Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/platform_device.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <net/cfg80211.h>
61#include "core.h"
62#include "reg.h"
63#include "rdev-ops.h"
64#include "nl80211.h"
65
66/*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70#define REG_ENFORCE_GRACE_MS 60000
71
72/**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87};
88
89static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96};
97
98/*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105/* To trigger userspace events and load firmware */
106static struct platform_device *reg_pdev;
107
108/*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116/*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121static int reg_num_devs_support_basehint;
122
123/*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128static bool reg_is_indoor;
129static spinlock_t reg_indoor_lock;
130
131/* Used to track the userspace process controlling the indoor setting */
132static u32 reg_is_indoor_portid;
133
134static void restore_regulatory_settings(bool reset_user);
135
136static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137{
138 return rcu_dereference_rtnl(cfg80211_regdomain);
139}
140
141const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142{
143 return rcu_dereference_rtnl(wiphy->regd);
144}
145
146static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147{
148 switch (dfs_region) {
149 case NL80211_DFS_UNSET:
150 return "unset";
151 case NL80211_DFS_FCC:
152 return "FCC";
153 case NL80211_DFS_ETSI:
154 return "ETSI";
155 case NL80211_DFS_JP:
156 return "JP";
157 }
158 return "Unknown";
159}
160
161enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162{
163 const struct ieee80211_regdomain *regd = NULL;
164 const struct ieee80211_regdomain *wiphy_regd = NULL;
165
166 regd = get_cfg80211_regdom();
167 if (!wiphy)
168 goto out;
169
170 wiphy_regd = get_wiphy_regdom(wiphy);
171 if (!wiphy_regd)
172 goto out;
173
174 if (wiphy_regd->dfs_region == regd->dfs_region)
175 goto out;
176
177 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178 dev_name(&wiphy->dev),
179 reg_dfs_region_str(wiphy_regd->dfs_region),
180 reg_dfs_region_str(regd->dfs_region));
181
182out:
183 return regd->dfs_region;
184}
185
186static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187{
188 if (!r)
189 return;
190 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
191}
192
193static struct regulatory_request *get_last_request(void)
194{
195 return rcu_dereference_rtnl(last_request);
196}
197
198/* Used to queue up regulatory hints */
199static LIST_HEAD(reg_requests_list);
200static spinlock_t reg_requests_lock;
201
202/* Used to queue up beacon hints for review */
203static LIST_HEAD(reg_pending_beacons);
204static spinlock_t reg_pending_beacons_lock;
205
206/* Used to keep track of processed beacon hints */
207static LIST_HEAD(reg_beacon_list);
208
209struct reg_beacon {
210 struct list_head list;
211 struct ieee80211_channel chan;
212};
213
214static void reg_check_chans_work(struct work_struct *work);
215static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216
217static void reg_todo(struct work_struct *work);
218static DECLARE_WORK(reg_work, reg_todo);
219
220/* We keep a static world regulatory domain in case of the absence of CRDA */
221static const struct ieee80211_regdomain world_regdom = {
222 .n_reg_rules = 8,
223 .alpha2 = "00",
224 .reg_rules = {
225 /* IEEE 802.11b/g, channels 1..11 */
226 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227 /* IEEE 802.11b/g, channels 12..13. */
228 REG_RULE(2467-10, 2472+10, 20, 6, 20,
229 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230 /* IEEE 802.11 channel 14 - Only JP enables
231 * this and for 802.11b only */
232 REG_RULE(2484-10, 2484+10, 20, 6, 20,
233 NL80211_RRF_NO_IR |
234 NL80211_RRF_NO_OFDM),
235 /* IEEE 802.11a, channel 36..48 */
236 REG_RULE(5180-10, 5240+10, 80, 6, 20,
237 NL80211_RRF_NO_IR |
238 NL80211_RRF_AUTO_BW),
239
240 /* IEEE 802.11a, channel 52..64 - DFS required */
241 REG_RULE(5260-10, 5320+10, 80, 6, 20,
242 NL80211_RRF_NO_IR |
243 NL80211_RRF_AUTO_BW |
244 NL80211_RRF_DFS),
245
246 /* IEEE 802.11a, channel 100..144 - DFS required */
247 REG_RULE(5500-10, 5720+10, 160, 6, 20,
248 NL80211_RRF_NO_IR |
249 NL80211_RRF_DFS),
250
251 /* IEEE 802.11a, channel 149..165 */
252 REG_RULE(5745-10, 5825+10, 80, 6, 20,
253 NL80211_RRF_NO_IR),
254
255 /* IEEE 802.11ad (60GHz), channels 1..3 */
256 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257 }
258};
259
260/* protected by RTNL */
261static const struct ieee80211_regdomain *cfg80211_world_regdom =
262 &world_regdom;
263
264static char *ieee80211_regdom = "00";
265static char user_alpha2[2];
266
267module_param(ieee80211_regdom, charp, 0444);
268MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269
270static void reg_free_request(struct regulatory_request *request)
271{
272 if (request == &core_request_world)
273 return;
274
275 if (request != get_last_request())
276 kfree(request);
277}
278
279static void reg_free_last_request(void)
280{
281 struct regulatory_request *lr = get_last_request();
282
283 if (lr != &core_request_world && lr)
284 kfree_rcu(lr, rcu_head);
285}
286
287static void reg_update_last_request(struct regulatory_request *request)
288{
289 struct regulatory_request *lr;
290
291 lr = get_last_request();
292 if (lr == request)
293 return;
294
295 reg_free_last_request();
296 rcu_assign_pointer(last_request, request);
297}
298
299static void reset_regdomains(bool full_reset,
300 const struct ieee80211_regdomain *new_regdom)
301{
302 const struct ieee80211_regdomain *r;
303
304 ASSERT_RTNL();
305
306 r = get_cfg80211_regdom();
307
308 /* avoid freeing static information or freeing something twice */
309 if (r == cfg80211_world_regdom)
310 r = NULL;
311 if (cfg80211_world_regdom == &world_regdom)
312 cfg80211_world_regdom = NULL;
313 if (r == &world_regdom)
314 r = NULL;
315
316 rcu_free_regdom(r);
317 rcu_free_regdom(cfg80211_world_regdom);
318
319 cfg80211_world_regdom = &world_regdom;
320 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321
322 if (!full_reset)
323 return;
324
325 reg_update_last_request(&core_request_world);
326}
327
328/*
329 * Dynamic world regulatory domain requested by the wireless
330 * core upon initialization
331 */
332static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333{
334 struct regulatory_request *lr;
335
336 lr = get_last_request();
337
338 WARN_ON(!lr);
339
340 reset_regdomains(false, rd);
341
342 cfg80211_world_regdom = rd;
343}
344
345bool is_world_regdom(const char *alpha2)
346{
347 if (!alpha2)
348 return false;
349 return alpha2[0] == '0' && alpha2[1] == '0';
350}
351
352static bool is_alpha2_set(const char *alpha2)
353{
354 if (!alpha2)
355 return false;
356 return alpha2[0] && alpha2[1];
357}
358
359static bool is_unknown_alpha2(const char *alpha2)
360{
361 if (!alpha2)
362 return false;
363 /*
364 * Special case where regulatory domain was built by driver
365 * but a specific alpha2 cannot be determined
366 */
367 return alpha2[0] == '9' && alpha2[1] == '9';
368}
369
370static bool is_intersected_alpha2(const char *alpha2)
371{
372 if (!alpha2)
373 return false;
374 /*
375 * Special case where regulatory domain is the
376 * result of an intersection between two regulatory domain
377 * structures
378 */
379 return alpha2[0] == '9' && alpha2[1] == '8';
380}
381
382static bool is_an_alpha2(const char *alpha2)
383{
384 if (!alpha2)
385 return false;
386 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
387}
388
389static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390{
391 if (!alpha2_x || !alpha2_y)
392 return false;
393 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
394}
395
396static bool regdom_changes(const char *alpha2)
397{
398 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399
400 if (!r)
401 return true;
402 return !alpha2_equal(r->alpha2, alpha2);
403}
404
405/*
406 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408 * has ever been issued.
409 */
410static bool is_user_regdom_saved(void)
411{
412 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413 return false;
414
415 /* This would indicate a mistake on the design */
416 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417 "Unexpected user alpha2: %c%c\n",
418 user_alpha2[0], user_alpha2[1]))
419 return false;
420
421 return true;
422}
423
424static const struct ieee80211_regdomain *
425reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426{
427 struct ieee80211_regdomain *regd;
428 int size_of_regd, size_of_wmms;
429 unsigned int i;
430 struct ieee80211_wmm_rule *d_wmm, *s_wmm;
431
432 size_of_regd =
433 sizeof(struct ieee80211_regdomain) +
434 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
435 size_of_wmms = src_regd->n_wmm_rules *
436 sizeof(struct ieee80211_wmm_rule);
437
438 regd = kzalloc(size_of_regd + size_of_wmms, GFP_KERNEL);
439 if (!regd)
440 return ERR_PTR(-ENOMEM);
441
442 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
443
444 d_wmm = (struct ieee80211_wmm_rule *)((u8 *)regd + size_of_regd);
445 s_wmm = (struct ieee80211_wmm_rule *)((u8 *)src_regd + size_of_regd);
446 memcpy(d_wmm, s_wmm, size_of_wmms);
447
448 for (i = 0; i < src_regd->n_reg_rules; i++) {
449 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
450 sizeof(struct ieee80211_reg_rule));
451 if (!src_regd->reg_rules[i].wmm_rule)
452 continue;
453
454 regd->reg_rules[i].wmm_rule = d_wmm +
455 (src_regd->reg_rules[i].wmm_rule - s_wmm) /
456 sizeof(struct ieee80211_wmm_rule);
457 }
458 return regd;
459}
460
461struct reg_regdb_apply_request {
462 struct list_head list;
463 const struct ieee80211_regdomain *regdom;
464};
465
466static LIST_HEAD(reg_regdb_apply_list);
467static DEFINE_MUTEX(reg_regdb_apply_mutex);
468
469static void reg_regdb_apply(struct work_struct *work)
470{
471 struct reg_regdb_apply_request *request;
472
473 rtnl_lock();
474
475 mutex_lock(®_regdb_apply_mutex);
476 while (!list_empty(®_regdb_apply_list)) {
477 request = list_first_entry(®_regdb_apply_list,
478 struct reg_regdb_apply_request,
479 list);
480 list_del(&request->list);
481
482 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
483 kfree(request);
484 }
485 mutex_unlock(®_regdb_apply_mutex);
486
487 rtnl_unlock();
488}
489
490static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
491
492static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
493{
494 struct reg_regdb_apply_request *request;
495
496 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
497 if (!request) {
498 kfree(regdom);
499 return -ENOMEM;
500 }
501
502 request->regdom = regdom;
503
504 mutex_lock(®_regdb_apply_mutex);
505 list_add_tail(&request->list, ®_regdb_apply_list);
506 mutex_unlock(®_regdb_apply_mutex);
507
508 schedule_work(®_regdb_work);
509 return 0;
510}
511
512#ifdef CONFIG_CFG80211_CRDA_SUPPORT
513/* Max number of consecutive attempts to communicate with CRDA */
514#define REG_MAX_CRDA_TIMEOUTS 10
515
516static u32 reg_crda_timeouts;
517
518static void crda_timeout_work(struct work_struct *work);
519static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
520
521static void crda_timeout_work(struct work_struct *work)
522{
523 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
524 rtnl_lock();
525 reg_crda_timeouts++;
526 restore_regulatory_settings(true);
527 rtnl_unlock();
528}
529
530static void cancel_crda_timeout(void)
531{
532 cancel_delayed_work(&crda_timeout);
533}
534
535static void cancel_crda_timeout_sync(void)
536{
537 cancel_delayed_work_sync(&crda_timeout);
538}
539
540static void reset_crda_timeouts(void)
541{
542 reg_crda_timeouts = 0;
543}
544
545/*
546 * This lets us keep regulatory code which is updated on a regulatory
547 * basis in userspace.
