_STATE_DORMANT &&
641 link->status != DL_STATE_NONE);
642 __device_link_del(&link->kref);
643 }
644
645 device_links_write_unlock();
646}
647
648/* Device links support end. */
649
650int (*platform_notify)(struct device *dev) = NULL;
651int (*platform_notify_remove)(struct device *dev) = NULL;
652static struct kobject *dev_kobj;
653struct kobject *sysfs_dev_char_kobj;
654struct kobject *sysfs_dev_block_kobj;
655
656static DEFINE_MUTEX(device_hotplug_lock);
657
658void lock_device_hotplug(void)
659{
660 mutex_lock(&device_hotplug_lock);
661}
662
663void unlock_device_hotplug(void)
664{
665 mutex_unlock(&device_hotplug_lock);
666}
667
668int lock_device_hotplug_sysfs(void)
669{
670 if (mutex_trylock(&device_hotplug_lock))
671 return 0;
672
673 /* Avoid busy looping (5 ms of sleep should do). */
674 msleep(5);
675 return restart_syscall();
676}
677
678#ifdef CONFIG_BLOCK
679static inline int device_is_not_partition(struct device *dev)
680{
681 return !(dev->type == &part_type);
682}
683#else
684static inline int device_is_not_partition(struct device *dev)
685{
686 return 1;
687}
688#endif
689
690/**
691 * dev_driver_string - Return a device's driver name, if at all possible
692 * @dev: struct device to get the name of
693 *
694 * Will return the device's driver's name if it is bound to a device. If
695 * the device is not bound to a driver, it will return the name of the bus
696 * it is attached to. If it is not attached to a bus either, an empty
697 * string will be returned.
698 */
699const char *dev_driver_string(const struct device *dev)
700{
701 struct device_driver *drv;
702
703 /* dev->driver can change to NULL underneath us because of unbinding,
704 * so be careful about accessing it. dev->bus and dev->class should
705 * never change once they are set, so they don't need special care.
706 */
707 drv = READ_ONCE(dev->driver);
708 return drv ? drv->name :
709 (dev->bus ? dev->bus->name :
710 (dev->class ? dev->class->name : ""));
711}
712EXPORT_SYMBOL(dev_driver_string);
713
714#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
715
716static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
717 char *buf)
718{
719 struct device_attribute *dev_attr = to_dev_attr(attr);
720 struct device *dev = kobj_to_dev(kobj);
721 ssize_t ret = -EIO;
722
723 if (dev_attr->show)
724 ret = dev_attr->show(dev, dev_attr, buf);
725 if (ret >= (ssize_t)PAGE_SIZE) {
726 printk("dev_attr_show: %pS returned bad count\n",
727 dev_attr->show);
728 }
729 return ret;
730}
731
732static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
733 const char *buf, size_t count)
734{
735 struct device_attribute *dev_attr = to_dev_attr(attr);
736 struct device *dev = kobj_to_dev(kobj);
737 ssize_t ret = -EIO;
738
739 if (dev_attr->store)
740 ret = dev_attr->store(dev, dev_attr, buf, count);
741 return ret;
742}
743
744static const struct sysfs_ops dev_sysfs_ops = {
745 .show = dev_attr_show,
746 .store = dev_attr_store,
747};
748
749#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
750
751ssize_t device_store_ulong(struct device *dev,
752 struct device_attribute *attr,
753 const char *buf, size_t size)
754{
755 struct dev_ext_attribute *ea = to_ext_attr(attr);
756 char *end;
757 unsigned long new = simple_strtoul(buf, &end, 0);
758 if (end == buf)
759 return -EINVAL;
760 *(unsigned long *)(ea->var) = new;
761 /* Always return full write size even if we didn't consume all */
762 return size;
763}
764EXPORT_SYMBOL_GPL(device_store_ulong);
765
766ssize_t device_show_ulong(struct device *dev,
767 struct device_attribute *attr,
768 char *buf)
769{
770 struct dev_ext_attribute *ea = to_ext_attr(attr);
771 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
772}
773EXPORT_SYMBOL_GPL(device_show_ulong);
774
775ssize_t device_store_int(struct device *dev,
776 struct device_attribute *attr,
777 const char *buf, size_t size)
778{
779 struct dev_ext_attribute *ea = to_ext_attr(attr);
780 char *end;
781 long new = simple_strtol(buf, &end, 0);
782 if (end == buf || new > INT_MAX || new < INT_MIN)
783 return -EINVAL;
784 *(int *)(ea->var) = new;
785 /* Always return full write size even if we didn't consume all */
786 return size;
787}
788EXPORT_SYMBOL_GPL(device_store_int);
789
790ssize_t device_show_int(struct device *dev,
791 struct device_attribute *attr,
792 char *buf)
793{
794 struct dev_ext_attribute *ea = to_ext_attr(attr);
795
796 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
797}
798EXPORT_SYMBOL_GPL(device_show_int);
799
800ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
801 const char *buf, size_t size)
802{
803 struct dev_ext_attribute *ea = to_ext_attr(attr);
804
805 if (strtobool(buf, ea->var) < 0)
806 return -EINVAL;
807
808 return size;
809}
810EXPORT_SYMBOL_GPL(device_store_bool);
811
812ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
813 char *buf)
814{
815 struct dev_ext_attribute *ea = to_ext_attr(attr);
816
817 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
818}
819EXPORT_SYMBOL_GPL(device_show_bool);
820
821/**
822 * device_release - free device structure.
823 * @kobj: device's kobject.
824 *
825 * This is called once the reference count for the object
826 * reaches 0. We forward the call to the device's release
827 * method, which should handle actually freeing the structure.
828 */
829static void device_release(struct kobject *kobj)
830{
831 struct device *dev = kobj_to_dev(kobj);
832 struct device_private *p = dev->p;
833
834 /*
835 * Some platform devices are driven without driver attached
836 * and managed resources may have been acquired. Make sure
837 * all resources are released.
838 *
839 * Drivers still can add resources into device after device
840 * is deleted but alive, so release devres here to avoid
841 * possible memory leak.
842 */
843 devres_release_all(dev);
844
845 if (dev->release)
846 dev->release(dev);
847 else if (dev->type && dev->type->release)
848 dev->type->release(dev);
849 else if (dev->class && dev->class->dev_release)
850 dev->class->dev_release(dev);
851 else
852 WARN(1, KERN_ERR "Device '%s' does not have a release() "
853 "function, it is broken and must be fixed.\n",
854 dev_name(dev));
855 kfree(p);
856}
857
858static const void *device_namespace(struct kobject *kobj)
859{
860 struct device *dev = kobj_to_dev(kobj);
861 const void *ns = NULL;
862
863 if (dev->class && dev->class->ns_type)
864 ns = dev->class->namespace(dev);
865
866 return ns;
867}
868
869static struct kobj_type device_ktype = {
870 .release = device_release,
871 .sysfs_ops = &dev_sysfs_ops,
872 .namespace = device_namespace,
873};
874
875
876static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
877{
878 struct kobj_type *ktype = get_ktype(kobj);
879
880 if (ktype == &device_ktype) {
881 struct device *dev = kobj_to_dev(kobj);
882 if (dev->bus)
883 return 1;
884 if (dev->class)
885 return 1;
886 }
887 return 0;
888}
889
890static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
891{
892 struct device *dev = kobj_to_dev(kobj);
893
894 if (dev->bus)
895 return dev->bus->name;
896 if (dev->class)
897 return dev->class->name;
898 return NULL;
899}
900
901static int dev_uevent(struct kset *kset, struct kobject *kobj,
902 struct kobj_uevent_env *env)
903{
904 struct device *dev = kobj_to_dev(kobj);
905 int retval = 0;
906
907 /* add device node properties if present */
908 if (MAJOR(dev->devt)) {
909 const char *tmp;
910 const char *name;
911 umode_t mode = 0;
912 kuid_t uid = GLOBAL_ROOT_UID;
913 kgid_t gid = GLOBAL_ROOT_GID;
914
915 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
916 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
917 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
918 if (name) {
919 add_uevent_var(env, "DEVNAME=%s", name);
920 if (mode)
921 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
922 if (!uid_eq(uid, GLOBAL_ROOT_UID))
923 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
924 if (!gid_eq(gid, GLOBAL_ROOT_GID))
925 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
926 kfree(tmp);
927 }
928 }
929
930 if (dev->type && dev->type->name)
931 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
932
933 if (dev->driver)
934 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
935
936 /* Add common DT information about the device */
937 of_device_uevent(dev, env);
938
939 /* have the bus specific function add its stuff */
940 if (dev->bus && dev->bus->uevent) {
941 retval = dev->bus->uevent(dev, env);
942 if (retval)
943 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
944 dev_name(dev), __func__, retval);
945 }
946
947 /* have the class specific function add its stuff */
948 if (dev->class && dev->class->dev_uevent) {
949 retval = dev->class->dev_uevent(dev, env);
950 if (retval)
951 pr_debug("device: '%s': %s: class uevent() "
952 "returned %d\n", dev_name(dev),
953 __func__, retval);
954 }
955
956 /* have the device type specific function add its stuff */
957 if (dev->type && dev->type->uevent) {
958 retval = dev->type->uevent(dev, env);
959 if (retval)
960 pr_debug("device: '%s': %s: dev_type uevent() "
961 "returned %d\n", dev_name(dev),
962 __func__, retval);
963 }
964
965 return retval;
966}
967
