Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12#ifndef _ASM_S390_PGTABLE_H
13#define _ASM_S390_PGTABLE_H
14
15#include <linux/sched.h>
16#include <linux/mm_types.h>
17#include <linux/page-flags.h>
18#include <linux/radix-tree.h>
19#include <linux/atomic.h>
20#include <asm/bug.h>
21#include <asm/page.h>
22
23extern pgd_t swapper_pg_dir[];
24extern void paging_init(void);
25
26enum {
27 PG_DIRECT_MAP_4K = 0,
28 PG_DIRECT_MAP_1M,
29 PG_DIRECT_MAP_2G,
30 PG_DIRECT_MAP_MAX
31};
32
33extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
34
35static inline void update_page_count(int level, long count)
36{
37 if (IS_ENABLED(CONFIG_PROC_FS))
38 atomic_long_add(count, &direct_pages_count[level]);
39}
40
41struct seq_file;
42void arch_report_meminfo(struct seq_file *m);
43
44/*
45 * The S390 doesn't have any external MMU info: the kernel page
46 * tables contain all the necessary information.
47 */
48#define update_mmu_cache(vma, address, ptep) do { } while (0)
49#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
50
51/*
52 * ZERO_PAGE is a global shared page that is always zero; used
53 * for zero-mapped memory areas etc..
54 */
55
56extern unsigned long empty_zero_page;
57extern unsigned long zero_page_mask;
58
59#define ZERO_PAGE(vaddr) \
60 (virt_to_page((void *)(empty_zero_page + \
61 (((unsigned long)(vaddr)) &zero_page_mask))))
62#define __HAVE_COLOR_ZERO_PAGE
63
64/* TODO: s390 cannot support io_remap_pfn_range... */
65
66#define FIRST_USER_ADDRESS 0UL
67
68#define pte_ERROR(e) \
69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
70#define pmd_ERROR(e) \
71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
72#define pud_ERROR(e) \
73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
74#define p4d_ERROR(e) \
75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
76#define pgd_ERROR(e) \
77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
78
79/*
80 * The vmalloc and module area will always be on the topmost area of the
81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
83 * modules will reside. That makes sure that inter module branches always
84 * happen without trampolines and in addition the placement within a 2GB frame
85 * is branch prediction unit friendly.
86 */
87extern unsigned long VMALLOC_START;
88extern unsigned long VMALLOC_END;
89extern struct page *vmemmap;
90
91#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
92
93extern unsigned long MODULES_VADDR;
94extern unsigned long MODULES_END;
95#define MODULES_VADDR MODULES_VADDR
96#define MODULES_END MODULES_END
97#define MODULES_LEN (1UL << 31)
98
99static inline int is_module_addr(void *addr)
100{
101 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
102 if (addr < (void *)MODULES_VADDR)
103 return 0;
104 if (addr > (void *)MODULES_END)
105 return 0;
106 return 1;
107}
108
109/*
110 * A 64 bit pagetable entry of S390 has following format:
111 * | PFRA |0IPC| OS |
112 * 0000000000111111111122222222223333333333444444444455555555556666
113 * 0123456789012345678901234567890123456789012345678901234567890123
114 *
115 * I Page-Invalid Bit: Page is not available for address-translation
116 * P Page-Protection Bit: Store access not possible for page
117 * C Change-bit override: HW is not required to set change bit
118 *
119 * A 64 bit segmenttable entry of S390 has following format:
120 * | P-table origin | TT
121 * 0000000000111111111122222222223333333333444444444455555555556666
122 * 0123456789012345678901234567890123456789012345678901234567890123
123 *
124 * I Segment-Invalid Bit: Segment is not available for address-translation
125 * C Common-Segment Bit: Segment is not private (PoP 3-30)
126 * P Page-Protection Bit: Store access not possible for page
127 * TT Type 00
128 *
129 * A 64 bit region table entry of S390 has following format:
130 * | S-table origin | TF TTTL
131 * 0000000000111111111122222222223333333333444444444455555555556666
132 * 0123456789012345678901234567890123456789012345678901234567890123
133 *
134 * I Segment-Invalid Bit: Segment is not available for address-translation
135 * TT Type 01
136 * TF
137 * TL Table length
138 *
139 * The 64 bit regiontable origin of S390 has following format:
140 * | region table origon | DTTL
141 * 0000000000111111111122222222223333333333444444444455555555556666
142 * 0123456789012345678901234567890123456789012345678901234567890123
143 *
144 * X Space-Switch event:
145 * G Segment-Invalid Bit:
146 * P Private-Space Bit:
147 * S Storage-Alteration:
148 * R Real space
149 * TL Table-Length:
150 *
151 * A storage key has the following format:
152 * | ACC |F|R|C|0|
153 * 0 3 4 5 6 7
154 * ACC: access key
155 * F : fetch protection bit
156 * R : referenced bit
157 * C : changed bit
158 */
159
160/* Hardware bits in the page table entry */
161#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
162#define _PAGE_PROTECT 0x200 /* HW read-only bit */
163#define _PAGE_INVALID 0x400 /* HW invalid bit */
164#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
165
166/* Software bits in the page table entry */
167#define _PAGE_PRESENT 0x001 /* SW pte present bit */
168#define _PAGE_YOUNG 0x004 /* SW pte young bit */
169#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
170#define _PAGE_READ 0x010 /* SW pte read bit */
171#define _PAGE_WRITE 0x020 /* SW pte write bit */
172#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
173#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
174
175#ifdef CONFIG_MEM_SOFT_DIRTY
176#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
177#else
178#define _PAGE_SOFT_DIRTY 0x000
179#endif
180
181/* Set of bits not changed in pte_modify */
182#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
183 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
184
185/*
186 * handle_pte_fault uses pte_present and pte_none to find out the pte type
187 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
188 * distinguish present from not-present ptes. It is changed only with the page
189 * table lock held.
