at v4.18 1618 lines 48 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * S390 version 4 * Copyright IBM Corp. 1999, 2000 5 * Author(s): Hartmut Penner (hp@de.ibm.com) 6 * Ulrich Weigand (weigand@de.ibm.com) 7 * Martin Schwidefsky (schwidefsky@de.ibm.com) 8 * 9 * Derived from "include/asm-i386/pgtable.h" 10 */ 11 12#ifndef _ASM_S390_PGTABLE_H 13#define _ASM_S390_PGTABLE_H 14 15#include <linux/sched.h> 16#include <linux/mm_types.h> 17#include <linux/page-flags.h> 18#include <linux/radix-tree.h> 19#include <linux/atomic.h> 20#include <asm/bug.h> 21#include <asm/page.h> 22 23extern pgd_t swapper_pg_dir[]; 24extern void paging_init(void); 25 26enum { 27 PG_DIRECT_MAP_4K = 0, 28 PG_DIRECT_MAP_1M, 29 PG_DIRECT_MAP_2G, 30 PG_DIRECT_MAP_MAX 31}; 32 33extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX]; 34 35static inline void update_page_count(int level, long count) 36{ 37 if (IS_ENABLED(CONFIG_PROC_FS)) 38 atomic_long_add(count, &direct_pages_count[level]); 39} 40 41struct seq_file; 42void arch_report_meminfo(struct seq_file *m); 43 44/* 45 * The S390 doesn't have any external MMU info: the kernel page 46 * tables contain all the necessary information. 47 */ 48#define update_mmu_cache(vma, address, ptep) do { } while (0) 49#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) 50 51/* 52 * ZERO_PAGE is a global shared page that is always zero; used 53 * for zero-mapped memory areas etc.. 54 */ 55 56extern unsigned long empty_zero_page; 57extern unsigned long zero_page_mask; 58 59#define ZERO_PAGE(vaddr) \ 60 (virt_to_page((void *)(empty_zero_page + \ 61 (((unsigned long)(vaddr)) &zero_page_mask)))) 62#define __HAVE_COLOR_ZERO_PAGE 63 64/* TODO: s390 cannot support io_remap_pfn_range... */ 65 66#define FIRST_USER_ADDRESS 0UL 67 68#define pte_ERROR(e) \ 69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 70#define pmd_ERROR(e) \ 71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 72#define pud_ERROR(e) \ 73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) 74#define p4d_ERROR(e) \ 75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e)) 76#define pgd_ERROR(e) \ 77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 78 79/* 80 * The vmalloc and module area will always be on the topmost area of the 81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules. 82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where 83 * modules will reside. That makes sure that inter module branches always 84 * happen without trampolines and in addition the placement within a 2GB frame 85 * is branch prediction unit friendly. 86 */ 87extern unsigned long VMALLOC_START; 88extern unsigned long VMALLOC_END; 89extern struct page *vmemmap; 90 91#define VMEM_MAX_PHYS ((unsigned long) vmemmap) 92 93extern unsigned long MODULES_VADDR; 94extern unsigned long MODULES_END; 95#define MODULES_VADDR MODULES_VADDR 96#define MODULES_END MODULES_END 97#define MODULES_LEN (1UL << 31) 98 99static inline int is_module_addr(void *addr) 100{ 101 BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); 102 if (addr < (void *)MODULES_VADDR) 103 return 0; 104 if (addr > (void *)MODULES_END) 105 return 0; 106 return 1; 107} 108 109/* 110 * A 64 bit pagetable entry of S390 has following format: 111 * | PFRA |0IPC| OS | 112 * 0000000000111111111122222222223333333333444444444455555555556666 113 * 0123456789012345678901234567890123456789012345678901234567890123 114 * 115 * I Page-Invalid Bit: Page is not available for address-translation 116 * P Page-Protection Bit: Store access not possible for page 117 * C Change-bit override: HW is not required to set change bit 118 * 119 * A 64 bit segmenttable entry of S390 has following format: 120 * | P-table origin | TT 121 * 0000000000111111111122222222223333333333444444444455555555556666 122 * 0123456789012345678901234567890123456789012345678901234567890123 123 * 124 * I Segment-Invalid Bit: Segment is not available for address-translation 125 * C Common-Segment Bit: Segment is not private (PoP 3-30) 126 * P Page-Protection Bit: Store access not possible for page 127 * TT Type 00 128 * 129 * A 64 bit region table entry of S390 has following format: 130 * | S-table origin | TF TTTL 131 * 0000000000111111111122222222223333333333444444444455555555556666 132 * 0123456789012345678901234567890123456789012345678901234567890123 133 * 134 * I Segment-Invalid Bit: Segment is not available for address-translation 135 * TT Type 01 136 * TF 137 * TL Table length 138 * 139 * The 64 bit regiontable origin of S390 has following format: 140 * | region table origon | DTTL 141 * 0000000000111111111122222222223333333333444444444455555555556666 142 * 0123456789012345678901234567890123456789012345678901234567890123 143 * 144 * X Space-Switch event: 145 * G Segment-Invalid Bit: 146 * P Private-Space Bit: 147 * S Storage-Alteration: 148 * R Real space 149 * TL Table-Length: 150 * 151 * A storage key has the following format: 152 * | ACC |F|R|C|0| 153 * 0 3 4 5 6 7 154 * ACC: access key 155 * F : fetch protection bit 156 * R : referenced bit 157 * C : changed bit 158 */ 159 160/* Hardware bits in the page table entry */ 161#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */ 162#define _PAGE_PROTECT 0x200 /* HW read-only bit */ 163#define _PAGE_INVALID 0x400 /* HW invalid bit */ 164#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */ 165 166/* Software bits in the page table entry */ 167#define _PAGE_PRESENT 0x001 /* SW pte present bit */ 168#define _PAGE_YOUNG 0x004 /* SW pte young bit */ 169#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */ 170#define _PAGE_READ 0x010 /* SW pte read bit */ 171#define _PAGE_WRITE 0x020 /* SW pte write bit */ 172#define _PAGE_SPECIAL 0x040 /* SW associated with special page */ 173#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */ 174 175#ifdef CONFIG_MEM_SOFT_DIRTY 176#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */ 177#else 178#define _PAGE_SOFT_DIRTY 0x000 179#endif 180 181/* Set of bits not changed in pte_modify */ 182#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \ 183 _PAGE_YOUNG | _PAGE_SOFT_DIRTY) 184 185/* 186 * handle_pte_fault uses pte_present and pte_none to find out the pte type 187 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to 188 * distinguish present from not-present ptes. It is changed only with the page 189 * table lock held. 190 * 191 * The following table gives the different possible bit combinations for 192 * the pte hardware and software bits in the last 12 bits of