968static const struct kset_uevent_ops device_uevent_ops = {
969 .filter = dev_uevent_filter,
970 .name = dev_uevent_name,
971 .uevent = dev_uevent,
972};
973
974static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
975 char *buf)
976{
977 struct kobject *top_kobj;
978 struct kset *kset;
979 struct kobj_uevent_env *env = NULL;
980 int i;
981 size_t count = 0;
982 int retval;
983
984 /* search the kset, the device belongs to */
985 top_kobj = &dev->kobj;
986 while (!top_kobj->kset && top_kobj->parent)
987 top_kobj = top_kobj->parent;
988 if (!top_kobj->kset)
989 goto out;
990
991 kset = top_kobj->kset;
992 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
993 goto out;
994
995 /* respect filter */
996 if (kset->uevent_ops && kset->uevent_ops->filter)
997 if (!kset->uevent_ops->filter(kset, &dev->kobj))
998 goto out;
999
1000 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1001 if (!env)
1002 return -ENOMEM;
1003
1004 /* let the kset specific function add its keys */
1005 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1006 if (retval)
1007 goto out;
1008
1009 /* copy keys to file */
1010 for (i = 0; i < env->envp_idx; i++)
1011 count += sprintf(&buf[count], "%s\n", env->envp[i]);
1012out:
1013 kfree(env);
1014 return count;
1015}
1016
1017static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1018 const char *buf, size_t count)
1019{
1020 if (kobject_synth_uevent(&dev->kobj, buf, count))
1021 dev_err(dev, "uevent: failed to send synthetic uevent\n");
1022
1023 return count;
1024}
1025static DEVICE_ATTR_RW(uevent);
1026
1027static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1028 char *buf)
1029{
1030 bool val;
1031
1032 device_lock(dev);
1033 val = !dev->offline;
1034 device_unlock(dev);
1035 return sprintf(buf, "%u\n", val);
1036}
1037
1038static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1039 const char *buf, size_t count)
1040{
1041 bool val;
1042 int ret;
1043
1044 ret = strtobool(buf, &val);
1045 if (ret < 0)
1046 return ret;
1047
1048 ret = lock_device_hotplug_sysfs();
1049 if (ret)
1050 return ret;
1051
1052 ret = val ? device_online(dev) : device_offline(dev);
1053 unlock_device_hotplug();
1054 return ret < 0 ? ret : count;
1055}
1056static DEVICE_ATTR_RW(online);
1057
1058int device_add_groups(struct device *dev, const struct attribute_group **groups)
1059{
1060 return sysfs_create_groups(&dev->kobj, groups);
1061}
1062EXPORT_SYMBOL_GPL(device_add_groups);
1063
1064void device_remove_groups(struct device *dev,
1065 const struct attribute_group **groups)
1066{
1067 sysfs_remove_groups(&dev->kobj, groups);
1068}
1069EXPORT_SYMBOL_GPL(device_remove_groups);
1070
1071union device_attr_group_devres {
1072 const struct attribute_group *group;
1073 const struct attribute_group **groups;
1074};
1075
1076static int devm_attr_group_match(struct device *dev, void *res, void *data)
1077{
1078 return ((union device_attr_group_devres *)res)->group == data;
1079}
1080
1081static void devm_attr_group_remove(struct device *dev, void *res)
1082{
1083 union device_attr_group_devres *devres = res;
1084 const struct attribute_group *group = devres->group;
1085
1086 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1087 sysfs_remove_group(&dev->kobj, group);
1088}
1089
1090static void devm_attr_groups_remove(struct device *dev, void *res)
1091{
1092 union device_attr_group_devres *devres = res;
1093 const struct attribute_group **groups = devres->groups;
1094
1095 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1096 sysfs_remove_groups(&dev->kobj, groups);
1097}
1098
1099/**
1100 * devm_device_add_group - given a device, create a managed attribute group
1101 * @dev: The device to create the group for
1102 * @grp: The attribute group to create
1103 *
1104 * This function creates a group for the first time. It will explicitly
1105 * warn and error if any of the attribute files being created already exist.
1106 *
1107 * Returns 0 on success or error code on failure.
1108 */
1109int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1110{
1111 union device_attr_group_devres *devres;
1112 int error;
1113
1114 devres = devres_alloc(devm_attr_group_remove,
1115 sizeof(*devres), GFP_KERNEL);
1116 if (!devres)
1117 return -ENOMEM;
1118
1119 error = sysfs_create_group(&dev->kobj, grp);
1120 if (error) {
1121 devres_free(devres);
1122 return error;
1123 }
1124
1125 devres->group = grp;
1126 devres_add(dev, devres);
1127 return 0;
1128}
1129EXPORT_SYMBOL_GPL(devm_device_add_group);
1130
1131/**
1132 * devm_device_remove_group: remove a managed group from a device
1133 * @dev: device to remove the group from
1134 * @grp: group to remove
1135 *
1136 * This function removes a group of attributes from a device. The attributes
1137 * previously have to have been created for this group, otherwise it will fail.
1138 */
1139void devm_device_remove_group(struct device *dev,
1140 const struct attribute_group *grp)
1141{
1142 WARN_ON(devres_release(dev, devm_attr_group_remove,
1143 devm_attr_group_match,
1144 /* cast away const */ (void *)grp));
1145}
1146EXPORT_SYMBOL_GPL(devm_device_remove_group);
1147
1148/**
1149 * devm_device_add_groups - create a bunch of managed attribute groups
1150 * @dev: The device to create the group for
1151 * @groups: The attribute groups to create, NULL terminated
1152 *
1153 * This function creates a bunch of managed attribute groups. If an error
1154 * occurs when creating a group, all previously created groups will be
1155 * removed, unwinding everything back to the original state when this
1156 * function was called. It will explicitly warn and error if any of the
1157 * attribute files being created already exist.
1158 *
1159 * Returns 0 on success or error code from sysfs_create_group on failure.
1160 */
1161int devm_device_add_groups(struct device *dev,
1162 const struct attribute_group **groups)
1163{
1164 union device_attr_group_devres *devres;
1165 int error;
1166
1167 devres = devres_alloc(devm_attr_groups_remove,
1168 sizeof(*devres), GFP_KERNEL);
1169 if (!devres)
1170 return -ENOMEM;
1171
1172 error = sysfs_create_groups(&dev->kobj, groups);
1173 if (error) {
1174 devres_free(devres);
1175 return error;
1176 }
1177
1178 devres->groups = groups;
1179 devres_add(dev, devres);
1180 return 0;
1181}
1182EXPORT_SYMBOL_GPL(devm_device_add_groups);
1183
1184/**
1185 * devm_device_remove_groups - remove a list of managed groups
1186 *
1187 * @dev: The device for the groups to be removed from
1188 * @groups: NULL terminated list of groups to be removed
1189 *
1190 * If groups is not NULL, remove the specified groups from the device.
1191 */
1192void devm_device_remove_groups(struct device *dev,
1193 const struct attribute_group **groups)
1194{
1195 WARN_ON(devres_release(dev, devm_attr_groups_remove,
1196 devm_attr_group_match,
1197 /* cast away const */ (void *)groups));
1198}
1199EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1200
1201static int device_add_attrs(struct device *dev)
1202{
1203 struct class *class = dev->class;
1204 const struct device_type *type = dev->type;
1205 int error;
1206
1207 if (class) {
1208 error = device_add_groups(dev, class->dev_groups);
1209 if (error)
1210 return error;
1211 }
1212
1213 if (type) {
1214 error = device_add_groups(dev, type->groups);
1215 if (error)
1216 goto err_remove_class_groups;
1217 }
1218
1219 error = device_add_groups(dev, dev->groups);
1220 if (error)
1221 goto err_remove_type_groups;
1222
1223 if (device_supports_offline(dev) && !dev->offline_disabled) {
1224 error = device_create_file(dev, &dev_attr_online);
1225 if (error)
1226 goto err_remove_dev_groups;
1227 }
1228
1229 return 0;
1230
1231 err_remove_dev_groups:
1232 device_remove_groups(dev, dev->groups);
1233 err_remove_type_groups:
1234 if (type)
1235 device_remove_groups(dev, type->groups);
1236 err_remove_class_groups:
1237 if (class)
1238 device_remove_groups(dev, class->dev_groups);
1239
1240 return error;
1241}
1242
1243static void device_remove_attrs(struct device *dev)
1244{
1245 struct class *class = dev->class;
1246 const struct device_type *type = dev->type;
1247
1248 device_remove_file(dev, &dev_attr_online);
1249 device_remove_groups(dev, dev->groups);
1250
1251 if (type)
1252 device_remove_groups(dev, type->groups);
1253
1254 if (class)
1255 device_remove_groups(dev, class->dev_groups);
1256}
1257
1258static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1259 char *buf)
1260{
1261 return print_dev_t(buf, dev->devt);
1262}
1263static DEVICE_ATTR_RO(dev);
1264
1265/* /sys/devices/ */
1266struct kset *devices_kset;
1267
1268/**
1269 * devices_kset_move_before - Move device in the devices_kset's list.
1270 * @deva: Device to move.
1271 * @devb: Device @deva should come before.
1272 */
1273static void devices_kset_move_before(struct device *deva, struct device *devb)
1274{
1275 if (!devices_kset)
1276 return;
1277 pr_debug("devices_kset: Moving %s before %s\n",
1278 dev_name(deva), dev_name(devb));
1279 spin_lock(&devices_kset->list_lock);
1280 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1281 spin_unlock(&devices_kset->list_lock);
1282}
1283
1284/**
1285 * devices_kset_move_after - Move device in the devices_kset's list.
