Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PROCESSOR_H
3#define _ASM_X86_PROCESSOR_H
4
5#include <asm/processor-flags.h>
6
7/* Forward declaration, a strange C thing */
8struct task_struct;
9struct mm_struct;
10struct vm86;
11
12#include <asm/math_emu.h>
13#include <asm/segment.h>
14#include <asm/types.h>
15#include <uapi/asm/sigcontext.h>
16#include <asm/current.h>
17#include <asm/cpufeatures.h>
18#include <asm/page.h>
19#include <asm/pgtable_types.h>
20#include <asm/percpu.h>
21#include <asm/msr.h>
22#include <asm/desc_defs.h>
23#include <asm/nops.h>
24#include <asm/special_insns.h>
25#include <asm/fpu/types.h>
26#include <asm/unwind_hints.h>
27
28#include <linux/personality.h>
29#include <linux/cache.h>
30#include <linux/threads.h>
31#include <linux/math64.h>
32#include <linux/err.h>
33#include <linux/irqflags.h>
34#include <linux/mem_encrypt.h>
35
36/*
37 * We handle most unaligned accesses in hardware. On the other hand
38 * unaligned DMA can be quite expensive on some Nehalem processors.
39 *
40 * Based on this we disable the IP header alignment in network drivers.
41 */
42#define NET_IP_ALIGN 0
43
44#define HBP_NUM 4
45/*
46 * Default implementation of macro that returns current
47 * instruction pointer ("program counter").
48 */
49static inline void *current_text_addr(void)
50{
51 void *pc;
52
53 asm volatile("mov $1f, %0; 1:":"=r" (pc));
54
55 return pc;
56}
57
58/*
59 * These alignment constraints are for performance in the vSMP case,
60 * but in the task_struct case we must also meet hardware imposed
61 * alignment requirements of the FPU state:
62 */
63#ifdef CONFIG_X86_VSMP
64# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
65# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
66#else
67# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
68# define ARCH_MIN_MMSTRUCT_ALIGN 0
69#endif
70
71enum tlb_infos {
72 ENTRIES,
73 NR_INFO
74};
75
76extern u16 __read_mostly tlb_lli_4k[NR_INFO];
77extern u16 __read_mostly tlb_lli_2m[NR_INFO];
78extern u16 __read_mostly tlb_lli_4m[NR_INFO];
79extern u16 __read_mostly tlb_lld_4k[NR_INFO];
80extern u16 __read_mostly tlb_lld_2m[NR_INFO];
81extern u16 __read_mostly tlb_lld_4m[NR_INFO];
82extern u16 __read_mostly tlb_lld_1g[NR_INFO];
83
84/*
85 * CPU type and hardware bug flags. Kept separately for each CPU.
86 * Members of this structure are referenced in head_32.S, so think twice
87 * before touching them. [mj]
88 */
89
90struct cpuinfo_x86 {
91 __u8 x86; /* CPU family */
92 __u8 x86_vendor; /* CPU vendor */
93 __u8 x86_model;
94 __u8 x86_stepping;
95#ifdef CONFIG_X86_64
96 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
97 int x86_tlbsize;
98#endif
99 __u8 x86_virt_bits;
100 __u8 x86_phys_bits;
101 /* CPUID returned core id bits: */
102 __u8 x86_coreid_bits;
103 __u8 cu_id;
104 /* Max extended CPUID function supported: */
105 __u32 extended_cpuid_level;
106 /* Maximum supported CPUID level, -1=no CPUID: */
107 int cpuid_level;
108 __u32 x86_capability[NCAPINTS + NBUGINTS];
109 char x86_vendor_id[16];
110 char x86_model_id[64];
111 /* in KB - valid for CPUS which support this call: */
112 unsigned int x86_cache_size;
113 int x86_cache_alignment; /* In bytes */
114 /* Cache QoS architectural values: */
115 int x86_cache_max_rmid; /* max index */
116 int x86_cache_occ_scale; /* scale to bytes */
117 int x86_power;
118 unsigned long loops_per_jiffy;
119 /* cpuid returned max cores value: */
120 u16 x86_max_cores;
121 u16 apicid;
122 u16 initial_apicid;
123 u16 x86_clflush_size;
124 /* number of cores as seen by the OS: */
125 u16 booted_cores;
126 /* Physical processor id: */