548 */
549static int call_crda(const char *alpha2)
550{
551 char country[12];
552 char *env[] = { country, NULL };
553 int ret;
554
555 snprintf(country, sizeof(country), "COUNTRY=%c%c",
556 alpha2[0], alpha2[1]);
557
558 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
559 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
560 return -EINVAL;
561 }
562
563 if (!is_world_regdom((char *) alpha2))
564 pr_debug("Calling CRDA for country: %c%c\n",
565 alpha2[0], alpha2[1]);
566 else
567 pr_debug("Calling CRDA to update world regulatory domain\n");
568
569 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
570 if (ret)
571 return ret;
572
573 queue_delayed_work(system_power_efficient_wq,
574 &crda_timeout, msecs_to_jiffies(3142));
575 return 0;
576}
577#else
578static inline void cancel_crda_timeout(void) {}
579static inline void cancel_crda_timeout_sync(void) {}
580static inline void reset_crda_timeouts(void) {}
581static inline int call_crda(const char *alpha2)
582{
583 return -ENODATA;
584}
585#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
586
587/* code to directly load a firmware database through request_firmware */
588static const struct fwdb_header *regdb;
589
590struct fwdb_country {
591 u8 alpha2[2];
592 __be16 coll_ptr;
593 /* this struct cannot be extended */
594} __packed __aligned(4);
595
596struct fwdb_collection {
597 u8 len;
598 u8 n_rules;
599 u8 dfs_region;
600 /* no optional data yet */
601 /* aligned to 2, then followed by __be16 array of rule pointers */
602} __packed __aligned(4);
603
604enum fwdb_flags {
605 FWDB_FLAG_NO_OFDM = BIT(0),
606 FWDB_FLAG_NO_OUTDOOR = BIT(1),
607 FWDB_FLAG_DFS = BIT(2),
608 FWDB_FLAG_NO_IR = BIT(3),
609 FWDB_FLAG_AUTO_BW = BIT(4),
610};
611
612struct fwdb_wmm_ac {
613 u8 ecw;
614 u8 aifsn;
615 __be16 cot;
616} __packed;
617
618struct fwdb_wmm_rule {
619 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
620 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
621} __packed;
622
623struct fwdb_rule {
624 u8 len;
625 u8 flags;
626 __be16 max_eirp;
627 __be32 start, end, max_bw;
628 /* start of optional data */
629 __be16 cac_timeout;
630 __be16 wmm_ptr;
631} __packed __aligned(4);
632
633#define FWDB_MAGIC 0x52474442
634#define FWDB_VERSION 20
635
636struct fwdb_header {
637 __be32 magic;
638 __be32 version;
639 struct fwdb_country country[];
640} __packed __aligned(4);
641
642static int ecw2cw(int ecw)
643{
644 return (1 << ecw) - 1;
645}
646
647static bool valid_wmm(struct fwdb_wmm_rule *rule)
648{
649 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
650 int i;
651
652 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
653 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
654 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
655 u8 aifsn = ac[i].aifsn;
656
657 if (cw_min >= cw_max)
658 return false;
659
660 if (aifsn < 1)
661 return false;
662 }
663
664 return true;
665}
666
667static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
668{
669 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
670
671 if ((u8 *)rule + sizeof(rule->len) > data + size)
672 return false;
673
674 /* mandatory fields */
675 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
676 return false;
677 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
678 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
679 struct fwdb_wmm_rule *wmm;
680
681 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
682 return false;
683
684 wmm = (void *)(data + wmm_ptr);
685
686 if (!valid_wmm(wmm))
687 return false;
688 }
689 return true;
690}
691
692static bool valid_country(const u8 *data, unsigned int size,
693 const struct fwdb_country *country)
694{
695 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
696 struct fwdb_collection *coll = (void *)(data + ptr);
697 __be16 *rules_ptr;
698 unsigned int i;
699
700 /* make sure we can read len/n_rules */
701 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
702 return false;
703
704 /* make sure base struct and all rules fit */
705 if ((u8 *)coll + ALIGN(coll->len, 2) +
706 (coll->n_rules * 2) > data + size)
707 return false;
708
709 /* mandatory fields must exist */
710 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
711 return false;
712
713 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
714
715 for (i = 0; i < coll->n_rules; i++) {
716 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
717
718 if (!valid_rule(data, size, rule_ptr))
719 return false;
720 }
721
722 return true;
723}
724
725#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
726static struct key *builtin_regdb_keys;
727
728static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
729{
730 const u8 *end = p + buflen;
731 size_t plen;
732 key_ref_t key;
733
734 while (p < end) {
735 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
736 * than 256 bytes in size.
737 */
738 if (end - p < 4)
739 goto dodgy_cert;
740 if (p[0] != 0x30 &&
741 p[1] != 0x82)
742 goto dodgy_cert;
743 plen = (p[2] << 8) | p[3];
744 plen += 4;
745 if (plen > end - p)
746 goto dodgy_cert;
747
748 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
749 "asymmetric", NULL, p, plen,
750 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
751 KEY_USR_VIEW | KEY_USR_READ),
752 KEY_ALLOC_NOT_IN_QUOTA |
753 KEY_ALLOC_BUILT_IN |
754 KEY_ALLOC_BYPASS_RESTRICTION);
755 if (IS_ERR(key)) {
756 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
757 PTR_ERR(key));
758 } else {
759 pr_notice("Loaded X.509 cert '%s'\n",
760 key_ref_to_ptr(key)->description);
761 key_ref_put(key);
762 }
763 p += plen;
764 }
765
766 return;
767
768dodgy_cert:
769 pr_err("Problem parsing in-kernel X.509 certificate list\n");
770}
771
772static int __init load_builtin_regdb_keys(void)
773{
774 builtin_regdb_keys =
775 keyring_alloc(".builtin_regdb_keys",
776 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
777 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
778 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
779 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
780 if (IS_ERR(builtin_regdb_keys))
781 return PTR_ERR(builtin_regdb_keys);
782
783 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
784
785#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
786 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
787#endif
788#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
789 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
790 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
791#endif
792
793 return 0;
794}
795
796static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
797{
798 const struct firmware *sig;
799 bool result;
800
801 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
802 return false;
803
804 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
805 builtin_regdb_keys,
806 VERIFYING_UNSPECIFIED_SIGNATURE,
807 NULL, NULL) == 0;
808
809 release_firmware(sig);
810
811 return result;
812}
813
814static void free_regdb_keyring(void)
815{
816 key_put(builtin_regdb_keys);
817}
818#else
819static int load_builtin_regdb_keys(void)
820{
821 return 0;
822}
823
824static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
825{
826 return true;
827}
828
829static void free_regdb_keyring(void)
830{
831}
832#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
833
834static bool valid_regdb(const u8 *data, unsigned int size)
835{
836 const struct fwdb_header *hdr = (void *)data;
837 const struct fwdb_country *country;
838
839 if (size < sizeof(*hdr))
840 return false;
841
842 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
843 return false;
844
845 if (hdr->version != cpu_to_be32(FWDB_VERSION))
846 return false;
847
848 if (!regdb_has_valid_signature(data, size))
849 return false;
850
851 country = &hdr->country[0];
852 while ((u8 *)(country + 1) <= data + size) {
853 if (!country->coll_ptr)
854 break;
855 if (!valid_country(data, size, country))
856 return false;
857 country++;
858 }
859
860 return true;
861}
862
863static void set_wmm_rule(struct ieee80211_wmm_rule *rule,
864 struct fwdb_wmm_rule *wmm)
865{
866 unsigned int i;
867
868 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
869 rule->client[i].cw_min =
870 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
871 rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
872 rule->client[i].aifsn = wmm->client[i].aifsn;
873 rule->client[i].cot = 1000 * be16_to_cpu(wmm->client[i].cot);
874 rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
875 rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
876 rule->ap[i].aifsn = wmm->ap[i].aifsn;
877 rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
878 }
879}
880
881static int __regdb_query_wmm(const struct fwdb_header *db,
882 const struct fwdb_country *country, int freq,
883 u32 *dbptr, struct ieee80211_wmm_rule *rule)
884{
885 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
886 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
887 int i;
888
889 for (i = 0; i < coll->n_rules; i++) {
890 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
891 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
892 struct fwdb_rule *rrule = (void *)((u8 *)db + rule_ptr);
893 struct fwdb_wmm_rule *wmm;
894 unsigned int wmm_ptr;
895
896 if (rrule->len < offsetofend(struct fwdb_rule, wmm_ptr))
897 continue;
898
899 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rrule->start)) &&
900 freq <= KHZ_TO_MHZ(be32_to_cpu(rrule->end))) {
901 wmm_ptr = be16_to_cpu(rrule->wmm_ptr) << 2;
902 wmm = (void *)((u8 *)db + wmm_ptr);
903 set_wmm_rule(rule, wmm);
904 if (dbptr)
905 *dbptr = wmm_ptr;
906 return 0;
907 }
908 }
909
910 return -ENODATA;
911}
912
913int reg_query_regdb_wmm(char *alpha2, int freq, u32 *dbptr,
914 struct ieee80211_wmm_rule *rule)
915{
916 const struct fwdb_header *hdr = regdb;
917 const struct fwdb_country *country;
918
919 if (!regdb)
920 return -ENODATA;
921
922 if (IS_ERR(regdb))
923 return PTR_ERR(regdb);
924
925 country = &hdr->country[0];
926 while (country->coll_ptr) {
927 if (alpha2_equal(alpha2, country->alpha2))
928 return __regdb_query_wmm(regdb, country, freq, dbptr,
929 rule);
930
931 country++;
932 }
933
934 return -ENODATA;
935}
936EXPORT_SYMBOL(reg_query_regdb_wmm);
937
938struct wmm_ptrs {
939 struct ieee80211_wmm_rule *rule;
940 u32 ptr;
941};
942
943static struct ieee80211_wmm_rule *find_wmm_ptr(struct wmm_ptrs *wmm_ptrs,
944 u32 wmm_ptr, int n_wmms)
945{
946 int i;
947
948 for (i = 0; i < n_wmms; i++) {
949 if (wmm_ptrs[i].ptr == wmm_ptr)
950 return wmm_ptrs[i].rule;
951 }
952 return NULL;
953}
954
955static int regdb_query_country(const struct fwdb_header *db,
956 const struct fwdb_country *country)
957{
958 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
959 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
960 struct ieee80211_regdomain *regdom;
961 struct ieee80211_regdomain *tmp_rd;
962 unsigned int size_of_regd, i, n_wmms = 0;
963 struct wmm_ptrs *wmm_ptrs;
964
965 size_of_regd = sizeof(struct ieee80211_regdomain) +
966 coll->n_rules * sizeof(struct ieee80211_reg_rule);
967
968 regdom = kzalloc(size_of_regd, GFP_KERNEL);
969 if (!regdom)
970 return -ENOMEM;
971
972 wmm_ptrs = kcalloc(coll->n_rules, sizeof(*wmm_ptrs), GFP_KERNEL);
973 if (!wmm_ptrs) {
974 kfree(regdom);
975 return -ENOMEM;
976 }
977
978 regdom->n_reg_rules = coll->n_rules;
979 regdom->alpha2[0] = country->alpha2[0];
980 regdom->alpha2[1] = country->alpha2[1];
981 regdom->dfs_region = coll->dfs_region;
982
983 for (i = 0; i < regdom->n_reg_rules; i++) {
984 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
985 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
986 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
987 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
988
989 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
990 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
991 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
992
993 rrule->power_rule.max_antenna_gain = 0;
994 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
995
996 rrule->flags = 0;
997 if (rule->flags & FWDB_FLAG_NO_OFDM)
998 rrule->flags |= NL80211_RRF_NO_OFDM;
999 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
1000 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
1001 if (rule->flags & FWDB_FLAG_DFS)
1002 rrule->flags |= NL80211_RRF_DFS;
1003 if (rule->flags & FWDB_FLAG_NO_IR)
1004 rrule->flags |= NL80211_RRF_NO_IR;
1005 if (rule->flags & FWDB_FLAG_AUTO_BW)
1006 rrule->flags |= NL80211_RRF_AUTO_BW;
1007
1008 rrule->dfs_cac_ms = 0;
1009
1010 /* handle optional data */
1011 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1012 rrule->dfs_cac_ms =
1013 1000 * be16_to_cpu(rule->cac_timeout);
1014 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
1015 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
1016 struct ieee80211_wmm_rule *wmm_pos =
1017 find_wmm_ptr(wmm_ptrs, wmm_ptr, n_wmms);
1018 struct fwdb_wmm_rule *wmm;
1019 struct ieee80211_wmm_rule *wmm_rule;
1020
1021 if (wmm_pos) {
1022 rrule->wmm_rule = wmm_pos;
1023 continue;
1024 }
1025 wmm = (void *)((u8 *)db + wmm_ptr);
1026 tmp_rd = krealloc(regdom, size_of_regd + (n_wmms + 1) *
1027 sizeof(struct ieee80211_wmm_rule),
1028 GFP_KERNEL);
1029
1030 if (!tmp_rd) {
1031 kfree(regdom);
1032 kfree(wmm_ptrs);
1033 return -ENOMEM;
1034 }
1035 regdom = tmp_rd;
1036
1037 wmm_rule = (struct ieee80211_wmm_rule *)
1038 ((u8 *)regdom + size_of_regd + n_wmms *
1039 sizeof(struct ieee80211_wmm_rule));
1040
1041 set_wmm_rule(wmm_rule, wmm);
1042 wmm_ptrs[n_wmms].ptr = wmm_ptr;
1043 wmm_ptrs[n_wmms++].rule = wmm_rule;
1044 }
1045 }
1046 kfree(wmm_ptrs);
1047
1048 return reg_schedule_apply(regdom);
1049}
1050
1051static int query_regdb(const char *alpha2)
1052{
1053 const struct fwdb_header *hdr = regdb;
1054 const struct fwdb_country *country;
1055
1056 ASSERT_RTNL();
1057
1058 if (IS_ERR(regdb))
1059 return PTR_ERR(regdb);
1060
1061 country = &hdr->country[0];
1062 while (country->coll_ptr) {
1063 if (alpha2_equal(alpha2, country->alpha2))
1064 return regdb_query_country(regdb, country);
1065 country++;
1066 }
1067
1068 return -ENODATA;
1069}
1070
1071static void regdb_fw_cb(const struct firmware *fw, void *context)
1072{
1073 int set_error = 0;
1074 bool restore = true;
1075 void *db;
1076
1077 if (!fw) {
1078 pr_info("failed to load regulatory.db\n");
1079 set_error = -ENODATA;
1080 } else if (!valid_regdb(fw->data, fw->size)) {
1081 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1082 set_error = -EINVAL;
1083 }
1084
1085 rtnl_lock();
1086 if (WARN_ON(regdb && !IS_ERR(regdb))) {
1087 /* just restore and free new db */
1088 } else if (set_error) {
1089 regdb = ERR_PTR(set_error);
1090 } else if (fw) {
1091 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1092 if (db) {
1093 regdb = db;
1094 restore = context && query_regdb(context);
1095 } else {
1096 restore = true;
1097 }
1098 }
1099
1100 if (restore)
1101 restore_regulatory_settings(true);
1102
1103 rtnl_unlock();
1104
1105 kfree(context);
1106
1107 release_firmware(fw);
1108}
1109
1110static int query_regdb_file(const char *alpha2)
1111{
1112 ASSERT_RTNL();
1113
1114 if (regdb)
1115 return query_regdb(alpha2);
1116
1117 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1118 if (!alpha2)
1119 return -ENOMEM;
1120
1121 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1122 ®_pdev->dev, GFP_KERNEL,
1123 (void *)alpha2, regdb_fw_cb);
1124}
1125
1126int reg_reload_regdb(void)
1127{
1128 const struct firmware *fw;
1129 void *db;
1130 int err;
1131
1132 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1133 if (err)
1134 return err;
1135
1136 if (!valid_regdb(fw->data, fw->size)) {
1137 err = -ENODATA;
1138 goto out;
1139 }
1140
1141 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1142 if (!db) {
1143 err = -ENOMEM;
1144 goto out;
1145 }
1146
1147 rtnl_lock();
1148 if (!IS_ERR_OR_NULL(regdb))
1149 kfree(regdb);
1150 regdb = db;
1151 rtnl_unlock();
1152
1153 out:
1154 release_firmware(fw);
1155 return err;
1156}
1157
1158static bool reg_query_database(struct regulatory_request *request)
1159{
1160 if (query_regdb_file(request->alpha2) == 0)
1161 return true;
1162
1163 if (call_crda(request->alpha2) == 0)
1164 return true;
1165
1166 return false;
1167}
1168
1169bool reg_is_valid_request(const char *alpha2)
1170{
1171 struct regulatory_request *lr = get_last_request();
1172
1173 if (!lr || lr->processed)
1174 return false;
1175
1176 return alpha2_equal(lr->alpha2, alpha2);
1177}
1178
1179static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1180{
1181 struct regulatory_request *lr = get_last_request();
1182
1183 /*
1184 * Follow the driver's regulatory domain, if present, unless a country
1185 * IE has been processed or a user wants to help complaince further
1186 */
1187 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1188 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1189 wiphy->regd)
1190 return get_wiphy_regdom(wiphy);
1191
1192 return get_cfg80211_regdom();
1193}
1194
1195static unsigned int
1196reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1197 const struct ieee80211_reg_rule *rule)
1198{
1199 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1200 const struct ieee80211_freq_range *freq_range_tmp;
1201 const struct ieee80211_reg_rule *tmp;
1202 u32 start_freq, end_freq, idx, no;
1203
1204 for (idx = 0; idx < rd->n_reg_rules; idx++)
1205 if (rule == &rd->reg_rules[idx])
1206 break;
1207
1208 if (idx == rd->n_reg_rules)
1209 return 0;
1210
1211 /* get start_freq */
1212 no = idx;
1213
1214 while (no) {
1215 tmp = &rd->reg_rules[--no];
1216 freq_range_tmp = &tmp->freq_range;
1217
1218 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1219 break;
1220
1221 freq_range = freq_range_tmp;
1222 }
1223
1224 start_freq = freq_range->start_freq_khz;
1225
1226 /* get end_freq */
1227 freq_range = &rule->freq_range;
1228 no = idx;
1229
1230 while (no < rd->n_reg_rules - 1) {
1231 tmp = &rd->reg_rules[++no];
1232 freq_range_tmp = &tmp->freq_range;
1233
1234 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1235 break;
1236
1237 freq_range = freq_range_tmp;
1238 }
1239
1240 end_freq = freq_range->end_freq_khz;
1241
1242 return end_freq - start_freq;
1243}
1244
1245unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1246 const struct ieee80211_reg_rule *rule)
1247{
1248 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1249
1250 if (rule->flags & NL80211_RRF_NO_160MHZ)
1251 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1252 if (rule->flags & NL80211_RRF_NO_80MHZ)
1253 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1254
1255 /*
1256 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1257 * are not allowed.