1286 * @deva: Device to move
1287 * @devb: Device @deva should come after.
1288 */
1289static void devices_kset_move_after(struct device *deva, struct device *devb)
1290{
1291 if (!devices_kset)
1292 return;
1293 pr_debug("devices_kset: Moving %s after %s\n",
1294 dev_name(deva), dev_name(devb));
1295 spin_lock(&devices_kset->list_lock);
1296 list_move(&deva->kobj.entry, &devb->kobj.entry);
1297 spin_unlock(&devices_kset->list_lock);
1298}
1299
1300/**
1301 * devices_kset_move_last - move the device to the end of devices_kset's list.
1302 * @dev: device to move
1303 */
1304void devices_kset_move_last(struct device *dev)
1305{
1306 if (!devices_kset)
1307 return;
1308 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1309 spin_lock(&devices_kset->list_lock);
1310 list_move_tail(&dev->kobj.entry, &devices_kset->list);
1311 spin_unlock(&devices_kset->list_lock);
1312}
1313
1314/**
1315 * device_create_file - create sysfs attribute file for device.
1316 * @dev: device.
1317 * @attr: device attribute descriptor.
1318 */
1319int device_create_file(struct device *dev,
1320 const struct device_attribute *attr)
1321{
1322 int error = 0;
1323
1324 if (dev) {
1325 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1326 "Attribute %s: write permission without 'store'\n",
1327 attr->attr.name);
1328 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1329 "Attribute %s: read permission without 'show'\n",
1330 attr->attr.name);
1331 error = sysfs_create_file(&dev->kobj, &attr->attr);
1332 }
1333
1334 return error;
1335}
1336EXPORT_SYMBOL_GPL(device_create_file);
1337
1338/**
1339 * device_remove_file - remove sysfs attribute file.
1340 * @dev: device.
1341 * @attr: device attribute descriptor.
1342 */
1343void device_remove_file(struct device *dev,
1344 const struct device_attribute *attr)
1345{
1346 if (dev)
1347 sysfs_remove_file(&dev->kobj, &attr->attr);
1348}
1349EXPORT_SYMBOL_GPL(device_remove_file);
1350
1351/**
1352 * device_remove_file_self - remove sysfs attribute file from its own method.
1353 * @dev: device.
1354 * @attr: device attribute descriptor.
1355 *
1356 * See kernfs_remove_self() for details.
1357 */
1358bool device_remove_file_self(struct device *dev,
1359 const struct device_attribute *attr)
1360{
1361 if (dev)
1362 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1363 else
1364 return false;
1365}
1366EXPORT_SYMBOL_GPL(device_remove_file_self);
1367
1368/**
1369 * device_create_bin_file - create sysfs binary attribute file for device.
1370 * @dev: device.
1371 * @attr: device binary attribute descriptor.
1372 */
1373int device_create_bin_file(struct device *dev,
1374 const struct bin_attribute *attr)
1375{
1376 int error = -EINVAL;
1377 if (dev)
1378 error = sysfs_create_bin_file(&dev->kobj, attr);
1379 return error;
1380}
1381EXPORT_SYMBOL_GPL(device_create_bin_file);
1382
1383/**
1384 * device_remove_bin_file - remove sysfs binary attribute file
1385 * @dev: device.
1386 * @attr: device binary attribute descriptor.
1387 */
1388void device_remove_bin_file(struct device *dev,
1389 const struct bin_attribute *attr)
1390{
1391 if (dev)
1392 sysfs_remove_bin_file(&dev->kobj, attr);
1393}
1394EXPORT_SYMBOL_GPL(device_remove_bin_file);
1395
1396static void klist_children_get(struct klist_node *n)
1397{
1398 struct device_private *p = to_device_private_parent(n);
1399 struct device *dev = p->device;
1400
1401 get_device(dev);
1402}
1403
1404static void klist_children_put(struct klist_node *n)
1405{
1406 struct device_private *p = to_device_private_parent(n);
1407 struct device *dev = p->device;
1408
1409 put_device(dev);
1410}
1411
1412/**
1413 * device_initialize - init device structure.
1414 * @dev: device.
1415 *
1416 * This prepares the device for use by other layers by initializing
1417 * its fields.
1418 * It is the first half of device_register(), if called by
1419 * that function, though it can also be called separately, so one
1420 * may use @dev's fields. In particular, get_device()/put_device()
1421 * may be used for reference counting of @dev after calling this
1422 * function.
1423 *
1424 * All fields in @dev must be initialized by the caller to 0, except
1425 * for those explicitly set to some other value. The simplest
1426 * approach is to use kzalloc() to allocate the structure containing
1427 * @dev.
1428 *
1429 * NOTE: Use put_device() to give up your reference instead of freeing
1430 * @dev directly once you have called this function.
1431 */
1432void device_initialize(struct device *dev)
1433{
1434 dev->kobj.kset = devices_kset;
1435 kobject_init(&dev->kobj, &device_ktype);
1436 INIT_LIST_HEAD(&dev->dma_pools);
1437 mutex_init(&dev->mutex);
1438 lockdep_set_novalidate_class(&dev->mutex);
1439 spin_lock_init(&dev->devres_lock);
1440 INIT_LIST_HEAD(&dev->devres_head);
1441 device_pm_init(dev);
1442 set_dev_node(dev, -1);
1443#ifdef CONFIG_GENERIC_MSI_IRQ
1444 INIT_LIST_HEAD(&dev->msi_list);
1445#endif
1446 INIT_LIST_HEAD(&dev->links.consumers);
1447 INIT_LIST_HEAD(&dev->links.suppliers);
1448 dev->links.status = DL_DEV_NO_DRIVER;
1449}
1450EXPORT_SYMBOL_GPL(device_initialize);
1451
1452struct kobject *virtual_device_parent(struct device *dev)
1453{
1454 static struct kobject *virtual_dir = NULL;
1455
1456 if (!virtual_dir)
1457 virtual_dir = kobject_create_and_add("virtual",
1458 &devices_kset->kobj);
1459
1460 return virtual_dir;
1461}
1462
1463struct class_dir {
1464 struct kobject kobj;
1465 struct class *class;
1466};
1467
1468#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1469
1470static void class_dir_release(struct kobject *kobj)
1471{
1472 struct class_dir *dir = to_class_dir(kobj);
1473 kfree(dir);
1474}
1475
1476static const
1477struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1478{
1479 struct class_dir *dir = to_class_dir(kobj);
1480 return dir->class->ns_type;
1481}
1482
1483static struct kobj_type class_dir_ktype = {
1484 .release = class_dir_release,
1485 .sysfs_ops = &kobj_sysfs_ops,
1486 .child_ns_type = class_dir_child_ns_type
1487};
1488
1489static struct kobject *
1490class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1491{
1492 struct class_dir *dir;
1493 int retval;
1494
1495 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1496 if (!dir)
1497 return ERR_PTR(-ENOMEM);
1498
1499 dir->class = class;
1500 kobject_init(&dir->kobj, &class_dir_ktype);
1501
1502 dir->kobj.kset = &class->p->glue_dirs;
1503
1504 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1505 if (retval < 0) {
1506 kobject_put(&dir->kobj);
1507 return ERR_PTR(retval);
1508 }
1509 return &dir->kobj;
1510}
1511
1512static DEFINE_MUTEX(gdp_mutex);
1513
1514static struct kobject *get_device_parent(struct device *dev,
1515 struct device *parent)
1516{
1517 if (dev->class) {
1518 struct kobject *kobj = NULL;
1519 struct kobject *parent_kobj;
1520 struct kobject *k;
1521
1522#ifdef CONFIG_BLOCK
1523 /* block disks show up in /sys/block */
1524 if (sysfs_deprecated && dev->class == &block_class) {
1525 if (parent && parent->class == &block_class)
1526 return &parent->kobj;
1527 return &block_class.p->subsys.kobj;
1528 }
1529#endif
1530
1531 /*
1532 * If we have no parent, we live in "virtual".
1533 * Class-devices with a non class-device as parent, live
1534 * in a "glue" directory to prevent namespace collisions.
