Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_BLKDEV_H
3#define _LINUX_BLKDEV_H
4
5#include <linux/sched.h>
6#include <linux/sched/clock.h>
7
8#ifdef CONFIG_BLOCK
9
10#include <linux/major.h>
11#include <linux/genhd.h>
12#include <linux/list.h>
13#include <linux/llist.h>
14#include <linux/timer.h>
15#include <linux/workqueue.h>
16#include <linux/pagemap.h>
17#include <linux/backing-dev-defs.h>
18#include <linux/wait.h>
19#include <linux/mempool.h>
20#include <linux/pfn.h>
21#include <linux/bio.h>
22#include <linux/stringify.h>
23#include <linux/gfp.h>
24#include <linux/bsg.h>
25#include <linux/smp.h>
26#include <linux/rcupdate.h>
27#include <linux/percpu-refcount.h>
28#include <linux/scatterlist.h>
29#include <linux/blkzoned.h>
30#include <linux/seqlock.h>
31#include <linux/u64_stats_sync.h>
32
33struct module;
34struct scsi_ioctl_command;
35
36struct request_queue;
37struct elevator_queue;
38struct blk_trace;
39struct request;
40struct sg_io_hdr;
41struct bsg_job;
42struct blkcg_gq;
43struct blk_flush_queue;
44struct pr_ops;
45struct rq_wb;
46struct blk_queue_stats;
47struct blk_stat_callback;
48
49#define BLKDEV_MIN_RQ 4
50#define BLKDEV_MAX_RQ 128 /* Default maximum */
51
52/* Must be consistent with blk_mq_poll_stats_bkt() */
53#define BLK_MQ_POLL_STATS_BKTS 16
54
55/*
56 * Maximum number of blkcg policies allowed to be registered concurrently.
57 * Defined here to simplify include dependency.
58 */
59#define BLKCG_MAX_POLS 3
60
61typedef void (rq_end_io_fn)(struct request *, blk_status_t);
62
63#define BLK_RL_SYNCFULL (1U << 0)
64#define BLK_RL_ASYNCFULL (1U << 1)
65
66struct request_list {
67 struct request_queue *q; /* the queue this rl belongs to */
68#ifdef CONFIG_BLK_CGROUP
69 struct blkcg_gq *blkg; /* blkg this request pool belongs to */
70#endif
71 /*
72 * count[], starved[], and wait[] are indexed by
73 * BLK_RW_SYNC/BLK_RW_ASYNC
74 */
75 int count[2];
76 int starved[2];
77 mempool_t *rq_pool;
78 wait_queue_head_t wait[2];
79 unsigned int flags;
80};
81
82/*
83 * request flags */
84typedef __u32 __bitwise req_flags_t;
85
86/* elevator knows about this request */
87#define RQF_SORTED ((__force req_flags_t)(1 << 0))
88/* drive already may have started this one */
89#define RQF_STARTED ((__force req_flags_t)(1 << 1))
90/* uses tagged queueing */
91#define RQF_QUEUED ((__force req_flags_t)(1 << 2))
92/* may not be passed by ioscheduler */
93#define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
94/* request for flush sequence */
95#define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
96/* merge of different types, fail separately */
97#define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
98/* track inflight for MQ */
99#define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
100/* don't call prep for this one */
101#define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
102/* set for "ide_preempt" requests and also for requests for which the SCSI
103 "quiesce" state must be ignored. */
104#define RQF_PREEMPT ((__force req_flags_t)(1 << 8))
105/* contains copies of user pages */
106#define RQF_COPY_USER ((__force req_flags_t)(1 << 9))
107/* vaguely specified driver internal error. Ignored by the block layer */
108#define RQF_FAILED ((__force req_flags_t)(1 << 10))
109/* don't warn about errors */
110#define RQF_QUIET ((__force req_flags_t)(1 << 11))
111/* elevator private data attached */
112#define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
113/* account I/O stat */
114#define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
115/* request came from our alloc pool */
116#define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
117/* runtime pm request */
118#define RQF_PM ((__force req_flags_t)(1 << 15))
119/* on IO scheduler merge hash */
120#define RQF_HASHED ((__force req_flags_t)(1 << 16))
121/* IO stats tracking on */
122#define RQF_STATS ((__force req_flags_t)(1 << 17))
123/* Look at ->special_vec for the actual data payload instead of the
124 bio chain. */
125#define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
126/* The per-zone write lock is held for this request */
127#define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
128/* already slept for hybrid poll */
129#define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
130/* ->timeout has been called, don't expire again */
131#define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
132
133/* flags that prevent us from merging requests: */
134#define RQF_NOMERGE_FLAGS \
135 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
136
137/*
138 * Request state for blk-mq.
139 */
140enum mq_rq_state {
141 MQ_RQ_IDLE = 0,
142 MQ_RQ_IN_FLIGHT = 1,
143 MQ_RQ_COMPLETE = 2,
144};
145
146/*
147 * Try to put the fields that are referenced together in the same cacheline.
148 *
149 * If you modify this structure, make sure to update blk_rq_init() and
150 * especially blk_mq_rq_ctx_init() to take care of the added fields.
151 */
152struct request {
153 struct request_queue *q;
154 struct blk_mq_ctx *mq_ctx;
155
156 int cpu;
157 unsigned int cmd_flags; /* op and common flags */
158 req_flags_t rq_flags;
159
160 int internal_tag;
161
162 /* the following two fields are internal, NEVER access directly */
163 unsigned int __data_len; /* total data len */
164 int tag;
165 sector_t __sector; /* sector cursor */
166
167 struct bio *bio;
168 struct bio *biotail;
169
170 struct list_head queuelist;
171
172 /*
173 * The hash is used inside the scheduler, and killed once the
174 * request reaches the dispatch list. The ipi_list is only used
175 * to queue the request for softirq completion, which is long
176 * after the request has been unhashed (and even removed from
177 * the dispatch list).
178 */
179 union {
180 struct hlist_node hash; /* merge hash */
181 struct list_head ipi_list;
182 };
183
184 /*
185 * The rb_node is only used inside the io scheduler, requests
186 * are pruned when moved to the dispatch queue. So let the
187 * completion_data share space with the rb_node.
188 */
189 union {
190 struct rb_node rb_node; /* sort/lookup */
191 struct bio_vec special_vec;
192 void *completion_data;
193 int error_count; /* for legacy drivers, don't use */
194 };
195
196 /*
197 * Three pointers are available for the IO schedulers, if they need
198 * more they have to dynamically allocate it. Flush requests are
199 * never put on the IO scheduler. So let the flush fields share
200 * space with the elevator data.
201 */
202 union {
203 struct {
204 struct io_cq *icq;
205 void *priv[2];
206 } elv;
207
208 struct {
209 unsigned int seq;
210 struct list_head list;
211 rq_end_io_fn *saved_end_io;
212 } flush;
213 };
214
215 struct gendisk *rq_disk;
216 struct hd_struct *part;
217 /* Time that I/O was submitted to the kernel. */
218 u64 start_time_ns;
219 /* Time that I/O was submitted to the device. */
220 u64 io_start_time_ns;
221
222#ifdef CONFIG_BLK_WBT
223 unsigned short wbt_flags;
224#endif
225#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
226 unsigned short throtl_size;
227#endif
228
229 /*
230 * Number of scatter-gather DMA addr+len pairs after
231 * physical address coalescing is performed.
