at v4.18 980 lines 25 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_X86_PROCESSOR_H 3#define _ASM_X86_PROCESSOR_H 4 5#include <asm/processor-flags.h> 6 7/* Forward declaration, a strange C thing */ 8struct task_struct; 9struct mm_struct; 10struct vm86; 11 12#include <asm/math_emu.h> 13#include <asm/segment.h> 14#include <asm/types.h> 15#include <uapi/asm/sigcontext.h> 16#include <asm/current.h> 17#include <asm/cpufeatures.h> 18#include <asm/page.h> 19#include <asm/pgtable_types.h> 20#include <asm/percpu.h> 21#include <asm/msr.h> 22#include <asm/desc_defs.h> 23#include <asm/nops.h> 24#include <asm/special_insns.h> 25#include <asm/fpu/types.h> 26#include <asm/unwind_hints.h> 27 28#include <linux/personality.h> 29#include <linux/cache.h> 30#include <linux/threads.h> 31#include <linux/math64.h> 32#include <linux/err.h> 33#include <linux/irqflags.h> 34#include <linux/mem_encrypt.h> 35 36/* 37 * We handle most unaligned accesses in hardware. On the other hand 38 * unaligned DMA can be quite expensive on some Nehalem processors. 39 * 40 * Based on this we disable the IP header alignment in network drivers. 41 */ 42#define NET_IP_ALIGN 0 43 44#define HBP_NUM 4 45/* 46 * Default implementation of macro that returns current 47 * instruction pointer ("program counter"). 48 */ 49static inline void *current_text_addr(void) 50{ 51 void *pc; 52 53 asm volatile("mov $1f, %0; 1:":"=r" (pc)); 54 55 return pc; 56} 57 58/* 59 * These alignment constraints are for performance in the vSMP case, 60 * but in the task_struct case we must also meet hardware imposed 61 * alignment requirements of the FPU state: 62 */ 63#ifdef CONFIG_X86_VSMP 64# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 65# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 66#else 67# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 68# define ARCH_MIN_MMSTRUCT_ALIGN 0 69#endif 70 71enum tlb_infos { 72 ENTRIES, 73 NR_INFO 74}; 75 76extern u16 __read_mostly tlb_lli_4k[NR_INFO]; 77extern u16 __read_mostly tlb_lli_2m[NR_INFO]; 78extern u16 __read_mostly tlb_lli_4m[NR_INFO]; 79extern u16 __read_mostly tlb_lld_4k[NR_INFO]; 80extern u16 __read_mostly tlb_lld_2m[NR_INFO]; 81extern u16 __read_mostly tlb_lld_4m[NR_INFO]; 82extern u16 __read_mostly tlb_lld_1g[NR_INFO]; 83 84/* 85 * CPU type and hardware bug flags. Kept separately for each CPU. 86 * Members of this structure are referenced in head_32.S, so think twice 87 * before touching them. [mj] 88 */ 89 90struct cpuinfo_x86 { 91 __u8 x86; /* CPU family */ 92 __u8 x86_vendor; /* CPU vendor */ 93 __u8 x86_model; 94 __u8 x86_stepping; 95#ifdef CONFIG_X86_64 96 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 97 int x86_tlbsize; 98#endif 99 __u8 x86_virt_bits; 100 __u8 x86_phys_bits; 101 /* CPUID returned core id bits: */ 102 __u8 x86_coreid_bits; 103 __u8 cu_id; 104 /* Max extended CPUID function supported: */ 105 __u32 extended_cpuid_level; 106 /* Maximum supported CPUID level, -1=no CPUID: */ 107 int cpuid_level; 108 __u32 x86_capability[NCAPINTS + NBUGINTS]; 109 char x86_vendor_id[16]; 110 char x86_model_id[64]; 111 /* in KB - valid for CPUS which support this call: */ 112 unsigned int x86_cache_size; 113 int x86_cache_alignment; /* In bytes */ 114 /* Cache QoS architectural values: */ 115 int x86_cache_max_rmid; /* max index */ 116 int x86_cache_occ_scale; /* scale to bytes */ 117 int x86_power; 118 unsigned long