1535 */
1536 if (parent == NULL)
1537 parent_kobj = virtual_device_parent(dev);
1538 else if (parent->class && !dev->class->ns_type)
1539 return &parent->kobj;
1540 else
1541 parent_kobj = &parent->kobj;
1542
1543 mutex_lock(&gdp_mutex);
1544
1545 /* find our class-directory at the parent and reference it */
1546 spin_lock(&dev->class->p->glue_dirs.list_lock);
1547 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1548 if (k->parent == parent_kobj) {
1549 kobj = kobject_get(k);
1550 break;
1551 }
1552 spin_unlock(&dev->class->p->glue_dirs.list_lock);
1553 if (kobj) {
1554 mutex_unlock(&gdp_mutex);
1555 return kobj;
1556 }
1557
1558 /* or create a new class-directory at the parent device */
1559 k = class_dir_create_and_add(dev->class, parent_kobj);
1560 /* do not emit an uevent for this simple "glue" directory */
1561 mutex_unlock(&gdp_mutex);
1562 return k;
1563 }
1564
1565 /* subsystems can specify a default root directory for their devices */
1566 if (!parent && dev->bus && dev->bus->dev_root)
1567 return &dev->bus->dev_root->kobj;
1568
1569 if (parent)
1570 return &parent->kobj;
1571 return NULL;
1572}
1573
1574static inline bool live_in_glue_dir(struct kobject *kobj,
1575 struct device *dev)
1576{
1577 if (!kobj || !dev->class ||
1578 kobj->kset != &dev->class->p->glue_dirs)
1579 return false;
1580 return true;
1581}
1582
1583static inline struct kobject *get_glue_dir(struct device *dev)
1584{
1585 return dev->kobj.parent;
1586}
1587
1588/*
1589 * make sure cleaning up dir as the last step, we need to make
1590 * sure .release handler of kobject is run with holding the
1591 * global lock
1592 */
1593static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1594{
1595 /* see if we live in a "glue" directory */
1596 if (!live_in_glue_dir(glue_dir, dev))
1597 return;
1598
1599 mutex_lock(&gdp_mutex);
1600 kobject_put(glue_dir);
1601 mutex_unlock(&gdp_mutex);
1602}
1603
1604static int device_add_class_symlinks(struct device *dev)
1605{
1606 struct device_node *of_node = dev_of_node(dev);
1607 int error;
1608
1609 if (of_node) {
1610 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1611 if (error)
1612 dev_warn(dev, "Error %d creating of_node link\n",error);
1613 /* An error here doesn't warrant bringing down the device */
1614 }
1615
1616 if (!dev->class)
1617 return 0;
1618
1619 error = sysfs_create_link(&dev->kobj,
1620 &dev->class->p->subsys.kobj,
1621 "subsystem");
1622 if (error)
1623 goto out_devnode;
1624
1625 if (dev->parent && device_is_not_partition(dev)) {
1626 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1627 "device");
1628 if (error)
1629 goto out_subsys;
1630 }
1631
1632#ifdef CONFIG_BLOCK
1633 /* /sys/block has directories and does not need symlinks */
1634 if (sysfs_deprecated && dev->class == &block_class)
1635 return 0;
1636#endif
1637
1638 /* link in the class directory pointing to the device */
1639 error = sysfs_create_link(&dev->class->p->subsys.kobj,
1640 &dev->kobj, dev_name(dev));
1641 if (error)
1642 goto out_device;
1643
1644 return 0;
1645
1646out_device:
1647 sysfs_remove_link(&dev->kobj, "device");
1648
1649out_subsys:
1650 sysfs_remove_link(&dev->kobj, "subsystem");
1651out_devnode:
1652 sysfs_remove_link(&dev->kobj, "of_node");
1653 return error;
1654}
1655
1656static void device_remove_class_symlinks(struct device *dev)
1657{
1658 if (dev_of_node(dev))
1659 sysfs_remove_link(&dev->kobj, "of_node");
1660
1661 if (!dev->class)
1662 return;
1663
1664 if (dev->parent && device_is_not_partition(dev))
1665 sysfs_remove_link(&dev->kobj, "device");
1666 sysfs_remove_link(&dev->kobj, "subsystem");
1667#ifdef CONFIG_BLOCK
1668 if (sysfs_deprecated && dev->class == &block_class)
1669 return;
1670#endif
1671 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1672}
1673
1674/**
1675 * dev_set_name - set a device name
1676 * @dev: device
1677 * @fmt: format string for the device's name
1678 */
1679int dev_set_name(struct device *dev, const char *fmt, ...)
1680{
1681 va_list vargs;
1682 int err;
1683
1684 va_start(vargs, fmt);
1685 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1686 va_end(vargs);
1687 return err;
1688}
1689EXPORT_SYMBOL_GPL(dev_set_name);
1690
1691/**
1692 * device_to_dev_kobj - select a /sys/dev/ directory for the device
1693 * @dev: device
1694 *
1695 * By default we select char/ for new entries. Setting class->dev_obj
1696 * to NULL prevents an entry from being created. class->dev_kobj must
1697 * be set (or cleared) before any devices are registered to the class
1698 * otherwise device_create_sys_dev_entry() and
1699 * device_remove_sys_dev_entry() will disagree about the presence of
1700 * the link.
1701 */
1702static struct kobject *device_to_dev_kobj(struct device *dev)
1703{
1704 struct kobject *kobj;
1705
1706 if (dev->class)
1707 kobj = dev->class->dev_kobj;
1708 else
1709 kobj = sysfs_dev_char_kobj;
1710
1711 return kobj;
1712}
1713
1714static int device_create_sys_dev_entry(struct device *dev)
1715{
1716 struct kobject *kobj = device_to_dev_kobj(dev);
1717 int error = 0;
1718 char devt_str[15];
1719
1720 if (kobj) {
1721 format_dev_t(devt_str, dev->devt);
1722 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1723 }
1724
1725 return error;
1726}
1727
1728static void device_remove_sys_dev_entry(struct device *dev)
1729{
1730 struct kobject *kobj = device_to_dev_kobj(dev);
1731 char devt_str[15];
1732
1733 if (kobj) {
1734 format_dev_t(devt_str, dev->devt);
1735 sysfs_remove_link(kobj, devt_str);
1736 }
1737}
1738
1739int device_private_init(struct device *dev)
1740{
1741 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1742 if (!dev->p)
1743 return -ENOMEM;
1744 dev->p->device = dev;
1745 klist_init(&dev->p->klist_children, klist_children_get,
1746 klist_children_put);
1747 INIT_LIST_HEAD(&dev->p->deferred_probe);
1748 return 0;
1749}
1750
1751/**
1752 * device_add - add device to device hierarchy.
1753 * @dev: device.
1754 *
1755 * This is part 2 of device_register(), though may be called
1756 * separately _iff_ device_initialize() has been called separately.
1757 *
1758 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1759 * to the global and sibling lists for the device, then
1760 * adds it to the other relevant subsystems of the driver model.
1761 *
1762 * Do not call this routine or device_register() more than once for
1763 * any device structure. The driver model core is not designed to work
1764 * with devices that get unregistered and then spring back to life.
1765 * (Among other things, it's very hard to guarantee that all references
1766 * to the previous incarnation of @dev have been dropped.) Allocate
1767 * and register a fresh new struct device instead.
1768 *
1769 * NOTE: _Never_ directly free @dev after calling this function, even
1770 * if it returned an error! Always use put_device() to give up your
1771 * reference instead.
1772 */
1773int device_add(struct device *dev)
1774{
1775 struct device *parent;
1776 struct kobject *kobj;
1777 struct class_interface *class_intf;
1778 int error = -EINVAL;
1779 struct kobject *glue_dir = NULL;
1780
1781 dev = get_device(dev);
1782 if (!dev)
1783 goto done;
1784
1785 if (!dev->p) {
1786 error = device_private_init(dev);
1787 if (error)
1788 goto done;
1789 }
1790
1791 /*
1792 * for statically allocated devices, which should all be converted
1793 * some day, we need to initialize the name. We prevent reading back
1794 * the name, and force the use of dev_name()
1795 */
1796 if (dev->init_name) {
1797 dev_set_name(dev, "%s", dev->init_name);
1798 dev->init_name = NULL;
1799 }
1800
1801 /* subsystems can specify simple device enumeration */
1802 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1803 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1804
1805 if (!dev_name(dev)) {
1806 error = -EINVAL;
1807 goto name_error;
1808 }
1809
1810 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1811
1812 parent = get_device(dev->parent);
1813 kobj = get_device_parent(dev, parent);
1814 if (IS_ERR(kobj)) {
1815 error = PTR_ERR(kobj);
1816 goto parent_error;
1817 }
1818 if (kobj)
1819 dev->kobj.parent = kobj;
1820
1821 /* use parent numa_node */
1822 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1823 set_dev_node(dev, dev_to_node(parent));
1824
1825 /* first, register with generic layer. */
1826 /* we require the name to be set before, and pass NULL */
1827 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1828 if (error) {
1829 glue_dir = get_glue_dir(dev);
1830 goto Error;
1831 }
1832
1833 /* notify platform of device entry */
1834 if (platform_notify)
1835 platform_notify(dev);
1836
1837 error = device_create_file(dev, &dev_attr_uevent);
1838 if (error)
1839 goto attrError;
1840
1841 error = device_add_class_symlinks(dev);
1842 if (error)
1843 goto SymlinkError;
1844 error = device_add_attrs(dev);
1845 if (error)
1846 goto AttrsError;
1847 error = bus_add_device(dev);
1848 if (error)
1849 goto BusError;
1850 error = dpm_sysfs_add(dev);
1851 if (error)
1852 goto DPMError;
1853 device_pm_add(dev);
1854
1855 if (MAJOR(dev->devt)) {
1856 error = device_create_file(dev, &dev_attr_dev);
1857 if (error)
1858 goto DevAttrError;
1859
1860 error = device_create_sys_dev_entry(dev);
1861 if (error)
1862 goto SysEntryError;
1863
1864 devtmpfs_create_node(dev);
1865 }
1866
1867 /* Notify clients of device addition. This call must come
1868 * after dpm_sysfs_add() and before kobject_uevent().