232 */
233 unsigned short nr_phys_segments;
234
235#if defined(CONFIG_BLK_DEV_INTEGRITY)
236 unsigned short nr_integrity_segments;
237#endif
238
239 unsigned short write_hint;
240 unsigned short ioprio;
241
242 void *special; /* opaque pointer available for LLD use */
243
244 unsigned int extra_len; /* length of alignment and padding */
245
246 enum mq_rq_state state;
247 refcount_t ref;
248
249 unsigned int timeout;
250
251 /* access through blk_rq_set_deadline, blk_rq_deadline */
252 unsigned long __deadline;
253
254 struct list_head timeout_list;
255
256 union {
257 struct __call_single_data csd;
258 u64 fifo_time;
259 };
260
261 /*
262 * completion callback.
263 */
264 rq_end_io_fn *end_io;
265 void *end_io_data;
266
267 /* for bidi */
268 struct request *next_rq;
269
270#ifdef CONFIG_BLK_CGROUP
271 struct request_list *rl; /* rl this rq is alloced from */
272#endif
273};
274
275static inline bool blk_op_is_scsi(unsigned int op)
276{
277 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
278}
279
280static inline bool blk_op_is_private(unsigned int op)
281{
282 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
283}
284
285static inline bool blk_rq_is_scsi(struct request *rq)
286{
287 return blk_op_is_scsi(req_op(rq));
288}
289
290static inline bool blk_rq_is_private(struct request *rq)
291{
292 return blk_op_is_private(req_op(rq));
293}
294
295static inline bool blk_rq_is_passthrough(struct request *rq)
296{
297 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
298}
299
300static inline bool bio_is_passthrough(struct bio *bio)
301{
302 unsigned op = bio_op(bio);
303
304 return blk_op_is_scsi(op) || blk_op_is_private(op);
305}
306
307static inline unsigned short req_get_ioprio(struct request *req)
308{
309 return req->ioprio;
310}
311
312#include <linux/elevator.h>
313
314struct blk_queue_ctx;
315
316typedef void (request_fn_proc) (struct request_queue *q);
317typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
318typedef bool (poll_q_fn) (struct request_queue *q, blk_qc_t);
319typedef int (prep_rq_fn) (struct request_queue *, struct request *);
320typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
321
322struct bio_vec;
323typedef void (softirq_done_fn)(struct request *);
324typedef int (dma_drain_needed_fn)(struct request *);
325typedef int (lld_busy_fn) (struct request_queue *q);
326typedef int (bsg_job_fn) (struct bsg_job *);
327typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t);
328typedef void (exit_rq_fn)(struct request_queue *, struct request *);
329
330enum blk_eh_timer_return {
331 BLK_EH_DONE, /* drivers has completed the command */
332 BLK_EH_RESET_TIMER, /* reset timer and try again */
333};
334
335typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
336
337enum blk_queue_state {
338 Queue_down,
339 Queue_up,
340};
341
342struct blk_queue_tag {
343 struct request **tag_index; /* map of busy tags */
344 unsigned long *tag_map; /* bit map of free/busy tags */
345 int max_depth; /* what we will send to device */
346 int real_max_depth; /* what the array can hold */
347 atomic_t refcnt; /* map can be shared */
348 int alloc_policy; /* tag allocation policy */
349 int next_tag; /* next tag */
350};
351#define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
352#define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
353
354#define BLK_SCSI_MAX_CMDS (256)
355#define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
356
357/*
358 * Zoned block device models (zoned limit).
359 */
360enum blk_zoned_model {
361 BLK_ZONED_NONE, /* Regular block device */
362 BLK_ZONED_HA, /* Host-aware zoned block device */
363 BLK_ZONED_HM, /* Host-managed zoned block device */
364};
365
366struct queue_limits {
367 unsigned long bounce_pfn;
368 unsigned long seg_boundary_mask;
369 unsigned long virt_boundary_mask;
370
371 unsigned int max_hw_sectors;
372 unsigned int max_dev_sectors;
373 unsigned int chunk_sectors;
374 unsigned int max_sectors;
375 unsigned int max_segment_size;
376 unsigned int physical_block_size;
377 unsigned int alignment_offset;
378 unsigned int io_min;
379 unsigned int io_opt;
380 unsigned int max_discard_sectors;
381 unsigned int max_hw_discard_sectors;
382 unsigned int max_write_same_sectors;
383 unsigned int max_write_zeroes_sectors;
384 unsigned int discard_granularity;
385 unsigned int discard_alignment;
386
387 unsigned short logical_block_size;
388 unsigned short max_segments;
389 unsigned short max_integrity_segments;
390 unsigned short max_discard_segments;
391
392 unsigned char misaligned;
393 unsigned char discard_misaligned;
394 unsigned char cluster;
395 unsigned char raid_partial_stripes_expensive;
396 enum blk_zoned_model zoned;
397};
398
399#ifdef CONFIG_BLK_DEV_ZONED
400
401struct blk_zone_report_hdr {
402 unsigned int nr_zones;
403 u8 padding[60];
404};
405
406extern int blkdev_report_zones(struct block_device *bdev,
407 sector_t sector, struct blk_zone *zones,
408 unsigned int *nr_zones, gfp_t gfp_mask);
409extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
410 sector_t nr_sectors, gfp_t gfp_mask);
411
412extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
413 unsigned int cmd, unsigned long arg);
414extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
415 unsigned int cmd, unsigned long arg);
416
417#else /* CONFIG_BLK_DEV_ZONED */
418
419static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
420 fmode_t mode, unsigned int cmd,
421 unsigned long arg)
422{
423 return -ENOTTY;
424}
425
426static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
427 fmode_t mode, unsigned int cmd,
428 unsigned long arg)
429{
430 return -ENOTTY;
431}
432
433#endif /* CONFIG_BLK_DEV_ZONED */
434
435struct request_queue {
436 /*
437 * Together with queue_head for cacheline sharing
438 */
439 struct list_head queue_head;
440 struct request *last_merge;
441 struct elevator_queue *elevator;
442 int nr_rqs[2]; /* # allocated [a]sync rqs */
443 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */
444
445 atomic_t shared_hctx_restart;
446
447 struct blk_queue_stats *stats;
448 struct rq_wb *rq_wb;
449
450 /*
451 * If blkcg is not used, @q->root_rl serves all requests. If blkcg
452 * is used, root blkg allocates from @q->root_rl and all other
453 * blkgs from their own blkg->rl. Which one to use should be
454 * determined using bio_request_list().
455 */
456 struct request_list root_rl;
457
458 request_fn_proc *request_fn;
459 make_request_fn *make_request_fn;
460 poll_q_fn *poll_fn;
461 prep_rq_fn *prep_rq_fn;
462 unprep_rq_fn *unprep_rq_fn;
463 softirq_done_fn *softirq_done_fn;
464 rq_timed_out_fn *rq_timed_out_fn;
465 dma_drain_needed_fn *dma_drain_needed;
466 lld_busy_fn *lld_busy_fn;
467 /* Called just after a request is allocated */
468 init_rq_fn *init_rq_fn;
469 /* Called just before a request is freed */
470 exit_rq_fn *exit_rq_fn;
471 /* Called from inside blk_get_request() */
472 void (*initialize_rq_fn)(struct request *rq);
473
474 const struct blk_mq_ops *mq_ops;
475
476 unsigned int *mq_map;
477
478 /* sw queues */
479 struct blk_mq_ctx __percpu *queue_ctx;
480 unsigned int nr_queues;
481
482 unsigned int queue_depth;
483
484 /* hw dispatch queues */
485 struct blk_mq_hw_ctx **queue_hw_ctx;
486 unsigned int nr_hw_queues;
487
488 /*
489 * Dispatch queue sorting
490 */
491 sector_t end_sector;
492 struct request *boundary_rq;
493
494 /*
495 * Delayed queue handling
496 */
497 struct delayed_work delay_work;
498
499 struct backing_dev_info *backing_dev_info;
500
501 /*
502 * The queue owner gets to use this for whatever they like.