loops_per_jiffy; 119 /* cpuid returned max cores value: */ 120 u16 x86_max_cores; 121 u16 apicid; 122 u16 initial_apicid; 123 u16 x86_clflush_size; 124 /* number of cores as seen by the OS: */ 125 u16 booted_cores; 126 /* Physical processor id: */ 127 u16 phys_proc_id; 128 /* Logical processor id: */ 129 u16 logical_proc_id; 130 /* Core id: */ 131 u16 cpu_core_id; 132 /* Index into per_cpu list: */ 133 u16 cpu_index; 134 u32 microcode; 135 unsigned initialized : 1; 136} __randomize_layout; 137 138struct cpuid_regs { 139 u32 eax, ebx, ecx, edx; 140}; 141 142enum cpuid_regs_idx { 143 CPUID_EAX = 0, 144 CPUID_EBX, 145 CPUID_ECX, 146 CPUID_EDX, 147}; 148 149#define X86_VENDOR_INTEL 0 150#define X86_VENDOR_CYRIX 1 151#define X86_VENDOR_AMD 2 152#define X86_VENDOR_UMC 3 153#define X86_VENDOR_CENTAUR 5 154#define X86_VENDOR_TRANSMETA 7 155#define X86_VENDOR_NSC 8 156#define X86_VENDOR_NUM 9 157 158#define X86_VENDOR_UNKNOWN 0xff 159 160/* 161 * capabilities of CPUs 162 */ 163extern struct cpuinfo_x86 boot_cpu_data; 164extern struct cpuinfo_x86 new_cpu_data; 165 166extern struct x86_hw_tss doublefault_tss; 167extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; 168extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; 169 170#ifdef CONFIG_SMP 171DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 172#define cpu_data(cpu) per_cpu(cpu_info, cpu) 173#else 174#define cpu_info boot_cpu_data 175#define cpu_data(cpu) boot_cpu_data 176#endif 177 178extern const struct seq_operations cpuinfo_op; 179 180#define cache_line_size() (boot_cpu_data.x86_cache_alignment) 181 182extern void cpu_detect(struct cpuinfo_x86 *c); 183 184extern void early_cpu_init(void); 185extern void identify_boot_cpu(void); 186extern void identify_secondary_cpu(struct cpuinfo_x86 *); 187extern void print_cpu_info(struct cpuinfo_x86 *); 188void print_cpu_msr(struct cpuinfo_x86 *); 189 190#ifdef CONFIG_X86_32 191extern int have_cpuid_p(void); 192#else 193static inline int have_cpuid_p(void) 194{ 195 return 1; 196} 197#endif 198static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, 199 unsigned int *ecx, unsigned int *edx) 200{ 201 /* ecx is often an input as well as an output. */ 202 asm volatile("cpuid" 203 : "=a" (*eax), 204 "=b" (*ebx), 205 "=c" (*ecx), 206 "=d" (*edx) 207 : "0" (*eax), "2" (*ecx) 208 : "memory"); 209} 210 211#define native_cpuid_reg(reg) \ 212static inline unsigned int native_cpuid_##reg(unsigned int op) \ 213{ \ 214 unsigned int eax = op, ebx, ecx = 0, edx; \ 215 \ 216 native_cpuid(&eax, &ebx, &ecx, &edx); \ 217 \ 218 return reg; \ 219} 220 221/* 222 * Native CPUID functions returning a single datum. 223 */ 224native_cpuid_reg(eax) 225native_cpuid_reg(ebx) 226native_cpuid_reg(ecx) 227native_cpuid_reg(edx) 228 229/* 230 * Friendlier CR3 helpers. 231 */ 232static inline unsigned long read_cr3_pa(void) 233{ 234 return __read_cr3() & CR3_ADDR_MASK; 235} 236 237static inline unsigned long native_read_cr3_pa(void) 238{ 239 return __native_read_cr3() & CR3_ADDR_MASK; 240} 241 242static inline void load_cr3(pgd_t *pgdir) 243{ 244 write_cr3(__sme_pa(pgdir)); 245} 246 247/* 248 * Note that while the legacy 'TSS' name comes from 'Task State Segment', 249 * on modern x86 CPUs the TSS also holds information important to 64-bit mode, 250 * unrelated to the task-switch mechanism: 251 */ 252#ifdef CONFIG_X86_32 253/* This is the TSS defined by the hardware. */ 254struct x86_hw_tss { 255 unsigned short back_link, __blh; 256 unsigned long sp0; 257 unsigned short ss0, __ss0h; 258 unsigned long sp1; 259 260 /* 261 * We don't use ring 1, so ss1 is a convenient scratch space in 262 * the same cacheline as sp0. We use ss1 to cache the value in 263 * MSR_IA32_SYSENTER_CS. When we context switch 264 * MSR_IA32_SYSENTER_CS, we first check if the new value being 265 * written matches ss1, and, if it's not, then we wrmsr the new 266 * value and update ss1. 