127 u16 phys_proc_id;
128 /* Logical processor id: */
129 u16 logical_proc_id;
130 /* Core id: */
131 u16 cpu_core_id;
132 /* Index into per_cpu list: */
133 u16 cpu_index;
134 u32 microcode;
135 unsigned initialized : 1;
136} __randomize_layout;
137
138struct cpuid_regs {
139 u32 eax, ebx, ecx, edx;
140};
141
142enum cpuid_regs_idx {
143 CPUID_EAX = 0,
144 CPUID_EBX,
145 CPUID_ECX,
146 CPUID_EDX,
147};
148
149#define X86_VENDOR_INTEL 0
150#define X86_VENDOR_CYRIX 1
151#define X86_VENDOR_AMD 2
152#define X86_VENDOR_UMC 3
153#define X86_VENDOR_CENTAUR 5
154#define X86_VENDOR_TRANSMETA 7
155#define X86_VENDOR_NSC 8
156#define X86_VENDOR_NUM 9
157
158#define X86_VENDOR_UNKNOWN 0xff
159
160/*
161 * capabilities of CPUs
162 */
163extern struct cpuinfo_x86 boot_cpu_data;
164extern struct cpuinfo_x86 new_cpu_data;
165
166extern struct x86_hw_tss doublefault_tss;
167extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
168extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
169
170#ifdef CONFIG_SMP
171DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
172#define cpu_data(cpu) per_cpu(cpu_info, cpu)
173#else
174#define cpu_info boot_cpu_data
175#define cpu_data(cpu) boot_cpu_data
176#endif
177
178extern const struct seq_operations cpuinfo_op;
179
180#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
181
182extern void cpu_detect(struct cpuinfo_x86 *c);
183
184extern void early_cpu_init(void);
185extern void identify_boot_cpu(void);
186extern void identify_secondary_cpu(struct cpuinfo_x86 *);
187extern void print_cpu_info(struct cpuinfo_x86 *);
188void print_cpu_msr(struct cpuinfo_x86 *);
189
190#ifdef CONFIG_X86_32
191extern int have_cpuid_p(void);
192#else
193static inline int have_cpuid_p(void)
194{
195 return 1;
196}
197#endif
198static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
199 unsigned int *ecx, unsigned int *edx)
200{
201 /* ecx is often an input as well as an output. */
202 asm volatile("cpuid"
203 : "=a" (*eax),
204 "=b" (*ebx),
205 "=c" (*ecx),
206 "=d" (*edx)
207 : "0" (*eax), "2" (*ecx)
208 : "memory");
209}
210
211#define native_cpuid_reg(reg) \
212static inline unsigned int native_cpuid_##reg(unsigned int op) \
213{ \
214 unsigned int eax = op, ebx, ecx = 0, edx; \
215 \
216 native_cpuid(&eax, &ebx, &ecx, &edx); \
217 \
218 return reg; \
219}
220
221/*
222 * Native CPUID functions returning a single datum.
223 */
224native_cpuid_reg(eax)
225native_cpuid_reg(ebx)
226native_cpuid_reg(ecx)
227native_cpuid_reg(edx)
228
229/*
230 * Friendlier CR3 helpers.
231 */
232static inline unsigned long read_cr3_pa(void)
233{
234 return __read_cr3() & CR3_ADDR_MASK;
235}
236
237static inline unsigned long native_read_cr3_pa(void)
238{
239 return __native_read_cr3() & CR3_ADDR_MASK;
240}
241
242static inline void load_cr3(pgd_t *pgdir)
243{
244 write_cr3(__sme_pa(pgdir));
245}
246
247/*
248 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
249 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
250 * unrelated to the task-switch mechanism:
251 */
252#ifdef CONFIG_X86_32
253/* This is the TSS defined by the hardware. */
254struct x86_hw_tss {
255 unsigned short back_link, __blh;
256 unsigned long sp0;
257 unsigned short ss0, __ss0h;
258 unsigned long sp1;
259
260 /*
261 * We don't use ring 1, so ss1 is a convenient scratch space in
262 * the same cacheline as sp0. We use ss1 to cache the value in
263 * MSR_IA32_SYSENTER_CS. When we context switch
264 * MSR_IA32_SYSENTER_CS, we first check if the new value being
265 * written matches ss1, and, if it's not, then we wrmsr the new
266 * value and update ss1.