503 * ll_rw_blk doesn't touch it.
504 */
505 void *queuedata;
506
507 /*
508 * various queue flags, see QUEUE_* below
509 */
510 unsigned long queue_flags;
511
512 /*
513 * ida allocated id for this queue. Used to index queues from
514 * ioctx.
515 */
516 int id;
517
518 /*
519 * queue needs bounce pages for pages above this limit
520 */
521 gfp_t bounce_gfp;
522
523 /*
524 * protects queue structures from reentrancy. ->__queue_lock should
525 * _never_ be used directly, it is queue private. always use
526 * ->queue_lock.
527 */
528 spinlock_t __queue_lock;
529 spinlock_t *queue_lock;
530
531 /*
532 * queue kobject
533 */
534 struct kobject kobj;
535
536 /*
537 * mq queue kobject
538 */
539 struct kobject mq_kobj;
540
541#ifdef CONFIG_BLK_DEV_INTEGRITY
542 struct blk_integrity integrity;
543#endif /* CONFIG_BLK_DEV_INTEGRITY */
544
545#ifdef CONFIG_PM
546 struct device *dev;
547 int rpm_status;
548 unsigned int nr_pending;
549#endif
550
551 /*
552 * queue settings
553 */
554 unsigned long nr_requests; /* Max # of requests */
555 unsigned int nr_congestion_on;
556 unsigned int nr_congestion_off;
557 unsigned int nr_batching;
558
559 unsigned int dma_drain_size;
560 void *dma_drain_buffer;
561 unsigned int dma_pad_mask;
562 unsigned int dma_alignment;
563
564 struct blk_queue_tag *queue_tags;
565
566 unsigned int nr_sorted;
567 unsigned int in_flight[2];
568
569 /*
570 * Number of active block driver functions for which blk_drain_queue()
571 * must wait. Must be incremented around functions that unlock the
572 * queue_lock internally, e.g. scsi_request_fn().
573 */
574 unsigned int request_fn_active;
575
576 unsigned int rq_timeout;
577 int poll_nsec;
578
579 struct blk_stat_callback *poll_cb;
580 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
581
582 struct timer_list timeout;
583 struct work_struct timeout_work;
584 struct list_head timeout_list;
585
586 struct list_head icq_list;
587#ifdef CONFIG_BLK_CGROUP
588 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
589 struct blkcg_gq *root_blkg;
590 struct list_head blkg_list;
591#endif
592
593 struct queue_limits limits;
594
595 /*
596 * Zoned block device information for request dispatch control.
597 * nr_zones is the total number of zones of the device. This is always
598 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones
599 * bits which indicates if a zone is conventional (bit clear) or
600 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones
601 * bits which indicates if a zone is write locked, that is, if a write
602 * request targeting the zone was dispatched. All three fields are
603 * initialized by the low level device driver (e.g. scsi/sd.c).
604 * Stacking drivers (device mappers) may or may not initialize
605 * these fields.
606 *
607 * Reads of this information must be protected with blk_queue_enter() /
608 * blk_queue_exit(). Modifying this information is only allowed while
609 * no requests are being processed. See also blk_mq_freeze_queue() and
610 * blk_mq_unfreeze_queue().
611 */
612 unsigned int nr_zones;
613 unsigned long *seq_zones_bitmap;
614 unsigned long *seq_zones_wlock;
615
616 /*
617 * sg stuff
618 */
619 unsigned int sg_timeout;
620 unsigned int sg_reserved_size;
621 int node;
622#ifdef CONFIG_BLK_DEV_IO_TRACE
623 struct blk_trace *blk_trace;
624 struct mutex blk_trace_mutex;
625#endif
626 /*
627 * for flush operations
628 */
629 struct blk_flush_queue *fq;
630
631 struct list_head requeue_list;
632 spinlock_t requeue_lock;
633 struct delayed_work requeue_work;
634
635 struct mutex sysfs_lock;
636
637 int bypass_depth;
638 atomic_t mq_freeze_depth;
639
640#if defined(CONFIG_BLK_DEV_BSG)
641 bsg_job_fn *bsg_job_fn;
642 struct bsg_class_device bsg_dev;
643#endif
644
645#ifdef CONFIG_BLK_DEV_THROTTLING
646 /* Throttle data */
647 struct throtl_data *td;
648#endif
649 struct rcu_head rcu_head;
650 wait_queue_head_t mq_freeze_wq;
651 struct percpu_ref q_usage_counter;
652 struct list_head all_q_node;
653
654 struct blk_mq_tag_set *tag_set;
655 struct list_head tag_set_list;
656 struct bio_set bio_split;
657
658#ifdef CONFIG_BLK_DEBUG_FS
659 struct dentry *debugfs_dir;
660 struct dentry *sched_debugfs_dir;
661#endif
662
663 bool mq_sysfs_init_done;
664
665 size_t cmd_size;
666 void *rq_alloc_data;
667
668 struct work_struct release_work;
669
670#define BLK_MAX_WRITE_HINTS 5
671 u64 write_hints[BLK_MAX_WRITE_HINTS];
672};
673
674#define QUEUE_FLAG_QUEUED 0 /* uses generic tag queueing */
675#define QUEUE_FLAG_STOPPED 1 /* queue is stopped */
676#define QUEUE_FLAG_DYING 2 /* queue being torn down */
677#define QUEUE_FLAG_BYPASS 3 /* act as dumb FIFO queue */
678#define QUEUE_FLAG_BIDI 4 /* queue supports bidi requests */
679#define QUEUE_FLAG_NOMERGES 5 /* disable merge attempts */
680#define QUEUE_FLAG_SAME_COMP 6 /* complete on same CPU-group */
681#define QUEUE_FLAG_FAIL_IO 7 /* fake timeout */
682#define QUEUE_FLAG_NONROT 9 /* non-rotational device (SSD) */
683#define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
684#define QUEUE_FLAG_IO_STAT 10 /* do IO stats */
685#define QUEUE_FLAG_DISCARD 11 /* supports DISCARD */
686#define QUEUE_FLAG_NOXMERGES 12 /* No extended merges */
687#define QUEUE_FLAG_ADD_RANDOM 13 /* Contributes to random pool */
688#define QUEUE_FLAG_SECERASE 14 /* supports secure erase */
689#define QUEUE_FLAG_SAME_FORCE 15 /* force complete on same CPU */
690#define QUEUE_FLAG_DEAD 16 /* queue tear-down finished */
691#define QUEUE_FLAG_INIT_DONE 17 /* queue is initialized */
692#define QUEUE_FLAG_NO_SG_MERGE 18 /* don't attempt to merge SG segments*/
693#define QUEUE_FLAG_POLL 19 /* IO polling enabled if set */
694#define QUEUE_FLAG_WC 20 /* Write back caching */
695#define QUEUE_FLAG_FUA 21 /* device supports FUA writes */
696#define QUEUE_FLAG_FLUSH_NQ 22 /* flush not queueuable */
697#define QUEUE_FLAG_DAX 23 /* device supports DAX */
698#define QUEUE_FLAG_STATS 24 /* track rq completion times */
699#define QUEUE_FLAG_POLL_STATS 25 /* collecting stats for hybrid polling */
700#define QUEUE_FLAG_REGISTERED 26 /* queue has been registered to a disk */
701#define QUEUE_FLAG_SCSI_PASSTHROUGH 27 /* queue supports SCSI commands */
702#define QUEUE_FLAG_QUIESCED 28 /* queue has been quiesced */
703#define QUEUE_FLAG_PREEMPT_ONLY 29 /* only process REQ_PREEMPT requests */
704
705#define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
706 (1 << QUEUE_FLAG_SAME_COMP) | \
707 (1 << QUEUE_FLAG_ADD_RANDOM))
708
709#define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
710 (1 << QUEUE_FLAG_SAME_COMP) | \
711 (1 << QUEUE_FLAG_POLL))
712
713void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
714void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
715bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
716bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q);
717
718#define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
719#define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
720#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
721#define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
722#define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
723#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
724#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