267 * 268 * The only reason we context switch MSR_IA32_SYSENTER_CS is 269 * that we set it to zero in vm86 tasks to avoid corrupting the 270 * stack if we were to go through the sysenter path from vm86 271 * mode. 272 */ 273 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 274 275 unsigned short __ss1h; 276 unsigned long sp2; 277 unsigned short ss2, __ss2h; 278 unsigned long __cr3; 279 unsigned long ip; 280 unsigned long flags; 281 unsigned long ax; 282 unsigned long cx; 283 unsigned long dx; 284 unsigned long bx; 285 unsigned long sp; 286 unsigned long bp; 287 unsigned long si; 288 unsigned long di; 289 unsigned short es, __esh; 290 unsigned short cs, __csh; 291 unsigned short ss, __ssh; 292 unsigned short ds, __dsh; 293 unsigned short fs, __fsh; 294 unsigned short gs, __gsh; 295 unsigned short ldt, __ldth; 296 unsigned short trace; 297 unsigned short io_bitmap_base; 298 299} __attribute__((packed)); 300#else 301struct x86_hw_tss { 302 u32 reserved1; 303 u64 sp0; 304 305 /* 306 * We store cpu_current_top_of_stack in sp1 so it's always accessible. 307 * Linux does not use ring 1, so sp1 is not otherwise needed. 308 */ 309 u64 sp1; 310 311 u64 sp2; 312 u64 reserved2; 313 u64 ist[7]; 314 u32 reserved3; 315 u32 reserved4; 316 u16 reserved5; 317 u16 io_bitmap_base; 318 319} __attribute__((packed)); 320#endif 321 322/* 323 * IO-bitmap sizes: 324 */ 325#define IO_BITMAP_BITS 65536 326#define IO_BITMAP_BYTES (IO_BITMAP_BITS/8) 327#define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long)) 328#define IO_BITMAP_OFFSET (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss)) 329#define INVALID_IO_BITMAP_OFFSET 0x8000 330 331struct entry_stack { 332 unsigned long words[64]; 333}; 334 335struct entry_stack_page { 336 struct entry_stack stack; 337} __aligned(PAGE_SIZE); 338 339struct tss_struct { 340 /* 341 * The fixed hardware portion. This must not cross a page boundary 342 * at risk of violating the SDM's advice and potentially triggering 343 * errata. 344 */ 345 struct x86_hw_tss x86_tss; 346 347 /* 348 * The extra 1 is there because the CPU will access an 349 * additional byte beyond the end of the IO permission 350 * bitmap. The extra byte must be all 1 bits, and must 351 * be within the limit. 352 */ 353 unsigned long io_bitmap[IO_BITMAP_LONGS + 1]; 354} __aligned(PAGE_SIZE); 355 356DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); 357 358/* 359 * sizeof(unsigned long) coming from an extra "long" at the end 360 * of the iobitmap. 