a pte 193 * (. unassigned bit, x don't care, t swap type): 194 * 195 * 842100000000 196 * 000084210000 197 * 000000008421 198 * .IR.uswrdy.p 199 * empty .10.00000000 200 * swap .11..ttttt.0 201 * prot-none, clean, old .11.xx0000.1 202 * prot-none, clean, young .11.xx0001.1 203 * prot-none, dirty, old .11.xx0010.1 204 * prot-none, dirty, young .11.xx0011.1 205 * read-only, clean, old .11.xx0100.1 206 * read-only, clean, young .01.xx0101.1 207 * read-only, dirty, old .11.xx0110.1 208 * read-only, dirty, young .01.xx0111.1 209 * read-write, clean, old .11.xx1100.1 210 * read-write, clean, young .01.xx1101.1 211 * read-write, dirty, old .10.xx1110.1 212 * read-write, dirty, young .00.xx1111.1 213 * HW-bits: R read-only, I invalid 214 * SW-bits: p present, y young, d dirty, r read, w write, s special, 215 * u unused, l large 216 * 217 * pte_none is true for the bit pattern .10.00000000, pte == 0x400 218 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200 219 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001 220 */ 221 222/* Bits in the segment/region table address-space-control-element */ 223#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */ 224#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 225#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 226#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 227#define _ASCE_REAL_SPACE 0x20 /* real space control */ 228#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 229#define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 230#define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 231#define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 232#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 233#define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 234 235/* Bits in the region table entry */ 236#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 237#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ 238#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */ 239#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */ 240#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ 241#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */ 242#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 243#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 244#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 245#define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 246 247#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 248#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID) 249#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 250#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID) 251#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 252#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID) 253 254#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */ 255#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */ 256#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */ 257#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */ 258#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */ 259#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */ 260 261#ifdef CONFIG_MEM_SOFT_DIRTY 262#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */ 263#else 264#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */ 265#endif 266 267#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL 268#define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL 269 270/* Bits in the segment table entry */ 271#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL 272#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL 273#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ 274#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */ 275#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */ 276#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */ 277#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ 278 279#define _SEGMENT_ENTRY (0) 280#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) 281 282#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */ 283#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */ 284#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */ 285#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */ 286#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */ 287 288#ifdef CONFIG_MEM_SOFT_DIRTY 289#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */ 290#else 291#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */ 292#endif 293 294#define _CRST_ENTRIES 2048 /* number of region/segment table entries */ 295#define _PAGE_ENTRIES 256 /* number of page table entries */ 296 297#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8) 298#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8) 299 300#define _REGION1_SHIFT 53 301#define _REGION2_SHIFT 42 302#define _REGION3_SHIFT 31 303#define _SEGMENT_SHIFT 20 304 305#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT) 306#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT) 307#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT) 308#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT) 309#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT) 310 311#define _REGION1_SIZE (1UL << _REGION1_SHIFT) 312#define _REGION2_SIZE (1UL << _REGION2_SHIFT) 313#define _REGION3_SIZE (1UL << _REGION3_SHIFT) 314#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT) 315 316#define _REGION1_MASK (~(_REGION1_SIZE - 1)) 317#define _REGION2_MASK (~(_REGION2_SIZE - 1)) 318#define _REGION3_MASK (~(_REGION3_SIZE - 1)) 319#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1)) 320 321#define PMD_SHIFT _SEGMENT_SHIFT 322#define PUD_SHIFT _REGION3_SHIFT 323#define P4D_SHIFT _REGION2_SHIFT 324#define PGDIR_SHIFT _REGION1_SHIFT 325 326#define PMD_SIZE _SEGMENT_SIZE 327#define PUD_SIZE _REGION3_SIZE 328#define P4D_SIZE _REGION2_SIZE 329#define PGDIR_SIZE _REGION1_SIZE 330 331#define PMD_MASK _SEGMENT_MASK 332#define PUD_MASK _REGION3_MASK 333#define P4D_MASK _REGION2_MASK 334#define PGDIR_MASK _REGION1_MASK 335 336#define PTRS_PER_PTE _PAGE_ENTRIES 337#define PTRS_PER_PMD _CRST_ENTRIES 338#define PTRS_PER_PUD _CRST_ENTRIES 339#define PTRS_PER_P4D _CRST_ENTRIES 340#define PTRS_PER_PGD _CRST_ENTRIES 341 342/* 343 * Segment table and region3 table entry encoding 344 * (R = read-only, I = invalid, y = young bit): 345 * dy..R...I...wr 346 * prot-none, clean, old 00..1...1...00 347 * prot-none, clean, young 01..1...1...00 348 * prot-none, dirty, old 10..1...1...00 349 * prot-none, dirty, young 11..1...1...00 350 * read-only, clean, old 00..1...1...01 351 * read-only, clean, young 01..1...0...01 352 * read-only, dirty, old 10..1...1...01 353 * read-only, dirty, young 11..1...0...01 354 * read-write, clean, old 00..1...1...11 355 * read-write, clean, young 01..1...0...11 356 * read-write, dirty, old 10..0...1...11 357 * read-write, dirty, young 11..0...0...11 358 * The segment table origin is used to distinguish empty (origin==0) from 359 * read-write, old segment table entries (origin!