725#define blk_queue_noxmerges(q) \
726 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
727#define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
728#define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
729#define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
730#define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
731#define blk_queue_secure_erase(q) \
732 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
733#define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
734#define blk_queue_scsi_passthrough(q) \
735 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
736
737#define blk_noretry_request(rq) \
738 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
739 REQ_FAILFAST_DRIVER))
740#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
741#define blk_queue_preempt_only(q) \
742 test_bit(QUEUE_FLAG_PREEMPT_ONLY, &(q)->queue_flags)
743#define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
744
745extern int blk_set_preempt_only(struct request_queue *q);
746extern void blk_clear_preempt_only(struct request_queue *q);
747
748static inline int queue_in_flight(struct request_queue *q)
749{
750 return q->in_flight[0] + q->in_flight[1];
751}
752
753static inline bool blk_account_rq(struct request *rq)
754{
755 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
756}
757
758#define blk_rq_cpu_valid(rq) ((rq)->cpu != -1)
759#define blk_bidi_rq(rq) ((rq)->next_rq != NULL)
760/* rq->queuelist of dequeued request must be list_empty() */
761#define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist))
762
763#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
764
765#define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
766
767/*
768 * Driver can handle struct request, if it either has an old style
769 * request_fn defined, or is blk-mq based.
770 */
771static inline bool queue_is_rq_based(struct request_queue *q)
772{
773 return q->request_fn || q->mq_ops;
774}
775
776static inline unsigned int blk_queue_cluster(struct request_queue *q)
777{
778 return q->limits.cluster;
779}
780
781static inline enum blk_zoned_model
782blk_queue_zoned_model(struct request_queue *q)
783{
784 return q->limits.zoned;
785}
786
787static inline bool blk_queue_is_zoned(struct request_queue *q)
788{
789 switch (blk_queue_zoned_model(q)) {
790 case BLK_ZONED_HA:
791 case BLK_ZONED_HM:
792 return true;
793 default:
794 return false;
795 }
796}
797
798static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
799{
800 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
801}
802
803static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
804{
805 return q->nr_zones;
806}
807
808static inline unsigned int blk_queue_zone_no(struct request_queue *q,
809 sector_t sector)
810{
811 if (!blk_queue_is_zoned(q))
812 return 0;
813 return sector >> ilog2(q->limits.chunk_sectors);
814}
815
816static inline bool blk_queue_zone_is_seq(struct request_queue *q,
817 sector_t sector)
818{
819 if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap)
820 return false;
821 return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap);
822}
823
824static inline bool rq_is_sync(struct request *rq)
825{
826 return op_is_sync(rq->cmd_flags);
827}
828
829static inline bool blk_rl_full(struct request_list *rl, bool sync)
830{
831 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
832
833 return rl->flags & flag;
834}
835
836static inline void blk_set_rl_full(struct request_list *rl, bool sync)
837{
838 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
839
840 rl->flags |= flag;
841}
842
843static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
844{
845 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
846
847 rl->flags &= ~flag;
848}
849
850static inline bool rq_mergeable(struct request *rq)
851{
852 if (blk_rq_is_passthrough(rq))
853 return false;
854
855 if (req_op(rq) == REQ_OP_FLUSH)
856 return false;
857
858 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
859 return false;
860
861 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
862 return false;
863 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
864 return false;
865
866 return true;
867}
868
869static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
870{
871 if (bio_page(a) == bio_page(b) &&
872 bio_offset(a) == bio_offset(b))
873 return true;
874
875 return false;
876}
877
878static inline unsigned int blk_queue_depth(struct request_queue *q)
879{
880 if (q->queue_depth)
881 return q->queue_depth;
882
883 return q->nr_requests;
884}
885
886/*
887 * q->prep_rq_fn return values
888 */
889enum {
890 BLKPREP_OK, /* serve it */
891 BLKPREP_KILL, /* fatal error, kill, return -EIO */
892 BLKPREP_DEFER, /* leave on queue */
893 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */
894};
895
896extern unsigned long blk_max_low_pfn, blk_max_pfn;
897
898/*
899 * standard bounce addresses:
900 *
901 * BLK_BOUNCE_HIGH : bounce all highmem pages
902 * BLK_BOUNCE_ANY : don't bounce anything
903 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
904 */
905
906#if BITS_PER_LONG == 32
907#define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
908#else
909#define BLK_BOUNCE_HIGH -1ULL
910#endif
911#define BLK_BOUNCE_ANY (-1ULL)
912#define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
913
914/*
915 * default timeout for SG_IO if none specified
916 */
917#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
918#define BLK_MIN_SG_TIMEOUT (7 * HZ)
919
920struct rq_map_data {
921 struct page **pages;
922 int page_order;
923 int nr_entries;
924 unsigned long offset;
925 int null_mapped;
926 int from_user;
927};
928
929struct req_iterator {
930 struct bvec_iter iter;
931 struct bio *bio;
932};
933
934/* This should not be used directly - use rq_for_each_segment */
935#define for_each_bio(_bio) \
936 for (; _bio; _bio = _bio->bi_next)
937#define __rq_for_each_bio(_bio, rq) \
938 if ((rq->bio)) \
939 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
940
941#define rq_for_each_segment(bvl, _rq, _iter) \
942 __rq_for_each_bio(_iter.bio, _rq) \
943 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
944
945#define rq_iter_last(bvec, _iter) \
946 (_iter.bio->bi_next == NULL && \
947 bio_iter_last(bvec, _iter.iter))
948
949#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
950# error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
951#endif
952#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
953extern void rq_flush_dcache_pages(struct request *rq);
954#else
955static inline void rq_flush_dcache_pages(struct request *rq)
956{
957}
958#endif
959
960extern int blk_register_queue(struct gendisk *disk);
961extern void blk_unregister_queue(struct gendisk *disk);
962extern blk_qc_t generic_make_request(struct bio *bio);
963extern blk_qc_t direct_make_request(struct bio *bio);
964extern void blk_rq_init(struct request_queue *q, struct request *rq);
965extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
966extern void blk_put_request(struct request *);
967extern void __blk_put_request(struct request_queue *, struct request *);
968extern struct request *blk_get_request(struct request_queue *, unsigned int op,
969 blk_mq_req_flags_t flags);
970extern void blk_requeue_request(struct request_queue *, struct request *);