361 * 362 * -1? seg base+limit should be pointing to the address of the 363 * last valid byte 364 */ 365#define __KERNEL_TSS_LIMIT \ 366 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1) 367 368#ifdef CONFIG_X86_32 369DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); 370#else 371/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ 372#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 373#endif 374 375/* 376 * Save the original ist values for checking stack pointers during debugging 377 */ 378struct orig_ist { 379 unsigned long ist[7]; 380}; 381 382#ifdef CONFIG_X86_64 383DECLARE_PER_CPU(struct orig_ist, orig_ist); 384 385union irq_stack_union { 386 char irq_stack[IRQ_STACK_SIZE]; 387 /* 388 * GCC hardcodes the stack canary as %gs:40. Since the 389 * irq_stack is the object at %gs:0, we reserve the bottom 390 * 48 bytes of the irq stack for the canary. 391 */ 392 struct { 393 char gs_base[40]; 394 unsigned long stack_canary; 395 }; 396}; 397 398DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible; 399DECLARE_INIT_PER_CPU(irq_stack_union); 400 401static inline unsigned long cpu_kernelmode_gs_base(int cpu) 402{ 403 return (unsigned long)per_cpu(irq_stack_union.gs_base, cpu); 404} 405 406DECLARE_PER_CPU(char *, irq_stack_ptr); 407DECLARE_PER_CPU(unsigned int, irq_count); 408extern asmlinkage void ignore_sysret(void); 409 410#if IS_ENABLED(CONFIG_KVM) 411/* Save actual FS/GS selectors and bases to current->thread */ 412void save_fsgs_for_kvm(void); 413#endif 414#else /* X86_64 */ 415#ifdef CONFIG_STACKPROTECTOR 416/* 417 * Make sure stack canary segment base is cached-aligned: 418 * "For Intel Atom processors, avoid non zero segment base address 419 * that is not aligned to cache line boundary at all cost." 420 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) 421 */ 422struct stack_canary { 423 char __pad[20]; /* canary at %gs:20 */ 424 unsigned long canary; 425}; 426DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 427#endif 428/* 429 * per-CPU IRQ handling stacks 430 */ 431struct irq_stack { 432 u32 stack[THREAD_SIZE/sizeof(u32)]; 433} __aligned(THREAD_SIZE); 434 435DECLARE_PER_CPU(struct irq_stack *, hardirq_stack); 436DECLARE_PER_CPU(struct irq_stack *, softirq_stack); 437#endif /* X86_64 */ 438 439extern unsigned int fpu_kernel_xstate_size; 440extern unsigned int fpu_user_xstate_size; 441 442struct perf_event; 443 444typedef struct { 445 unsigned long seg; 446} mm_segment_t; 447 448struct thread_struct { 449 /* Cached TLS descriptors: */ 450 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 451#ifdef CONFIG_X86_32 452 unsigned long sp0; 453#endif 454 unsigned long sp; 455#ifdef CONFIG_X86_32 456 unsigned long sysenter_cs; 457#else 458 unsigned short es; 459 unsigned short ds; 460 unsigned short fsindex; 461 unsigned short gsindex; 462#endif 463 464#ifdef CONFIG_X86_64 465 unsigned long fsbase; 466 unsigned long gsbase; 467#else 468 /* 469 * XXX: this could presumably be unsigned short. Alternatively, 470 * 32-bit kernels could be taught to use fsindex instead. 471 */ 472 unsigned long fs; 473 unsigned long gs; 474#endif 475 476 /* Save middle states of ptrace breakpoints */ 477 struct perf_event *ptrace_bps[HBP_NUM]; 478 /* Debug status used for traps, single steps, etc... */ 479 unsigned long debugreg6; 480 /* Keep track of the exact dr7 value set by the user */ 481 unsigned long ptrace_dr7; 482 /* Fault info: */ 483 unsigned long cr2; 484 unsigned long trap_nr; 485 unsigned long error_code; 486#ifdef CONFIG_VM86 487 /* Virtual 86 mode info */ 488 struct vm86 *vm86; 489#endif 490 /* IO permissions: */ 491 unsigned long *io_bitmap_ptr; 492 unsigned long iopl; 493 /* Max allowed port in the bitmap, in bytes: */ 494 unsigned io_bitmap_max; 495 496 mm_segment_t addr_limit; 497 498 unsigned int