=0) 360 * HW-bits: R read-only, I invalid 361 * SW-bits: y young, d dirty, r read, w write 362 */ 363 364/* Page status table bits for virtualization */ 365#define PGSTE_ACC_BITS 0xf000000000000000UL 366#define PGSTE_FP_BIT 0x0800000000000000UL 367#define PGSTE_PCL_BIT 0x0080000000000000UL 368#define PGSTE_HR_BIT 0x0040000000000000UL 369#define PGSTE_HC_BIT 0x0020000000000000UL 370#define PGSTE_GR_BIT 0x0004000000000000UL 371#define PGSTE_GC_BIT 0x0002000000000000UL 372#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */ 373#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */ 374#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */ 375 376/* Guest Page State used for virtualization */ 377#define _PGSTE_GPS_ZERO 0x0000000080000000UL 378#define _PGSTE_GPS_NODAT 0x0000000040000000UL 379#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL 380#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL 381#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL 382#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL 383#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK 384 385/* 386 * A user page table pointer has the space-switch-event bit, the 387 * private-space-control bit and the storage-alteration-event-control 388 * bit set. A kernel page table pointer doesn't need them. 389 */ 390#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 391 _ASCE_ALT_EVENT) 392 393/* 394 * Page protection definitions. 395 */ 396#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT) 397#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 398 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 399#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 400 _PAGE_INVALID | _PAGE_PROTECT) 401#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 402 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 403#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 404 _PAGE_INVALID | _PAGE_PROTECT) 405 406#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 407 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 408#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 409 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 410#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \ 411 _PAGE_PROTECT | _PAGE_NOEXEC) 412#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 413 _PAGE_YOUNG | _PAGE_DIRTY) 414 415/* 416 * On s390 the page table entry has an invalid bit and a read-only bit. 417 * Read permission implies execute permission and write permission 418 * implies read permission. 419 */ 420 /*xwr*/ 421#define __P000 PAGE_NONE 422#define __P001 PAGE_RO 423#define __P010 PAGE_RO 424#define __P011 PAGE_RO 425#define __P100 PAGE_RX 426#define __P101 PAGE_RX 427#define __P110 PAGE_RX 428#define __P111 PAGE_RX 429 430#define __S000 PAGE_NONE 431#define __S001 PAGE_RO 432#define __S010 PAGE_RW 433#define __S011 PAGE_RW 434#define __S100 PAGE_RX 435#define __S101 PAGE_RX 436#define __S110 PAGE_RWX 437#define __S111 PAGE_RWX 438 439/* 440 * Segment entry (large page) protection definitions. 441 */ 442#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \ 443 _SEGMENT_ENTRY_PROTECT) 444#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \ 445 _SEGMENT_ENTRY_READ | \ 446 _SEGMENT_ENTRY_NOEXEC) 447#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \ 448 _SEGMENT_ENTRY_READ) 449#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \ 450 _SEGMENT_ENTRY_WRITE | \ 451 _SEGMENT_ENTRY_NOEXEC) 452#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \ 453 _SEGMENT_ENTRY_WRITE) 454#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \ 455 _SEGMENT_ENTRY_LARGE | \ 456 _SEGMENT_ENTRY_READ | \ 457 _SEGMENT_ENTRY_WRITE | \ 458 _SEGMENT_ENTRY_YOUNG | \ 459 _SEGMENT_ENTRY_DIRTY | \ 460 _SEGMENT_ENTRY_NOEXEC) 461#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \ 462 _SEGMENT_ENTRY_LARGE | \ 463 _SEGMENT_ENTRY_READ | \ 464 _SEGMENT_ENTRY_YOUNG | \ 465 _SEGMENT_ENTRY_PROTECT | \ 466 _SEGMENT_ENTRY_NOEXEC) 467 468/* 469 * Region3 entry (large page) protection definitions. 470 */ 471 472#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \ 473 _REGION3_ENTRY_LARGE | \ 474 _REGION3_ENTRY_READ | \ 475 _REGION3_ENTRY_WRITE | \ 476 _REGION3_ENTRY_YOUNG | \ 477 _REGION3_ENTRY_DIRTY | \ 478 _REGION_ENTRY_NOEXEC) 479#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \ 480 _REGION3_ENTRY_LARGE | \ 481 _REGION3_ENTRY_READ | \ 482 _REGION3_ENTRY_YOUNG | \ 483 _REGION_ENTRY_PROTECT | \ 484 _REGION_ENTRY_NOEXEC) 485 486static inline int mm_has_pgste(struct mm_struct *mm) 487{ 488#ifdef CONFIG_PGSTE 489 if (unlikely(mm->context.has_pgste)) 490 return 1; 491#endif 492 return 0; 493} 494 495static inline int mm_alloc_pgste(struct mm_struct *mm) 496{ 497#ifdef CONFIG_PGSTE 498 if (unlikely(mm->context.alloc_pgste)) 499 return 1; 500#endif 501 return 0; 502} 503 504/* 505 * In the case that a guest uses storage keys 506 * faults should no longer be backed by zero pages 507 */ 508#define mm_forbids_zeropage mm_has_pgste 509static inline int mm_uses_skeys(struct mm_struct *mm) 510{ 511#ifdef CONFIG_PGSTE 512 if (mm->context.uses_skeys) 513 return 1; 514#endif 515 return 0; 516} 517 518static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new) 519{ 520 register unsigned long reg2 asm("2") = old; 521 register unsigned long reg3 asm("3") = new; 522 unsigned long address = (unsigned long)ptr | 1; 523 524 asm volatile( 525 " csp %0,%3" 526 : "+d" (reg2), "+m" (*ptr) 527 : "d" (reg3), "d" (address) 528 : "cc"); 529} 530 531static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new) 532{ 533 register unsigned long reg2 asm("2") = old; 534 register unsigned long reg3 asm("3") = new; 535 unsigned long address = (unsigned long)ptr | 1; 536 537 asm volatile( 538 " .insn rre,0xb98a0000,%0,%3" 539 : "+d" (reg2), "+m" (*ptr) 540 : "d" (reg3), "d" (address) 541 : "cc"); 542} 543 544#define CRDTE_DTT_PAGE 0x00UL 545#define CRDTE_DTT_SEGMENT 0x10UL 546#define CRDTE_DTT_REGION3 