971extern int blk_lld_busy(struct request_queue *q);
972extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
973 struct bio_set *bs, gfp_t gfp_mask,
974 int (*bio_ctr)(struct bio *, struct bio *, void *),
975 void *data);
976extern void blk_rq_unprep_clone(struct request *rq);
977extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
978 struct request *rq);
979extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
980extern void blk_delay_queue(struct request_queue *, unsigned long);
981extern void blk_queue_split(struct request_queue *, struct bio **);
982extern void blk_recount_segments(struct request_queue *, struct bio *);
983extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
984extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
985 unsigned int, void __user *);
986extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
987 unsigned int, void __user *);
988extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
989 struct scsi_ioctl_command __user *);
990
991extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
992extern void blk_queue_exit(struct request_queue *q);
993extern void blk_start_queue(struct request_queue *q);
994extern void blk_start_queue_async(struct request_queue *q);
995extern void blk_stop_queue(struct request_queue *q);
996extern void blk_sync_queue(struct request_queue *q);
997extern void __blk_stop_queue(struct request_queue *q);
998extern void __blk_run_queue(struct request_queue *q);
999extern void __blk_run_queue_uncond(struct request_queue *q);
1000extern void blk_run_queue(struct request_queue *);
1001extern void blk_run_queue_async(struct request_queue *q);
1002extern int blk_rq_map_user(struct request_queue *, struct request *,
1003 struct rq_map_data *, void __user *, unsigned long,
1004 gfp_t);
1005extern int blk_rq_unmap_user(struct bio *);
1006extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
1007extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
1008 struct rq_map_data *, const struct iov_iter *,
1009 gfp_t);
1010extern void blk_execute_rq(struct request_queue *, struct gendisk *,
1011 struct request *, int);
1012extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
1013 struct request *, int, rq_end_io_fn *);
1014
1015int blk_status_to_errno(blk_status_t status);
1016blk_status_t errno_to_blk_status(int errno);
1017
1018bool blk_poll(struct request_queue *q, blk_qc_t cookie);
1019
1020static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
1021{
1022 return bdev->bd_disk->queue; /* this is never NULL */
1023}
1024
1025/*
1026 * The basic unit of block I/O is a sector. It is used in a number of contexts
1027 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
1028 * bytes. Variables of type sector_t represent an offset or size that is a
1029 * multiple of 512 bytes. Hence these two constants.
1030 */
1031#ifndef SECTOR_SHIFT
1032#define SECTOR_SHIFT 9
1033#endif
1034#ifndef SECTOR_SIZE
1035#define SECTOR_SIZE (1 << SECTOR_SHIFT)
1036#endif
1037
1038/*
1039 * blk_rq_pos() : the current sector
1040 * blk_rq_bytes() : bytes left in the entire request
1041 * blk_rq_cur_bytes() : bytes left in the current segment
1042 * blk_rq_err_bytes() : bytes left till the next error boundary
1043 * blk_rq_sectors() : sectors left in the entire request
1044 * blk_rq_cur_sectors() : sectors left in the current segment
1045 */
1046static inline sector_t blk_rq_pos(const struct request *rq)
1047{
1048 return rq->__sector;
1049}
1050
1051static inline unsigned int blk_rq_bytes(const struct request *rq)
1052{
1053 return rq->__data_len;
1054}
1055
1056static inline int blk_rq_cur_bytes(const struct request *rq)
1057{
1058 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1059}
1060
1061extern unsigned int blk_rq_err_bytes(const struct request *rq);
1062
1063static inline unsigned int blk_rq_sectors(const struct request *rq)
1064{
1065 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1066}
1067
1068static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1069{
1070 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1071}
1072
1073static inline unsigned int blk_rq_zone_no(struct request *rq)
1074{
1075 return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1076}
1077
1078static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1079{
1080 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1081}
1082
1083/*
1084 * Some commands like WRITE SAME have a payload or data transfer size which
1085 * is different from the size of the request. Any driver that supports such
1086 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1087 * calculate the data transfer size.
1088 */
1089static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1090{
1091 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1092 return rq->special_vec.bv_len;
1093 return blk_rq_bytes(rq);
1094}
1095
1096static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1097 int op)
1098{
1099 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1100 return min(q->limits.max_discard_sectors,
1101 UINT_MAX >> SECTOR_SHIFT);
1102
1103 if (unlikely(op == REQ_OP_WRITE_SAME))
1104 return q->limits.max_write_same_sectors;
1105
1106 if (unlikely(op == REQ_OP_WRITE_ZEROES))
1107 return q->limits.max_write_zeroes_sectors;
1108
1109 return q->limits.max_sectors;
1110}
1111
1112/*
1113 * Return maximum size of a request at given offset. Only valid for
1114 * file system requests.
1115 */
1116static inline unsigned int blk_max_size_offset(struct request_queue *q,
1117 sector_t offset)
1118{
1119 if (!q->limits.chunk_sectors)
1120 return q->limits.max_sectors;
1121
1122 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
1123 (offset & (q->limits.chunk_sectors - 1))));
1124}
1125
1126static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1127 sector_t offset)
1128{
1129 struct request_queue *q = rq->q;
1130
1131 if (blk_rq_is_passthrough(rq))
1132 return q->limits.max_hw_sectors;
1133
1134 if (!q->limits.chunk_sectors ||
1135 req_op(rq) == REQ_OP_DISCARD ||
1136 req_op(rq) == REQ_OP_SECURE_ERASE)
1137 return blk_queue_get_max_sectors(q, req_op(rq));
1138
1139 return min(blk_max_size_offset(q, offset),
1140 blk_queue_get_max_sectors(q, req_op(rq)));
1141}
1142
1143static inline unsigned int blk_rq_count_bios(struct request *rq)
1144{
1145 unsigned int nr_bios = 0;
1146 struct bio *bio;
1147
1148 __rq_for_each_bio(bio, rq)
1149 nr_bios++;
1150
1151 return nr_bios;
1152}
1153
1154/*
1155 * Request issue related functions.
1156 */
1157extern struct request *blk_peek_request(struct request_queue *q);
1158extern void blk_start_request(struct request *rq);
1159extern struct request *blk_fetch_request(struct request_queue *q);
1160
1161void blk_steal_bios(struct bio_list *list, struct request *rq);
1162
1163/*
1164 * Request completion related functions.
1165 *
1166 * blk_update_request() completes given number of bytes and updates
1167 * the request without completing it.
1168 *
1169 * blk_end_request() and friends. __blk_end_request() must be called
1170 * with the request queue spinlock acquired.
1171 *
1172 * Several drivers define their own end_request and call
1173 * blk_end_request() for parts of the original function.
1174 * This prevents code duplication in drivers.