sig_on_uaccess_err:1; 499 unsigned int uaccess_err:1; /* uaccess failed */ 500 501 /* Floating point and extended processor state */ 502 struct fpu fpu; 503 /* 504 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at 505 * the end. 506 */ 507}; 508 509/* Whitelist the FPU state from the task_struct for hardened usercopy. */ 510static inline void arch_thread_struct_whitelist(unsigned long *offset, 511 unsigned long *size) 512{ 513 *offset = offsetof(struct thread_struct, fpu.state); 514 *size = fpu_kernel_xstate_size; 515} 516 517/* 518 * Thread-synchronous status. 519 * 520 * This is different from the flags in that nobody else 521 * ever touches our thread-synchronous status, so we don't 522 * have to worry about atomic accesses. 523 */ 524#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ 525 526/* 527 * Set IOPL bits in EFLAGS from given mask 528 */ 529static inline void native_set_iopl_mask(unsigned mask) 530{ 531#ifdef CONFIG_X86_32 532 unsigned int reg; 533 534 asm volatile ("pushfl;" 535 "popl %0;" 536 "andl %1, %0;" 537 "orl %2, %0;" 538 "pushl %0;" 539 "popfl" 540 : "=&r" (reg) 541 : "i" (~X86_EFLAGS_IOPL), "r" (mask)); 542#endif 543} 544 545static inline void 546native_load_sp0(unsigned long sp0) 547{ 548 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 549} 550 551static inline void native_swapgs(void) 552{ 553#ifdef CONFIG_X86_64 554 asm volatile("swapgs" ::: "memory"); 555#endif 556} 557 558static inline unsigned long current_top_of_stack(void) 559{ 560 /* 561 * We can't read directly from tss.sp0: sp0 on x86_32 is special in 562 * and around vm86 mode and sp0 on x86_64 is special because of the 563 * entry trampoline. 564 */ 565 return this_cpu_read_stable(cpu_current_top_of_stack); 566} 567 568static inline bool on_thread_stack(void) 569{ 570 return (unsigned long)(current_top_of_stack() - 571 current_stack_pointer) < THREAD_SIZE; 572} 573 574#ifdef CONFIG_PARAVIRT 575#include <asm/paravirt.h> 576#else 577#define __cpuid native_cpuid 578 579static inline void load_sp0(unsigned long sp0) 580{ 581 native_load_sp0(sp0); 582} 583 584#define set_iopl_mask native_set_iopl_mask 585#endif /* CONFIG_PARAVIRT */ 586 587/* Free all resources held by a thread. */ 588extern void release_thread(struct task_struct *); 589 590unsigned long get_wchan(struct task_struct *p); 591 592/* 593 * Generic CPUID function 594 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx 595 * resulting in stale register contents being returned. 596 */ 597static inline void cpuid(unsigned int op, 598 unsigned int *eax, unsigned int *ebx, 599 unsigned int *ecx, unsigned int *edx) 600{ 601 *eax = op; 602 *ecx = 0; 603 __cpuid(eax, ebx, ecx, edx); 604} 605 606/* Some CPUID calls want 'count' to be placed in ecx */ 607static inline void cpuid_count(unsigned int op, int count, 608 unsigned int *eax, unsigned int *ebx, 609 unsigned int *ecx, unsigned int *edx) 610{ 611 *eax = op; 612 *ecx = count; 613 __cpuid(eax, ebx, ecx, edx); 614} 615 616/* 617 * CPUID functions returning a single datum 618 */ 619static inline unsigned int cpuid_eax(unsigned int op) 620{ 621 unsigned int eax, ebx, ecx, edx; 622 623 cpuid(op, &eax, &ebx, &ecx, &edx); 624 625 return eax; 626} 627 628static inline unsigned int cpuid_ebx(unsigned int op) 629{ 630 unsigned int eax, ebx, ecx, edx; 631 632 cpuid(op, &eax, &ebx, &ecx, &edx); 633 634 return ebx; 635} 636 637static inline unsigned