0x14UL 547#define CRDTE_DTT_REGION2 0x18UL 548#define CRDTE_DTT_REGION1 0x1cUL 549 550static inline void crdte(unsigned long old, unsigned long new, 551 unsigned long table, unsigned long dtt, 552 unsigned long address, unsigned long asce) 553{ 554 register unsigned long reg2 asm("2") = old; 555 register unsigned long reg3 asm("3") = new; 556 register unsigned long reg4 asm("4") = table | dtt; 557 register unsigned long reg5 asm("5") = address; 558 559 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0" 560 : "+d" (reg2) 561 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce) 562 : "memory", "cc"); 563} 564 565/* 566 * pgd/p4d/pud/pmd/pte query functions 567 */ 568static inline int pgd_folded(pgd_t pgd) 569{ 570 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1; 571} 572 573static inline int pgd_present(pgd_t pgd) 574{ 575 if (pgd_folded(pgd)) 576 return 1; 577 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 578} 579 580static inline int pgd_none(pgd_t pgd) 581{ 582 if (pgd_folded(pgd)) 583 return 0; 584 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL; 585} 586 587static inline int pgd_bad(pgd_t pgd) 588{ 589 /* 590 * With dynamic page table levels the pgd can be a region table 591 * entry or a segment table entry. Check for the bit that are 592 * invalid for either table entry. 593 */ 594 unsigned long mask = 595 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID & 596 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; 597 return (pgd_val(pgd) & mask) != 0; 598} 599 600static inline int p4d_folded(p4d_t p4d) 601{ 602 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2; 603} 604 605static inline int p4d_present(p4d_t p4d) 606{ 607 if (p4d_folded(p4d)) 608 return 1; 609 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL; 610} 611 612static inline int p4d_none(p4d_t p4d) 613{ 614 if (p4d_folded(p4d)) 615 return 0; 616 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY; 617} 618 619static inline unsigned long p4d_pfn(p4d_t p4d) 620{ 621 unsigned long origin_mask; 622 623 origin_mask = _REGION_ENTRY_ORIGIN; 624 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT; 625} 626 627static inline int pud_folded(pud_t pud) 628{ 629 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3; 630} 631 632static inline int pud_present(pud_t pud) 633{ 634 if (pud_folded(pud)) 635 return 1; 636 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 637} 638 639static inline int pud_none(pud_t pud) 640{ 641 if (pud_folded(pud)) 642 return 0; 643 return pud_val(pud) == _REGION3_ENTRY_EMPTY; 644} 645 646static inline int pud_large(pud_t pud) 647{ 648 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) 649 return 0; 650 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); 651} 652 653static inline unsigned long pud_pfn(pud_t pud) 654{ 655 unsigned long origin_mask; 656 657 origin_mask = _REGION_ENTRY_ORIGIN; 658 if (pud_large(pud)) 659 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE; 660 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT; 661} 662 663static inline int pmd_large(pmd_t pmd) 664{ 665 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0; 666} 667 668static inline int pmd_bad(pmd_t pmd) 669{ 670 if (pmd_large(pmd)) 671 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0; 672 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0; 673} 674 675static inline int pud_bad(pud_t pud) 676{ 677 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 678 return pmd_bad(__pmd(pud_val(pud))); 679 if (pud_large(pud)) 680 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0; 681 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0; 682} 683 684static inline int p4d_bad(p4d_t p4d) 685{ 686 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 687 return pud_bad(__pud(p4d_val(p4d))); 688 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0; 689} 690 691static inline int pmd_present(pmd_t pmd) 692{ 693 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY; 694} 695 696static inline int pmd_none(pmd_t pmd) 697{ 698 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY; 699} 700 701static inline unsigned long pmd_pfn(pmd_t pmd) 702{ 703 unsigned long origin_mask; 704 705 origin_mask = _SEGMENT_ENTRY_ORIGIN; 706 if (pmd_large(pmd)) 707 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 708 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT; 709} 710 711#define pmd_write pmd_write 712static inline int pmd_write(pmd_t pmd) 713{ 714 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0; 715} 716 717static inline int pmd_dirty(pmd_t pmd) 718{ 719 int dirty = 1; 720 if (pmd_large(pmd)) 721 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0; 722 return dirty; 723} 724 725static inline int pmd_young(pmd_t pmd) 726{ 727 int young = 1; 728 if (pmd_large(pmd)) 729 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0; 730 return young; 731} 732 733static inline int pte_present(pte_t pte) 734{ 735 /* Bit pattern: (pte & 0x001) == 0x001 */ 736 return (pte_val(pte) & _PAGE_PRESENT) != 0; 737} 738 739static inline int pte_none(pte_t pte) 740{ 741 /* Bit pattern: pte == 0x400 */ 742 return pte_val(pte) == _PAGE_INVALID; 743} 744 745static inline int pte_swap(pte_t pte) 746{ 747 /* Bit pattern: (pte & 0x201) == 0x200 */ 748 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT)) 749 == _PAGE_PROTECT; 750} 751 752static inline int pte_special(pte_t pte) 753{ 754 return (pte_val(pte) & _PAGE_SPECIAL); 755} 756 757#define __HAVE_ARCH_PTE_SAME 758static inline int pte_same(pte_t a, pte_t b) 759{ 760 return pte_val(a) == pte_val(b); 761} 762 763#ifdef CONFIG_NUMA_BALANCING 764static inline int pte_protnone(pte_t pte) 765{ 766 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ); 767} 768 769static inline int pmd_protnone(pmd_t pmd) 770{ 771 /* pmd_large(pmd) implies pmd_present(pmd) */ 772 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ); 773} 774#endif 775 776static inline int pte_soft_dirty(pte_t pte) 777{ 778 return pte_val(pte) & _PAGE_SOFT_DIRTY; 779} 780#define pte_swp_soft_dirty pte_soft_dirty 781 782static inline pte_t pte_mksoft_dirty(pte_t pte) 783{ 784 pte_val(pte) |= _PAGE_SOFT_DIRTY; 785 return pte; 786} 787#define pte_swp_mksoft_dirty pte_mksoft_dirty 788 789static inline pte_t pte_clear_soft_dirty(pte_t pte) 790{ 791 pte_val(pte) &= ~_PAGE_SOFT_DIRTY; 792 return pte; 793} 794#define pte_swp_clear_soft_dirty pte_clear_soft_dirty 795 796static inline int pmd_soft_dirty(pmd_t pmd) 797{ 798 