267 *
268 * The only reason we context switch MSR_IA32_SYSENTER_CS is
269 * that we set it to zero in vm86 tasks to avoid corrupting the
270 * stack if we were to go through the sysenter path from vm86
271 * mode.
272 */
273 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
274
275 unsigned short __ss1h;
276 unsigned long sp2;
277 unsigned short ss2, __ss2h;
278 unsigned long __cr3;
279 unsigned long ip;
280 unsigned long flags;
281 unsigned long ax;
282 unsigned long cx;
283 unsigned long dx;
284 unsigned long bx;
285 unsigned long sp;
286 unsigned long bp;
287 unsigned long si;
288 unsigned long di;
289 unsigned short es, __esh;
290 unsigned short cs, __csh;
291 unsigned short ss, __ssh;
292 unsigned short ds, __dsh;
293 unsigned short fs, __fsh;
294 unsigned short gs, __gsh;
295 unsigned short ldt, __ldth;
296 unsigned short trace;
297 unsigned short io_bitmap_base;
298
299} __attribute__((packed));
300#else
301struct x86_hw_tss {
302 u32 reserved1;
303 u64 sp0;
304
305 /*
306 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
307 * Linux does not use ring 1, so sp1 is not otherwise needed.
308 */
309 u64 sp1;
310
311 u64 sp2;
312 u64 reserved2;
313 u64 ist[7];
314 u32 reserved3;
315 u32 reserved4;
316 u16 reserved5;
317 u16 io_bitmap_base;
318
319} __attribute__((packed));
320#endif
321
322/*
323 * IO-bitmap sizes:
324 */
325#define IO_BITMAP_BITS 65536
326#define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
327#define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
328#define IO_BITMAP_OFFSET (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
329#define INVALID_IO_BITMAP_OFFSET 0x8000
330
331struct entry_stack {
332 unsigned long words[64];
333};
334
335struct entry_stack_page {
336 struct entry_stack stack;
337} __aligned(PAGE_SIZE);
338
339struct tss_struct {
340 /*
341 * The fixed hardware portion. This must not cross a page boundary
342 * at risk of violating the SDM's advice and potentially triggering
343 * errata.
344 */
345 struct x86_hw_tss x86_tss;
346
347 /*
348 * The extra 1 is there because the CPU will access an
349 * additional byte beyond the end of the IO permission
350 * bitmap. The extra byte must be all 1 bits, and must
351 * be within the limit.
352 */
353 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
354} __aligned(PAGE_SIZE);
355
356DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
357
358/*
359 * sizeof(unsigned long) coming from an extra "long" at the end
360 * of the iobitmap.
361 *
362 * -1? seg base+limit should be pointing to the address of the
363 * last valid byte
364 */
365#define __KERNEL_TSS_LIMIT \
366 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
367
368#ifdef CONFIG_X86_32
369DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
370#else
371/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
372#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
373#endif
374
375/*
376 * Save the original ist values for checking stack pointers during debugging
377 */
378struct orig_ist {
379 unsigned long ist[7];
380};
381
382#ifdef CONFIG_X86_64
383DECLARE_PER_CPU(struct orig_ist, orig_ist);
384
385union irq_stack_union {
386 char irq_stack[IRQ_STACK_SIZE];
387 /*
388 * GCC hardcodes the stack canary as %gs:40. Since the
389 * irq_stack is the object at %gs:0, we reserve the bottom
390 * 48 bytes of the irq stack for the canary.
391 */
392 struct {
393 char gs_base[40];
394 unsigned long stack_canary;
395 };
396};
397
398DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
399DECLARE_INIT_PER_CPU(irq_stack_union);
400
401static inline unsigned long cpu_kernelmode_gs_base(int cpu)
402{
403 return (unsigned long)per_cpu(irq_stack_union.gs_base, cpu);
404}
405
406DECLARE_PER_CPU(char *, irq_stack_ptr);
407DECLARE_PER_CPU(unsigned int, irq_count);
408extern asmlinkage void ignore_sysret(void);
409
410#if IS_ENABLED(CONFIG_KVM)
411/* Save actual FS/GS selectors and bases to current->thread */
412void save_fsgs_for_kvm(void);
413#endif
414#else /* X86_64 */
415#ifdef CONFIG_STACKPROTECTOR
416/*
417 * Make sure stack canary segment base is cached-aligned:
418 * "For Intel Atom processors, avoid non zero segment base address
419 * that is not aligned to cache line boundary at all cost."