int cpuid_ecx(unsigned int op) 638{ 639 unsigned int eax, ebx, ecx, edx; 640 641 cpuid(op, &eax, &ebx, &ecx, &edx); 642 643 return ecx; 644} 645 646static inline unsigned int cpuid_edx(unsigned int op) 647{ 648 unsigned int eax, ebx, ecx, edx; 649 650 cpuid(op, &eax, &ebx, &ecx, &edx); 651 652 return edx; 653} 654 655/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ 656static __always_inline void rep_nop(void) 657{ 658 asm volatile("rep; nop" ::: "memory"); 659} 660 661static __always_inline void cpu_relax(void) 662{ 663 rep_nop(); 664} 665 666/* 667 * This function forces the icache and prefetched instruction stream to 668 * catch up with reality in two very specific cases: 669 * 670 * a) Text was modified using one virtual address and is about to be executed 671 * from the same physical page at a different virtual address. 672 * 673 * b) Text was modified on a different CPU, may subsequently be 674 * executed on this CPU, and you want to make sure the new version 675 * gets executed. This generally means you're calling this in a IPI. 676 * 677 * If you're calling this for a different reason, you're probably doing 678 * it wrong. 679 */ 680static inline void sync_core(void) 681{ 682 /* 683 * There are quite a few ways to do this. IRET-to-self is nice 684 * because it works on every CPU, at any CPL (so it's compatible 685 * with paravirtualization), and it never exits to a hypervisor. 686 * The only down sides are that it's a bit slow (it seems to be 687 * a bit more than 2x slower than the fastest options) and that 688 * it unmasks NMIs. The "push %cs" is needed because, in 689 * paravirtual environments, __KERNEL_CS may not be a valid CS 690 * value when we do IRET directly. 691 * 692 * In case NMI unmasking or performance ever becomes a problem, 693 * the next best option appears to be MOV-to-CR2 and an 694 * unconditional jump. That sequence also works on all CPUs, 695 * but it will fault at CPL3 (i.e. Xen PV). 696 * 697 * CPUID is the conventional way, but it's nasty: it doesn't 698 * exist on some 486-like CPUs, and it usually exits to a 699 * hypervisor. 700 * 701 * Like all of Linux's memory ordering operations, this is a 702 * compiler barrier as well. 703 */ 704#ifdef CONFIG_X86_32 705 asm volatile ( 706 "pushfl\n\t" 707 "pushl %%cs\n\t" 708 "pushl $1f\n\t" 709 "iret\n\t" 710 "1:" 711 : ASM_CALL_CONSTRAINT : : "memory"); 712#else 713 unsigned int tmp; 714 715 asm volatile ( 716 UNWIND_HINT_SAVE 717 "mov %%ss, %0\n\t" 718 "pushq %q0\n\t" 719 "pushq %%rsp\n\t" 720 "addq $8, (%%rsp)\n\t" 721 "pushfq\n\t" 722 "mov %%cs, %0\n\t" 723 "pushq %q0\n\t" 724 "pushq $1f\n\t" 725 "iretq\n\t" 726 UNWIND_HINT_RESTORE 727 "1:" 728 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory"); 729#endif 730} 731 732extern void select_idle_routine(const struct cpuinfo_x86 *c); 733extern void amd_e400_c1e_apic_setup(void); 734 735extern unsigned long boot_option_idle_override; 736 737enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 738 IDLE_POLL}; 739 740extern void enable_sep_cpu(void); 741extern int sysenter_setup(void); 742 743void early_trap_pf_init(void); 744 745/* Defined in head.S */ 746extern struct desc_ptr early_gdt_descr; 747 748extern void switch_to_new_gdt(int); 749extern void load_direct_gdt(int); 750extern void load_fixmap_gdt(int); 751extern void load_percpu_segment(int); 752extern void cpu_init(void); 753 754static