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY; 799} 800 801static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 802{ 803 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY; 804 return pmd; 805} 806 807static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 808{ 809 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY; 810 return pmd; 811} 812 813/* 814 * query functions pte_write/pte_dirty/pte_young only work if 815 * pte_present() is true. Undefined behaviour if not.. 816 */ 817static inline int pte_write(pte_t pte) 818{ 819 return (pte_val(pte) & _PAGE_WRITE) != 0; 820} 821 822static inline int pte_dirty(pte_t pte) 823{ 824 return (pte_val(pte) & _PAGE_DIRTY) != 0; 825} 826 827static inline int pte_young(pte_t pte) 828{ 829 return (pte_val(pte) & _PAGE_YOUNG) != 0; 830} 831 832#define __HAVE_ARCH_PTE_UNUSED 833static inline int pte_unused(pte_t pte) 834{ 835 return pte_val(pte) & _PAGE_UNUSED; 836} 837 838/* 839 * pgd/pmd/pte modification functions 840 */ 841 842static inline void pgd_clear(pgd_t *pgd) 843{ 844 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1) 845 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY; 846} 847 848static inline void p4d_clear(p4d_t *p4d) 849{ 850 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 851 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY; 852} 853 854static inline void pud_clear(pud_t *pud) 855{ 856 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 857 pud_val(*pud) = _REGION3_ENTRY_EMPTY; 858} 859 860static inline void pmd_clear(pmd_t *pmdp) 861{ 862 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; 863} 864 865static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 866{ 867 pte_val(*ptep) = _PAGE_INVALID; 868} 869 870/* 871 * The following pte modification functions only work if 872 * pte_present() is true. Undefined behaviour if not.. 873 */ 874static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 875{ 876 pte_val(pte) &= _PAGE_CHG_MASK; 877 pte_val(pte) |= pgprot_val(newprot); 878 /* 879 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX 880 * has the invalid bit set, clear it again for readable, young pages 881 */ 882 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ)) 883 pte_val(pte) &= ~_PAGE_INVALID; 884 /* 885 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page 886 * protection bit set, clear it again for writable, dirty pages 887 */ 888 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE)) 889 pte_val(pte) &= ~_PAGE_PROTECT; 890 return pte; 891} 892 893static inline pte_t pte_wrprotect(pte_t pte) 894{ 895 pte_val(pte) &= ~_PAGE_WRITE; 896 pte_val(pte) |= _PAGE_PROTECT; 897 return pte; 898} 899 900static inline pte_t pte_mkwrite(pte_t pte) 901{ 902 pte_val(pte) |= _PAGE_WRITE; 903 if (pte_val(pte) & _PAGE_DIRTY) 904 pte_val(pte) &= ~_PAGE_PROTECT; 905 return pte; 906} 907 908static inline pte_t pte_mkclean(pte_t pte) 909{ 910 pte_val(pte) &= ~_PAGE_DIRTY; 911 pte_val(pte) |= _PAGE_PROTECT; 912 return pte; 913} 914 915static inline pte_t pte_mkdirty(pte_t pte) 916{ 917 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY; 918 if (pte_val(pte) & _PAGE_WRITE) 919 pte_val(pte) &= ~_PAGE_PROTECT; 920 return pte; 921} 922 923static inline pte_t pte_mkold(pte_t pte) 924{ 925 pte_val(pte) &= ~_PAGE_YOUNG; 926 pte_val(pte) |= _PAGE_INVALID; 927 return pte; 928} 929 930static inline pte_t pte_mkyoung(pte_t pte) 931{ 932 pte_val(pte) |= _PAGE_YOUNG; 933 if (pte_val(pte) & _PAGE_READ) 934 pte_val(pte) &= ~_PAGE_INVALID; 935 return pte; 936} 937 938static inline pte_t pte_mkspecial(pte_t pte) 939{ 940 pte_val(pte) |= _PAGE_SPECIAL; 941 return pte; 942} 943 944#ifdef CONFIG_HUGETLB_PAGE 945static inline pte_t pte_mkhuge(pte_t pte) 946{ 947 pte_val(pte) |= _PAGE_LARGE; 948 return pte; 949} 950#endif 951 952#define IPTE_GLOBAL 0 953#define IPTE_LOCAL 1 954 955#define IPTE_NODAT 0x400 956#define IPTE_GUEST_ASCE 0x800 957 958static inline void __ptep_ipte(unsigned long address, pte_t *ptep, 959 unsigned long opt, unsigned long asce, 960 int local) 961{ 962 unsigned long pto = (unsigned long) ptep; 963 964 if (__builtin_constant_p(opt) && opt == 0) { 965 /* Invalidation + TLB flush for the pte */ 966 asm volatile( 967 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]" 968 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address), 969 [m4] "i" (local)); 970 return; 971 } 972 973 /* Invalidate ptes with options + TLB flush of the ptes */ 974 opt = opt | (asce & _ASCE_ORIGIN); 975 asm volatile( 976 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]" 977 : [r2] "+a" (address), [r3] "+a" (opt) 978 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 979} 980 981static inline void __ptep_ipte_range(unsigned long address, int nr, 982 pte_t *ptep, int local) 983{ 984 unsigned long pto = (unsigned long) ptep; 985 986 /* Invalidate a range of ptes + TLB flush of the ptes */ 987 do { 988 asm volatile( 989 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]" 990 : [r2] "+a" (address), [r3] "+a" (nr) 991 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 992 } while (nr != 255); 993} 994 995/* 996 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 997 * both clear the TLB for the unmapped pte. The reason is that 998 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 999 * to modify an active pte. The sequence is 1000 * 1) ptep_get_and_clear 1001 * 2) set_pte_at 1002 * 3) flush_tlb_range 1003 * On s390 the tlb needs to get flushed with the modification of the pte 1004 * if the pte is active. The only way how this can be implemented is to 1005 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 1006 * is a nop. 1007 */ 1008pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t); 1009pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t); 1010 1011#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1012static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1013 unsigned long addr, pte_t *ptep) 1014{ 1015 pte_t pte = *ptep; 1016 1017 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte)); 1018 return pte_young(pte); 1019} 1020 1021#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1022static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1023 unsigned long address, pte_t *ptep) 1024{ 1025 return ptep_test_and_clear_young(vma, address, ptep); 1026} 1027 1028#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1029static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1030 unsigned long addr, pte_t *ptep) 