1869 */
1870 if (dev->bus)
1871 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1872 BUS_NOTIFY_ADD_DEVICE, dev);
1873
1874 kobject_uevent(&dev->kobj, KOBJ_ADD);
1875 bus_probe_device(dev);
1876 if (parent)
1877 klist_add_tail(&dev->p->knode_parent,
1878 &parent->p->klist_children);
1879
1880 if (dev->class) {
1881 mutex_lock(&dev->class->p->mutex);
1882 /* tie the class to the device */
1883 klist_add_tail(&dev->knode_class,
1884 &dev->class->p->klist_devices);
1885
1886 /* notify any interfaces that the device is here */
1887 list_for_each_entry(class_intf,
1888 &dev->class->p->interfaces, node)
1889 if (class_intf->add_dev)
1890 class_intf->add_dev(dev, class_intf);
1891 mutex_unlock(&dev->class->p->mutex);
1892 }
1893done:
1894 put_device(dev);
1895 return error;
1896 SysEntryError:
1897 if (MAJOR(dev->devt))
1898 device_remove_file(dev, &dev_attr_dev);
1899 DevAttrError:
1900 device_pm_remove(dev);
1901 dpm_sysfs_remove(dev);
1902 DPMError:
1903 bus_remove_device(dev);
1904 BusError:
1905 device_remove_attrs(dev);
1906 AttrsError:
1907 device_remove_class_symlinks(dev);
1908 SymlinkError:
1909 device_remove_file(dev, &dev_attr_uevent);
1910 attrError:
1911 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1912 glue_dir = get_glue_dir(dev);
1913 kobject_del(&dev->kobj);
1914 Error:
1915 cleanup_glue_dir(dev, glue_dir);
1916parent_error:
1917 put_device(parent);
1918name_error:
1919 kfree(dev->p);
1920 dev->p = NULL;
1921 goto done;
1922}
1923EXPORT_SYMBOL_GPL(device_add);
1924
1925/**
1926 * device_register - register a device with the system.
1927 * @dev: pointer to the device structure
1928 *
1929 * This happens in two clean steps - initialize the device
1930 * and add it to the system. The two steps can be called
1931 * separately, but this is the easiest and most common.
1932 * I.e. you should only call the two helpers separately if
1933 * have a clearly defined need to use and refcount the device
1934 * before it is added to the hierarchy.
1935 *
1936 * For more information, see the kerneldoc for device_initialize()
1937 * and device_add().
1938 *
1939 * NOTE: _Never_ directly free @dev after calling this function, even
1940 * if it returned an error! Always use put_device() to give up the
1941 * reference initialized in this function instead.
1942 */
1943int device_register(struct device *dev)
1944{
1945 device_initialize(dev);
1946 return device_add(dev);
1947}
1948EXPORT_SYMBOL_GPL(device_register);
1949
1950/**
1951 * get_device - increment reference count for device.
1952 * @dev: device.
1953 *
1954 * This simply forwards the call to kobject_get(), though
1955 * we do take care to provide for the case that we get a NULL
1956 * pointer passed in.
1957 */
1958struct device *get_device(struct device *dev)
1959{
1960 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1961}
1962EXPORT_SYMBOL_GPL(get_device);
1963
1964/**
1965 * put_device - decrement reference count.
1966 * @dev: device in question.
1967 */
1968void put_device(struct device *dev)
1969{
1970 /* might_sleep(); */
1971 if (dev)
1972 kobject_put(&dev->kobj);
1973}
1974EXPORT_SYMBOL_GPL(put_device);
1975
1976/**
1977 * device_del - delete device from system.
1978 * @dev: device.
1979 *
1980 * This is the first part of the device unregistration
1981 * sequence. This removes the device from the lists we control
1982 * from here, has it removed from the other driver model
1983 * subsystems it was added to in device_add(), and removes it
1984 * from the kobject hierarchy.
1985 *
1986 * NOTE: this should be called manually _iff_ device_add() was
1987 * also called manually.
1988 */
1989void device_del(struct device *dev)
1990{
1991 struct device *parent = dev->parent;
1992 struct kobject *glue_dir = NULL;
1993 struct class_interface *class_intf;
1994
1995 /* Notify clients of device removal. This call must come
1996 * before dpm_sysfs_remove().
1997 */
1998 if (dev->bus)
1999 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2000 BUS_NOTIFY_DEL_DEVICE, dev);
2001
2002 dpm_sysfs_remove(dev);
2003 if (parent)
2004 klist_del(&dev->p->knode_parent);
2005 if (MAJOR(dev->devt)) {
2006 devtmpfs_delete_node(dev);
2007 device_remove_sys_dev_entry(dev);
2008 device_remove_file(dev, &dev_attr_dev);
2009 }
2010 if (dev->class) {
2011 device_remove_class_symlinks(dev);
2012
2013 mutex_lock(&dev->class->p->mutex);
2014 /* notify any interfaces that the device is now gone */
2015 list_for_each_entry(class_intf,
2016 &dev->class->p->interfaces, node)
2017 if (class_intf->remove_dev)
2018 class_intf->remove_dev(dev, class_intf);
2019 /* remove the device from the class list */
2020 klist_del(&dev->knode_class);
2021 mutex_unlock(&dev->class->p->mutex);
2022 }
2023 device_remove_file(dev, &dev_attr_uevent);
2024 device_remove_attrs(dev);
2025 bus_remove_device(dev);
2026 device_pm_remove(dev);
2027 driver_deferred_probe_del(dev);
2028 device_remove_properties(dev);
2029 device_links_purge(dev);
2030
2031 /* Notify the platform of the removal, in case they
2032 * need to do anything...
2033 */
2034 if (platform_notify_remove)
2035 platform_notify_remove(dev);
2036 if (dev->bus)
2037 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2038 BUS_NOTIFY_REMOVED_DEVICE, dev);
2039 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2040 glue_dir = get_glue_dir(dev);
2041 kobject_del(&dev->kobj);
2042 cleanup_glue_dir(dev, glue_dir);
2043 put_device(parent);
2044}
2045EXPORT_SYMBOL_GPL(device_del);
2046
2047/**
2048 * device_unregister - unregister device from system.
2049 * @dev: device going away.
2050 *
2051 * We do this in two parts, like we do device_register(). First,
2052 * we remove it from all the subsystems with device_del(), then
2053 * we decrement the reference count via put_device(). If that
2054 * is the final reference count, the device will be cleaned up
2055 * via device_release() above. Otherwise, the structure will
2056 * stick around until the final reference to the device is dropped.
2057 */
2058void device_unregister(struct device *dev)
2059{
2060 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2061 device_del(dev);
2062 put_device(dev);
2063}
2064EXPORT_SYMBOL_GPL(device_unregister);
2065
2066static struct device *prev_device(struct klist_iter *i)
2067{
2068 struct klist_node *n = klist_prev(i);
2069 struct device *dev = NULL;
2070 struct device_private *p;
2071
2072 if (n) {
2073 p = to_device_private_parent(n);
2074 dev = p->device;
2075 }
2076 return dev;
2077}
2078
2079static struct device *next_device(struct klist_iter *i)
2080{
2081 struct klist_node *n = klist_next(i);
2082 struct device *dev = NULL;
2083 struct device_private *p;
2084
2085 if (n) {
2086 p = to_device_private_parent(n);
2087 dev = p->device;
2088 }
2089 return dev;
2090}
2091
2092/**
2093 * device_get_devnode - path of device node file
2094 * @dev: device
2095 * @mode: returned file access mode
2096 * @uid: returned file owner
2097 * @gid: returned file group
2098 * @tmp: possibly allocated string
2099 *
2100 * Return the relative path of a possible device node.
2101 * Non-default names may need to allocate a memory to compose
2102 * a name. This memory is returned in tmp and needs to be
2103 * freed by the caller.
2104 */
2105const char *device_get_devnode(struct device *dev,
2106 umode_t *mode, kuid_t *uid, kgid_t *gid,
2107 const char **tmp)
2108{
2109 char *s;
2110
2111 *tmp = NULL;
2112
2113 /* the device type may provide a specific name */
2114 if (dev->type && dev->type->devnode)
2115 *tmp = dev->type->devnode(dev, mode, uid, gid);
2116 if (*tmp)
2117 return *tmp;
2118
2119 /* the class may provide a specific name */
2120 if (dev->class && dev->class->devnode)
2121 *tmp = dev->class->devnode(dev, mode);
2122 if (*tmp)
2123 return *tmp;
2124
2125 /* return name without allocation, tmp == NULL */
2126 if (strchr(dev_name(dev), '!') == NULL)
2127 return dev_name(dev);
2128
2129 /* replace '!' in the name with '/' */
2130 s = kstrdup(dev_name(dev), GFP_KERNEL);
2131 if (!s)
2132 return NULL;
2133 strreplace(s, '!', '/');
2134 return *tmp = s;
2135}
2136
2137/**
2138 * device_for_each_child - device child iterator.
2139 * @parent: parent struct device.
2140 * @fn: function to be called for each device.
2141 * @data: data for the callback.
2142 *
2143 * Iterate over @parent's child devices, and call @fn for each,
2144 * passing it @data.
2145 *
2146 * We check the return of @fn each time. If it returns anything
2147 * other than 0, we break out and return that value.
2148 */
2149int device_for_each_child(struct device *parent, void *data,
2150 int (*fn)(struct device *dev, void *data))
2151{
2152 struct klist_iter i;
2153 struct device *child;
2154 int error = 0;
2155
2156 if (!parent->p)
2157 return 0;
2158
2159 klist_iter_init(&parent->p->klist_children, &i);
2160 while (!error && (child = next_device(&i)))
2161 error = fn(child, data);
2162 klist_iter_exit(&i);
2163 return error;
2164}
2165EXPORT_SYMBOL_GPL(device_for_each_child);
2166
2167/**
2168 * device_for_each_child_reverse - device child iterator in reversed order.
2169 * @parent: parent struct device.
2170 * @fn: function to be called for each device.
2171 * @data: data for the callback.
2172 *
2173 * Iterate over @parent's child devices, and call @fn for each,
2174 * passing it @data.
2175 *
2176 * We check the return of @fn each time. If it returns anything
2177 * other than 0, we break out and return that value.