1258 */
1259 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1260 rule->flags & NL80211_RRF_NO_HT40PLUS)
1261 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1262
1263 return bw;
1264}
1265
1266/* Sanity check on a regulatory rule */
1267static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1268{
1269 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1270 u32 freq_diff;
1271
1272 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1273 return false;
1274
1275 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1276 return false;
1277
1278 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1279
1280 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1281 freq_range->max_bandwidth_khz > freq_diff)
1282 return false;
1283
1284 return true;
1285}
1286
1287static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1288{
1289 const struct ieee80211_reg_rule *reg_rule = NULL;
1290 unsigned int i;
1291
1292 if (!rd->n_reg_rules)
1293 return false;
1294
1295 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1296 return false;
1297
1298 for (i = 0; i < rd->n_reg_rules; i++) {
1299 reg_rule = &rd->reg_rules[i];
1300 if (!is_valid_reg_rule(reg_rule))
1301 return false;
1302 }
1303
1304 return true;
1305}
1306
1307/**
1308 * freq_in_rule_band - tells us if a frequency is in a frequency band
1309 * @freq_range: frequency rule we want to query
1310 * @freq_khz: frequency we are inquiring about
1311 *
1312 * This lets us know if a specific frequency rule is or is not relevant to
1313 * a specific frequency's band. Bands are device specific and artificial
1314 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1315 * however it is safe for now to assume that a frequency rule should not be
1316 * part of a frequency's band if the start freq or end freq are off by more
1317 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1318 * 60 GHz band.
1319 * This resolution can be lowered and should be considered as we add
1320 * regulatory rule support for other "bands".
1321 **/
1322static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1323 u32 freq_khz)
1324{
1325#define ONE_GHZ_IN_KHZ 1000000
1326 /*
1327 * From 802.11ad: directional multi-gigabit (DMG):
1328 * Pertaining to operation in a frequency band containing a channel
1329 * with the Channel starting frequency above 45 GHz.
1330 */
1331 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1332 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1333 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1334 return true;
1335 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1336 return true;
1337 return false;
1338#undef ONE_GHZ_IN_KHZ
1339}
1340
1341/*
1342 * Later on we can perhaps use the more restrictive DFS
1343 * region but we don't have information for that yet so
1344 * for now simply disallow conflicts.
1345 */
1346static enum nl80211_dfs_regions
1347reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1348 const enum nl80211_dfs_regions dfs_region2)
1349{
1350 if (dfs_region1 != dfs_region2)
1351 return NL80211_DFS_UNSET;
1352 return dfs_region1;
1353}
1354
1355/*
1356 * Helper for regdom_intersect(), this does the real
1357 * mathematical intersection fun
1358 */
1359static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1360 const struct ieee80211_regdomain *rd2,
1361 const struct ieee80211_reg_rule *rule1,
1362 const struct ieee80211_reg_rule *rule2,
1363 struct ieee80211_reg_rule *intersected_rule)
1364{
1365 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1366 struct ieee80211_freq_range *freq_range;
1367 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1368 struct ieee80211_power_rule *power_rule;
1369 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1370
1371 freq_range1 = &rule1->freq_range;
1372 freq_range2 = &rule2->freq_range;
1373 freq_range = &intersected_rule->freq_range;
1374
1375 power_rule1 = &rule1->power_rule;
1376 power_rule2 = &rule2->power_rule;
1377 power_rule = &intersected_rule->power_rule;
1378
1379 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1380 freq_range2->start_freq_khz);
1381 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1382 freq_range2->end_freq_khz);
1383
1384 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1385 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1386
1387 if (rule1->flags & NL80211_RRF_AUTO_BW)
1388 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1389 if (rule2->flags & NL80211_RRF_AUTO_BW)
1390 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1391
1392 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1393
1394 intersected_rule->flags = rule1->flags | rule2->flags;
1395
1396 /*
1397 * In case NL80211_RRF_AUTO_BW requested for both rules
1398 * set AUTO_BW in intersected rule also. Next we will
1399 * calculate BW correctly in handle_channel function.
1400 * In other case remove AUTO_BW flag while we calculate
1401 * maximum bandwidth correctly and auto calculation is
1402 * not required.
1403 */
1404 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1405 (rule2->flags & NL80211_RRF_AUTO_BW))
1406 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1407 else
1408 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1409
1410 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1411 if (freq_range->max_bandwidth_khz > freq_diff)
1412 freq_range->max_bandwidth_khz = freq_diff;
1413
1414 power_rule->max_eirp = min(power_rule1->max_eirp,
1415 power_rule2->max_eirp);
1416 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1417 power_rule2->max_antenna_gain);
1418
1419 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1420 rule2->dfs_cac_ms);
1421
1422 if (!is_valid_reg_rule(intersected_rule))
1423 return -EINVAL;
1424
1425 return 0;
1426}
1427
1428/* check whether old rule contains new rule */
1429static bool rule_contains(struct ieee80211_reg_rule *r1,
1430 struct ieee80211_reg_rule *r2)
1431{
1432 /* for simplicity, currently consider only same flags */
1433 if (r1->flags != r2->flags)
1434 return false;
1435
1436 /* verify r1 is more restrictive */
1437 if ((r1->power_rule.max_antenna_gain >
1438 r2->power_rule.max_antenna_gain) ||
1439 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1440 return false;
1441
1442 /* make sure r2's range is contained within r1 */
1443 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1444 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1445 return false;
1446
1447 /* and finally verify that r1.max_bw >= r2.max_bw */
1448 if (r1->freq_range.max_bandwidth_khz <
1449 r2->freq_range.max_bandwidth_khz)
1450 return false;
1451
1452 return true;
1453}
1454
1455/* add or extend current rules. do nothing if rule is already contained */
1456static void add_rule(struct ieee80211_reg_rule *rule,
1457 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1458{
1459 struct ieee80211_reg_rule *tmp_rule;
1460 int i;
1461
1462 for (i = 0; i < *n_rules; i++) {
1463 tmp_rule = ®_rules[i];
1464 /* rule is already contained - do nothing */
1465 if (rule_contains(tmp_rule, rule))
1466 return;
1467
1468 /* extend rule if possible */
1469 if (rule_contains(rule, tmp_rule)) {
1470 memcpy(tmp_rule, rule, sizeof(*rule));
1471 return;
1472 }
1473 }
1474
1475 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1476 (*n_rules)++;
1477}
1478
1479/**
1480 * regdom_intersect - do the intersection between two regulatory domains
1481 * @rd1: first regulatory domain
1482 * @rd2: second regulatory domain
1483 *
1484 * Use this function to get the intersection between two regulatory domains.
1485 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1486 * as no one single alpha2 can represent this regulatory domain.
1487 *
1488 * Returns a pointer to the regulatory domain structure which will hold the
1489 * resulting intersection of rules between rd1 and rd2. We will
1490 * kzalloc() this structure for you.
1491 */
1492static struct ieee80211_regdomain *
1493regdom_intersect(const struct ieee80211_regdomain *rd1,
1494 const struct ieee80211_regdomain *rd2)
1495{
1496 int r, size_of_regd;
1497 unsigned int x, y;
1498 unsigned int num_rules = 0;
1499 const struct ieee80211_reg_rule *rule1, *rule2;
1500 struct ieee80211_reg_rule intersected_rule;
1501 struct ieee80211_regdomain *rd;
1502
1503 if (!rd1 || !rd2)
1504 return NULL;
1505
1506 /*
1507 * First we get a count of the rules we'll need, then we actually
1508 * build them. This is to so we can malloc() and free() a
1509 * regdomain once. The reason we use reg_rules_intersect() here
1510 * is it will return -EINVAL if the rule computed makes no sense.
1511 * All rules that do check out OK are valid.