inline unsigned long get_debugctlmsr(void) 755{ 756 unsigned long debugctlmsr = 0; 757 758#ifndef CONFIG_X86_DEBUGCTLMSR 759 if (boot_cpu_data.x86 < 6) 760 return 0; 761#endif 762 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 763 764 return debugctlmsr; 765} 766 767static inline void update_debugctlmsr(unsigned long debugctlmsr) 768{ 769#ifndef CONFIG_X86_DEBUGCTLMSR 770 if (boot_cpu_data.x86 < 6) 771 return; 772#endif 773 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 774} 775 776extern void set_task_blockstep(struct task_struct *task, bool on); 777 778/* Boot loader type from the setup header: */ 779extern int bootloader_type; 780extern int bootloader_version; 781 782extern char ignore_fpu_irq; 783 784#define HAVE_ARCH_PICK_MMAP_LAYOUT 1 785#define ARCH_HAS_PREFETCHW 786#define ARCH_HAS_SPINLOCK_PREFETCH 787 788#ifdef CONFIG_X86_32 789# define BASE_PREFETCH "" 790# define ARCH_HAS_PREFETCH 791#else 792# define BASE_PREFETCH "prefetcht0 %P1" 793#endif 794 795/* 796 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 797 * 798 * It's not worth to care about 3dnow prefetches for the K6 799 * because they are microcoded there and very slow. 800 */ 801static inline void prefetch(const void *x) 802{ 803 alternative_input(BASE_PREFETCH, "prefetchnta %P1", 804 X86_FEATURE_XMM, 805 "m" (*(const char *)x)); 806} 807 808/* 809 * 3dnow prefetch to get an exclusive cache line. 810 * Useful for spinlocks to avoid one state transition in the 811 * cache coherency protocol: 812 */ 813static inline void prefetchw(const void *x) 814{ 815 alternative_input(BASE_PREFETCH, "prefetchw %P1", 816 X86_FEATURE_3DNOWPREFETCH, 817 "m" (*(const char *)x)); 818} 819 820static inline void spin_lock_prefetch(const void *x) 821{ 822 prefetchw(x); 823} 824 825#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 826 TOP_OF_KERNEL_STACK_PADDING) 827 828#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) 829 830#define task_pt_regs(task) \ 831({ \ 832 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 833 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 834 ((struct pt_regs *)__ptr) - 1; \ 835}) 836 837#ifdef CONFIG_X86_32 838/* 839 * User space process size: 3GB (default). 840 */ 841#define IA32_PAGE_OFFSET PAGE_OFFSET 842#define TASK_SIZE PAGE_OFFSET 843#define TASK_SIZE_LOW TASK_SIZE 844#define TASK_SIZE_MAX TASK_SIZE 845#define DEFAULT_MAP_WINDOW TASK_SIZE 846#define STACK_TOP TASK_SIZE 847#define STACK_TOP_MAX STACK_TOP 848 849#define INIT_THREAD { \ 850 .sp0 = TOP_OF_INIT_STACK, \ 851 .sysenter_cs = __KERNEL_CS, \ 852 .io_bitmap_ptr = NULL, \ 853 .addr_limit = KERNEL_DS, \ 854} 855 856#define KSTK_ESP(task) (task_pt_regs(task)->sp) 857 858#else 859/* 860 * User space process size. This is the first address outside the user range. 861 * There are a few constraints that determine this: 862 * 863 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical 864 * address, then that syscall will enter the kernel with a 865 * non-canonical return address, and SYSRET will explode dangerously. 866 * We avoid this particular problem by preventing anything executable 867 * from being mapped at the maximum canonical address. 868 * 869 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the 870 * CPUs malfunction if they execute code from the highest canonical page. 871 * They'll speculate right off the end of the canonical space, and 872 * bad things happen. This is worked around in the same way as the 873 * Intel problem. 