2178 */
2179int device_for_each_child_reverse(struct device *parent, void *data,
2180 int (*fn)(struct device *dev, void *data))
2181{
2182 struct klist_iter i;
2183 struct device *child;
2184 int error = 0;
2185
2186 if (!parent->p)
2187 return 0;
2188
2189 klist_iter_init(&parent->p->klist_children, &i);
2190 while ((child = prev_device(&i)) && !error)
2191 error = fn(child, data);
2192 klist_iter_exit(&i);
2193 return error;
2194}
2195EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2196
2197/**
2198 * device_find_child - device iterator for locating a particular device.
2199 * @parent: parent struct device
2200 * @match: Callback function to check device
2201 * @data: Data to pass to match function
2202 *
2203 * This is similar to the device_for_each_child() function above, but it
2204 * returns a reference to a device that is 'found' for later use, as
2205 * determined by the @match callback.
2206 *
2207 * The callback should return 0 if the device doesn't match and non-zero
2208 * if it does. If the callback returns non-zero and a reference to the
2209 * current device can be obtained, this function will return to the caller
2210 * and not iterate over any more devices.
2211 *
2212 * NOTE: you will need to drop the reference with put_device() after use.
2213 */
2214struct device *device_find_child(struct device *parent, void *data,
2215 int (*match)(struct device *dev, void *data))
2216{
2217 struct klist_iter i;
2218 struct device *child;
2219
2220 if (!parent)
2221 return NULL;
2222
2223 klist_iter_init(&parent->p->klist_children, &i);
2224 while ((child = next_device(&i)))
2225 if (match(child, data) && get_device(child))
2226 break;
2227 klist_iter_exit(&i);
2228 return child;
2229}
2230EXPORT_SYMBOL_GPL(device_find_child);
2231
2232int __init devices_init(void)
2233{
2234 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2235 if (!devices_kset)
2236 return -ENOMEM;
2237 dev_kobj = kobject_create_and_add("dev", NULL);
2238 if (!dev_kobj)
2239 goto dev_kobj_err;
2240 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2241 if (!sysfs_dev_block_kobj)
2242 goto block_kobj_err;
2243 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2244 if (!sysfs_dev_char_kobj)
2245 goto char_kobj_err;
2246
2247 return 0;
2248
2249 char_kobj_err:
2250 kobject_put(sysfs_dev_block_kobj);
2251 block_kobj_err:
2252 kobject_put(dev_kobj);
2253 dev_kobj_err:
2254 kset_unregister(devices_kset);
2255 return -ENOMEM;
2256}
2257
2258static int device_check_offline(struct device *dev, void *not_used)
2259{
2260 int ret;
2261
2262 ret = device_for_each_child(dev, NULL, device_check_offline);
2263 if (ret)
2264 return ret;
2265
2266 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2267}
2268
2269/**
2270 * device_offline - Prepare the device for hot-removal.
2271 * @dev: Device to be put offline.
2272 *
2273 * Execute the device bus type's .offline() callback, if present, to prepare
2274 * the device for a subsequent hot-removal. If that succeeds, the device must
2275 * not be used until either it is removed or its bus type's .online() callback
2276 * is executed.
2277 *
2278 * Call under device_hotplug_lock.
2279 */
2280int device_offline(struct device *dev)
2281{
2282 int ret;
2283
2284 if (dev->offline_disabled)
2285 return -EPERM;
2286
2287 ret = device_for_each_child(dev, NULL, device_check_offline);
2288 if (ret)
2289 return ret;
2290
2291 device_lock(dev);
2292 if (device_supports_offline(dev)) {
2293 if (dev->offline) {
2294 ret = 1;
2295 } else {
2296 ret = dev->bus->offline(dev);
2297 if (!ret) {
2298 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2299 dev->offline = true;
2300 }
2301 }
2302 }
2303 device_unlock(dev);
2304
2305 return ret;
2306}
2307
2308/**
2309 * device_online - Put the device back online after successful device_offline().
2310 * @dev: Device to be put back online.
2311 *
2312 * If device_offline() has been successfully executed for @dev, but the device
2313 * has not been removed subsequently, execute its bus type's .online() callback
2314 * to indicate that the device can be used again.
2315 *
2316 * Call under device_hotplug_lock.
2317 */
2318int device_online(struct device *dev)
2319{
2320 int ret = 0;
2321
2322 device_lock(dev);
2323 if (device_supports_offline(dev)) {
2324 if (dev->offline) {
2325 ret = dev->bus->online(dev);
2326 if (!ret) {
2327 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2328 dev->offline = false;
2329 }
2330 } else {
2331 ret = 1;
2332 }
2333 }
2334 device_unlock(dev);
2335
2336 return ret;
2337}
2338
2339struct root_device {
2340 struct device dev;
2341 struct module *owner;
2342};
2343
2344static inline struct root_device *to_root_device(struct device *d)
2345{
2346 return container_of(d, struct root_device, dev);
2347}
2348
2349static void root_device_release(struct device *dev)
2350{
2351 kfree(to_root_device(dev));
2352}
2353
2354/**
2355 * __root_device_register - allocate and register a root device
2356 * @name: root device name
2357 * @owner: owner module of the root device, usually THIS_MODULE
2358 *
2359 * This function allocates a root device and registers it
2360 * using device_register(). In order to free the returned
2361 * device, use root_device_unregister().
2362 *
2363 * Root devices are dummy devices which allow other devices
2364 * to be grouped under /sys/devices. Use this function to
2365 * allocate a root device and then use it as the parent of
2366 * any device which should appear under /sys/devices/{name}
2367 *
2368 * The /sys/devices/{name} directory will also contain a
2369 * 'module' symlink which points to the @owner directory
2370 * in sysfs.
2371 *
2372 * Returns &struct device pointer on success, or ERR_PTR() on error.
2373 *
2374 * Note: You probably want to use root_device_register().
2375 */
2376struct device *__root_device_register(const char *name, struct module *owner)
2377{
2378 struct root_device *root;
2379 int err = -ENOMEM;
2380
2381 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2382 if (!root)
2383 return ERR_PTR(err);
2384
2385 err = dev_set_name(&root->dev, "%s", name);
2386 if (err) {
2387 kfree(root);
2388 return ERR_PTR(err);
2389 }
2390
2391 root->dev.release = root_device_release;
2392
2393 err = device_register(&root->dev);
2394 if (err) {
2395 put_device(&root->dev);
2396 return ERR_PTR(err);
2397 }
2398
2399#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
2400 if (owner) {
2401 struct module_kobject *mk = &owner->mkobj;
2402
2403 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2404 if (err) {
2405 device_unregister(&root->dev);
2406 return ERR_PTR(err);
2407 }
2408 root->owner = owner;
2409 }
2410#endif
2411
2412 return &root->dev;
2413}
2414EXPORT_SYMBOL_GPL(__root_device_register);
2415
2416/**
2417 * root_device_unregister - unregister and free a root device
2418 * @dev: device going away
2419 *
2420 * This function unregisters and cleans up a device that was created by
2421 * root_device_register().
2422 */
2423void root_device_unregister(struct device *dev)
2424{
2425 struct root_device *root = to_root_device(dev);
2426
2427 if (root->owner)
2428 sysfs_remove_link(&root->dev.kobj, "module");
2429
2430 device_unregister(dev);
2431}
2432EXPORT_SYMBOL_GPL(root_device_unregister);
2433
2434
2435static void device_create_release(struct device *dev)
2436{
2437 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2438 kfree(dev);
2439}
2440
2441static __printf(6, 0) struct device *
2442device_create_groups_vargs(struct class *class, struct device *parent,
2443 dev_t devt, void *drvdata,
2444 const struct attribute_group **groups,
2445 const char *fmt, va_list args)
2446{
2447 struct device *dev = NULL;
2448 int retval = -ENODEV;
2449
2450 if (class == NULL || IS_ERR(class))
2451 goto error;
2452
2453 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2454 if (!dev) {
2455 retval = -ENOMEM;
2456 goto error;
2457 }
2458
2459 device_initialize(dev);
2460 dev->devt = devt;
2461 dev->class = class;
2462 dev->parent = parent;
2463 dev->groups = groups;
2464 dev->release = device_create_release;
2465 dev_set_drvdata(dev, drvdata);
2466
2467 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2468 if (retval)
2469 goto error;
2470
2471 retval = device_add(dev);
2472 if (retval)
2473 goto error;
2474
2475 return dev;
2476
2477error:
2478 put_device(dev);
2479 return ERR_PTR(retval);
2480}
2481
2482/**
2483 * device_create_vargs - creates a device and registers it with sysfs
2484 * @class: pointer to the struct class that this device should be registered to
2485 * @parent: pointer to the parent struct device of this new device, if any
2486 * @devt: the dev_t for the char device to be added
2487 * @drvdata: the data to be added to the device for callbacks
2488 * @fmt: string for the device's name
2489 * @args: va_list for the device's name
2490 *
2491 * This function can be used by char device classes. A struct device
2492 * will be created in sysfs, registered to the specified class.
2493 *
2494 * A "dev" file will be created, showing the dev_t for the device, if
2495 * the dev_t is not 0,0.
2496 * If a pointer to a parent struct device is passed in, the newly created
2497 * struct device will be a child of that device in sysfs.
2498 * The pointer to the struct device will be returned from the call.
2499 * Any further sysfs files that might be required can be created using this
2500 * pointer.
2501 *
2502 * Returns &struct device pointer on success, or ERR_PTR() on error.