1512 */
1513
1514 for (x = 0; x < rd1->n_reg_rules; x++) {
1515 rule1 = &rd1->reg_rules[x];
1516 for (y = 0; y < rd2->n_reg_rules; y++) {
1517 rule2 = &rd2->reg_rules[y];
1518 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1519 &intersected_rule))
1520 num_rules++;
1521 }
1522 }
1523
1524 if (!num_rules)
1525 return NULL;
1526
1527 size_of_regd = sizeof(struct ieee80211_regdomain) +
1528 num_rules * sizeof(struct ieee80211_reg_rule);
1529
1530 rd = kzalloc(size_of_regd, GFP_KERNEL);
1531 if (!rd)
1532 return NULL;
1533
1534 for (x = 0; x < rd1->n_reg_rules; x++) {
1535 rule1 = &rd1->reg_rules[x];
1536 for (y = 0; y < rd2->n_reg_rules; y++) {
1537 rule2 = &rd2->reg_rules[y];
1538 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1539 &intersected_rule);
1540 /*
1541 * No need to memset here the intersected rule here as
1542 * we're not using the stack anymore
1543 */
1544 if (r)
1545 continue;
1546
1547 add_rule(&intersected_rule, rd->reg_rules,
1548 &rd->n_reg_rules);
1549 }
1550 }
1551
1552 rd->alpha2[0] = '9';
1553 rd->alpha2[1] = '8';
1554 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1555 rd2->dfs_region);
1556
1557 return rd;
1558}
1559
1560/*
1561 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1562 * want to just have the channel structure use these
1563 */
1564static u32 map_regdom_flags(u32 rd_flags)
1565{
1566 u32 channel_flags = 0;
1567 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1568 channel_flags |= IEEE80211_CHAN_NO_IR;
1569 if (rd_flags & NL80211_RRF_DFS)
1570 channel_flags |= IEEE80211_CHAN_RADAR;
1571 if (rd_flags & NL80211_RRF_NO_OFDM)
1572 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1573 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1574 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1575 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1576 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1577 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1578 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1579 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1580 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1581 if (rd_flags & NL80211_RRF_NO_80MHZ)
1582 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1583 if (rd_flags & NL80211_RRF_NO_160MHZ)
1584 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1585 return channel_flags;
1586}
1587
1588static const struct ieee80211_reg_rule *
1589freq_reg_info_regd(u32 center_freq,
1590 const struct ieee80211_regdomain *regd, u32 bw)
1591{
1592 int i;
1593 bool band_rule_found = false;
1594 bool bw_fits = false;
1595
1596 if (!regd)
1597 return ERR_PTR(-EINVAL);
1598
1599 for (i = 0; i < regd->n_reg_rules; i++) {
1600 const struct ieee80211_reg_rule *rr;
1601 const struct ieee80211_freq_range *fr = NULL;
1602
1603 rr = ®d->reg_rules[i];
1604 fr = &rr->freq_range;
1605
1606 /*
1607 * We only need to know if one frequency rule was
1608 * was in center_freq's band, that's enough, so lets
1609 * not overwrite it once found
1610 */
1611 if (!band_rule_found)
1612 band_rule_found = freq_in_rule_band(fr, center_freq);
1613
1614 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1615
1616 if (band_rule_found && bw_fits)
1617 return rr;
1618 }
1619
1620 if (!band_rule_found)
1621 return ERR_PTR(-ERANGE);
1622
1623 return ERR_PTR(-EINVAL);
1624}
1625
1626static const struct ieee80211_reg_rule *
1627__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1628{
1629 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1630 const struct ieee80211_reg_rule *reg_rule = NULL;
1631 u32 bw;
1632
1633 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1634 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1635 if (!IS_ERR(reg_rule))
1636 return reg_rule;
1637 }
1638
1639 return reg_rule;
1640}
1641
1642const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1643 u32 center_freq)
1644{
1645 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1646}
1647EXPORT_SYMBOL(freq_reg_info);
1648
1649const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1650{
1651 switch (initiator) {
1652 case NL80211_REGDOM_SET_BY_CORE:
1653 return "core";
1654 case NL80211_REGDOM_SET_BY_USER:
1655 return "user";
1656 case NL80211_REGDOM_SET_BY_DRIVER:
1657 return "driver";
1658 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1659 return "country element";
1660 default:
1661 WARN_ON(1);
1662 return "bug";
1663 }
1664}
1665EXPORT_SYMBOL(reg_initiator_name);
1666
1667static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1668 const struct ieee80211_reg_rule *reg_rule,
1669 const struct ieee80211_channel *chan)
1670{
1671 const struct ieee80211_freq_range *freq_range = NULL;
1672 u32 max_bandwidth_khz, bw_flags = 0;
1673
1674 freq_range = ®_rule->freq_range;
1675
1676 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1677 /* Check if auto calculation requested */
1678 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1679 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1680
1681 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1682 if (!cfg80211_does_bw_fit_range(freq_range,
1683 MHZ_TO_KHZ(chan->center_freq),
1684 MHZ_TO_KHZ(10)))
1685 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1686 if (!cfg80211_does_bw_fit_range(freq_range,
1687 MHZ_TO_KHZ(chan->center_freq),
1688 MHZ_TO_KHZ(20)))
1689 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1690
1691 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1692 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1693 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1694 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1695 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1696 bw_flags |= IEEE80211_CHAN_NO_HT40;
1697 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1698 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1699 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1700 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1701 return bw_flags;
1702}
1703
1704/*
1705 * Note that right now we assume the desired channel bandwidth
1706 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1707 * per channel, the primary and the extension channel).
1708 */
1709static void handle_channel(struct wiphy *wiphy,
1710 enum nl80211_reg_initiator initiator,
1711 struct ieee80211_channel *chan)
1712{
1713 u32 flags, bw_flags = 0;
1714 const struct ieee80211_reg_rule *reg_rule = NULL;
1715 const struct ieee80211_power_rule *power_rule = NULL;
1716 struct wiphy *request_wiphy = NULL;
1717 struct regulatory_request *lr = get_last_request();
1718 const struct ieee80211_regdomain *regd;
1719
1720 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1721
1722 flags = chan->orig_flags;
1723
1724 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1725 if (IS_ERR(reg_rule)) {
1726 /*
1727 * We will disable all channels that do not match our
1728 * received regulatory rule unless the hint is coming
1729 * from a Country IE and the Country IE had no information
1730 * about a band. The IEEE 802.11 spec allows for an AP
1731 * to send only a subset of the regulatory rules allowed,
1732 * so an AP in the US that only supports 2.4 GHz may only send
1733 * a country IE with information for the 2.4 GHz band
1734 * while 5 GHz is still supported.
1735 */
1736 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1737 PTR_ERR(reg_rule) == -ERANGE)
1738 return;
1739
1740 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1741 request_wiphy && request_wiphy == wiphy &&
1742 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1743 pr_debug("Disabling freq %d MHz for good\n",
1744 chan->center_freq);
1745 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1746 chan->flags = chan->orig_flags;
1747 } else {
1748 pr_debug("Disabling freq %d MHz\n",
1749 chan->center_freq);
1750 chan->flags |= IEEE80211_CHAN_DISABLED;
1751 }
1752 return;
1753 }
1754
1755 regd = reg_get_regdomain(wiphy);
1756
1757 power_rule = ®_rule->power_rule;
1758 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1759
1760 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1761 request_wiphy && request_wiphy == wiphy &&
1762 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1763 /*
1764 * This guarantees the driver's requested regulatory domain
1765 * will always be used as a base for further regulatory
1766 * settings
1767 */
1768 chan->flags = chan->orig_flags =
1769 map_regdom_flags(reg_rule->flags) | bw_flags;
1770 chan->max_antenna_gain = chan->orig_mag =
1771 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1772 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1773 (int) MBM_TO_DBM(power_rule->max_eirp);
1774
1775 if (chan->flags & IEEE80211_CHAN_RADAR) {
1776 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1777 if (reg_rule->dfs_cac_ms)
1778 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1779 }
1780
1781 return;
1782 }
1783
1784 chan->dfs_state = NL80211_DFS_USABLE;
1785 chan->dfs_state_entered = jiffies;
1786
1787 chan->beacon_found = false;
1788 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1789 chan->max_antenna_gain =
1790 min_t(int, chan->orig_mag,
1791 MBI_TO_DBI(power_rule->max_antenna_gain));
1792 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1793
1794 if (chan->flags & IEEE80211_CHAN_RADAR) {
1795 if (reg_rule->dfs_cac_ms)
1796 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1797 else
1798 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1799 }
1800
1801 if (chan->orig_mpwr) {
1802 /*
1803 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1804 * will always follow the passed country IE power settings.
1805 */
1806 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1807 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1808 chan->max_power = chan->max_reg_power;
1809 else
1810 chan->max_power = min(chan->orig_mpwr,
1811 chan->max_reg_power);
1812 } else
1813 chan->max_power = chan->max_reg_power;
1814}
1815
1816static void handle_band(struct wiphy *wiphy,
1817 enum nl80211_reg_initiator initiator,
1818 struct ieee80211_supported_band *sband)
1819{
1820 unsigned int i;
1821
1822 if (!sband)
1823 return;
1824
1825 for (i = 0; i < sband->n_channels; i++)
1826 handle_channel(wiphy, initiator, &sband->channels[i]);
1827}
1828
1829static bool reg_request_cell_base(struct regulatory_request *request)
1830{
1831 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1832 return false;
1833 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1834}
1835
1836bool reg_last_request_cell_base(void)
1837{
1838 return reg_request_cell_base(get_last_request());
1839}
1840
1841#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1842/* Core specific check */
1843static enum reg_request_treatment
1844reg_ignore_cell_hint(struct regulatory_request *pending_request)
1845{
1846 struct regulatory_request *lr = get_last_request();
1847
1848 if (!reg_num_devs_support_basehint)
1849 return REG_REQ_IGNORE;
1850
1851 if (reg_request_cell_base(lr) &&
1852 !regdom_changes(pending_request->alpha2))
1853 return REG_REQ_ALREADY_SET;
1854
1855 return REG_REQ_OK;
1856}
1857
1858/* Device specific check */
1859static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1860{
1861 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1862}
1863#else
1864static enum reg_request_treatment
1865reg_ignore_cell_hint(struct regulatory_request *pending_request)
1866{
1867 return REG_REQ_IGNORE;
1868}
1869
1870static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1871{
1872 return true;
1873}
1874#endif
1875
1876static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1877{
1878 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1879 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1880 return true;
1881 return false;
1882}
1883
1884static bool ignore_reg_update(struct wiphy *wiphy,
1885 enum nl80211_reg_initiator initiator)
1886{
1887 struct regulatory_request *lr = get_last_request();
1888
1889 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1890 return true;
1891
1892 if (!lr) {
1893 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1894 reg_initiator_name(initiator));
1895 return true;
1896 }
1897
1898 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1899 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1900 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1901 reg_initiator_name(initiator));
1902 return true;
1903 }
1904
1905 /*
1906 * wiphy->regd will be set once the device has its own
1907 * desired regulatory domain set
1908 */
1909 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1910 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1911 !is_world_regdom(lr->alpha2)) {
1912 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1913 reg_initiator_name(initiator));
1914 return true;
1915 }
1916
1917 if (reg_request_cell_base(lr))
1918 return reg_dev_ignore_cell_hint(wiphy);
1919
1920 return false;
1921}
1922
1923static bool reg_is_world_roaming(struct wiphy *wiphy)
1924{
1925 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1926 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1927 struct regulatory_request *lr = get_last_request();
1928
1929 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1930 return true;
1931
1932 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1933 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1934 return true;
1935
1936 return false;
1937}
1938
1939static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1940 struct reg_beacon *reg_beacon)
1941{
1942 struct ieee80211_supported_band *sband;
1943 struct ieee80211_channel *chan;
1944 bool channel_changed = false;
1945 struct ieee80211_channel chan_before;
1946
1947 sband = wiphy->bands[reg_beacon->chan.band];
1948 chan = &sband->channels[chan_idx];
1949
1950 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1951 return;
1952
1953 if (chan->beacon_found)
1954 return;
1955
1956 chan->beacon_found = true;
1957
1958 if (!reg_is_world_roaming(wiphy))
1959 return;
1960
1961 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1962 return;
1963
1964 chan_before = *chan;
1965
1966 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1967 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1968 channel_changed = true;
1969 }
1970
1971 if (channel_changed)
1972 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1973}
1974
1975/*
1976 * Called when a scan on a wiphy finds a beacon on
1977 * new channel
1978 */
1979static void wiphy_update_new_beacon(struct wiphy *wiphy,
1980 struct reg_beacon *reg_beacon)
1981{
1982 unsigned int i;
1983 struct ieee80211_supported_band *sband;
1984
1985 if (!wiphy->bands[reg_beacon->chan.band])
1986 return;
1987
1988 sband = wiphy->bands[reg_beacon->chan.band];
1989
1990 for (i = 0; i < sband->n_channels; i++)
1991 handle_reg_beacon(wiphy, i, reg_beacon);
1992}
1993
1994/*
1995 * Called upon reg changes or a new wiphy is added
1996 */
1997static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1998{
1999 unsigned int i;
2000 struct ieee80211_supported_band *sband;
2001 struct reg_beacon *reg_beacon;
2002
2003 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2004 if (!wiphy->bands[reg_beacon->chan.band])
2005 continue;
2006 sband = wiphy->bands[reg_beacon->chan.band];
2007 for (i = 0; i < sband->n_channels; i++)
2008 handle_reg_beacon(wiphy, i, reg_beacon);
2009 }
2010}
2011
2012/* Reap the advantages of previously found beacons */
2013static void reg_process_beacons(struct wiphy *wiphy)
2014{
2015 /*
2016 * Means we are just firing up cfg80211, so no beacons would
2017 * have been processed yet.
2018 */
2019 if (!last_request)
2020 return;
2021 wiphy_update_beacon_reg(wiphy);
2022}
2023
2024static bool is_ht40_allowed(struct ieee80211_channel *chan)
2025{
2026 if (!chan)
2027 return false;
2028 if (chan->flags & IEEE80211_CHAN_DISABLED)
2029 return false;
2030 /* This would happen when regulatory rules disallow HT40 completely */
2031 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2032 return false;
2033 return true;
2034}
2035
2036static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2037 struct ieee80211_channel *channel)
2038{
2039 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2040 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2041 const struct ieee80211_regdomain *regd;
2042 unsigned int i;
2043 u32 flags;
2044
2045 if (!is_ht40_allowed(channel)) {
2046 channel->flags |= IEEE80211_CHAN_NO_HT40;
2047 return;
2048 }
2049
2050 /*
2051 * We need to ensure the extension channels exist to
2052 * be able to use HT40- or HT40+, this finds them (or not)
2053 */
2054 for (i = 0; i < sband->n_channels; i++) {
2055 struct ieee80211_channel *c = &sband->channels[i];
2056
2057 if (c->center_freq == (channel->center_freq - 20))
2058 channel_before = c;
2059 if (c->center_freq == (channel->center_freq + 20))
2060 channel_after = c;
2061 }
2062
2063 flags = 0;
2064 regd = get_wiphy_regdom(wiphy);
2065 if (regd) {
2066 const struct ieee80211_reg_rule *reg_rule =
2067 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2068 regd, MHZ_TO_KHZ(20));
2069
2070 if (!IS_ERR(reg_rule))
2071 flags = reg_rule->flags;
2072 }
2073
2074 /*
2075 * Please note that this assumes target bandwidth is 20 MHz,
2076 * if that ever changes we also need to change the below logic
2077 * to include that as well.