190 *
191 * The following table gives the different possible bit combinations for
192 * the pte hardware and software bits in the last 12 bits of a pte
193 * (. unassigned bit, x don't care, t swap type):
194 *
195 * 842100000000
196 * 000084210000
197 * 000000008421
198 * .IR.uswrdy.p
199 * empty .10.00000000
200 * swap .11..ttttt.0
201 * prot-none, clean, old .11.xx0000.1
202 * prot-none, clean, young .11.xx0001.1
203 * prot-none, dirty, old .11.xx0010.1
204 * prot-none, dirty, young .11.xx0011.1
205 * read-only, clean, old .11.xx0100.1
206 * read-only, clean, young .01.xx0101.1
207 * read-only, dirty, old .11.xx0110.1
208 * read-only, dirty, young .01.xx0111.1
209 * read-write, clean, old .11.xx1100.1
210 * read-write, clean, young .01.xx1101.1
211 * read-write, dirty, old .10.xx1110.1
212 * read-write, dirty, young .00.xx1111.1
213 * HW-bits: R read-only, I invalid
214 * SW-bits: p present, y young, d dirty, r read, w write, s special,
215 * u unused, l large
216 *
217 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
218 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
219 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
220 */
221
222/* Bits in the segment/region table address-space-control-element */
223#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
224#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
225#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
226#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
227#define _ASCE_REAL_SPACE 0x20 /* real space control */
228#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
229#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
230#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
231#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
232#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
233#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
234
235/* Bits in the region table entry */
236#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
237#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
238#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
239#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
240#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
241#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
242#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
243#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
244#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
245#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
246
247#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
248#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
249#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
250#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
251#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
252#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
253
254#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
255#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
256#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
257#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
258#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
259#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
260
261#ifdef CONFIG_MEM_SOFT_DIRTY
262#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
263#else
264#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
265#endif
266
267#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
268#define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
269
270/* Bits in the segment table entry */
271#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
272#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
273#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
274#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
275#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
276#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
277#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
278
279#define _SEGMENT_ENTRY (0)
280#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
281
282#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
283#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
284#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
285#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
286#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
287
288#ifdef CONFIG_MEM_SOFT_DIRTY
289#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
290#else
291#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
292#endif
293
294#define _CRST_ENTRIES 2048 /* number of region/segment table entries */
295#define _PAGE_ENTRIES 256 /* number of page table entries */
296
297#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
298#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
299
300#define _REGION1_SHIFT 53
301#define _REGION2_SHIFT 42
302#define _REGION3_SHIFT 31
303#define _SEGMENT_SHIFT 20
304
305#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
306#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
307#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
308#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
309#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
310
311#define _REGION1_SIZE (1UL << _REGION1_SHIFT)
312#define _REGION2_SIZE (1UL << _REGION2_SHIFT)
313#define _REGION3_SIZE (1UL << _REGION3_SHIFT)
314#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
315
316#define _REGION1_MASK (~(_REGION1_SIZE - 1))
317#define _REGION2_MASK (~(_REGION2_SIZE - 1))
318#define _REGION3_MASK (~(_REGION3_SIZE - 1))
319#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
320
321#define PMD_SHIFT _SEGMENT_SHIFT
322#define PUD_SHIFT _REGION3_SHIFT
323#define P4D_SHIFT _REGION2_SHIFT
324#define PGDIR_SHIFT _REGION1_SHIFT
325
326#define PMD_SIZE _SEGMENT_SIZE
327#define PUD_SIZE _REGION3_SIZE
328#define P4D_SIZE _REGION2_SIZE
329#define PGDIR_SIZE _REGION1_SIZE
330
331#define PMD_MASK _SEGMENT_MASK
332#define PUD_MASK _REGION3_MASK
333#define P4D_MASK _REGION2_MASK
334#define PGDIR_MASK _REGION1_MASK
335
336#define PTRS_PER_PTE _PAGE_ENTRIES
337#define PTRS_PER_PMD _CRST_ENTRIES
338#define PTRS_PER_PUD _CRST_ENTRIES
339#define PTRS_PER_P4D _CRST_ENTRIES
340#define PTRS_PER_PGD _CRST_ENTRIES
341
342/*
343 * Segment table and region3 table entry encoding
344 * (R = read-only, I = invalid, y = young bit):
345 * dy..R...I...wr
346 * prot-none, clean, old 00..1...1...00
347 * prot-none, clean, young 01..1...1...00
348 * prot-none, dirty, old 10..1...1...00
349 * prot-none, dirty, young 11..1...1...00
350 * read-only, clean, old 00..1...1...01
351 * read-only, clean, young 01..1...0...01
352 * read-only, dirty, old 10..1...1...01
353 * read-only, dirty, young 11..1...0...01
354 * read-write, clean, old 00..1...1...11
355 * read-write, clean, young 01..1...0...11
356 * read-write, dirty, old 10..0...1...11
357 * read-write, dirty, young 11..0...0...11
358 * The segment table origin is used to distinguish empty (origin==0) from
359 * read-write, old segment table entries (origin!=0)
360 * HW-bits: R read-only, I invalid
361 * SW-bits: y young, d dirty, r read, w write
362 */
363
364/* Page status table bits for virtualization */
365#define PGSTE_ACC_BITS 0xf000000000000000UL
366#define PGSTE_FP_BIT 0x0800000000000000UL
367#define PGSTE_PCL_BIT 0x0080000000000000UL
368#define PGSTE_HR_BIT 0x0040000000000000UL
369#define PGSTE_HC_BIT 0x0020000000000000UL
370#define PGSTE_GR_BIT 0x0004000000000000UL
371#define PGSTE_GC_BIT 0x0002000000000000UL
372#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
373#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
374#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
375
376/* Guest Page State used for virtualization */
377#define _PGSTE_GPS_ZERO 0x0000000080000000UL
378#define _PGSTE_GPS_NODAT 0x0000000040000000UL
379#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
380#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
381#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
382#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
383#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
384
385/*
386 * A user page table pointer has the space-switch-event bit, the
387 * private-space-control bit and the storage-alteration-event-control
388 * bit set. A kernel page table pointer doesn't need them.