2503 *
2504 * Note: the struct class passed to this function must have previously
2505 * been created with a call to class_create().
2506 */
2507struct device *device_create_vargs(struct class *class, struct device *parent,
2508 dev_t devt, void *drvdata, const char *fmt,
2509 va_list args)
2510{
2511 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2512 fmt, args);
2513}
2514EXPORT_SYMBOL_GPL(device_create_vargs);
2515
2516/**
2517 * device_create - creates a device and registers it with sysfs
2518 * @class: pointer to the struct class that this device should be registered to
2519 * @parent: pointer to the parent struct device of this new device, if any
2520 * @devt: the dev_t for the char device to be added
2521 * @drvdata: the data to be added to the device for callbacks
2522 * @fmt: string for the device's name
2523 *
2524 * This function can be used by char device classes. A struct device
2525 * will be created in sysfs, registered to the specified class.
2526 *
2527 * A "dev" file will be created, showing the dev_t for the device, if
2528 * the dev_t is not 0,0.
2529 * If a pointer to a parent struct device is passed in, the newly created
2530 * struct device will be a child of that device in sysfs.
2531 * The pointer to the struct device will be returned from the call.
2532 * Any further sysfs files that might be required can be created using this
2533 * pointer.
2534 *
2535 * Returns &struct device pointer on success, or ERR_PTR() on error.
2536 *
2537 * Note: the struct class passed to this function must have previously
2538 * been created with a call to class_create().
2539 */
2540struct device *device_create(struct class *class, struct device *parent,
2541 dev_t devt, void *drvdata, const char *fmt, ...)
2542{
2543 va_list vargs;
2544 struct device *dev;
2545
2546 va_start(vargs, fmt);
2547 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2548 va_end(vargs);
2549 return dev;
2550}
2551EXPORT_SYMBOL_GPL(device_create);
2552
2553/**
2554 * device_create_with_groups - creates a device and registers it with sysfs
2555 * @class: pointer to the struct class that this device should be registered to
2556 * @parent: pointer to the parent struct device of this new device, if any
2557 * @devt: the dev_t for the char device to be added
2558 * @drvdata: the data to be added to the device for callbacks
2559 * @groups: NULL-terminated list of attribute groups to be created
2560 * @fmt: string for the device's name
2561 *
2562 * This function can be used by char device classes. A struct device
2563 * will be created in sysfs, registered to the specified class.
2564 * Additional attributes specified in the groups parameter will also
2565 * be created automatically.
2566 *
2567 * A "dev" file will be created, showing the dev_t for the device, if
2568 * the dev_t is not 0,0.
2569 * If a pointer to a parent struct device is passed in, the newly created
2570 * struct device will be a child of that device in sysfs.
2571 * The pointer to the struct device will be returned from the call.
2572 * Any further sysfs files that might be required can be created using this
2573 * pointer.
2574 *
2575 * Returns &struct device pointer on success, or ERR_PTR() on error.
2576 *
2577 * Note: the struct class passed to this function must have previously
2578 * been created with a call to class_create().
2579 */
2580struct device *device_create_with_groups(struct class *class,
2581 struct device *parent, dev_t devt,
2582 void *drvdata,
2583 const struct attribute_group **groups,
2584 const char *fmt, ...)
2585{
2586 va_list vargs;
2587 struct device *dev;
2588
2589 va_start(vargs, fmt);
2590 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2591 fmt, vargs);
2592 va_end(vargs);
2593 return dev;
2594}
2595EXPORT_SYMBOL_GPL(device_create_with_groups);
2596
2597static int __match_devt(struct device *dev, const void *data)
2598{
2599 const dev_t *devt = data;
2600
2601 return dev->devt == *devt;
2602}
2603
2604/**
2605 * device_destroy - removes a device that was created with device_create()
2606 * @class: pointer to the struct class that this device was registered with
2607 * @devt: the dev_t of the device that was previously registered
2608 *
2609 * This call unregisters and cleans up a device that was created with a
2610 * call to device_create().
2611 */
2612void device_destroy(struct class *class, dev_t devt)
2613{
2614 struct device *dev;
2615
2616 dev = class_find_device(class, NULL, &devt, __match_devt);
2617 if (dev) {
2618 put_device(dev);
2619 device_unregister(dev);
2620 }
2621}
2622EXPORT_SYMBOL_GPL(device_destroy);
2623
2624/**
2625 * device_rename - renames a device
2626 * @dev: the pointer to the struct device to be renamed
2627 * @new_name: the new name of the device
2628 *
2629 * It is the responsibility of the caller to provide mutual
2630 * exclusion between two different calls of device_rename
2631 * on the same device to ensure that new_name is valid and
2632 * won't conflict with other devices.
2633 *
2634 * Note: Don't call this function. Currently, the networking layer calls this
2635 * function, but that will change. The following text from Kay Sievers offers
2636 * some insight:
2637 *
2638 * Renaming devices is racy at many levels, symlinks and other stuff are not
2639 * replaced atomically, and you get a "move" uevent, but it's not easy to
2640 * connect the event to the old and new device. Device nodes are not renamed at
2641 * all, there isn't even support for that in the kernel now.
2642 *
2643 * In the meantime, during renaming, your target name might be taken by another
2644 * driver, creating conflicts. Or the old name is taken directly after you
2645 * renamed it -- then you get events for the same DEVPATH, before you even see
2646 * the "move" event. It's just a mess, and nothing new should ever rely on
2647 * kernel device renaming. Besides that, it's not even implemented now for
2648 * other things than (driver-core wise very simple) network devices.
2649 *
2650 * We are currently about to change network renaming in udev to completely
2651 * disallow renaming of devices in the same namespace as the kernel uses,
2652 * because we can't solve the problems properly, that arise with swapping names
2653 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2654 * be allowed to some other name than eth[0-9]*, for the aforementioned
2655 * reasons.
2656 *
2657 * Make up a "real" name in the driver before you register anything, or add
2658 * some other attributes for userspace to find the device, or use udev to add
2659 * symlinks -- but never rename kernel devices later, it's a complete mess. We
2660 * don't even want to get into that and try to implement the missing pieces in
2661 * the core. We really have other pieces to fix in the driver core mess. :)
2662 */
2663int device_rename(struct device *dev, const char *new_name)
2664{
2665 struct kobject *kobj = &dev->kobj;
2666 char *old_device_name = NULL;
2667 int error;
2668
2669 dev = get_device(dev);
2670 if (!dev)
2671 return -EINVAL;
2672
2673 dev_dbg(dev, "renaming to %s\n", new_name);
2674
2675 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2676 if (!old_device_name) {
2677 error = -ENOMEM;
2678 goto out;
2679 }
2680
2681 if (dev->class) {
2682 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2683 kobj, old_device_name,
2684 new_name, kobject_namespace(kobj));
2685 if (error)
2686 goto out;
2687 }
2688
2689 error = kobject_rename(kobj, new_name);
2690 if (error)
2691 goto out;
2692
2693out:
2694 put_device(dev);
2695
2696 kfree(old_device_name);
2697
2698 return error;
2699}
2700EXPORT_SYMBOL_GPL(device_rename);
2701
2702static int device_move_class_links(struct device *dev,
2703 struct device *old_parent,
2704 struct device *new_parent)
2705{
2706 int error = 0;
2707
2708 if (old_parent)
2709 sysfs_remove_link(&dev->kobj, "device");
2710 if (new_parent)
2711 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2712 "device");
2713 return error;
2714}
2715
2716/**
2717 * device_move - moves a device to a new parent
2718 * @dev: the pointer to the struct device to be moved
2719 * @new_parent: the new parent of the device (can be NULL)
2720 * @dpm_order: how to reorder the dpm_list
2721 */
2722int device_move(struct device *dev, struct device *new_parent,
2723 enum dpm_order dpm_order)
2724{
2725 int error;
2726 struct device *old_parent;
2727 struct kobject *new_parent_kobj;
2728
2729 dev = get_device(dev);
2730 if (!dev)
2731 return -EINVAL;
2732
2733 device_pm_lock();
2734 new_parent = get_device(new_parent);
2735 new_parent_kobj = get_device_parent(dev, new_parent);
2736 if (IS_ERR(new_parent_kobj)) {
2737 error = PTR_ERR(new_parent_kobj);
2738 put_device(new_parent);
2739 goto out;
2740 }
2741
2742 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2743 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2744 error = kobject_move(&dev->kobj, new_parent_kobj);
2745 if (error) {
2746 cleanup_glue_dir(dev, new_parent_kobj);
2747 put_device(new_parent);
2748 goto out;
2749 }
2750 old_parent = dev->parent;
2751 dev->parent = new_parent;
2752 if (old_parent)
2753 klist_remove(&dev->p->knode_parent);
2754 if (new_parent) {
2755 klist_add_tail(&dev->p->knode_parent,
2756 &new_parent->p->klist_children);
2757 set_dev_node(dev, dev_to_node(new_parent));
2758 }
2759
2760 if (dev->class) {
2761 error = device_move_class_links(dev, old_parent, new_parent);
2762 if (error) {
2763 /* We ignore errors on cleanup since we're hosed anyway... */
2764 device_move_class_links(dev, new_parent, old_parent);
2765 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2766 if (new_parent)
2767 klist_remove(&dev->p->knode_parent);
2768 dev->parent = old_parent;
2769 if (old_parent) {
2770 klist_add_tail(&dev->p->knode_parent,
2771 &old_parent->p->klist_children);
2772 set_dev_node(dev, dev_to_node(old_parent));
2773 }
2774 }
2775 cleanup_glue_dir(dev, new_parent_kobj);
2776 put_device(new_parent);
2777 goto out;
2778 }
2779 }
2780 switch (dpm_order) {
2781 case DPM_ORDER_NONE:
2782 break;
2783 case DPM_ORDER_DEV_AFTER_PARENT:
2784 device_pm_move_after(dev, new_parent);
2785 devices_kset_move_after(dev, new_parent);
2786 break;
2787 case DPM_ORDER_PARENT_BEFORE_DEV:
2788 device_pm_move_before(new_parent, dev);
2789 devices_kset_move_before(new_parent, dev);
2790 break;
2791 case DPM_ORDER_DEV_LAST:
2792 device_pm_move_last(dev);
2793 devices_kset_move_last(dev);
2794 break;
2795 }
2796
2797 put_device(old_parent);
2798out:
2799 device_pm_unlock();
2800 put_device(dev);
2801 return error;
2802}
2803EXPORT_SYMBOL_GPL(device_move);
2804
2805/**
2806 * device_shutdown - call ->shutdown() on each device to shutdown.