2078 */
2079 if (!is_ht40_allowed(channel_before) ||
2080 flags & NL80211_RRF_NO_HT40MINUS)
2081 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2082 else
2083 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2084
2085 if (!is_ht40_allowed(channel_after) ||
2086 flags & NL80211_RRF_NO_HT40PLUS)
2087 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2088 else
2089 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2090}
2091
2092static void reg_process_ht_flags_band(struct wiphy *wiphy,
2093 struct ieee80211_supported_band *sband)
2094{
2095 unsigned int i;
2096
2097 if (!sband)
2098 return;
2099
2100 for (i = 0; i < sband->n_channels; i++)
2101 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2102}
2103
2104static void reg_process_ht_flags(struct wiphy *wiphy)
2105{
2106 enum nl80211_band band;
2107
2108 if (!wiphy)
2109 return;
2110
2111 for (band = 0; band < NUM_NL80211_BANDS; band++)
2112 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2113}
2114
2115static void reg_call_notifier(struct wiphy *wiphy,
2116 struct regulatory_request *request)
2117{
2118 if (wiphy->reg_notifier)
2119 wiphy->reg_notifier(wiphy, request);
2120}
2121
2122static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2123{
2124 struct cfg80211_chan_def chandef;
2125 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2126 enum nl80211_iftype iftype;
2127
2128 wdev_lock(wdev);
2129 iftype = wdev->iftype;
2130
2131 /* make sure the interface is active */
2132 if (!wdev->netdev || !netif_running(wdev->netdev))
2133 goto wdev_inactive_unlock;
2134
2135 switch (iftype) {
2136 case NL80211_IFTYPE_AP:
2137 case NL80211_IFTYPE_P2P_GO:
2138 if (!wdev->beacon_interval)
2139 goto wdev_inactive_unlock;
2140 chandef = wdev->chandef;
2141 break;
2142 case NL80211_IFTYPE_ADHOC:
2143 if (!wdev->ssid_len)
2144 goto wdev_inactive_unlock;
2145 chandef = wdev->chandef;
2146 break;
2147 case NL80211_IFTYPE_STATION:
2148 case NL80211_IFTYPE_P2P_CLIENT:
2149 if (!wdev->current_bss ||
2150 !wdev->current_bss->pub.channel)
2151 goto wdev_inactive_unlock;
2152
2153 if (!rdev->ops->get_channel ||
2154 rdev_get_channel(rdev, wdev, &chandef))
2155 cfg80211_chandef_create(&chandef,
2156 wdev->current_bss->pub.channel,
2157 NL80211_CHAN_NO_HT);
2158 break;
2159 case NL80211_IFTYPE_MONITOR:
2160 case NL80211_IFTYPE_AP_VLAN:
2161 case NL80211_IFTYPE_P2P_DEVICE:
2162 /* no enforcement required */
2163 break;
2164 default:
2165 /* others not implemented for now */
2166 WARN_ON(1);
2167 break;
2168 }
2169
2170 wdev_unlock(wdev);
2171
2172 switch (iftype) {
2173 case NL80211_IFTYPE_AP:
2174 case NL80211_IFTYPE_P2P_GO:
2175 case NL80211_IFTYPE_ADHOC:
2176 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2177 case NL80211_IFTYPE_STATION:
2178 case NL80211_IFTYPE_P2P_CLIENT:
2179 return cfg80211_chandef_usable(wiphy, &chandef,
2180 IEEE80211_CHAN_DISABLED);
2181 default:
2182 break;
2183 }
2184
2185 return true;
2186
2187wdev_inactive_unlock:
2188 wdev_unlock(wdev);
2189 return true;
2190}
2191
2192static void reg_leave_invalid_chans(struct wiphy *wiphy)
2193{
2194 struct wireless_dev *wdev;
2195 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2196
2197 ASSERT_RTNL();
2198
2199 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2200 if (!reg_wdev_chan_valid(wiphy, wdev))
2201 cfg80211_leave(rdev, wdev);
2202}
2203
2204static void reg_check_chans_work(struct work_struct *work)
2205{
2206 struct cfg80211_registered_device *rdev;
2207
2208 pr_debug("Verifying active interfaces after reg change\n");
2209 rtnl_lock();
2210
2211 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2212 if (!(rdev->wiphy.regulatory_flags &
2213 REGULATORY_IGNORE_STALE_KICKOFF))
2214 reg_leave_invalid_chans(&rdev->wiphy);
2215
2216 rtnl_unlock();
2217}
2218
2219static void reg_check_channels(void)
2220{
2221 /*
2222 * Give usermode a chance to do something nicer (move to another
2223 * channel, orderly disconnection), before forcing a disconnection.
2224 */
2225 mod_delayed_work(system_power_efficient_wq,
2226 ®_check_chans,
2227 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2228}
2229
2230static void wiphy_update_regulatory(struct wiphy *wiphy,
2231 enum nl80211_reg_initiator initiator)
2232{
2233 enum nl80211_band band;
2234 struct regulatory_request *lr = get_last_request();
2235
2236 if (ignore_reg_update(wiphy, initiator)) {
2237 /*
2238 * Regulatory updates set by CORE are ignored for custom
2239 * regulatory cards. Let us notify the changes to the driver,
2240 * as some drivers used this to restore its orig_* reg domain.
2241 */
2242 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2243 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2244 !(wiphy->regulatory_flags &
2245 REGULATORY_WIPHY_SELF_MANAGED))
2246 reg_call_notifier(wiphy, lr);
2247 return;
2248 }
2249
2250 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2251
2252 for (band = 0; band < NUM_NL80211_BANDS; band++)
2253 handle_band(wiphy, initiator, wiphy->bands[band]);
2254
2255 reg_process_beacons(wiphy);
2256 reg_process_ht_flags(wiphy);
2257 reg_call_notifier(wiphy, lr);
2258}
2259
2260static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2261{
2262 struct cfg80211_registered_device *rdev;
2263 struct wiphy *wiphy;
2264
2265 ASSERT_RTNL();
2266
2267 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2268 wiphy = &rdev->wiphy;
2269 wiphy_update_regulatory(wiphy, initiator);
2270 }
2271
2272 reg_check_channels();
2273}
2274
2275static void handle_channel_custom(struct wiphy *wiphy,
2276 struct ieee80211_channel *chan,
2277 const struct ieee80211_regdomain *regd)
2278{
2279 u32 bw_flags = 0;
2280 const struct ieee80211_reg_rule *reg_rule = NULL;
2281 const struct ieee80211_power_rule *power_rule = NULL;
2282 u32 bw;
2283
2284 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2285 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2286 regd, bw);
2287 if (!IS_ERR(reg_rule))
2288 break;
2289 }
2290
2291 if (IS_ERR(reg_rule)) {
2292 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2293 chan->center_freq);
2294 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2295 chan->flags |= IEEE80211_CHAN_DISABLED;
2296 } else {
2297 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2298 chan->flags = chan->orig_flags;
2299 }
2300 return;
2301 }
2302
2303 power_rule = ®_rule->power_rule;
2304 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2305
2306 chan->dfs_state_entered = jiffies;
2307 chan->dfs_state = NL80211_DFS_USABLE;
2308
2309 chan->beacon_found = false;
2310
2311 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2312 chan->flags = chan->orig_flags | bw_flags |
2313 map_regdom_flags(reg_rule->flags);
2314 else
2315 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2316
2317 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2318 chan->max_reg_power = chan->max_power =
2319 (int) MBM_TO_DBM(power_rule->max_eirp);
2320
2321 if (chan->flags & IEEE80211_CHAN_RADAR) {
2322 if (reg_rule->dfs_cac_ms)
2323 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2324 else
2325 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2326 }
2327
2328 chan->max_power = chan->max_reg_power;
2329}
2330
2331static void handle_band_custom(struct wiphy *wiphy,
2332 struct ieee80211_supported_band *sband,
2333 const struct ieee80211_regdomain *regd)
2334{
2335 unsigned int i;
2336
2337 if (!sband)
2338 return;
2339
2340 for (i = 0; i < sband->n_channels; i++)
2341 handle_channel_custom(wiphy, &sband->channels[i], regd);
2342}
2343
2344/* Used by drivers prior to wiphy registration */
2345void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2346 const struct ieee80211_regdomain *regd)
2347{
2348 enum nl80211_band band;
2349 unsigned int bands_set = 0;
2350
2351 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2352 "wiphy should have REGULATORY_CUSTOM_REG\n");
2353 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2354
2355 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2356 if (!wiphy->bands[band])
2357 continue;
2358 handle_band_custom(wiphy, wiphy->bands[band], regd);
2359 bands_set++;
2360 }
2361
2362 /*
2363 * no point in calling this if it won't have any effect
2364 * on your device's supported bands.
2365 */
2366 WARN_ON(!bands_set);
2367}
2368EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2369
2370static void reg_set_request_processed(void)
2371{
2372 bool need_more_processing = false;
2373 struct regulatory_request *lr = get_last_request();
2374
2375 lr->processed = true;
2376
2377 spin_lock(®_requests_lock);
2378 if (!list_empty(®_requests_list))
2379 need_more_processing = true;
2380 spin_unlock(®_requests_lock);
2381
2382 cancel_crda_timeout();
2383
2384 if (need_more_processing)
2385 schedule_work(®_work);
2386}
2387
2388/**
2389 * reg_process_hint_core - process core regulatory requests
2390 * @pending_request: a pending core regulatory request
2391 *
2392 * The wireless subsystem can use this function to process
2393 * a regulatory request issued by the regulatory core.
2394 */
2395static enum reg_request_treatment
2396reg_process_hint_core(struct regulatory_request *core_request)
2397{
2398 if (reg_query_database(core_request)) {
2399 core_request->intersect = false;
2400 core_request->processed = false;
2401 reg_update_last_request(core_request);
2402 return REG_REQ_OK;
2403 }
2404
2405 return REG_REQ_IGNORE;
2406}
2407
2408static enum reg_request_treatment
2409__reg_process_hint_user(struct regulatory_request *user_request)
2410{
2411 struct regulatory_request *lr = get_last_request();
2412
2413 if (reg_request_cell_base(user_request))
2414 return reg_ignore_cell_hint(user_request);
2415
2416 if (reg_request_cell_base(lr))
2417 return REG_REQ_IGNORE;
2418
2419 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2420 return REG_REQ_INTERSECT;
2421 /*
2422 * If the user knows better the user should set the regdom
2423 * to their country before the IE is picked up
2424 */
2425 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2426 lr->intersect)
2427 return REG_REQ_IGNORE;
2428 /*
2429 * Process user requests only after previous user/driver/core
2430 * requests have been processed
2431 */
2432 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2433 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2434 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2435 regdom_changes(lr->alpha2))
2436 return REG_REQ_IGNORE;
2437
2438 if (!regdom_changes(user_request->alpha2))
2439 return REG_REQ_ALREADY_SET;
2440
2441 return REG_REQ_OK;
2442}
2443
2444/**
2445 * reg_process_hint_user - process user regulatory requests
2446 * @user_request: a pending user regulatory request
2447 *
2448 * The wireless subsystem can use this function to process
2449 * a regulatory request initiated by userspace.
2450 */
2451static enum reg_request_treatment
2452reg_process_hint_user(struct regulatory_request *user_request)
2453{
2454 enum reg_request_treatment treatment;
2455
2456 treatment = __reg_process_hint_user(user_request);
2457 if (treatment == REG_REQ_IGNORE ||
2458 treatment == REG_REQ_ALREADY_SET)
2459 return REG_REQ_IGNORE;
2460
2461 user_request->intersect = treatment == REG_REQ_INTERSECT;
2462 user_request->processed = false;
2463
2464 if (reg_query_database(user_request)) {
2465 reg_update_last_request(user_request);
2466 user_alpha2[0] = user_request->alpha2[0];
2467 user_alpha2[1] = user_request->alpha2[1];
2468 return REG_REQ_OK;
2469 }
2470
2471 return REG_REQ_IGNORE;
2472}
2473
2474static enum reg_request_treatment
2475__reg_process_hint_driver(struct regulatory_request *driver_request)
2476{
2477 struct regulatory_request *lr = get_last_request();
2478
2479 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2480 if (regdom_changes(driver_request->alpha2))
2481 return REG_REQ_OK;
2482 return REG_REQ_ALREADY_SET;
2483 }
2484
2485 /*
2486 * This would happen if you unplug and plug your card
2487 * back in or if you add a new device for which the previously
2488 * loaded card also agrees on the regulatory domain.
2489 */
2490 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2491 !regdom_changes(driver_request->alpha2))
2492 return REG_REQ_ALREADY_SET;
2493
2494 return REG_REQ_INTERSECT;
2495}
2496
2497/**
2498 * reg_process_hint_driver - process driver regulatory requests
2499 * @driver_request: a pending driver regulatory request
2500 *
2501 * The wireless subsystem can use this function to process
2502 * a regulatory request issued by an 802.11 driver.
2503 *
2504 * Returns one of the different reg request treatment values.