1175 */
1176extern bool blk_update_request(struct request *rq, blk_status_t error,
1177 unsigned int nr_bytes);
1178extern void blk_finish_request(struct request *rq, blk_status_t error);
1179extern bool blk_end_request(struct request *rq, blk_status_t error,
1180 unsigned int nr_bytes);
1181extern void blk_end_request_all(struct request *rq, blk_status_t error);
1182extern bool __blk_end_request(struct request *rq, blk_status_t error,
1183 unsigned int nr_bytes);
1184extern void __blk_end_request_all(struct request *rq, blk_status_t error);
1185extern bool __blk_end_request_cur(struct request *rq, blk_status_t error);
1186
1187extern void blk_complete_request(struct request *);
1188extern void __blk_complete_request(struct request *);
1189extern void blk_abort_request(struct request *);
1190extern void blk_unprep_request(struct request *);
1191
1192/*
1193 * Access functions for manipulating queue properties
1194 */
1195extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
1196 spinlock_t *lock, int node_id);
1197extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
1198extern int blk_init_allocated_queue(struct request_queue *);
1199extern void blk_cleanup_queue(struct request_queue *);
1200extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1201extern void blk_queue_bounce_limit(struct request_queue *, u64);
1202extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1203extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1204extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1205extern void blk_queue_max_discard_segments(struct request_queue *,
1206 unsigned short);
1207extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1208extern void blk_queue_max_discard_sectors(struct request_queue *q,
1209 unsigned int max_discard_sectors);
1210extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1211 unsigned int max_write_same_sectors);
1212extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1213 unsigned int max_write_same_sectors);
1214extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1215extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1216extern void blk_queue_alignment_offset(struct request_queue *q,
1217 unsigned int alignment);
1218extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1219extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1220extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1221extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1222extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1223extern void blk_set_default_limits(struct queue_limits *lim);
1224extern void blk_set_stacking_limits(struct queue_limits *lim);
1225extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1226 sector_t offset);
1227extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1228 sector_t offset);
1229extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1230 sector_t offset);
1231extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1232extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1233extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1234extern int blk_queue_dma_drain(struct request_queue *q,
1235 dma_drain_needed_fn *dma_drain_needed,
1236 void *buf, unsigned int size);
1237extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
1238extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1239extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1240extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
1241extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
1242extern void blk_queue_dma_alignment(struct request_queue *, int);
1243extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1244extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
1245extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
1246extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1247extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
1248extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1249
1250/*
1251 * Number of physical segments as sent to the device.
1252 *
1253 * Normally this is the number of discontiguous data segments sent by the
1254 * submitter. But for data-less command like discard we might have no
1255 * actual data segments submitted, but the driver might have to add it's
1256 * own special payload. In that case we still return 1 here so that this
1257 * special payload will be mapped.
1258 */
1259static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1260{
1261 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1262 return 1;
1263 return rq->nr_phys_segments;
1264}
1265
1266/*
1267 * Number of discard segments (or ranges) the driver needs to fill in.
1268 * Each discard bio merged into a request is counted as one segment.
1269 */
1270static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1271{
1272 return max_t(unsigned short, rq->nr_phys_segments, 1);
1273}
1274
1275extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1276extern void blk_dump_rq_flags(struct request *, char *);
1277extern long nr_blockdev_pages(void);
1278
1279bool __must_check blk_get_queue(struct request_queue *);
1280struct request_queue *blk_alloc_queue(gfp_t);
1281struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
1282 spinlock_t *lock);
1283extern void blk_put_queue(struct request_queue *);
1284extern void blk_set_queue_dying(struct request_queue *);
1285
1286/*
1287 * block layer runtime pm functions
1288 */
1289#ifdef CONFIG_PM
1290extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
1291extern int blk_pre_runtime_suspend(struct request_queue *q);
1292extern void blk_post_runtime_suspend(struct request_queue *q, int err);
1293extern void blk_pre_runtime_resume(struct request_queue *q);
1294extern void blk_post_runtime_resume(struct request_queue *q, int err);
1295extern void blk_set_runtime_active(struct request_queue *q);
1296#else
1297static inline void blk_pm_runtime_init(struct request_queue *q,
1298 struct device *dev) {}
1299static inline int blk_pre_runtime_suspend(struct request_queue *q)
1300{
1301 return -ENOSYS;
1302}
1303static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
1304static inline void blk_pre_runtime_resume(struct request_queue *q) {}
1305static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
1306static inline void blk_set_runtime_active(struct request_queue *q) {}
1307#endif
1308
1309/*
1310 * blk_plug permits building a queue of related requests by holding the I/O
1311 * fragments for a short period. This allows merging of sequential requests
1312 * into single larger request. As the requests are moved from a per-task list to
1313 * the device's request_queue in a batch, this results in improved scalability
1314 * as the lock contention for request_queue lock is reduced.
1315 *
1316 * It is ok not to disable preemption when adding the request to the plug list
1317 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1318 * the plug list when the task sleeps by itself. For details, please see
1319 * schedule() where blk_schedule_flush_plug() is called.
1320 */
1321struct blk_plug {
1322 struct list_head list; /* requests */
1323 struct list_head mq_list; /* blk-mq requests */
1324 struct list_head cb_list; /* md requires an unplug callback */
1325};
1326#define BLK_MAX_REQUEST_COUNT 16
1327#define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1328
1329struct blk_plug_cb;
1330typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1331struct blk_plug_cb {
1332 struct list_head list;
1333 blk_plug_cb_fn callback;
1334 void *data;
1335};
1336extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1337 void *data, int size);
1338extern void blk_start_plug(struct blk_plug *);
1339extern void blk_finish_plug(struct blk_plug *);
1340extern void blk_flush_plug_list(struct blk_plug *, bool);
1341
1342static inline void blk_flush_plug(struct task_struct *tsk)
1343{
1344 struct blk_plug *plug = tsk->plug;
1345
1346 if (plug)
1347 blk_flush_plug_list(plug, false);
1348}
1349
1350static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1351{
1352 struct blk_plug *plug = tsk->plug;
1353
1354 if (plug)
1355 blk_flush_plug_list(plug, true);
1356}
1357
1358static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1359{
1360 struct blk_plug *plug = tsk->plug;
1361
1362 return plug &&
1363 (!list_empty(&plug->list) ||
1364 !list_empty(&plug->mq_list) ||
1365 !list_empty(&plug->cb_list));
1366}
1367
1368/*
1369 * tag stuff
1370 */
1371extern int blk_queue_start_tag(struct request_queue *, struct request *);
1372extern struct request *blk_queue_find_tag(struct request_queue *, int);
1373extern void blk_queue_end_tag(struct request_queue *, struct request *);
1374extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
1375extern void blk_queue_free_tags(struct request_queue *);
1376extern int blk_queue_resize_tags(struct request_queue *, int);
1377extern struct blk_queue_tag *blk_init_tags(int, int);