2807 */
2808void device_shutdown(void)
2809{
2810 struct device *dev, *parent;
2811
2812 spin_lock(&devices_kset->list_lock);
2813 /*
2814 * Walk the devices list backward, shutting down each in turn.
2815 * Beware that device unplug events may also start pulling
2816 * devices offline, even as the system is shutting down.
2817 */
2818 while (!list_empty(&devices_kset->list)) {
2819 dev = list_entry(devices_kset->list.prev, struct device,
2820 kobj.entry);
2821
2822 /*
2823 * hold reference count of device's parent to
2824 * prevent it from being freed because parent's
2825 * lock is to be held
2826 */
2827 parent = get_device(dev->parent);
2828 get_device(dev);
2829 /*
2830 * Make sure the device is off the kset list, in the
2831 * event that dev->*->shutdown() doesn't remove it.
2832 */
2833 list_del_init(&dev->kobj.entry);
2834 spin_unlock(&devices_kset->list_lock);
2835
2836 /* hold lock to avoid race with probe/release */
2837 if (parent)
2838 device_lock(parent);
2839 device_lock(dev);
2840
2841 /* Don't allow any more runtime suspends */
2842 pm_runtime_get_noresume(dev);
2843 pm_runtime_barrier(dev);
2844
2845 if (dev->class && dev->class->shutdown_pre) {
2846 if (initcall_debug)
2847 dev_info(dev, "shutdown_pre\n");
2848 dev->class->shutdown_pre(dev);
2849 }
2850 if (dev->bus && dev->bus->shutdown) {
2851 if (initcall_debug)
2852 dev_info(dev, "shutdown\n");
2853 dev->bus->shutdown(dev);
2854 } else if (dev->driver && dev->driver->shutdown) {
2855 if (initcall_debug)
2856 dev_info(dev, "shutdown\n");
2857 dev->driver->shutdown(dev);
2858 }
2859
2860 device_unlock(dev);
2861 if (parent)
2862 device_unlock(parent);
2863
2864 put_device(dev);
2865 put_device(parent);
2866
2867 spin_lock(&devices_kset->list_lock);
2868 }
2869 spin_unlock(&devices_kset->list_lock);
2870}
2871
2872/*
2873 * Device logging functions
2874 */
2875
2876#ifdef CONFIG_PRINTK
2877static int
2878create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2879{
2880 const char *subsys;
2881 size_t pos = 0;
2882
2883 if (dev->class)
2884 subsys = dev->class->name;
2885 else if (dev->bus)
2886 subsys = dev->bus->name;
2887 else
2888 return 0;
2889
2890 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2891 if (pos >= hdrlen)
2892 goto overflow;
2893
2894 /*
2895 * Add device identifier DEVICE=:
2896 * b12:8 block dev_t
2897 * c127:3 char dev_t
2898 * n8 netdev ifindex
2899 * +sound:card0 subsystem:devname
2900 */
2901 if (MAJOR(dev->devt)) {
2902 char c;
2903
2904 if (strcmp(subsys, "block") == 0)
2905 c = 'b';
2906 else
2907 c = 'c';
2908 pos++;
2909 pos += snprintf(hdr + pos, hdrlen - pos,
2910 "DEVICE=%c%u:%u",
2911 c, MAJOR(dev->devt), MINOR(dev->devt));
2912 } else if (strcmp(subsys, "net") == 0) {
2913 struct net_device *net = to_net_dev(dev);
2914
2915 pos++;
2916 pos += snprintf(hdr + pos, hdrlen - pos,
2917 "DEVICE=n%u", net->ifindex);
2918 } else {
2919 pos++;
2920 pos += snprintf(hdr + pos, hdrlen - pos,
2921 "DEVICE=+%s:%s", subsys, dev_name(dev));
2922 }
2923
2924 if (pos >= hdrlen)
2925 goto overflow;
2926
2927 return pos;
2928
2929overflow:
2930 dev_WARN(dev, "device/subsystem name too long");
2931 return 0;
2932}
2933
2934int dev_vprintk_emit(int level, const struct device *dev,
2935 const char *fmt, va_list args)
2936{
2937 char hdr[128];
2938 size_t hdrlen;
2939
2940 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2941
2942 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2943}
2944EXPORT_SYMBOL(dev_vprintk_emit);
2945
2946int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2947{
2948 va_list args;
2949 int r;
2950
2951 va_start(args, fmt);
2952
2953 r = dev_vprintk_emit(level, dev, fmt, args);
2954
2955 va_end(args);
2956
2957 return r;
2958}
2959EXPORT_SYMBOL(dev_printk_emit);
2960
2961static void __dev_printk(const char *level, const struct device *dev,
2962 struct va_format *vaf)
2963{
2964 if (dev)
2965 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2966 dev_driver_string(dev), dev_name(dev), vaf);
2967 else
2968 printk("%s(NULL device *): %pV", level, vaf);
2969}
2970
2971void dev_printk(const char *level, const struct device *dev,
2972 const char *fmt, ...)
2973{
2974 struct va_format vaf;
2975 va_list args;
2976
2977 va_start(args, fmt);
2978
2979 vaf.fmt = fmt;
2980 vaf.va = &args;
2981
2982 __dev_printk(level, dev, &vaf);
2983
2984 va_end(args);
2985}
2986EXPORT_SYMBOL(dev_printk);
2987
2988#define define_dev_printk_level(func, kern_level) \
2989void func(const struct device *dev, const char *fmt, ...) \
2990{ \
2991 struct va_format vaf; \
2992 va_list args; \
2993 \
2994 va_start(args, fmt); \
2995 \
2996 vaf.fmt = fmt; \
2997 vaf.va = &args; \
2998 \
2999 __dev_printk(kern_level, dev, &vaf); \
3000 \
3001 va_end(args); \
3002} \
3003EXPORT_SYMBOL(func);
3004
3005define_dev_printk_level(dev_emerg, KERN_EMERG);
3006define_dev_printk_level(dev_alert, KERN_ALERT);
3007define_dev_printk_level(dev_crit, KERN_CRIT);
3008define_dev_printk_level(dev_err, KERN_ERR);
3009define_dev_printk_level(dev_warn, KERN_WARNING);
3010define_dev_printk_level(dev_notice, KERN_NOTICE);
3011define_dev_printk_level(_dev_info, KERN_INFO);
3012
3013#endif
3014
3015static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3016{
3017 return fwnode && !IS_ERR(fwnode->secondary);
3018}
3019
3020/**
3021 * set_primary_fwnode - Change the primary firmware node of a given device.
3022 * @dev: Device to handle.
3023 * @fwnode: New primary firmware node of the device.
3024 *
3025 * Set the device's firmware node pointer to @fwnode, but if a secondary
3026 * firmware node of the device is present, preserve it.
3027 */
3028void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3029{
3030 if (fwnode) {
3031 struct fwnode_handle *fn = dev->fwnode;
3032
3033 if (fwnode_is_primary(fn))
3034 fn = fn->secondary;
3035
3036 if (fn) {
3037 WARN_ON(fwnode->secondary);
3038 fwnode->secondary = fn;
3039 }
3040 dev->fwnode = fwnode;
3041 } else {
3042 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3043 dev->fwnode->secondary : NULL;
3044 }
3045}
3046EXPORT_SYMBOL_GPL(set_primary_fwnode);
3047
3048/**
3049 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3050 * @dev: Device to handle.
3051 * @fwnode: New secondary firmware node of the device.
3052 *
3053 * If a primary firmware node of the device is present, set its secondary
3054 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
3055 * @fwnode.
3056 */
3057void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3058{
3059 if (fwnode)
3060 fwnode->secondary = ERR_PTR(-ENODEV);
3061
3062 if (fwnode_is_primary(dev->fwnode))
3063 dev->fwnode->secondary = fwnode;
3064 else
3065 dev->fwnode = fwnode;
3066}
3067
3068/**
3069 * device_set_of_node_from_dev - reuse device-tree node of another device
3070 * @dev: device whose device-tree node is being set
3071 * @dev2: device whose device-tree node is being reused
3072 *
3073 * Takes another reference to the new device-tree node after first dropping
3074 * any reference held to the old node.
3075 */
3076void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3077{
3078 of_node_put(dev->of_node);
3079 dev->of_node = of_node_get(dev2->of_node);
3080 dev->of_node_reused = true;
3081}
3082EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);