2505 */
2506static enum reg_request_treatment
2507reg_process_hint_driver(struct wiphy *wiphy,
2508 struct regulatory_request *driver_request)
2509{
2510 const struct ieee80211_regdomain *regd, *tmp;
2511 enum reg_request_treatment treatment;
2512
2513 treatment = __reg_process_hint_driver(driver_request);
2514
2515 switch (treatment) {
2516 case REG_REQ_OK:
2517 break;
2518 case REG_REQ_IGNORE:
2519 return REG_REQ_IGNORE;
2520 case REG_REQ_INTERSECT:
2521 case REG_REQ_ALREADY_SET:
2522 regd = reg_copy_regd(get_cfg80211_regdom());
2523 if (IS_ERR(regd))
2524 return REG_REQ_IGNORE;
2525
2526 tmp = get_wiphy_regdom(wiphy);
2527 rcu_assign_pointer(wiphy->regd, regd);
2528 rcu_free_regdom(tmp);
2529 }
2530
2531
2532 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2533 driver_request->processed = false;
2534
2535 /*
2536 * Since CRDA will not be called in this case as we already
2537 * have applied the requested regulatory domain before we just
2538 * inform userspace we have processed the request
2539 */
2540 if (treatment == REG_REQ_ALREADY_SET) {
2541 nl80211_send_reg_change_event(driver_request);
2542 reg_update_last_request(driver_request);
2543 reg_set_request_processed();
2544 return REG_REQ_ALREADY_SET;
2545 }
2546
2547 if (reg_query_database(driver_request)) {
2548 reg_update_last_request(driver_request);
2549 return REG_REQ_OK;
2550 }
2551
2552 return REG_REQ_IGNORE;
2553}
2554
2555static enum reg_request_treatment
2556__reg_process_hint_country_ie(struct wiphy *wiphy,
2557 struct regulatory_request *country_ie_request)
2558{
2559 struct wiphy *last_wiphy = NULL;
2560 struct regulatory_request *lr = get_last_request();
2561
2562 if (reg_request_cell_base(lr)) {
2563 /* Trust a Cell base station over the AP's country IE */
2564 if (regdom_changes(country_ie_request->alpha2))
2565 return REG_REQ_IGNORE;
2566 return REG_REQ_ALREADY_SET;
2567 } else {
2568 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2569 return REG_REQ_IGNORE;
2570 }
2571
2572 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2573 return -EINVAL;
2574
2575 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2576 return REG_REQ_OK;
2577
2578 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2579
2580 if (last_wiphy != wiphy) {
2581 /*
2582 * Two cards with two APs claiming different
2583 * Country IE alpha2s. We could
2584 * intersect them, but that seems unlikely
2585 * to be correct. Reject second one for now.
2586 */
2587 if (regdom_changes(country_ie_request->alpha2))
2588 return REG_REQ_IGNORE;
2589 return REG_REQ_ALREADY_SET;
2590 }
2591
2592 if (regdom_changes(country_ie_request->alpha2))
2593 return REG_REQ_OK;
2594 return REG_REQ_ALREADY_SET;
2595}
2596
2597/**
2598 * reg_process_hint_country_ie - process regulatory requests from country IEs
2599 * @country_ie_request: a regulatory request from a country IE
2600 *
2601 * The wireless subsystem can use this function to process
2602 * a regulatory request issued by a country Information Element.
2603 *
2604 * Returns one of the different reg request treatment values.
2605 */
2606static enum reg_request_treatment
2607reg_process_hint_country_ie(struct wiphy *wiphy,
2608 struct regulatory_request *country_ie_request)
2609{
2610 enum reg_request_treatment treatment;
2611
2612 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2613
2614 switch (treatment) {
2615 case REG_REQ_OK:
2616 break;
2617 case REG_REQ_IGNORE:
2618 return REG_REQ_IGNORE;
2619 case REG_REQ_ALREADY_SET:
2620 reg_free_request(country_ie_request);
2621 return REG_REQ_ALREADY_SET;
2622 case REG_REQ_INTERSECT:
2623 /*
2624 * This doesn't happen yet, not sure we
2625 * ever want to support it for this case.
2626 */
2627 WARN_ONCE(1, "Unexpected intersection for country elements");
2628 return REG_REQ_IGNORE;
2629 }
2630
2631 country_ie_request->intersect = false;
2632 country_ie_request->processed = false;
2633
2634 if (reg_query_database(country_ie_request)) {
2635 reg_update_last_request(country_ie_request);
2636 return REG_REQ_OK;
2637 }
2638
2639 return REG_REQ_IGNORE;
2640}
2641
2642bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2643{
2644 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2645 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2646 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2647 bool dfs_domain_same;
2648
2649 rcu_read_lock();
2650
2651 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2652 wiphy1_regd = rcu_dereference(wiphy1->regd);
2653 if (!wiphy1_regd)
2654 wiphy1_regd = cfg80211_regd;
2655
2656 wiphy2_regd = rcu_dereference(wiphy2->regd);
2657 if (!wiphy2_regd)
2658 wiphy2_regd = cfg80211_regd;
2659
2660 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2661
2662 rcu_read_unlock();
2663
2664 return dfs_domain_same;
2665}
2666
2667static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2668 struct ieee80211_channel *src_chan)
2669{
2670 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2671 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2672 return;
2673
2674 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2675 src_chan->flags & IEEE80211_CHAN_DISABLED)
2676 return;
2677
2678 if (src_chan->center_freq == dst_chan->center_freq &&
2679 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2680 dst_chan->dfs_state = src_chan->dfs_state;
2681 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2682 }
2683}
2684
2685static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2686 struct wiphy *src_wiphy)
2687{
2688 struct ieee80211_supported_band *src_sband, *dst_sband;
2689 struct ieee80211_channel *src_chan, *dst_chan;
2690 int i, j, band;
2691
2692 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2693 return;
2694
2695 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2696 dst_sband = dst_wiphy->bands[band];
2697 src_sband = src_wiphy->bands[band];
2698 if (!dst_sband || !src_sband)
2699 continue;
2700
2701 for (i = 0; i < dst_sband->n_channels; i++) {
2702 dst_chan = &dst_sband->channels[i];
2703 for (j = 0; j < src_sband->n_channels; j++) {
2704 src_chan = &src_sband->channels[j];
2705 reg_copy_dfs_chan_state(dst_chan, src_chan);
2706 }
2707 }
2708 }
2709}
2710
2711static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2712{
2713 struct cfg80211_registered_device *rdev;
2714
2715 ASSERT_RTNL();
2716
2717 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2718 if (wiphy == &rdev->wiphy)
2719 continue;
2720 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2721 }
2722}
2723
2724/* This processes *all* regulatory hints */
2725static void reg_process_hint(struct regulatory_request *reg_request)
2726{
2727 struct wiphy *wiphy = NULL;
2728 enum reg_request_treatment treatment;
2729
2730 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2731 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2732
2733 switch (reg_request->initiator) {
2734 case NL80211_REGDOM_SET_BY_CORE:
2735 treatment = reg_process_hint_core(reg_request);
2736 break;
2737 case NL80211_REGDOM_SET_BY_USER:
2738 treatment = reg_process_hint_user(reg_request);
2739 break;
2740 case NL80211_REGDOM_SET_BY_DRIVER:
2741 if (!wiphy)
2742 goto out_free;
2743 treatment = reg_process_hint_driver(wiphy, reg_request);
2744 break;
2745 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2746 if (!wiphy)
2747 goto out_free;
2748 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2749 break;
2750 default:
2751 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2752 goto out_free;
2753 }
2754
2755 if (treatment == REG_REQ_IGNORE)
2756 goto out_free;
2757
2758 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2759 "unexpected treatment value %d\n", treatment);
2760
2761 /* This is required so that the orig_* parameters are saved.
2762 * NOTE: treatment must be set for any case that reaches here!
2763 */
2764 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2765 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2766 wiphy_update_regulatory(wiphy, reg_request->initiator);
2767 wiphy_all_share_dfs_chan_state(wiphy);
2768 reg_check_channels();
2769 }
2770
2771 return;
2772
2773out_free:
2774 reg_free_request(reg_request);
2775}
2776
2777static void notify_self_managed_wiphys(struct regulatory_request *request)
2778{
2779 struct cfg80211_registered_device *rdev;
2780 struct wiphy *wiphy;
2781
2782 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2783 wiphy = &rdev->wiphy;
2784 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2785 request->initiator == NL80211_REGDOM_SET_BY_USER &&
2786 request->user_reg_hint_type ==
2787 NL80211_USER_REG_HINT_CELL_BASE)
2788 reg_call_notifier(wiphy, request);
2789 }
2790}
2791
2792/*
2793 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2794 * Regulatory hints come on a first come first serve basis and we
2795 * must process each one atomically.
2796 */
2797static void reg_process_pending_hints(void)
2798{
2799 struct regulatory_request *reg_request, *lr;
2800
2801 lr = get_last_request();
2802
2803 /* When last_request->processed becomes true this will be rescheduled */
2804 if (lr && !lr->processed) {
2805 reg_process_hint(lr);
2806 return;
2807 }
2808
2809 spin_lock(®_requests_lock);
2810
2811 if (list_empty(®_requests_list)) {
2812 spin_unlock(®_requests_lock);
2813 return;
2814 }
2815
2816 reg_request = list_first_entry(®_requests_list,
2817 struct regulatory_request,
2818 list);
2819 list_del_init(®_request->list);
2820
2821 spin_unlock(®_requests_lock);
2822
2823 notify_self_managed_wiphys(reg_request);
2824
2825 reg_process_hint(reg_request);
2826
2827 lr = get_last_request();
2828
2829 spin_lock(®_requests_lock);
2830 if (!list_empty(®_requests_list) && lr && lr->processed)
2831 schedule_work(®_work);
2832 spin_unlock(®_requests_lock);
2833}
2834
2835/* Processes beacon hints -- this has nothing to do with country IEs */
2836static void reg_process_pending_beacon_hints(void)
2837{
2838 struct cfg80211_registered_device *rdev;
2839 struct reg_beacon *pending_beacon, *tmp;
2840
2841 /* This goes through the _pending_ beacon list */
2842 spin_lock_bh(®_pending_beacons_lock);
2843
2844 list_for_each_entry_safe(pending_beacon, tmp,
2845 ®_pending_beacons, list) {
2846 list_del_init(&pending_beacon->list);
2847
2848 /* Applies the beacon hint to current wiphys */
2849 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2850 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2851
2852 /* Remembers the beacon hint for new wiphys or reg changes */
2853 list_add_tail(&pending_beacon->list, ®_beacon_list);
2854 }
2855
2856 spin_unlock_bh(®_pending_beacons_lock);
2857}
2858
2859static void reg_process_self_managed_hints(void)
2860{
2861 struct cfg80211_registered_device *rdev;
2862 struct wiphy *wiphy;
2863 const struct ieee80211_regdomain *tmp;
2864 const struct ieee80211_regdomain *regd;
2865 enum nl80211_band band;
2866 struct regulatory_request request = {};
2867
2868 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2869 wiphy = &rdev->wiphy;
2870
2871 spin_lock(®_requests_lock);
2872 regd = rdev->requested_regd;
2873 rdev->requested_regd = NULL;
2874 spin_unlock(®_requests_lock);
2875
2876 if (regd == NULL)
2877 continue;
2878
2879 tmp = get_wiphy_regdom(wiphy);
2880 rcu_assign_pointer(wiphy->regd, regd);
2881 rcu_free_regdom(tmp);
2882
2883 for (band = 0; band < NUM_NL80211_BANDS; band++)
2884 handle_band_custom(wiphy, wiphy->bands[band], regd);
2885
2886 reg_process_ht_flags(wiphy);
2887
2888 request.wiphy_idx = get_wiphy_idx(wiphy);
2889 request.alpha2[0] = regd->alpha2[0];
2890 request.alpha2[1] = regd->alpha2[1];
2891 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2892
2893 nl80211_send_wiphy_reg_change_event(&request);
2894 }
2895
2896 reg_check_channels();
2897}
2898
2899static void reg_todo(struct work_struct *work)
2900{
2901 rtnl_lock();
2902 reg_process_pending_hints();
2903 reg_process_pending_beacon_hints();
2904 reg_process_self_managed_hints();
2905 rtnl_unlock();
2906}
2907
2908static void queue_regulatory_request(struct regulatory_request *request)
2909{
2910 request->alpha2[0] = toupper(request->alpha2[0]);
2911 request->alpha2[1] = toupper(request->alpha2[1]);
2912
2913 spin_lock(®_requests_lock);
2914 list_add_tail(&request->list, ®_requests_list);
2915 spin_unlock(®_requests_lock);
2916
2917 schedule_work(®_work);
2918}
2919
2920/*
2921 * Core regulatory hint -- happens during cfg80211_init()
2922 * and when we restore regulatory settings.
2923 */
2924static int regulatory_hint_core(const char *alpha2)
2925{
2926 struct regulatory_request *request;
2927
2928 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2929 if (!request)
2930 return -ENOMEM;
2931
2932 request->alpha2[0] = alpha2[0];
2933 request->alpha2[1] = alpha2[1];
2934 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2935
2936 queue_regulatory_request(request);
2937
2938 return 0;
2939}
2940
2941/* User hints */
2942int regulatory_hint_user(const char *alpha2,
2943 enum nl80211_user_reg_hint_type user_reg_hint_type)
2944{
2945 struct regulatory_request *request;
2946
2947 if (WARN_ON(!alpha2))
2948 return -EINVAL;
2949
2950 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2951 if (!request)
2952 return -ENOMEM;
2953
2954 request->wiphy_idx = WIPHY_IDX_INVALID;
2955 request->alpha2[0] = alpha2[0];
2956 request->alpha2[1] = alpha2[1];
2957 request->initiator = NL80211_REGDOM_SET_BY_USER;
2958 request->user_reg_hint_type = user_reg_hint_type;
2959
2960 /* Allow calling CRDA again */
2961 reset_crda_timeouts();
2962
2963 queue_regulatory_request(request);
2964
2965 return 0;
2966}
2967
2968int regulatory_hint_indoor(bool is_indoor, u32 portid)
2969{
2970 spin_lock(®_indoor_lock);
2971
2972 /* It is possible that more than one user space process is trying to
2973 * configure the indoor setting. To handle such cases, clear the indoor
2974 * setting in case that some process does not think that the device
2975 * is operating in an indoor environment. In addition, if a user space
2976 * process indicates that it is controlling the indoor setting, save its
2977 * portid, i.e., make it the owner.