420 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
421 */
422struct stack_canary {
423 char __pad[20]; /* canary at %gs:20 */
424 unsigned long canary;
425};
426DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
427#endif
428/*
429 * per-CPU IRQ handling stacks
430 */
431struct irq_stack {
432 u32 stack[THREAD_SIZE/sizeof(u32)];
433} __aligned(THREAD_SIZE);
434
435DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
436DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
437#endif /* X86_64 */
438
439extern unsigned int fpu_kernel_xstate_size;
440extern unsigned int fpu_user_xstate_size;
441
442struct perf_event;
443
444typedef struct {
445 unsigned long seg;
446} mm_segment_t;
447
448struct thread_struct {
449 /* Cached TLS descriptors: */
450 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
451#ifdef CONFIG_X86_32
452 unsigned long sp0;
453#endif
454 unsigned long sp;
455#ifdef CONFIG_X86_32
456 unsigned long sysenter_cs;
457#else
458 unsigned short es;
459 unsigned short ds;
460 unsigned short fsindex;
461 unsigned short gsindex;
462#endif
463
464#ifdef CONFIG_X86_64
465 unsigned long fsbase;
466 unsigned long gsbase;
467#else
468 /*
469 * XXX: this could presumably be unsigned short. Alternatively,
470 * 32-bit kernels could be taught to use fsindex instead.
471 */
472 unsigned long fs;
473 unsigned long gs;
474#endif
475
476 /* Save middle states of ptrace breakpoints */
477 struct perf_event *ptrace_bps[HBP_NUM];
478 /* Debug status used for traps, single steps, etc... */
479 unsigned long debugreg6;
480 /* Keep track of the exact dr7 value set by the user */
481 unsigned long ptrace_dr7;
482 /* Fault info: */
483 unsigned long cr2;
484 unsigned long trap_nr;
485 unsigned long error_code;
486#ifdef CONFIG_VM86
487 /* Virtual 86 mode info */
488 struct vm86 *vm86;
489#endif
490 /* IO permissions: */
491 unsigned long *io_bitmap_ptr;
492 unsigned long iopl;
493 /* Max allowed port in the bitmap, in bytes: */
494 unsigned io_bitmap_max;
495
496 mm_segment_t addr_limit;
497
498 unsigned int sig_on_uaccess_err:1;
499 unsigned int uaccess_err:1; /* uaccess failed */
500
501 /* Floating point and extended processor state */
502 struct fpu fpu;
503 /*
504 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
505 * the end.
506 */
507};
508
509/* Whitelist the FPU state from the task_struct for hardened usercopy. */
510static inline void arch_thread_struct_whitelist(unsigned long *offset,
511 unsigned long *size)
512{
513 *offset = offsetof(struct thread_struct, fpu.state);
514 *size = fpu_kernel_xstate_size;
515}
516
517/*
518 * Thread-synchronous status.
519 *
520 * This is different from the flags in that nobody else
521 * ever touches our thread-synchronous status, so we don't
522 * have to worry about atomic accesses.
523 */
524#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
525
526/*
527 * Set IOPL bits in EFLAGS from given mask
528 */
529static inline void native_set_iopl_mask(unsigned mask)
530{
531#ifdef CONFIG_X86_32
532 unsigned int reg;
533
534 asm volatile ("pushfl;"
535 "popl %0;"
536 "andl %1, %0;"
537 "orl %2, %0;"
538 "pushl %0;"
539 "popfl"
540 : "=&r" (reg)
541 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
542#endif
543}
544
545static inline void
546native_load_sp0(unsigned long sp0)
547{
548 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
549}
550
551static inline void native_swapgs(void)
552{
553#ifdef CONFIG_X86_64
554 asm volatile("swapgs" ::: "memory");
555#endif
556}
557
558static inline unsigned long current_top_of_stack(void)
559{
560 /*
561 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
562 * and around vm86 mode and sp0 on x86_64 is special because of the
563 * entry trampoline.