1378extern void blk_free_tags(struct blk_queue_tag *);
1379
1380static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
1381 int tag)
1382{
1383 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1384 return NULL;
1385 return bqt->tag_index[tag];
1386}
1387
1388extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1389extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1390 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1391
1392#define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1393
1394extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1395 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1396extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1397 sector_t nr_sects, gfp_t gfp_mask, int flags,
1398 struct bio **biop);
1399
1400#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1401#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1402
1403extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1404 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1405 unsigned flags);
1406extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1407 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1408
1409static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1410 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1411{
1412 return blkdev_issue_discard(sb->s_bdev,
1413 block << (sb->s_blocksize_bits -
1414 SECTOR_SHIFT),
1415 nr_blocks << (sb->s_blocksize_bits -
1416 SECTOR_SHIFT),
1417 gfp_mask, flags);
1418}
1419static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1420 sector_t nr_blocks, gfp_t gfp_mask)
1421{
1422 return blkdev_issue_zeroout(sb->s_bdev,
1423 block << (sb->s_blocksize_bits -
1424 SECTOR_SHIFT),
1425 nr_blocks << (sb->s_blocksize_bits -
1426 SECTOR_SHIFT),
1427 gfp_mask, 0);
1428}
1429
1430extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1431
1432enum blk_default_limits {
1433 BLK_MAX_SEGMENTS = 128,
1434 BLK_SAFE_MAX_SECTORS = 255,
1435 BLK_DEF_MAX_SECTORS = 2560,
1436 BLK_MAX_SEGMENT_SIZE = 65536,
1437 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1438};
1439
1440#define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist)
1441
1442static inline unsigned long queue_segment_boundary(struct request_queue *q)
1443{
1444 return q->limits.seg_boundary_mask;
1445}
1446
1447static inline unsigned long queue_virt_boundary(struct request_queue *q)
1448{
1449 return q->limits.virt_boundary_mask;
1450}
1451
1452static inline unsigned int queue_max_sectors(struct request_queue *q)
1453{
1454 return q->limits.max_sectors;
1455}
1456
1457static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1458{
1459 return q->limits.max_hw_sectors;
1460}
1461
1462static inline unsigned short queue_max_segments(struct request_queue *q)
1463{
1464 return q->limits.max_segments;
1465}
1466
1467static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1468{
1469 return q->limits.max_discard_segments;
1470}
1471
1472static inline unsigned int queue_max_segment_size(struct request_queue *q)
1473{
1474 return q->limits.max_segment_size;
1475}
1476
1477static inline unsigned short queue_logical_block_size(struct request_queue *q)
1478{
1479 int retval = 512;
1480
1481 if (q && q->limits.logical_block_size)
1482 retval = q->limits.logical_block_size;
1483
1484 return retval;
1485}
1486
1487static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1488{
1489 return queue_logical_block_size(bdev_get_queue(bdev));
1490}
1491
1492static inline unsigned int queue_physical_block_size(struct request_queue *q)
1493{
1494 return q->limits.physical_block_size;
1495}
1496
1497static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1498{
1499 return queue_physical_block_size(bdev_get_queue(bdev));
1500}
1501
1502static inline unsigned int queue_io_min(struct request_queue *q)
1503{
1504 return q->limits.io_min;
1505}
1506
1507static inline int bdev_io_min(struct block_device *bdev)
1508{
1509 return queue_io_min(bdev_get_queue(bdev));
1510}
1511
1512static inline unsigned int queue_io_opt(struct request_queue *q)
1513{
1514 return q->limits.io_opt;
1515}
1516
1517static inline int bdev_io_opt(struct block_device *bdev)
1518{
1519 return queue_io_opt(bdev_get_queue(bdev));
1520}
1521
1522static inline int queue_alignment_offset(struct request_queue *q)
1523{
1524 if (q->limits.misaligned)
1525 return -1;
1526
1527 return q->limits.alignment_offset;
1528}
1529
1530static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1531{
1532 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1533 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1534 << SECTOR_SHIFT;
1535
1536 return (granularity + lim->alignment_offset - alignment) % granularity;
1537}
1538
1539static inline int bdev_alignment_offset(struct block_device *bdev)
1540{
1541 struct request_queue *q = bdev_get_queue(bdev);
1542
1543 if (q->limits.misaligned)
1544 return -1;
1545
1546 if (bdev != bdev->bd_contains)
1547 return bdev->bd_part->alignment_offset;
1548
1549 return q->limits.alignment_offset;
1550}
1551
1552static inline int queue_discard_alignment(struct request_queue *q)
1553{
1554 if (q->limits.discard_misaligned)
1555 return -1;
1556
1557 return q->limits.discard_alignment;
1558}
1559
1560static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1561{
1562 unsigned int alignment, granularity, offset;
1563
1564 if (!lim->max_discard_sectors)
1565 return 0;
1566
1567 /* Why are these in bytes, not sectors? */
1568 alignment = lim->discard_alignment >> SECTOR_SHIFT;
1569 granularity = lim->discard_granularity >> SECTOR_SHIFT;
1570 if (!granularity)
1571 return 0;
1572
1573 /* Offset of the partition start in 'granularity' sectors */
1574 offset = sector_div(sector, granularity);
1575
1576 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1577 offset = (granularity + alignment - offset) % granularity;
1578
1579 /* Turn it back into bytes, gaah */
1580 return offset << SECTOR_SHIFT;
1581}
1582
1583static inline int bdev_discard_alignment(struct block_device *bdev)
1584{
1585 struct request_queue *q = bdev_get_queue(bdev);
1586
1587 if (bdev != bdev->bd_contains)
1588 return bdev->bd_part->discard_alignment;
1589
1590 return q->limits.discard_alignment;
1591}
1592
1593static inline unsigned int bdev_write_same(struct block_device *bdev)
1594{
1595 struct request_queue *q = bdev_get_queue(bdev);
1596
1597 if (q)
1598 return q->limits.max_write_same_sectors;
1599
1600 return 0;
1601}
1602
1603static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1604{
1605 struct request_queue *q = bdev_get_queue(bdev);
1606
1607 if (q)
1608 return q->limits.max_write_zeroes_sectors;
1609
1610 return 0;
1611}
1612
1613static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1614{
1615 struct request_queue *q = bdev_get_queue(bdev);
1616
1617 if (q)
1618 return blk_queue_zoned_model(q);
1619
1620 return BLK_ZONED_NONE;
1621}
1622
1623static inline bool bdev_is_zoned(struct block_device *bdev)
1624{
1625 struct request_queue *q = bdev_get_queue(bdev);
1626
1627 if (q)
1628 return blk_queue_is_zoned(q);
1629
1630 return false;
1631}
1632
1633static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1634{
1635 struct request_queue *q = bdev_get_queue(bdev);
1636
1637 if (q)
1638 return blk_queue_zone_sectors(q);
1639 return 0;
1640}
1641
1642static inline unsigned int bdev_nr_zones(struct block_device *bdev)
1643{
1644 struct request_queue *q = bdev_get_queue(bdev);
1645
1646 if (q)
1647 return blk_queue_nr_zones(q);
1648 return 0;
1649}
1650
1651static inline int queue_dma_alignment(struct request_queue *q)
1652{
1653 return q ? q->dma_alignment : 511;
1654}
1655
1656static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1657 unsigned int len)
1658{
1659 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1660 return !(addr & alignment) && !(len & alignment);
1661}
1662
1663/* assumes size > 256 */
1664static inline unsigned int blksize_bits(unsigned int size)
1665{
1666 unsigned int bits = 8;
1667 do {
1668 bits++;
1669 size >>= 1;
1670 } while (size > 256);
1671 return bits;
1672}
1673
1674static inline unsigned int block_size(struct block_device *bdev)
1675{
1676 return bdev->bd_block_size;
1677}
1678
1679static inline bool queue_flush_queueable(struct request_queue *q)
1680{
1681 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
1682}
1683
1684typedef struct {struct page *v;} Sector;
1685
1686unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1687
1688static inline void put_dev_sector(Sector p)
1689{
1690 put_page(p.v);
1691}
1692
1693static inline bool __bvec_gap_to_prev(struct request_queue *q,
1694 struct bio_vec *bprv, unsigned int offset)
1695{
1696 return offset ||
1697 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
1698}
1699
1700/*
1701 * Check if adding a bio_vec after bprv with offset would create a gap in
1702 * the SG list. Most drivers don't care about this, but some do.