874 * 875 * With page table isolation enabled, we map the LDT in ... [stay tuned] 876 */ 877#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE) 878 879#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE) 880 881/* This decides where the kernel will search for a free chunk of vm 882 * space during mmap's. 883 */ 884#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \ 885 0xc0000000 : 0xFFFFe000) 886 887#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \ 888 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW) 889#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \ 890 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 891#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ 892 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 893 894#define STACK_TOP TASK_SIZE_LOW 895#define STACK_TOP_MAX TASK_SIZE_MAX 896 897#define INIT_THREAD { \ 898 .addr_limit = KERNEL_DS, \ 899} 900 901extern unsigned long KSTK_ESP(struct task_struct *task); 902 903#endif /* CONFIG_X86_64 */ 904 905extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 906 unsigned long new_sp); 907 908/* 909 * This decides where the kernel will search for a free chunk of vm 910 * space during mmap's. 911 */ 912#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) 913#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) 914 915#define KSTK_EIP(task) (task_pt_regs(task)->ip) 916 917/* Get/set a process' ability to use the timestamp counter instruction */ 918#define GET_TSC_CTL(adr) get_tsc_mode((adr)) 919#define SET_TSC_CTL(val) set_tsc_mode((val)) 920 921extern int get_tsc_mode(unsigned long adr); 922extern int set_tsc_mode(unsigned int val); 923 924DECLARE_PER_CPU(u64, msr_misc_features_shadow); 925 926/* Register/unregister a process' MPX related resource */ 927#define MPX_ENABLE_MANAGEMENT() mpx_enable_management() 928#define MPX_DISABLE_MANAGEMENT() mpx_disable_management() 929 930#ifdef CONFIG_X86_INTEL_MPX 931extern int mpx_enable_management(void); 932extern int mpx_disable_management(void); 933#else 934static inline int mpx_enable_management(void) 935{ 936 return -EINVAL; 937} 938static inline int mpx_disable_management(void) 939{ 940 return -EINVAL; 941} 942#endif /* CONFIG_X86_INTEL_MPX */ 943 944#ifdef CONFIG_CPU_SUP_AMD 945extern u16 amd_get_nb_id(int cpu); 946extern u32 amd_get_nodes_per_socket(void); 947#else 948static inline u16 amd_get_nb_id(int cpu) { return 0; } 949static inline u32 amd_get_nodes_per_socket(void) { return 0; } 950#endif 951 952static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) 953{ 954 uint32_t base, eax, signature[3]; 955 956 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 957 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); 958 959 if (!memcmp(sig, signature, 12) && 960 (leaves == 0 || ((eax - base) >= leaves))) 961 return base; 962 } 963 964 return 0; 965} 966 967extern unsigned long arch_align_stack(unsigned long sp); 968extern void free_init_pages(char *what, unsigned long begin, unsigned long end); 969 970void default_idle(void); 971#ifdef CONFIG_XEN 972bool xen_set_default_idle(void); 973#else 974#define xen_set_default_idle 0 975#endif 976 977void stop_this_cpu(void *dummy); 978void df_debug(struct pt_regs *regs, long error_code); 979void microcode_check(void); 980#endif /* _ASM_X86_PROCESSOR_H */