564 */
565 return this_cpu_read_stable(cpu_current_top_of_stack);
566}
567
568static inline bool on_thread_stack(void)
569{
570 return (unsigned long)(current_top_of_stack() -
571 current_stack_pointer) < THREAD_SIZE;
572}
573
574#ifdef CONFIG_PARAVIRT
575#include <asm/paravirt.h>
576#else
577#define __cpuid native_cpuid
578
579static inline void load_sp0(unsigned long sp0)
580{
581 native_load_sp0(sp0);
582}
583
584#define set_iopl_mask native_set_iopl_mask
585#endif /* CONFIG_PARAVIRT */
586
587/* Free all resources held by a thread. */
588extern void release_thread(struct task_struct *);
589
590unsigned long get_wchan(struct task_struct *p);
591
592/*
593 * Generic CPUID function
594 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
595 * resulting in stale register contents being returned.
596 */
597static inline void cpuid(unsigned int op,
598 unsigned int *eax, unsigned int *ebx,
599 unsigned int *ecx, unsigned int *edx)
600{
601 *eax = op;
602 *ecx = 0;
603 __cpuid(eax, ebx, ecx, edx);
604}
605
606/* Some CPUID calls want 'count' to be placed in ecx */
607static inline void cpuid_count(unsigned int op, int count,
608 unsigned int *eax, unsigned int *ebx,
609 unsigned int *ecx, unsigned int *edx)
610{
611 *eax = op;
612 *ecx = count;
613 __cpuid(eax, ebx, ecx, edx);
614}
615
616/*
617 * CPUID functions returning a single datum
618 */
619static inline unsigned int cpuid_eax(unsigned int op)
620{
621 unsigned int eax, ebx, ecx, edx;
622
623 cpuid(op, &eax, &ebx, &ecx, &edx);
624
625 return eax;
626}
627
628static inline unsigned int cpuid_ebx(unsigned int op)
629{
630 unsigned int eax, ebx, ecx, edx;
631
632 cpuid(op, &eax, &ebx, &ecx, &edx);
633
634 return ebx;
635}
636
637static inline unsigned int cpuid_ecx(unsigned int op)
638{
639 unsigned int eax, ebx, ecx, edx;
640
641 cpuid(op, &eax, &ebx, &ecx, &edx);
642
643 return ecx;
644}
645
646static inline unsigned int cpuid_edx(unsigned int op)
647{
648 unsigned int eax, ebx, ecx, edx;
649
650 cpuid(op, &eax, &ebx, &ecx, &edx);
651
652 return edx;
653}
654
655/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
656static __always_inline void rep_nop(void)
657{
658 asm volatile("rep; nop" ::: "memory");
659}
660
661static __always_inline void cpu_relax(void)
662{
663 rep_nop();
664}
665
666/*
667 * This function forces the icache and prefetched instruction stream to
668 * catch up with reality in two very specific cases:
669 *
670 * a) Text was modified using one virtual address and is about to be executed
671 * from the same physical page at a different virtual address.
672 *
673 * b) Text was modified on a different CPU, may subsequently be
674 * executed on this CPU, and you want to make sure the new version
675 * gets executed. This generally means you're calling this in a IPI.
676 *
677 * If you're calling this for a different reason, you're probably doing
678 * it wrong.
679 */
680static inline void sync_core(void)
681{
682 /*
683 * There are quite a few ways to do this. IRET-to-self is nice
684 * because it works on every CPU, at any CPL (so it's compatible
685 * with paravirtualization), and it never exits to a hypervisor.
686 * The only down sides are that it's a bit slow (it seems to be
687 * a bit more than 2x slower than the fastest options) and that
688 * it unmasks NMIs. The "push %cs" is needed because, in
689 * paravirtual environments, __KERNEL_CS may not be a valid CS
690 * value when we do IRET directly.
691 *
692 * In case NMI unmasking or performance ever becomes a problem,
693 * the next best option appears to be MOV-to-CR2 and an
694 * unconditional jump. That sequence also works on all CPUs,
695 * but it will fault at CPL3 (i.e. Xen PV).