1031{ 1032 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1033} 1034 1035#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1036pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *); 1037void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t); 1038 1039#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 1040static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 1041 unsigned long addr, pte_t *ptep) 1042{ 1043 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID)); 1044} 1045 1046/* 1047 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 1048 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 1049 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 1050 * cannot be accessed while the batched unmap is running. In this case 1051 * full==1 and a simple pte_clear is enough. See tlb.h. 1052 */ 1053#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1054static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1055 unsigned long addr, 1056 pte_t *ptep, int full) 1057{ 1058 if (full) { 1059 pte_t pte = *ptep; 1060 *ptep = __pte(_PAGE_INVALID); 1061 return pte; 1062 } 1063 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1064} 1065 1066#define __HAVE_ARCH_PTEP_SET_WRPROTECT 1067static inline void ptep_set_wrprotect(struct mm_struct *mm, 1068 unsigned long addr, pte_t *ptep) 1069{ 1070 pte_t pte = *ptep; 1071 1072 if (pte_write(pte)) 1073 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte)); 1074} 1075 1076#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1077static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1078 unsigned long addr, pte_t *ptep, 1079 pte_t entry, int dirty) 1080{ 1081 if (pte_same(*ptep, entry)) 1082 return 0; 1083 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry); 1084 return 1; 1085} 1086 1087/* 1088 * Additional functions to handle KVM guest page tables 1089 */ 1090void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr, 1091 pte_t *ptep, pte_t entry); 1092void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1093void ptep_notify(struct mm_struct *mm, unsigned long addr, 1094 pte_t *ptep, unsigned long bits); 1095int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr, 1096 pte_t *ptep, int prot, unsigned long bit); 1097void ptep_zap_unused(struct mm_struct *mm, unsigned long addr, 1098 pte_t *ptep , int reset); 1099void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1100int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr, 1101 pte_t *sptep, pte_t *tptep, pte_t pte); 1102void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep); 1103 1104bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address); 1105int set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1106 unsigned char key, bool nq); 1107int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1108 unsigned char key, unsigned char *oldkey, 1109 bool nq, bool mr, bool mc); 1110int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr); 1111int get_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1112 unsigned char *key); 1113 1114int set_pgste_bits(struct mm_struct *mm, unsigned long addr, 1115 unsigned long bits, unsigned long value); 1116int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep); 1117int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc, 1118 unsigned long *oldpte, unsigned long *oldpgste); 1119 1120/* 1121 * Certain architectures need to do special things when PTEs 1122 * within a page table are directly modified. Thus, the following 1123 * hook is made available. 1124 */ 1125static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 1126 pte_t *ptep, pte_t entry) 1127{ 1128 if (!MACHINE_HAS_NX) 1129 pte_val(entry) &= ~_PAGE_NOEXEC; 1130 if (pte_present(entry)) 1131 pte_val(entry) &= ~_PAGE_UNUSED; 1132 if (mm_has_pgste(mm)) 1133 ptep_set_pte_at(mm, addr, ptep, entry); 1134 else 1135 *ptep = entry; 1136} 1137 1138/* 1139 * Conversion functions: convert a page and protection to a page entry, 1140 * and a page entry and page directory to the page they refer to. 1141 */ 1142static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 1143{ 1144 pte_t __pte; 1145 pte_val(__pte) = physpage + pgprot_val(pgprot); 1146 return pte_mkyoung(__pte); 1147} 1148 1149static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1150{ 1151 unsigned long physpage = page_to_phys(page); 1152 pte_t __pte = mk_pte_phys(physpage, pgprot); 1153 1154 if (pte_write(__pte) && PageDirty(page)) 1155 __pte = pte_mkdirty(__pte); 1156 return __pte; 1157} 1158 1159#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 1160#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1)) 1161#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 1162#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 1163#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 1164 1165#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 1166#define pgd_offset_k(address) pgd_offset(&init_mm, address) 1167 1168#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 1169#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) 1170#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN) 1171#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) 1172 1173static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) 1174{ 1175 p4d_t *p4d = (p4d_t *) pgd; 1176 1177 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1) 1178 p4d = (p4d_t *) pgd_deref(*pgd); 1179 return p4d + p4d_index(address); 1180} 1181 1182static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 1183{ 1184 pud_t *pud = (pud_t *) p4d; 1185 1186 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 1187 pud = (pud_t *) p4d_deref(*p4d); 1188 return pud + pud_index(address); 1189} 1190 1191static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 1192{ 1193 pmd_t *pmd = (pmd_t *) pud; 1194 1195 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 1196 pmd = (pmd_t *) pud_deref(*pud); 1197 return pmd + pmd_index(address); 1198} 1199 1200#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) 1201#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 1202#define pte_page(x) pfn_to_page(pte_pfn(x)) 1203 1204#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 1205#define pud_page(pud) pfn_to_page(pud_pfn(pud)) 1206#define p4d_page(pud) pfn_to_page(p4d_pfn(p4d)) 1207 1208/* Find an entry in the lowest level page table.. */ 1209#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr)) 1210#define pte_offset_kernel(pmd, address) pte_offset(pmd,address) 