2978 */
2979 reg_is_indoor = is_indoor;
2980 if (reg_is_indoor) {
2981 if (!reg_is_indoor_portid)
2982 reg_is_indoor_portid = portid;
2983 } else {
2984 reg_is_indoor_portid = 0;
2985 }
2986
2987 spin_unlock(®_indoor_lock);
2988
2989 if (!is_indoor)
2990 reg_check_channels();
2991
2992 return 0;
2993}
2994
2995void regulatory_netlink_notify(u32 portid)
2996{
2997 spin_lock(®_indoor_lock);
2998
2999 if (reg_is_indoor_portid != portid) {
3000 spin_unlock(®_indoor_lock);
3001 return;
3002 }
3003
3004 reg_is_indoor = false;
3005 reg_is_indoor_portid = 0;
3006
3007 spin_unlock(®_indoor_lock);
3008
3009 reg_check_channels();
3010}
3011
3012/* Driver hints */
3013int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3014{
3015 struct regulatory_request *request;
3016
3017 if (WARN_ON(!alpha2 || !wiphy))
3018 return -EINVAL;
3019
3020 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3021
3022 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3023 if (!request)
3024 return -ENOMEM;
3025
3026 request->wiphy_idx = get_wiphy_idx(wiphy);
3027
3028 request->alpha2[0] = alpha2[0];
3029 request->alpha2[1] = alpha2[1];
3030 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3031
3032 /* Allow calling CRDA again */
3033 reset_crda_timeouts();
3034
3035 queue_regulatory_request(request);
3036
3037 return 0;
3038}
3039EXPORT_SYMBOL(regulatory_hint);
3040
3041void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3042 const u8 *country_ie, u8 country_ie_len)
3043{
3044 char alpha2[2];
3045 enum environment_cap env = ENVIRON_ANY;
3046 struct regulatory_request *request = NULL, *lr;
3047
3048 /* IE len must be evenly divisible by 2 */
3049 if (country_ie_len & 0x01)
3050 return;
3051
3052 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3053 return;
3054
3055 request = kzalloc(sizeof(*request), GFP_KERNEL);
3056 if (!request)
3057 return;
3058
3059 alpha2[0] = country_ie[0];
3060 alpha2[1] = country_ie[1];
3061
3062 if (country_ie[2] == 'I')
3063 env = ENVIRON_INDOOR;
3064 else if (country_ie[2] == 'O')
3065 env = ENVIRON_OUTDOOR;
3066
3067 rcu_read_lock();
3068 lr = get_last_request();
3069
3070 if (unlikely(!lr))
3071 goto out;
3072
3073 /*
3074 * We will run this only upon a successful connection on cfg80211.
3075 * We leave conflict resolution to the workqueue, where can hold
3076 * the RTNL.
3077 */
3078 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3079 lr->wiphy_idx != WIPHY_IDX_INVALID)
3080 goto out;
3081
3082 request->wiphy_idx = get_wiphy_idx(wiphy);
3083 request->alpha2[0] = alpha2[0];
3084 request->alpha2[1] = alpha2[1];
3085 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3086 request->country_ie_env = env;
3087
3088 /* Allow calling CRDA again */
3089 reset_crda_timeouts();
3090
3091 queue_regulatory_request(request);
3092 request = NULL;
3093out:
3094 kfree(request);
3095 rcu_read_unlock();
3096}
3097
3098static void restore_alpha2(char *alpha2, bool reset_user)
3099{
3100 /* indicates there is no alpha2 to consider for restoration */
3101 alpha2[0] = '9';
3102 alpha2[1] = '7';
3103
3104 /* The user setting has precedence over the module parameter */
3105 if (is_user_regdom_saved()) {
3106 /* Unless we're asked to ignore it and reset it */
3107 if (reset_user) {
3108 pr_debug("Restoring regulatory settings including user preference\n");
3109 user_alpha2[0] = '9';
3110 user_alpha2[1] = '7';
3111
3112 /*
3113 * If we're ignoring user settings, we still need to
3114 * check the module parameter to ensure we put things
3115 * back as they were for a full restore.
3116 */
3117 if (!is_world_regdom(ieee80211_regdom)) {
3118 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3119 ieee80211_regdom[0], ieee80211_regdom[1]);
3120 alpha2[0] = ieee80211_regdom[0];
3121 alpha2[1] = ieee80211_regdom[1];
3122 }
3123 } else {
3124 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3125 user_alpha2[0], user_alpha2[1]);
3126 alpha2[0] = user_alpha2[0];
3127 alpha2[1] = user_alpha2[1];
3128 }
3129 } else if (!is_world_regdom(ieee80211_regdom)) {
3130 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3131 ieee80211_regdom[0], ieee80211_regdom[1]);
3132 alpha2[0] = ieee80211_regdom[0];
3133 alpha2[1] = ieee80211_regdom[1];
3134 } else
3135 pr_debug("Restoring regulatory settings\n");
3136}
3137
3138static void restore_custom_reg_settings(struct wiphy *wiphy)
3139{
3140 struct ieee80211_supported_band *sband;
3141 enum nl80211_band band;
3142 struct ieee80211_channel *chan;
3143 int i;
3144
3145 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3146 sband = wiphy->bands[band];
3147 if (!sband)
3148 continue;
3149 for (i = 0; i < sband->n_channels; i++) {
3150 chan = &sband->channels[i];
3151 chan->flags = chan->orig_flags;
3152 chan->max_antenna_gain = chan->orig_mag;
3153 chan->max_power = chan->orig_mpwr;
3154 chan->beacon_found = false;
3155 }
3156 }
3157}
3158
3159/*
3160 * Restoring regulatory settings involves ingoring any
3161 * possibly stale country IE information and user regulatory
3162 * settings if so desired, this includes any beacon hints
3163 * learned as we could have traveled outside to another country
3164 * after disconnection. To restore regulatory settings we do
3165 * exactly what we did at bootup:
3166 *
3167 * - send a core regulatory hint
3168 * - send a user regulatory hint if applicable
3169 *
3170 * Device drivers that send a regulatory hint for a specific country
3171 * keep their own regulatory domain on wiphy->regd so that does does
3172 * not need to be remembered.
3173 */
3174static void restore_regulatory_settings(bool reset_user)
3175{
3176 char alpha2[2];
3177 char world_alpha2[2];
3178 struct reg_beacon *reg_beacon, *btmp;
3179 LIST_HEAD(tmp_reg_req_list);
3180 struct cfg80211_registered_device *rdev;
3181
3182 ASSERT_RTNL();
3183
3184 /*
3185 * Clear the indoor setting in case that it is not controlled by user
3186 * space, as otherwise there is no guarantee that the device is still
3187 * operating in an indoor environment.
3188 */
3189 spin_lock(®_indoor_lock);
3190 if (reg_is_indoor && !reg_is_indoor_portid) {
3191 reg_is_indoor = false;
3192 reg_check_channels();
3193 }
3194 spin_unlock(®_indoor_lock);
3195
3196 reset_regdomains(true, &world_regdom);
3197 restore_alpha2(alpha2, reset_user);
3198
3199 /*
3200 * If there's any pending requests we simply
3201 * stash them to a temporary pending queue and
3202 * add then after we've restored regulatory
3203 * settings.
3204 */
3205 spin_lock(®_requests_lock);
3206 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3207 spin_unlock(®_requests_lock);
3208
3209 /* Clear beacon hints */
3210 spin_lock_bh(®_pending_beacons_lock);
3211 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3212 list_del(®_beacon->list);
3213 kfree(reg_beacon);
3214 }
3215 spin_unlock_bh(®_pending_beacons_lock);
3216
3217 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3218 list_del(®_beacon->list);
3219 kfree(reg_beacon);
3220 }
3221
3222 /* First restore to the basic regulatory settings */
3223 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3224 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3225
3226 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3227 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3228 continue;
3229 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3230 restore_custom_reg_settings(&rdev->wiphy);
3231 }
3232
3233 regulatory_hint_core(world_alpha2);
3234
3235 /*
3236 * This restores the ieee80211_regdom module parameter
3237 * preference or the last user requested regulatory
3238 * settings, user regulatory settings takes precedence.
3239 */
3240 if (is_an_alpha2(alpha2))
3241 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3242
3243 spin_lock(®_requests_lock);
3244 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3245 spin_unlock(®_requests_lock);
3246
3247 pr_debug("Kicking the queue\n");
3248
3249 schedule_work(®_work);
3250}
3251
3252void regulatory_hint_disconnect(void)
3253{
3254 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3255 restore_regulatory_settings(false);
3256}
3257
3258static bool freq_is_chan_12_13_14(u16 freq)
3259{
3260 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3261 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3262 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3263 return true;
3264 return false;
3265}
3266
3267static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3268{
3269 struct reg_beacon *pending_beacon;
3270
3271 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3272 if (beacon_chan->center_freq ==
3273 pending_beacon->chan.center_freq)
3274 return true;
3275 return false;
3276}
3277
3278int regulatory_hint_found_beacon(struct wiphy *wiphy,
3279 struct ieee80211_channel *beacon_chan,
3280 gfp_t gfp)
3281{
3282 struct reg_beacon *reg_beacon;
3283 bool processing;
3284
3285 if (beacon_chan->beacon_found ||
3286 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3287 (beacon_chan->band == NL80211_BAND_2GHZ &&
3288 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3289 return 0;
3290
3291 spin_lock_bh(®_pending_beacons_lock);
3292 processing = pending_reg_beacon(beacon_chan);
3293 spin_unlock_bh(®_pending_beacons_lock);
3294
3295 if (processing)
3296 return 0;
3297
3298 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3299 if (!reg_beacon)
3300 return -ENOMEM;
3301
3302 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3303 beacon_chan->center_freq,
3304 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3305 wiphy_name(wiphy));
3306
3307 memcpy(®_beacon->chan, beacon_chan,
3308 sizeof(struct ieee80211_channel));
3309
3310 /*
3311 * Since we can be called from BH or and non-BH context
3312 * we must use spin_lock_bh()
3313 */
3314 spin_lock_bh(®_pending_beacons_lock);
3315 list_add_tail(®_beacon->list, ®_pending_beacons);
3316 spin_unlock_bh(®_pending_beacons_lock);
3317
3318 schedule_work(®_work);
3319
3320 return 0;
3321}
3322
3323static void print_rd_rules(const struct ieee80211_regdomain *rd)
3324{
3325 unsigned int i;
3326 const struct ieee80211_reg_rule *reg_rule = NULL;
3327 const struct ieee80211_freq_range *freq_range = NULL;
3328 const struct ieee80211_power_rule *power_rule = NULL;
3329 char bw[32], cac_time[32];
3330
3331 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3332
3333 for (i = 0; i < rd->n_reg_rules; i++) {
3334 reg_rule = &rd->reg_rules[i];
3335 freq_range = ®_rule->freq_range;
3336 power_rule = ®_rule->power_rule;
3337
3338 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3339 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3340 freq_range->max_bandwidth_khz,
3341 reg_get_max_bandwidth(rd, reg_rule));
3342 else
3343 snprintf(bw, sizeof(bw), "%d KHz",
3344 freq_range->max_bandwidth_khz);
3345
3346 if (reg_rule->flags & NL80211_RRF_DFS)
3347 scnprintf(cac_time, sizeof(cac_time), "%u s",
3348 reg_rule->dfs_cac_ms/1000);
3349 else
3350 scnprintf(cac_time, sizeof(cac_time), "N/A");
3351
3352
3353 /*
3354 * There may not be documentation for max antenna gain
3355 * in certain regions
3356 */
3357 if (power_rule->max_antenna_gain)
3358 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3359 freq_range->start_freq_khz,
3360 freq_range->end_freq_khz,
3361 bw,
3362 power_rule->max_antenna_gain,
3363 power_rule->max_eirp,
3364 cac_time);
3365 else
3366 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3367 freq_range->start_freq_khz,
3368 freq_range->end_freq_khz,
3369 bw,
3370 power_rule->max_eirp,
3371 cac_time);
3372 }
3373}
3374
3375bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3376{
3377 switch (dfs_region) {
3378 case NL80211_DFS_UNSET:
3379 case NL80211_DFS_FCC:
3380 case NL80211_DFS_ETSI:
3381 case NL80211_DFS_JP:
3382 return true;
3383 default:
3384 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3385 return false;
3386 }
3387}
3388
3389static void print_regdomain(const struct ieee80211_regdomain *rd)
3390{
3391 struct regulatory_request *lr = get_last_request();
3392
3393 if (is_intersected_alpha2(rd->alpha2)) {
3394 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3395 struct cfg80211_registered_device *rdev;
3396 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3397 if (rdev) {
3398 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3399 rdev->country_ie_alpha2[0],
3400 rdev->country_ie_alpha2[1]);
3401 } else
3402 pr_debug("Current regulatory domain intersected:\n");
3403 } else
3404 pr_debug("Current regulatory domain intersected:\n");
3405 } else if (is_world_regdom(rd->alpha2)) {
3406 pr_debug("World regulatory domain updated:\n");
3407 } else {
3408 if (is_unknown_alpha2(rd->alpha2))
3409 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3410 else {
3411 if (reg_request_cell_base(lr))
3412 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3413 rd->alpha2[0], rd->alpha2[1]);
3414 else
3415 pr_debug("Regulatory domain changed to country: %c%c\n",
3416 rd->alpha2[0], rd->alpha2[1]);
3417 }
3418 }
3419
3420 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3421 print_rd_rules(rd);
3422}
3423
3424static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3425{
3426 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3427 print_rd_rules(rd);
3428}
3429
3430static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3431{
3432 if (!is_world_regdom(rd->alpha2))
3433 return -EINVAL;
3434 update_world_regdomain(rd);
3435 return 0;
3436}
3437
3438static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3439 struct regulatory_request *user_request)
3440{
3441 const struct ieee80211_regdomain *intersected_rd = NULL;
3442
3443 if (!regdom_changes(rd->alpha2))
3444 return -EALREADY;
3445
3446 if (!is_valid_rd(rd)) {
3447 pr_err("Invalid regulatory domain detected: %c%c\n",
3448 rd->alpha2[0], rd->alpha2[1]);
3449 print_regdomain_info(rd);
3450 return -EINVAL;
3451 }
3452
3453 if (!user_request->intersect) {
3454 reset_regdomains(false, rd);
3455 return 0;
3456 }
3457
3458 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3459 if (!intersected_rd)
3460 return -EINVAL;
3461
3462 kfree(rd);
3463 rd = NULL;
3464 reset_regdomains(false, intersected_rd);
3465
3466 return 0;
3467}
3468
3469static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3470 struct regulatory_request *driver_request)
3471{
3472 const struct ieee80211_regdomain *regd;
3473 const struct ieee80211_regdomain *intersected_rd = NULL;
3474 const struct ieee80211_regdomain *tmp;
3475 struct wiphy *request_wiphy;
3476
3477 if (is_world_regdom(rd->alpha2))
3478 return -EINVAL;
3479
3480 if (!regdom_changes(rd->alpha2))
3481 return -EALREADY;
3482
3483 if (!is_valid_rd(rd)) {
3484 pr_err("Invalid regulatory domain detected: %c%c\n",
3485 rd->alpha2[0], rd->alpha2[1]);
3486 print_regdomain_info(rd);
3487 return -EINVAL;
3488 }
3489
3490 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3491 if (!request_wiphy)
3492 return -ENODEV;
3493
3494 if (!driver_request->intersect) {
3495 if (request_wiphy->regd)
3496 return -EALREADY;
3497
3498 regd = reg_copy_regd(rd);
3499 if (IS_ERR(regd))
3500 return PTR_ERR(regd);
3501
3502 rcu_assign_pointer(request_wiphy->regd, regd);
3503 reset_regdomains(false, rd);
3504 return 0;
3505 }
3506
3507 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3508 if (!intersected_rd)
3509 return -EINVAL;
3510
3511 /*
3512 * We can trash what CRDA provided now.