696 *
697 * CPUID is the conventional way, but it's nasty: it doesn't
698 * exist on some 486-like CPUs, and it usually exits to a
699 * hypervisor.
700 *
701 * Like all of Linux's memory ordering operations, this is a
702 * compiler barrier as well.
703 */
704#ifdef CONFIG_X86_32
705 asm volatile (
706 "pushfl\n\t"
707 "pushl %%cs\n\t"
708 "pushl $1f\n\t"
709 "iret\n\t"
710 "1:"
711 : ASM_CALL_CONSTRAINT : : "memory");
712#else
713 unsigned int tmp;
714
715 asm volatile (
716 UNWIND_HINT_SAVE
717 "mov %%ss, %0\n\t"
718 "pushq %q0\n\t"
719 "pushq %%rsp\n\t"
720 "addq $8, (%%rsp)\n\t"
721 "pushfq\n\t"
722 "mov %%cs, %0\n\t"
723 "pushq %q0\n\t"
724 "pushq $1f\n\t"
725 "iretq\n\t"
726 UNWIND_HINT_RESTORE
727 "1:"
728 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
729#endif
730}
731
732extern void select_idle_routine(const struct cpuinfo_x86 *c);
733extern void amd_e400_c1e_apic_setup(void);
734
735extern unsigned long boot_option_idle_override;
736
737enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
738 IDLE_POLL};
739
740extern void enable_sep_cpu(void);
741extern int sysenter_setup(void);
742
743void early_trap_pf_init(void);
744
745/* Defined in head.S */
746extern struct desc_ptr early_gdt_descr;
747
748extern void switch_to_new_gdt(int);
749extern void load_direct_gdt(int);
750extern void load_fixmap_gdt(int);
751extern void load_percpu_segment(int);
752extern void cpu_init(void);
753
754static inline unsigned long get_debugctlmsr(void)
755{
756 unsigned long debugctlmsr = 0;
757
758#ifndef CONFIG_X86_DEBUGCTLMSR
759 if (boot_cpu_data.x86 < 6)
760 return 0;
761#endif
762 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
763
764 return debugctlmsr;
765}
766
767static inline void update_debugctlmsr(unsigned long debugctlmsr)
768{
769#ifndef CONFIG_X86_DEBUGCTLMSR
770 if (boot_cpu_data.x86 < 6)
771 return;
772#endif
773 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
774}
775
776extern void set_task_blockstep(struct task_struct *task, bool on);
777
778/* Boot loader type from the setup header: */
779extern int bootloader_type;
780extern int bootloader_version;
781
782extern char ignore_fpu_irq;
783
784#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
785#define ARCH_HAS_PREFETCHW
786#define ARCH_HAS_SPINLOCK_PREFETCH
787
788#ifdef CONFIG_X86_32
789# define BASE_PREFETCH ""
790# define ARCH_HAS_PREFETCH
791#else
792# define BASE_PREFETCH "prefetcht0 %P1"
793#endif
794
795/*
796 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
797 *
798 * It's not worth to care about 3dnow prefetches for the K6
799 * because they are microcoded there and very slow.
800 */
801static inline void prefetch(const void *x)
802{
803 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
804 X86_FEATURE_XMM,
805 "m" (*(const char *)x));
806}
807
808/*
809 * 3dnow prefetch to get an exclusive cache line.
810 * Useful for spinlocks to avoid one state transition in the
811 * cache coherency protocol:
812 */
813static inline void prefetchw(const void *x)
814{
815 alternative_input(BASE_PREFETCH, "prefetchw %P1",
816 X86_FEATURE_3DNOWPREFETCH,
817 "m" (*(const char *)x));
818}
819
820static inline void spin_lock_prefetch(const void *x)
821{
822 prefetchw(x);
823}
824
825#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
826 TOP_OF_KERNEL_STACK_PADDING)
827
828#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
829
830#define task_pt_regs(task) \
831({ \
832 unsigned long __ptr = (unsigned long)task_stack_page(task); \
833 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
834 ((struct pt_regs *)__ptr) - 1; \
835})
836
837#ifdef CONFIG_X86_32
838/*
839 * User space process size: 3GB (default).