389 */
390#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
391 _ASCE_ALT_EVENT)
392
393/*
394 * Page protection definitions.
395 */
396#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
397#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
398 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
399#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
400 _PAGE_INVALID | _PAGE_PROTECT)
401#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
402 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
403#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
404 _PAGE_INVALID | _PAGE_PROTECT)
405
406#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
407 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
408#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
409 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
410#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
411 _PAGE_PROTECT | _PAGE_NOEXEC)
412#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY)
414
415/*
416 * On s390 the page table entry has an invalid bit and a read-only bit.
417 * Read permission implies execute permission and write permission
418 * implies read permission.
419 */
420 /*xwr*/
421#define __P000 PAGE_NONE
422#define __P001 PAGE_RO
423#define __P010 PAGE_RO
424#define __P011 PAGE_RO
425#define __P100 PAGE_RX
426#define __P101 PAGE_RX
427#define __P110 PAGE_RX
428#define __P111 PAGE_RX
429
430#define __S000 PAGE_NONE
431#define __S001 PAGE_RO
432#define __S010 PAGE_RW
433#define __S011 PAGE_RW
434#define __S100 PAGE_RX
435#define __S101 PAGE_RX
436#define __S110 PAGE_RWX
437#define __S111 PAGE_RWX
438
439/*
440 * Segment entry (large page) protection definitions.
441 */
442#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
443 _SEGMENT_ENTRY_PROTECT)
444#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
445 _SEGMENT_ENTRY_READ | \
446 _SEGMENT_ENTRY_NOEXEC)
447#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
448 _SEGMENT_ENTRY_READ)
449#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
450 _SEGMENT_ENTRY_WRITE | \
451 _SEGMENT_ENTRY_NOEXEC)
452#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
453 _SEGMENT_ENTRY_WRITE)
454#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
455 _SEGMENT_ENTRY_LARGE | \
456 _SEGMENT_ENTRY_READ | \
457 _SEGMENT_ENTRY_WRITE | \
458 _SEGMENT_ENTRY_YOUNG | \
459 _SEGMENT_ENTRY_DIRTY | \
460 _SEGMENT_ENTRY_NOEXEC)
461#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
462 _SEGMENT_ENTRY_LARGE | \
463 _SEGMENT_ENTRY_READ | \
464 _SEGMENT_ENTRY_YOUNG | \
465 _SEGMENT_ENTRY_PROTECT | \
466 _SEGMENT_ENTRY_NOEXEC)
467
468/*
469 * Region3 entry (large page) protection definitions.