3513 * However if a driver requested this specific regulatory
3514 * domain we keep it for its private use
3515 */
3516 tmp = get_wiphy_regdom(request_wiphy);
3517 rcu_assign_pointer(request_wiphy->regd, rd);
3518 rcu_free_regdom(tmp);
3519
3520 rd = NULL;
3521
3522 reset_regdomains(false, intersected_rd);
3523
3524 return 0;
3525}
3526
3527static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3528 struct regulatory_request *country_ie_request)
3529{
3530 struct wiphy *request_wiphy;
3531
3532 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3533 !is_unknown_alpha2(rd->alpha2))
3534 return -EINVAL;
3535
3536 /*
3537 * Lets only bother proceeding on the same alpha2 if the current
3538 * rd is non static (it means CRDA was present and was used last)
3539 * and the pending request came in from a country IE
3540 */
3541
3542 if (!is_valid_rd(rd)) {
3543 pr_err("Invalid regulatory domain detected: %c%c\n",
3544 rd->alpha2[0], rd->alpha2[1]);
3545 print_regdomain_info(rd);
3546 return -EINVAL;
3547 }
3548
3549 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3550 if (!request_wiphy)
3551 return -ENODEV;
3552
3553 if (country_ie_request->intersect)
3554 return -EINVAL;
3555
3556 reset_regdomains(false, rd);
3557 return 0;
3558}
3559
3560/*
3561 * Use this call to set the current regulatory domain. Conflicts with
3562 * multiple drivers can be ironed out later. Caller must've already
3563 * kmalloc'd the rd structure.
3564 */
3565int set_regdom(const struct ieee80211_regdomain *rd,
3566 enum ieee80211_regd_source regd_src)
3567{
3568 struct regulatory_request *lr;
3569 bool user_reset = false;
3570 int r;
3571
3572 if (!reg_is_valid_request(rd->alpha2)) {
3573 kfree(rd);
3574 return -EINVAL;
3575 }
3576
3577 if (regd_src == REGD_SOURCE_CRDA)
3578 reset_crda_timeouts();
3579
3580 lr = get_last_request();
3581
3582 /* Note that this doesn't update the wiphys, this is done below */
3583 switch (lr->initiator) {
3584 case NL80211_REGDOM_SET_BY_CORE:
3585 r = reg_set_rd_core(rd);
3586 break;
3587 case NL80211_REGDOM_SET_BY_USER:
3588 r = reg_set_rd_user(rd, lr);
3589 user_reset = true;
3590 break;
3591 case NL80211_REGDOM_SET_BY_DRIVER:
3592 r = reg_set_rd_driver(rd, lr);
3593 break;
3594 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3595 r = reg_set_rd_country_ie(rd, lr);
3596 break;
3597 default:
3598 WARN(1, "invalid initiator %d\n", lr->initiator);
3599 kfree(rd);
3600 return -EINVAL;
3601 }
3602
3603 if (r) {
3604 switch (r) {
3605 case -EALREADY:
3606 reg_set_request_processed();
3607 break;
3608 default:
3609 /* Back to world regulatory in case of errors */
3610 restore_regulatory_settings(user_reset);
3611 }
3612
3613 kfree(rd);
3614 return r;
3615 }
3616
3617 /* This would make this whole thing pointless */
3618 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3619 return -EINVAL;
3620
3621 /* update all wiphys now with the new established regulatory domain */
3622 update_all_wiphy_regulatory(lr->initiator);
3623
3624 print_regdomain(get_cfg80211_regdom());
3625
3626 nl80211_send_reg_change_event(lr);
3627
3628 reg_set_request_processed();
3629
3630 return 0;
3631}
3632
3633static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3634 struct ieee80211_regdomain *rd)
3635{
3636 const struct ieee80211_regdomain *regd;
3637 const struct ieee80211_regdomain *prev_regd;
3638 struct cfg80211_registered_device *rdev;
3639
3640 if (WARN_ON(!wiphy || !rd))
3641 return -EINVAL;
3642
3643 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3644 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3645 return -EPERM;
3646
3647 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3648 print_regdomain_info(rd);
3649 return -EINVAL;
3650 }
3651
3652 regd = reg_copy_regd(rd);
3653 if (IS_ERR(regd))
3654 return PTR_ERR(regd);
3655
3656 rdev = wiphy_to_rdev(wiphy);
3657
3658 spin_lock(®_requests_lock);
3659 prev_regd = rdev->requested_regd;
3660 rdev->requested_regd = regd;
3661 spin_unlock(®_requests_lock);
3662
3663 kfree(prev_regd);
3664 return 0;
3665}
3666
3667int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3668 struct ieee80211_regdomain *rd)
3669{
3670 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3671
3672 if (ret)
3673 return ret;
3674
3675 schedule_work(®_work);
3676 return 0;
3677}
3678EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3679
3680int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3681 struct ieee80211_regdomain *rd)
3682{
3683 int ret;
3684
3685 ASSERT_RTNL();
3686
3687 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3688 if (ret)
3689 return ret;
3690
3691 /* process the request immediately */
3692 reg_process_self_managed_hints();
3693 return 0;
3694}
3695EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3696
3697void wiphy_regulatory_register(struct wiphy *wiphy)
3698{
3699 struct regulatory_request *lr = get_last_request();
3700
3701 /* self-managed devices ignore beacon hints and country IE */
3702 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3703 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3704 REGULATORY_COUNTRY_IE_IGNORE;
3705
3706 /*
3707 * The last request may have been received before this
3708 * registration call. Call the driver notifier if
3709 * initiator is USER and user type is CELL_BASE.
3710 */
3711 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3712 lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3713 reg_call_notifier(wiphy, lr);
3714 }
3715
3716 if (!reg_dev_ignore_cell_hint(wiphy))
3717 reg_num_devs_support_basehint++;
3718
3719 wiphy_update_regulatory(wiphy, lr->initiator);
3720 wiphy_all_share_dfs_chan_state(wiphy);
3721}
3722
3723void wiphy_regulatory_deregister(struct wiphy *wiphy)
3724{
3725 struct wiphy *request_wiphy = NULL;
3726 struct regulatory_request *lr;
3727
3728 lr = get_last_request();
3729
3730 if (!reg_dev_ignore_cell_hint(wiphy))
3731 reg_num_devs_support_basehint--;
3732
3733 rcu_free_regdom(get_wiphy_regdom(wiphy));
3734 RCU_INIT_POINTER(wiphy->regd, NULL);
3735
3736 if (lr)
3737 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3738
3739 if (!request_wiphy || request_wiphy != wiphy)
3740 return;
3741
3742 lr->wiphy_idx = WIPHY_IDX_INVALID;
3743 lr->country_ie_env = ENVIRON_ANY;
3744}
3745
3746/*
3747 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3748 * UNII band definitions
3749 */
3750int cfg80211_get_unii(int freq)
3751{
3752 /* UNII-1 */
3753 if (freq >= 5150 && freq <= 5250)
3754 return 0;
3755
3756 /* UNII-2A */
3757 if (freq > 5250 && freq <= 5350)
3758 return 1;
3759
3760 /* UNII-2B */
3761 if (freq > 5350 && freq <= 5470)
3762 return 2;
3763
3764 /* UNII-2C */
3765 if (freq > 5470 && freq <= 5725)
3766 return 3;
3767
3768 /* UNII-3 */
3769 if (freq > 5725 && freq <= 5825)
3770 return 4;
3771
3772 return -EINVAL;
3773}
3774
3775bool regulatory_indoor_allowed(void)
3776{
3777 return reg_is_indoor;
3778}
3779
3780bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3781{
3782 const struct ieee80211_regdomain *regd = NULL;
3783 const struct ieee80211_regdomain *wiphy_regd = NULL;
3784 bool pre_cac_allowed = false;
3785
3786 rcu_read_lock();
3787
3788 regd = rcu_dereference(cfg80211_regdomain);
3789 wiphy_regd = rcu_dereference(wiphy->regd);
3790 if (!wiphy_regd) {
3791 if (regd->dfs_region == NL80211_DFS_ETSI)
3792 pre_cac_allowed = true;
3793
3794 rcu_read_unlock();
3795
3796 return pre_cac_allowed;
3797 }
3798
3799 if (regd->dfs_region == wiphy_regd->dfs_region &&
3800 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3801 pre_cac_allowed = true;
3802
3803 rcu_read_unlock();
3804
3805 return pre_cac_allowed;
3806}
3807
3808void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3809 struct cfg80211_chan_def *chandef,
3810 enum nl80211_dfs_state dfs_state,
3811 enum nl80211_radar_event event)
3812{
3813 struct cfg80211_registered_device *rdev;
3814
3815 ASSERT_RTNL();
3816
3817 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3818 return;
3819
3820 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3821 if (wiphy == &rdev->wiphy)
3822 continue;
3823
3824 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3825 continue;
3826
3827 if (!ieee80211_get_channel(&rdev->wiphy,
3828 chandef->chan->center_freq))
3829 continue;
3830
3831 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3832
3833 if (event == NL80211_RADAR_DETECTED ||
3834 event == NL80211_RADAR_CAC_FINISHED)
3835 cfg80211_sched_dfs_chan_update(rdev);
3836
3837 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3838 }
3839}
3840
3841static int __init regulatory_init_db(void)
3842{
3843 int err;
3844
3845 err = load_builtin_regdb_keys();
3846 if (err)
3847 return err;
3848
3849 /* We always try to get an update for the static regdomain */
3850 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3851 if (err) {
3852 if (err == -ENOMEM) {
3853 platform_device_unregister(reg_pdev);
3854 return err;
3855 }
3856 /*
3857 * N.B. kobject_uevent_env() can fail mainly for when we're out
3858 * memory which is handled and propagated appropriately above
3859 * but it can also fail during a netlink_broadcast() or during
3860 * early boot for call_usermodehelper(). For now treat these
3861 * errors as non-fatal.
3862 */
3863 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3864 }
3865
3866 /*
3867 * Finally, if the user set the module parameter treat it
3868 * as a user hint.
3869 */
3870 if (!is_world_regdom(ieee80211_regdom))
3871 regulatory_hint_user(ieee80211_regdom,
3872 NL80211_USER_REG_HINT_USER);
3873
3874 return 0;
3875}
3876#ifndef MODULE
3877late_initcall(regulatory_init_db);
3878#endif
3879
3880int __init regulatory_init(void)
3881{
3882 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3883 if (IS_ERR(reg_pdev))
3884 return PTR_ERR(reg_pdev);
3885
3886 spin_lock_init(®_requests_lock);
3887 spin_lock_init(®_pending_beacons_lock);
3888 spin_lock_init(®_indoor_lock);
3889
3890 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3891
3892 user_alpha2[0] = '9';
3893 user_alpha2[1] = '7';
3894
3895#ifdef MODULE
3896 return regulatory_init_db();
3897#else
3898 return 0;
3899#endif
3900}
3901
3902void regulatory_exit(void)
3903{
3904 struct regulatory_request *reg_request, *tmp;
3905 struct reg_beacon *reg_beacon, *btmp;
3906
3907 cancel_work_sync(®_work);
3908 cancel_crda_timeout_sync();
3909 cancel_delayed_work_sync(®_check_chans);
3910
3911 /* Lock to suppress warnings */
3912 rtnl_lock();
3913 reset_regdomains(true, NULL);
3914 rtnl_unlock();
3915
3916 dev_set_uevent_suppress(®_pdev->dev, true);
3917
3918 platform_device_unregister(reg_pdev);
3919
3920 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3921 list_del(®_beacon->list);
3922 kfree(reg_beacon);
3923 }
3924
3925 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3926 list_del(®_beacon->list);
3927 kfree(reg_beacon);
3928 }
3929
3930 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
3931 list_del(®_request->list);
3932 kfree(reg_request);
3933 }
3934
3935 if (!IS_ERR_OR_NULL(regdb))
3936 kfree(regdb);
3937
3938 free_regdb_keyring();
3939}