1211#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 1212#define pte_unmap(pte) do { } while (0) 1213 1214static inline pmd_t pmd_wrprotect(pmd_t pmd) 1215{ 1216 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE; 1217 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1218 return pmd; 1219} 1220 1221static inline pmd_t pmd_mkwrite(pmd_t pmd) 1222{ 1223 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE; 1224 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1225 return pmd; 1226 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1227 return pmd; 1228} 1229 1230static inline pmd_t pmd_mkclean(pmd_t pmd) 1231{ 1232 if (pmd_large(pmd)) { 1233 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY; 1234 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1235 } 1236 return pmd; 1237} 1238 1239static inline pmd_t pmd_mkdirty(pmd_t pmd) 1240{ 1241 if (pmd_large(pmd)) { 1242 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | 1243 _SEGMENT_ENTRY_SOFT_DIRTY; 1244 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) 1245 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1246 } 1247 return pmd; 1248} 1249 1250static inline pud_t pud_wrprotect(pud_t pud) 1251{ 1252 pud_val(pud) &= ~_REGION3_ENTRY_WRITE; 1253 pud_val(pud) |= _REGION_ENTRY_PROTECT; 1254 return pud; 1255} 1256 1257static inline pud_t pud_mkwrite(pud_t pud) 1258{ 1259 pud_val(pud) |= _REGION3_ENTRY_WRITE; 1260 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY)) 1261 return pud; 1262 pud_val(pud) &= ~_REGION_ENTRY_PROTECT; 1263 return pud; 1264} 1265 1266static inline pud_t pud_mkclean(pud_t pud) 1267{ 1268 if (pud_large(pud)) { 1269 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY; 1270 pud_val(pud) |= _REGION_ENTRY_PROTECT; 1271 } 1272 return pud; 1273} 1274 1275static inline pud_t pud_mkdirty(pud_t pud) 1276{ 1277 if (pud_large(pud)) { 1278 pud_val(pud) |= _REGION3_ENTRY_DIRTY | 1279 _REGION3_ENTRY_SOFT_DIRTY; 1280 if (pud_val(pud) & _REGION3_ENTRY_WRITE) 1281 pud_val(pud) &= ~_REGION_ENTRY_PROTECT; 1282 } 1283 return pud; 1284} 1285 1286#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 1287static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) 1288{ 1289 /* 1290 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX 1291 * (see __Pxxx / __Sxxx). Convert to segment table entry format. 1292 */ 1293 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) 1294 return pgprot_val(SEGMENT_NONE); 1295 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO)) 1296 return pgprot_val(SEGMENT_RO); 1297 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX)) 1298 return pgprot_val(SEGMENT_RX); 1299 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW)) 1300 return pgprot_val(SEGMENT_RW); 1301 return pgprot_val(SEGMENT_RWX); 1302} 1303 1304static inline pmd_t pmd_mkyoung(pmd_t pmd) 1305{ 1306 if (pmd_large(pmd)) { 1307 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; 1308 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ) 1309 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID; 1310 } 1311 return pmd; 1312} 1313 1314static inline pmd_t pmd_mkold(pmd_t pmd) 1315{ 1316 if (pmd_large(pmd)) { 1317 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG; 1318 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; 1319 } 1320 return pmd; 1321} 1322 1323static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1324{ 1325 if (pmd_large(pmd)) { 1326 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE | 1327 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG | 1328 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY; 1329 pmd_val(pmd) |= massage_pgprot_pmd(newprot); 1330 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1331 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1332 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG)) 1333 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; 1334 return pmd; 1335 } 1336 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN; 1337 pmd_val(pmd) |= massage_pgprot_pmd(newprot); 1338 return pmd; 1339} 1340 1341static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) 1342{ 1343 pmd_t __pmd; 1344 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot); 1345 return __pmd; 1346} 1347 1348#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ 1349 1350static inline void __pmdp_csp(pmd_t *pmdp) 1351{ 1352 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp), 1353 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1354} 1355 1356#define IDTE_GLOBAL 0 1357#define IDTE_LOCAL 1 1358 1359#define IDTE_PTOA 0x0800 1360#define IDTE_NODAT 0x1000 1361#define IDTE_GUEST_ASCE 0x2000 1362 1363static inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp, 1364 unsigned long opt, unsigned long asce, 1365 int local) 1366{ 1367 unsigned long sto; 1368 1369 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t); 1370 if (__builtin_constant_p(opt) && opt == 0) { 1371 /* flush without guest asce */ 1372 asm volatile( 1373 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]" 1374 : "+m" (*pmdp) 1375 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)), 1376 [m4] "i" (local) 1377 : "cc" ); 1378 } else { 1379 /* flush with guest asce */ 1380 asm volatile( 1381 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]" 1382 : "+m" (*pmdp) 1383 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt), 1384 [r3] "a" (asce), [m4] "i" (local) 1385 : "cc" ); 1386 } 1387} 1388 1389static inline void __pudp_idte(unsigned long addr, pud_t *pudp, 1390 unsigned long opt, unsigned long asce, 1391 int local) 1392{ 1393 unsigned long r3o; 1394 1395 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t); 1396 r3o |= _ASCE_TYPE_REGION3; 1397 if (__builtin_constant_p(opt) && opt == 0) { 1398 /* flush without guest asce */ 1399 asm volatile( 1400 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]" 1401 : "+m" (*pudp) 1402 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)), 1403 [m4] "i" (local) 1404 : "cc"); 1405 } else { 1406 /* flush with guest asce */ 1407 asm volatile( 1408 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]" 1409 : "+m" (*pudp) 1410 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt), 1411 [r3] "a" (asce), [m4] "i" (local) 1412 : "cc" ); 1413 } 1414} 1415 1416pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1417pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1418pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t); 1419 1420#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1421 