470 */
471
472#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
473 _REGION3_ENTRY_LARGE | \
474 _REGION3_ENTRY_READ | \
475 _REGION3_ENTRY_WRITE | \
476 _REGION3_ENTRY_YOUNG | \
477 _REGION3_ENTRY_DIRTY | \
478 _REGION_ENTRY_NOEXEC)
479#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
480 _REGION3_ENTRY_LARGE | \
481 _REGION3_ENTRY_READ | \
482 _REGION3_ENTRY_YOUNG | \
483 _REGION_ENTRY_PROTECT | \
484 _REGION_ENTRY_NOEXEC)
485
486static inline int mm_has_pgste(struct mm_struct *mm)
487{
488#ifdef CONFIG_PGSTE
489 if (unlikely(mm->context.has_pgste))
490 return 1;
491#endif
492 return 0;
493}
494
495static inline int mm_alloc_pgste(struct mm_struct *mm)
496{
497#ifdef CONFIG_PGSTE
498 if (unlikely(mm->context.alloc_pgste))
499 return 1;
500#endif
501 return 0;
502}
503
504/*
505 * In the case that a guest uses storage keys
506 * faults should no longer be backed by zero pages
507 */
508#define mm_forbids_zeropage mm_has_pgste
509static inline int mm_uses_skeys(struct mm_struct *mm)
510{
511#ifdef CONFIG_PGSTE
512 if (mm->context.uses_skeys)
513 return 1;
514#endif
515 return 0;
516}
517
518static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
519{
520 register unsigned long reg2 asm("2") = old;
521 register unsigned long reg3 asm("3") = new;
522 unsigned long address = (unsigned long)ptr | 1;
523
524 asm volatile(
525 " csp %0,%3"
526 : "+d" (reg2), "+m" (*ptr)
527 : "d" (reg3), "d" (address)
528 : "cc");
529}
530
531static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
532{
533 register unsigned long reg2 asm("2") = old;
534 register unsigned long reg3 asm("3") = new;
535 unsigned long address = (unsigned long)ptr | 1;
536
537 asm volatile(
538 " .insn rre,0xb98a0000,%0,%3"
539 : "+d" (reg2), "+m" (*ptr)
540 : "d" (reg3), "d" (address)
541 : "cc");
542}
543
544#define CRDTE_DTT_PAGE 0x00UL
545#define CRDTE_DTT_SEGMENT 0x10UL
546#define CRDTE_DTT_REGION3 0x14UL
547#define CRDTE_DTT_REGION2 0x18UL
548#define CRDTE_DTT_REGION1 0x1cUL
549
550static inline void crdte(unsigned long old, unsigned long new,
551 unsigned long table, unsigned long dtt,
552 unsigned long address, unsigned long asce)
553{
554 register unsigned long reg2 asm("2") = old;
555 register unsigned long reg3 asm("3") = new;
556 register unsigned long reg4 asm("4") = table | dtt;
557 register unsigned long reg5 asm("5") = address;
558
559 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
560 : "+d" (reg2)
561 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
562 : "memory", "cc");
563}
564
565/*
566 * pgd/p4d/pud/pmd/pte query functions
567 */
568static inline int pgd_folded(pgd_t pgd)
569{
570 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
571}
572
573static inline int pgd_present(pgd_t pgd)
574{
575 if (pgd_folded(pgd))
576 return 1;
577 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
578}
579
580static inline int pgd_none(pgd_t pgd)
581{
582 if (pgd_folded(pgd))
583 return 0;
584 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
585}
586
587static inline int pgd_bad(pgd_t pgd)
588{
589 /*
590 * With dynamic page table levels the pgd can be a region table
591 * entry or a segment table entry. Check for the bit that are
592 * invalid for either table entry.
593 */
594 unsigned long mask =
595 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
596 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
597 return (pgd_val(pgd) & mask) != 0;
598}
599
600static inline int p4d_folded(p4d_t p4d)
601{
602 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
603}
604
605static inline int p4d_present(p4d_t p4d)
606{
607 if (p4d_folded(p4d))
608 return 1;
609 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
610}
611
612static inline int p4d_none(p4d_t p4d)
613{
614 if (p4d_folded(p4d))
615 return 0;
616 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
617}
618
619static inline unsigned long p4d_pfn(p4d_t p4d)
620{
621 unsigned long origin_mask;
622
623 origin_mask = _REGION_ENTRY_ORIGIN;
624 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
625}
626
627static inline int pud_folded(pud_t pud)
628{
629 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
630}
631
632static inline int pud_present(pud_t pud)
633{
634 if (pud_folded(pud))
635 return 1;
636 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
637}
638
639static inline int pud_none(pud_t pud)
640{
641 if (pud_folded(pud))
642 return 0;
643 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
644}
645
646static inline int pud_large(pud_t pud)
647{
648 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
649 return 0;
650 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
651}
652
653static inline unsigned long pud_pfn(pud_t pud)
654{
655 unsigned long origin_mask;
656
657 origin_mask = _REGION_ENTRY_ORIGIN;
658 if (pud_large(pud))
659 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
660 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
661}
662
663static inline int pmd_large(pmd_t pmd)
664{
665 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
666}
667
668static inline int pmd_bad(pmd_t pmd)
669{
670 if (pmd_large(pmd))
671 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
672 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
673}
674
675static inline int pud_bad(pud_t pud)
676{
677 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
678 return pmd_bad(__pmd(pud_val(pud)));
679 if (pud_large(pud))
680 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
681 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
682}
683
684static inline int p4d_bad(p4d_t p4d)
685{
686 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
687 return pud_bad(__pud(p4d_val(p4d)));
688 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
689}
690
691static inline int pmd_present(pmd_t pmd)
692{
693 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
694}
695
696static inline int pmd_none(pmd_t pmd)
697{
698 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
699}
700
701static inline unsigned long pmd_pfn(pmd_t pmd)
702{
703 unsigned long origin_mask;
704
705 origin_mask = _SEGMENT_ENTRY_ORIGIN;
706 if (pmd_large(pmd))
707 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
708 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