840 */
841#define IA32_PAGE_OFFSET PAGE_OFFSET
842#define TASK_SIZE PAGE_OFFSET
843#define TASK_SIZE_LOW TASK_SIZE
844#define TASK_SIZE_MAX TASK_SIZE
845#define DEFAULT_MAP_WINDOW TASK_SIZE
846#define STACK_TOP TASK_SIZE
847#define STACK_TOP_MAX STACK_TOP
848
849#define INIT_THREAD { \
850 .sp0 = TOP_OF_INIT_STACK, \
851 .sysenter_cs = __KERNEL_CS, \
852 .io_bitmap_ptr = NULL, \
853 .addr_limit = KERNEL_DS, \
854}
855
856#define KSTK_ESP(task) (task_pt_regs(task)->sp)
857
858#else
859/*
860 * User space process size. This is the first address outside the user range.
861 * There are a few constraints that determine this:
862 *
863 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
864 * address, then that syscall will enter the kernel with a
865 * non-canonical return address, and SYSRET will explode dangerously.
866 * We avoid this particular problem by preventing anything executable
867 * from being mapped at the maximum canonical address.
868 *
869 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
870 * CPUs malfunction if they execute code from the highest canonical page.
871 * They'll speculate right off the end of the canonical space, and
872 * bad things happen. This is worked around in the same way as the
873 * Intel problem.
874 *
875 * With page table isolation enabled, we map the LDT in ... [stay tuned]
876 */
877#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
878
879#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
880
881/* This decides where the kernel will search for a free chunk of vm
882 * space during mmap's.
883 */
884#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
885 0xc0000000 : 0xFFFFe000)
886
887#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
888 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
889#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
890 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
891#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
892 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
893
894#define STACK_TOP TASK_SIZE_LOW
895#define STACK_TOP_MAX TASK_SIZE_MAX
896
897#define INIT_THREAD { \
898 .addr_limit = KERNEL_DS, \
899}
900
901extern unsigned long KSTK_ESP(struct task_struct *task);
902
903#endif /* CONFIG_X86_64 */
904
905extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
906 unsigned long new_sp);
907
908/*
909 * This decides where the kernel will search for a free chunk of vm
910 * space during mmap's.
911 */
912#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
913#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
914
915#define KSTK_EIP(task) (task_pt_regs(task)->ip)
916
917/* Get/set a process' ability to use the timestamp counter instruction */
918#define GET_TSC_CTL(adr) get_tsc_mode((adr))
919#define SET_TSC_CTL(val) set_tsc_mode((val))
920
921extern int get_tsc_mode(unsigned long adr);
922extern int set_tsc_mode(unsigned int val);
923
924DECLARE_PER_CPU(u64, msr_misc_features_shadow);
925
926/* Register/unregister a process' MPX related resource */
927#define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
928#define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
929
930#ifdef CONFIG_X86_INTEL_MPX
931extern int mpx_enable_management(void);
932extern int mpx_disable_management(void);
933#else
934static inline int mpx_enable_management(void)
935{
936 return -EINVAL;
937}
938static inline int mpx_disable_management(void)
939{
940 return -EINVAL;
941}
942#endif /* CONFIG_X86_INTEL_MPX */
943
944#ifdef CONFIG_CPU_SUP_AMD
945extern u16 amd_get_nb_id(int cpu);
946extern u32 amd_get_nodes_per_socket(void);
947#else
948static inline u16 amd_get_nb_id(int cpu) { return 0; }
949static inline u32 amd_get_nodes_per_socket(void) { return 0; }
950#endif
951
952static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
953{
954 uint32_t base, eax, signature[3];
955
956 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
957 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
958
959 if (!memcmp(sig, signature, 12) &&
960 (leaves == 0 || ((eax - base) >= leaves)))
961 return base;
962 }
963
964 return 0;
965}
966
967extern unsigned long arch_align_stack(unsigned long sp);
968extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
969
970void default_idle(void);
971#ifdef CONFIG_XEN
972bool xen_set_default_idle(void);
973#else
974#define xen_set_default_idle 0
975#endif
976
977void stop_this_cpu(void *dummy);
978void df_debug(struct pt_regs *regs, long error_code);
979void microcode_check(void);
980#endif /* _ASM_X86_PROCESSOR_H */