1422#define __HAVE_ARCH_PGTABLE_DEPOSIT 1423void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1424 pgtable_t pgtable); 1425 1426#define __HAVE_ARCH_PGTABLE_WITHDRAW 1427pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 1428 1429#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1430static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 1431 unsigned long addr, pmd_t *pmdp, 1432 pmd_t entry, int dirty) 1433{ 1434 VM_BUG_ON(addr & ~HPAGE_MASK); 1435 1436 entry = pmd_mkyoung(entry); 1437 if (dirty) 1438 entry = pmd_mkdirty(entry); 1439 if (pmd_val(*pmdp) == pmd_val(entry)) 1440 return 0; 1441 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry); 1442 return 1; 1443} 1444 1445#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1446static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1447 unsigned long addr, pmd_t *pmdp) 1448{ 1449 pmd_t pmd = *pmdp; 1450 1451 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd)); 1452 return pmd_young(pmd); 1453} 1454 1455#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1456static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 1457 unsigned long addr, pmd_t *pmdp) 1458{ 1459 VM_BUG_ON(addr & ~HPAGE_MASK); 1460 return pmdp_test_and_clear_young(vma, addr, pmdp); 1461} 1462 1463static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1464 pmd_t *pmdp, pmd_t entry) 1465{ 1466 if (!MACHINE_HAS_NX) 1467 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC; 1468 *pmdp = entry; 1469} 1470 1471static inline pmd_t pmd_mkhuge(pmd_t pmd) 1472{ 1473 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE; 1474 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; 1475 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1476 return pmd; 1477} 1478 1479#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1480static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1481 unsigned long addr, pmd_t *pmdp) 1482{ 1483 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1484} 1485 1486#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 1487static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm, 1488 unsigned long addr, 1489 pmd_t *pmdp, int full) 1490{ 1491 if (full) { 1492 pmd_t pmd = *pmdp; 1493 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY); 1494 return pmd; 1495 } 1496 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1497} 1498 1499#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 1500static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 1501 unsigned long addr, pmd_t *pmdp) 1502{ 1503 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 1504} 1505 1506#define __HAVE_ARCH_PMDP_INVALIDATE 1507static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma, 1508 unsigned long addr, pmd_t *pmdp) 1509{ 1510 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1511 1512 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd); 1513} 1514 1515#define __HAVE_ARCH_PMDP_SET_WRPROTECT 1516static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1517 unsigned long addr, pmd_t *pmdp) 1518{ 1519 pmd_t pmd = *pmdp; 1520 1521 if (pmd_write(pmd)) 1522 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd)); 1523} 1524 1525static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1526 unsigned long address, 1527 pmd_t *pmdp) 1528{ 1529 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 1530} 1531#define pmdp_collapse_flush pmdp_collapse_flush 1532 1533#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot)) 1534#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1535 1536static inline int pmd_trans_huge(pmd_t pmd) 1537{ 1538 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; 1539} 1540 1541#define has_transparent_hugepage has_transparent_hugepage 1542static inline int has_transparent_hugepage(void) 1543{ 1544 return MACHINE_HAS_EDAT1 ? 1 : 0; 1545} 1546#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1547 1548/* 1549 * 64 bit swap entry format: 1550 * A page-table entry has some bits we have to treat in a special way. 1551 * Bits 52 and bit 55 have to be zero, otherwise a specification 1552 * exception will occur instead of a page translation exception. The 1553 * specification exception has the bad habit not to store necessary 1554 * information in the lowcore. 1555 * Bits 54 and 63 are used to indicate the page type. 1556 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200 1557 * This leaves the bits 0-51 and bits 56-62 to store type and offset. 1558 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51 1559 * for the offset. 1560 * | offset |01100|type |00| 1561 * |0000000000111111111122222222223333333333444444444455|55555|55566|66| 1562 * |0123456789012345678901234567890123456789012345678901|23456|78901|23| 1563 */ 1564 1565#define __SWP_OFFSET_MASK ((1UL << 52) - 1) 1566#define __SWP_OFFSET_SHIFT 12 1567#define __SWP_TYPE_MASK ((1UL << 5) - 1) 1568#define __SWP_TYPE_SHIFT 2 1569 1570static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1571{ 1572 pte_t pte; 1573 1574 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT; 1575 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT; 1576 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT; 1577 return pte; 1578} 1579 1580static inline unsigned long __swp_type(swp_entry_t entry) 1581{ 1582 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK; 1583} 1584 1585static inline unsigned long __swp_offset(swp_entry_t entry) 1586{ 1587 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK; 1588} 1589 1590static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset) 1591{ 1592 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) }; 1593} 1594 1595#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1596#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1597 1598#define kern_addr_valid(addr) (1) 1599 1600extern int vmem_add_mapping(unsigned long start, unsigned long size); 1601extern int vmem_remove_mapping(unsigned long start, unsigned long size); 1602extern int s390_enable_sie(void); 1603extern int s390_enable_skey(void); 1604extern void s390_reset_cmma(struct mm_struct *mm); 1605 1606/* s390 has a private copy of get unmapped area to deal with cache synonyms */ 1607#define HAVE_ARCH_UNMAPPED_AREA 1608#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1609 1610/* 1611 * No page table caches to initialise 1612 */ 1613static inline void pgtable_cache_init(void) { } 1614static inline void check_pgt_cache(void) { } 1615 1616#include <asm-generic/pgtable.h> 1617 1618#endif /* _S390_PAGE_H */