709}
710
711#define pmd_write pmd_write
712static inline int pmd_write(pmd_t pmd)
713{
714 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
715}
716
717static inline int pmd_dirty(pmd_t pmd)
718{
719 int dirty = 1;
720 if (pmd_large(pmd))
721 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
722 return dirty;
723}
724
725static inline int pmd_young(pmd_t pmd)
726{
727 int young = 1;
728 if (pmd_large(pmd))
729 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
730 return young;
731}
732
733static inline int pte_present(pte_t pte)
734{
735 /* Bit pattern: (pte & 0x001) == 0x001 */
736 return (pte_val(pte) & _PAGE_PRESENT) != 0;
737}
738
739static inline int pte_none(pte_t pte)
740{
741 /* Bit pattern: pte == 0x400 */
742 return pte_val(pte) == _PAGE_INVALID;
743}
744
745static inline int pte_swap(pte_t pte)
746{
747 /* Bit pattern: (pte & 0x201) == 0x200 */
748 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
749 == _PAGE_PROTECT;
750}
751
752static inline int pte_special(pte_t pte)
753{
754 return (pte_val(pte) & _PAGE_SPECIAL);
755}
756
757#define __HAVE_ARCH_PTE_SAME
758static inline int pte_same(pte_t a, pte_t b)
759{
760 return pte_val(a) == pte_val(b);
761}
762
763#ifdef CONFIG_NUMA_BALANCING
764static inline int pte_protnone(pte_t pte)
765{
766 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
767}
768
769static inline int pmd_protnone(pmd_t pmd)
770{
771 /* pmd_large(pmd) implies pmd_present(pmd) */
772 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
773}
774#endif
775
776static inline int pte_soft_dirty(pte_t pte)
777{
778 return pte_val(pte) & _PAGE_SOFT_DIRTY;
779}
780#define pte_swp_soft_dirty pte_soft_dirty
781
782static inline pte_t pte_mksoft_dirty(pte_t pte)
783{
784 pte_val(pte) |= _PAGE_SOFT_DIRTY;
785 return pte;
786}
787#define pte_swp_mksoft_dirty pte_mksoft_dirty
788
789static inline pte_t pte_clear_soft_dirty(pte_t pte)
790{
791 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
792 return pte;
793}
794#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
795
796static inline int pmd_soft_dirty(pmd_t pmd)
797{
798 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
799}
800
801static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
802{
803 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
804 return pmd;
805}
806
807static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
808{
809 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
810 return pmd;
811}
812
813/*
814 * query functions pte_write/pte_dirty/pte_young only work if
815 * pte_present() is true. Undefined behaviour if not..
816 */
817static inline int pte_write(pte_t pte)
818{
819 return (pte_val(pte) & _PAGE_WRITE) != 0;
820}
821
822static inline int pte_dirty(pte_t pte)
823{
824 return (pte_val(pte) & _PAGE_DIRTY) != 0;
825}
826
827static inline int pte_young(pte_t pte)
828{
829 return (pte_val(pte) & _PAGE_YOUNG) != 0;
830}
831
832#define __HAVE_ARCH_PTE_UNUSED
833static inline int pte_unused(pte_t pte)
834{
835 return pte_val(pte) & _PAGE_UNUSED;
836}
837
838/*
839 * pgd/pmd/pte modification functions
840 */
841
842static inline void pgd_clear(pgd_t *pgd)
843{
844 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
845 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
846}
847
848static inline void p4d_clear(p4d_t *p4d)
849{
850 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
851 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
852}
853
854static inline void pud_clear(pud_t *pud)
855{
856 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
857 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
858}
859
860static inline void pmd_clear(pmd_t *pmdp)
861{
862 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
863}
864
865static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
866{
867 pte_val(*ptep) = _PAGE_INVALID;
868}
869
870/*
871 * The following pte modification functions only work if
872 * pte_present() is true. Undefined behaviour if not..
873 */
874static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
875{
876 pte_val(pte) &= _PAGE_CHG_MASK;
877 pte_val(pte) |= pgprot_val(newprot);
878 /*
879 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
880 * has the invalid bit set, clear it again for readable, young pages
881 */
882 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
883 pte_val(pte) &= ~_PAGE_INVALID;
884 /*
885 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
886 * protection bit set, clear it again for writable, dirty pages
887 */
888 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
889 pte_val(pte) &= ~_PAGE_PROTECT;
890 return pte;
891}
892
893static inline pte_t pte_wrprotect(pte_t pte)
894{
895 pte_val(pte) &= ~_PAGE_WRITE;
896 pte_val(pte) |= _PAGE_PROTECT;
897 return pte;
898}
899
900static inline pte_t pte_mkwrite(pte_t pte)
901{
902 pte_val(pte) |= _PAGE_WRITE;
903 if (pte_val(pte) & _PAGE_DIRTY)
904 pte_val(pte) &= ~_PAGE_PROTECT;
905 return pte;
906}
907
908static inline pte_t pte_mkclean(pte_t pte)
909{
910 pte_val(pte) &= ~_PAGE_DIRTY;
911 pte_val(pte) |= _PAGE_PROTECT;
912 return pte;
913}
914
915static inline pte_t pte_mkdirty(pte_t pte)
916{
917 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
918 if (pte_val(pte) & _PAGE_WRITE)
919 pte_val(pte) &= ~_PAGE_PROTECT;
920 return pte;
921}
922
923static inline pte_t pte_mkold(pte_t pte)
924{
925 pte_val(pte) &= ~_PAGE_YOUNG;
926 pte_val(pte) |= _PAGE_INVALID;
927 return pte;
928}
929
930static inline pte_t pte_mkyoung(pte_t pte)
931{
932 pte_val(pte) |= _PAGE_YOUNG;
933 if (pte_val(pte) & _PAGE_READ)
934 pte_val(pte) &= ~_PAGE_INVALID;
935 return pte;
936}
937
938static inline pte_t pte_mkspecial(pte_t pte)
939{
940 pte_val(pte) |= _PAGE_SPECIAL;
941 return pte;
942}
943
944#ifdef CONFIG_HUGETLB_PAGE
945static inline pte_t pte_mkhuge(pte_t pte)
946{
947 pte_val(pte) |= _PAGE_LARGE;
948 return pte;
949}
950#endif
951
952#define IPTE_GLOBAL 0
953#define IPTE_LOCAL 1
954
955#define IPTE_NODAT 0x400
956#define IPTE_GUEST_ASCE 0x800
957
958static inline void __ptep_ipte(unsigned long address, pte_t *ptep,
959 unsigned long opt, unsigned long asce,
960 int local)
961{
962 unsigned long pto = (unsigned long) ptep;
963
964 if (__builtin_constant_p(opt) && opt == 0) {
965 /* Invalidation + TLB flush for the pte */
966 asm volatile(
967 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
968 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
969 [m4] "i" (local));
970 return;
971 }
972
973 /* Invalidate ptes with options + TLB flush of the ptes */
974 opt = opt | (asce & _ASCE_ORIGIN);
975 asm volatile(
976 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
977 : [r2] "+a" (address), [r3] "+a" (opt)
978 : [r1] "a" (pto), [m4] "i" (local) : "memory");
979}
980
981static inline void __ptep_ipte_range(unsigned long address, int nr,
982 pte_t *ptep, int local)
983{
984 unsigned long pto = (unsigned long) ptep;
985
986 /* Invalidate a range of ptes + TLB flush of the ptes */
987 do {
988 asm volatile(
989 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
990 : [r2] "+a" (address), [r3] "+a" (nr)
991 : [r1] "a" (pto), [m4] "i" (local) : "memory");
992 } while (nr != 255);
993}
994
995/*
996 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
997 * both clear the TLB for the unmapped pte. The reason is that
998 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
999 * to modify an active pte. The sequence is
1000 * 1) ptep_get_and_clear
1001 * 2) set_pte_at
1002 * 3) flush_tlb_range
1003 * On s390 the tlb needs to get flushed with the modification of the pte
1004 * if the pte is active. The only way how this can be implemented is to
1005 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1006 * is a nop.
1007 */
1008pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1009pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1010
1011#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1012static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1013 unsigned long addr, pte_t *ptep)
1014{
1015 pte_t pte = *ptep;
1016
1017 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1018 return pte_young(pte);
1019}
1020
1021#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1022static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1023 unsigned long address, pte_t *ptep)
1024{
1025 return ptep_test_and_clear_young(vma, address, ptep);
1026}
1027
1028#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1029static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1030 unsigned long addr, pte_t *ptep)
1031{
1032 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1033}
1034
1035#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1036pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
1037void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
1038
1039#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1040static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1041 unsigned long addr, pte_t *ptep)
1042{
1043 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1044}
1045
1046/*
1047 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1048 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1049 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1050 * cannot be accessed while the batched unmap is running. In this case
1051 * full==1 and a simple pte_clear is enough. See tlb.h.
1052 */
1053#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1054static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1055 unsigned long addr,
1056 pte_t *ptep, int full)
1057{
1058 if (full) {
1059 pte_t pte = *ptep;
1060 *ptep = __pte(_PAGE_INVALID);
1061 return pte;
1062 }
1063 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1064}
1065
1066#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1067static inline void ptep_set_wrprotect(struct mm_struct *mm,
1068 unsigned long addr, pte_t *ptep)
1069{
1070 pte_t pte = *ptep;
1071
1072 if (pte_write(pte))
1073 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1074}
1075
1076#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1077static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1078 unsigned long addr, pte_t *ptep,
1079 pte_t entry, int dirty)
1080{
1081 if (pte_same(*ptep, entry))
1082 return 0;
1083 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1084 return 1;
1085}
1086
1087/*
1088 * Additional functions to handle KVM guest page tables
1089 */
1090void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1091 pte_t *ptep, pte_t entry);
1092void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1093void ptep_notify(struct mm_struct *mm, unsigned long addr,
1094 pte_t *ptep, unsigned long bits);
1095int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1096 pte_t *ptep, int prot, unsigned long bit);
1097void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1098 pte_t *ptep , int reset);
1099void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1100int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1101 pte_t *sptep, pte_t *tptep, pte_t pte);
1102void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1103
1104bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
1105int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1106 unsigned char key, bool nq);
1107int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1108 unsigned char key, unsigned char *oldkey,
1109 bool nq, bool mr, bool mc);
1110int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1111int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1112 unsigned char *key);
1113
1114int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1115 unsigned long bits, unsigned long value);
1116int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1117int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1118 unsigned long *oldpte, unsigned long *oldpgste);
1119
1120/*
1121 * Certain architectures need to do special things when PTEs
1122 * within a page table are directly modified. Thus, the following
1123 * hook is made available.
1124 */
1125static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1126 pte_t *ptep, pte_t entry)
1127{
1128 if (!MACHINE_HAS_NX)
1129 pte_val(entry) &= ~_PAGE_NOEXEC;
1130 if (pte_present(entry))
1131 pte_val(entry) &= ~_PAGE_UNUSED;
1132 if (mm_has_pgste(mm))
1133 ptep_set_pte_at(mm, addr, ptep, entry);
1134 else
1135 *ptep = entry;
1136}
1137
1138/*
1139 * Conversion functions: convert a page and protection to a page entry,
1140 * and a page entry and page directory to the page they refer to.
1141 */
1142static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1143{
1144 pte_t __pte;
1145 pte_val(__pte) = physpage + pgprot_val(pgprot);
1146 return pte_mkyoung(__pte);
1147}
1148
1149static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1150{
1151 unsigned long physpage = page_to_phys(page);
1152 pte_t __pte = mk_pte_phys(physpage, pgprot);
1153
1154 if (pte_write(__pte) && PageDirty(page))
1155 __pte = pte_mkdirty(__pte);
1156 return __pte;
1157}
1158
1159#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1160#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1161#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1162#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1163#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1164
1165#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1166#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1167
1168#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1169#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1170#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1171#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1172
1173static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1174{
1175 p4d_t *p4d = (p4d_t *) pgd;
1176
1177 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
1178 p4d = (p4d_t *) pgd_deref(*pgd);
1179 return p4d + p4d_index(address);
1180}
1181
1182static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1183{
1184 pud_t *pud = (pud_t *) p4d;
1185
1186 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1187 pud = (pud_t *) p4d_deref(*p4d);
1188 return pud + pud_index(address);
1189}
1190
1191static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1192{
1193 pmd_t *pmd = (pmd_t *) pud;
1194
1195 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1196 pmd = (pmd_t *) pud_deref(*pud);
1197 return pmd + pmd_index(address);
1198}
1199
1200#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1201#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1202#define pte_page(x) pfn_to_page(pte_pfn(x))
1203
1204#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1205#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1206#define p4d_page(pud) pfn_to_page(p4d_pfn(p4d))
1207
1208/* Find an entry in the lowest level page table.. */
1209#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1210#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1211#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1212#define pte_unmap(pte) do { } while (0)
1213
1214static inline pmd_t pmd_wrprotect(pmd_t pmd)
1215{
1216 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1217 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1218 return pmd;
1219}
1220
1221static inline pmd_t pmd_mkwrite(pmd_t pmd)
1222{
1223 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1224 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1225 return pmd;
1226 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1227 return pmd;
1228}
1229
1230static inline pmd_t pmd_mkclean(pmd_t pmd)
1231{
1232 if (pmd_large(pmd)) {
1233 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1234 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1235 }
1236 return pmd;
1237}
1238
1239static inline pmd_t pmd_mkdirty(pmd_t pmd)
1240{
1241 if (pmd_large(pmd)) {
1242 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1243 _SEGMENT_ENTRY_SOFT_DIRTY;
1244 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1245 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1246 }
1247 return pmd;
1248}
1249
1250static inline pud_t pud_wrprotect(pud_t pud)
1251{
1252 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1253 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1254 return pud;
1255}
1256
1257static inline pud_t pud_mkwrite(pud_t pud)
1258{
1259 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1260 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1261 return pud;
1262 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1263 return pud;
1264}
1265
1266static inline pud_t pud_mkclean(pud_t pud)
1267{
1268 if (pud_large(pud)) {
1269 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1270 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1271 }
1272 return pud;
1273}
1274
1275static inline pud_t pud_mkdirty(pud_t pud)
1276{
1277 if (pud_large(pud)) {
1278 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1279 _REGION3_ENTRY_SOFT_DIRTY;
1280 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1281 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1282 }
1283 return pud;
1284}
1285
1286#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1287static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1288{
1289 /*
1290 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1291 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1292 */
1293 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1294 return pgprot_val(SEGMENT_NONE);
1295 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1296 return pgprot_val(SEGMENT_RO);
1297 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1298 return pgprot_val(SEGMENT_RX);
1299 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1300 return pgprot_val(SEGMENT_RW);
1301 return pgprot_val(SEGMENT_RWX);
1302}
1303
1304static inline pmd_t pmd_mkyoung(pmd_t pmd)
1305{
1306 if (pmd_large(pmd)) {
1307 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1308 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1309 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1310 }
1311 return pmd;
1312}
1313
1314static inline pmd_t pmd_mkold(pmd_t pmd)
1315{
1316 if (pmd_large(pmd)) {
1317 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1318 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1319 }
1320 return pmd;
1321}
1322
1323static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1324{
1325 if (pmd_large(pmd)) {
1326 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1327 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1328 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1329 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1330 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1331 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1332 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1333 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1334 return pmd;
1335 }
1336 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1337 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1338 return pmd;
1339}
1340
1341static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1342{
1343 pmd_t __pmd;
1344 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1345 return __pmd;
1346}
1347
1348#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1349
1350static inline void __pmdp_csp(pmd_t *pmdp)
1351{
1352 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1353 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1354}
1355
1356#define IDTE_GLOBAL 0
1357#define IDTE_LOCAL 1
1358
1359#define IDTE_PTOA 0x0800
1360#define IDTE_NODAT 0x1000
1361#define IDTE_GUEST_ASCE 0x2000
1362
1363static inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1364 unsigned long opt, unsigned long asce,
1365 int local)
1366{
1367 unsigned long sto;
1368
1369 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1370 if (__builtin_constant_p(opt) && opt == 0) {
1371 /* flush without guest asce */
1372 asm volatile(
1373 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1374 : "+m" (*pmdp)
1375 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1376 [m4] "i" (local)
1377 : "cc" );
1378 } else {
1379 /* flush with guest asce */
1380 asm volatile(
1381 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1382 : "+m" (*pmdp)
1383 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1384 [r3] "a" (asce), [m4] "i" (local)
1385 : "cc" );
1386 }
1387}
1388
1389static inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1390 unsigned long opt, unsigned long asce,
1391 int local)
1392{
1393 unsigned long r3o;
1394
1395 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1396 r3o |= _ASCE_TYPE_REGION3;
1397 if (__builtin_constant_p(opt) && opt == 0) {
1398 /* flush without guest asce */
1399 asm volatile(
1400 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1401 : "+m" (*pudp)
1402 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1403 [m4] "i" (local)
1404 : "cc");
1405 } else {
1406 /* flush with guest asce */
1407 asm volatile(
1408 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1409 : "+m" (*pudp)
1410 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1411 [r3] "a" (asce), [m4] "i" (local)
1412 : "cc" );
1413 }
1414}
1415
1416pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1417pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1418pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1419
1420#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1421
1422#define __HAVE_ARCH_PGTABLE_DEPOSIT
1423void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1424 pgtable_t pgtable);
1425
1426#define __HAVE_ARCH_PGTABLE_WITHDRAW
1427pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1428
1429#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1430static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1431 unsigned long addr, pmd_t *pmdp,
1432 pmd_t entry, int dirty)
1433{
1434 VM_BUG_ON(addr & ~HPAGE_MASK);
1435
1436 entry = pmd_mkyoung(entry);
1437 if (dirty)
1438 entry = pmd_mkdirty(entry);
1439 if (pmd_val(*pmdp) == pmd_val(entry))
1440 return 0;
1441 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1442 return 1;
1443}
1444
1445#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1446static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1447 unsigned long addr, pmd_t *pmdp)
1448{
1449 pmd_t pmd = *pmdp;
1450
1451 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1452 return pmd_young(pmd);
1453}
1454
1455#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1456static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1457 unsigned long addr, pmd_t *pmdp)
1458{
1459 VM_BUG_ON(addr & ~HPAGE_MASK);
1460 return pmdp_test_and_clear_young(vma, addr, pmdp);
1461}
1462
1463static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1464 pmd_t *pmdp, pmd_t entry)
1465{
1466 if (!MACHINE_HAS_NX)
1467 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1468 *pmdp = entry;
1469}
1470
1471static inline pmd_t pmd_mkhuge(pmd_t pmd)
1472{
1473 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1474 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1475 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1476 return pmd;
1477}
1478
1479#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1480static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1481 unsigned long addr, pmd_t *pmdp)
1482{
1483 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1484}
1485
1486#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1487static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1488 unsigned long addr,
1489 pmd_t *pmdp, int full)
1490{
1491 if (full) {
1492 pmd_t pmd = *pmdp;
1493 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1494 return pmd;
1495 }
1496 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1497}
1498
1499#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1500static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1501 unsigned long addr, pmd_t *pmdp)
1502{
1503 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1504}
1505
1506#define __HAVE_ARCH_PMDP_INVALIDATE
1507static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1508 unsigned long addr, pmd_t *pmdp)
1509{
1510 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1511
1512 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1513}
1514
1515#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1516static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1517 unsigned long addr, pmd_t *pmdp)
1518{
1519 pmd_t pmd = *pmdp;
1520
1521 if (pmd_write(pmd))
1522 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1523}
1524
1525static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1526 unsigned long address,
1527 pmd_t *pmdp)
1528{
1529 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1530}
1531#define pmdp_collapse_flush pmdp_collapse_flush
1532
1533#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1534#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1535
1536static inline int pmd_trans_huge(pmd_t pmd)
1537{
1538 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1539}
1540
1541#define has_transparent_hugepage has_transparent_hugepage
1542static inline int has_transparent_hugepage(void)
1543{
1544 return MACHINE_HAS_EDAT1 ? 1 : 0;
1545}
1546#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1547
1548/*
1549 * 64 bit swap entry format:
1550 * A page-table entry has some bits we have to treat in a special way.
1551 * Bits 52 and bit 55 have to be zero, otherwise a specification
1552 * exception will occur instead of a page translation exception. The
1553 * specification exception has the bad habit not to store necessary
1554 * information in the lowcore.
1555 * Bits 54 and 63 are used to indicate the page type.
1556 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1557 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1558 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1559 * for the offset.
1560 * | offset |01100|type |00|
1561 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1562 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1563 */
1564
1565#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1566#define __SWP_OFFSET_SHIFT 12
1567#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1568#define __SWP_TYPE_SHIFT 2
1569
1570static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1571{
1572 pte_t pte;
1573
1574 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1575 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1576 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1577 return pte;
1578}
1579
1580static inline unsigned long __swp_type(swp_entry_t entry)
1581{
1582 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1583}
1584
1585static inline unsigned long __swp_offset(swp_entry_t entry)
1586{
1587 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1588}
1589
1590static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1591{
1592 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1593}
1594
1595#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1596#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1597
1598#define kern_addr_valid(addr) (1)
1599
1600extern int vmem_add_mapping(unsigned long start, unsigned long size);
1601extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1602extern int s390_enable_sie(void);
1603extern int s390_enable_skey(void);
1604extern void s390_reset_cmma(struct mm_struct *mm);
1605
1606/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1607#define HAVE_ARCH_UNMAPPED_AREA
1608#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1609
1610/*
1611 * No page table caches to initialise
1612 */
1613static inline void pgtable_cache_init(void) { }
1614static inline void check_pgt_cache(void) { }
1615
1616#include <asm-generic/pgtable.h>
1617
1618#endif /* _S390_PAGE_H */