1703 */
1704static inline bool bvec_gap_to_prev(struct request_queue *q,
1705 struct bio_vec *bprv, unsigned int offset)
1706{
1707 if (!queue_virt_boundary(q))
1708 return false;
1709 return __bvec_gap_to_prev(q, bprv, offset);
1710}
1711
1712/*
1713 * Check if the two bvecs from two bios can be merged to one segment.
1714 * If yes, no need to check gap between the two bios since the 1st bio
1715 * and the 1st bvec in the 2nd bio can be handled in one segment.
1716 */
1717static inline bool bios_segs_mergeable(struct request_queue *q,
1718 struct bio *prev, struct bio_vec *prev_last_bv,
1719 struct bio_vec *next_first_bv)
1720{
1721 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv))
1722 return false;
1723 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv))
1724 return false;
1725 if (prev->bi_seg_back_size + next_first_bv->bv_len >
1726 queue_max_segment_size(q))
1727 return false;
1728 return true;
1729}
1730
1731static inline bool bio_will_gap(struct request_queue *q,
1732 struct request *prev_rq,
1733 struct bio *prev,
1734 struct bio *next)
1735{
1736 if (bio_has_data(prev) && queue_virt_boundary(q)) {
1737 struct bio_vec pb, nb;
1738
1739 /*
1740 * don't merge if the 1st bio starts with non-zero
1741 * offset, otherwise it is quite difficult to respect
1742 * sg gap limit. We work hard to merge a huge number of small
1743 * single bios in case of mkfs.
1744 */
1745 if (prev_rq)
1746 bio_get_first_bvec(prev_rq->bio, &pb);
1747 else
1748 bio_get_first_bvec(prev, &pb);
1749 if (pb.bv_offset)
1750 return true;
1751
1752 /*
1753 * We don't need to worry about the situation that the
1754 * merged segment ends in unaligned virt boundary:
1755 *
1756 * - if 'pb' ends aligned, the merged segment ends aligned
1757 * - if 'pb' ends unaligned, the next bio must include
1758 * one single bvec of 'nb', otherwise the 'nb' can't
1759 * merge with 'pb'
1760 */
1761 bio_get_last_bvec(prev, &pb);
1762 bio_get_first_bvec(next, &nb);
1763
1764 if (!bios_segs_mergeable(q, prev, &pb, &nb))
1765 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
1766 }
1767
1768 return false;
1769}
1770
1771static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
1772{
1773 return bio_will_gap(req->q, req, req->biotail, bio);
1774}
1775
1776static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
1777{
1778 return bio_will_gap(req->q, NULL, bio, req->bio);
1779}
1780
1781int kblockd_schedule_work(struct work_struct *work);
1782int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1783int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1784
1785#define MODULE_ALIAS_BLOCKDEV(major,minor) \
1786 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1787#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1788 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1789
1790#if defined(CONFIG_BLK_DEV_INTEGRITY)
1791
1792enum blk_integrity_flags {
1793 BLK_INTEGRITY_VERIFY = 1 << 0,
1794 BLK_INTEGRITY_GENERATE = 1 << 1,
1795 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1796 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1797};
1798
1799struct blk_integrity_iter {
1800 void *prot_buf;
1801 void *data_buf;
1802 sector_t seed;
1803 unsigned int data_size;
1804 unsigned short interval;
1805 const char *disk_name;
1806};
1807
1808typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1809
1810struct blk_integrity_profile {
1811 integrity_processing_fn *generate_fn;
1812 integrity_processing_fn *verify_fn;
1813 const char *name;
1814};
1815
1816extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1817extern void blk_integrity_unregister(struct gendisk *);
1818extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1819extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1820 struct scatterlist *);
1821extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1822extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1823 struct request *);
1824extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1825 struct bio *);
1826
1827static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1828{
1829 struct blk_integrity *bi = &disk->queue->integrity;
1830
1831 if (!bi->profile)
1832 return NULL;
1833
1834 return bi;
1835}
1836
1837static inline
1838struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1839{
1840 return blk_get_integrity(bdev->bd_disk);
1841}
1842
1843static inline bool blk_integrity_rq(struct request *rq)
1844{
1845 return rq->cmd_flags & REQ_INTEGRITY;
1846}
1847
1848static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1849 unsigned int segs)
1850{
1851 q->limits.max_integrity_segments = segs;
1852}
1853
1854static inline unsigned short
1855queue_max_integrity_segments(struct request_queue *q)
1856{
1857 return q->limits.max_integrity_segments;
1858}
1859
1860static inline bool integrity_req_gap_back_merge(struct request *req,
1861 struct bio *next)
1862{
1863 struct bio_integrity_payload *bip = bio_integrity(req->bio);
1864 struct bio_integrity_payload *bip_next = bio_integrity(next);
1865
1866 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1867 bip_next->bip_vec[0].bv_offset);
1868}
1869
1870static inline bool integrity_req_gap_front_merge(struct request *req,
1871 struct bio *bio)
1872{
1873 struct bio_integrity_payload *bip = bio_integrity(bio);
1874 struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
1875
1876 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1877 bip_next->bip_vec[0].bv_offset);
1878}
1879
1880#else /* CONFIG_BLK_DEV_INTEGRITY */
1881
1882struct bio;
1883struct block_device;
1884struct gendisk;
1885struct blk_integrity;
1886
1887static inline int blk_integrity_rq(struct request *rq)
1888{
1889 return 0;
1890}
1891static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1892 struct bio *b)
1893{
1894 return 0;
1895}
1896static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1897 struct bio *b,
1898 struct scatterlist *s)
1899{
1900 return 0;
1901}
1902static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1903{
1904 return NULL;
1905}
1906static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1907{
1908 return NULL;
1909}
1910static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1911{
1912 return 0;
1913}
1914static inline void blk_integrity_register(struct gendisk *d,
1915 struct blk_integrity *b)
1916{
1917}
1918static inline void blk_integrity_unregister(struct gendisk *d)
1919{
1920}
1921static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1922 unsigned int segs)
1923{
1924}
1925static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1926{
1927 return 0;
1928}
1929static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1930 struct request *r1,
1931 struct request *r2)
1932{
1933 return true;
1934}
1935static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1936 struct request *r,
1937 struct bio *b)
1938{
1939 return true;
1940}
1941
1942static inline bool integrity_req_gap_back_merge(struct request *req,
1943 struct bio *next)
1944{
1945 return false;
1946}
1947static inline bool integrity_req_gap_front_merge(struct request *req,
1948 struct bio *bio)
1949{
1950 return false;
1951}
1952
1953#endif /* CONFIG_BLK_DEV_INTEGRITY */
1954
1955struct block_device_operations {
1956 int (*open) (struct block_device *, fmode_t);
1957 void (*release) (struct gendisk *, fmode_t);
1958 int (*rw_page)(struct block_device *, sector_t, struct page *, bool);
1959 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1960 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1961 unsigned int (*check_events) (struct gendisk *disk,
1962 unsigned int clearing);
1963 /* ->media_changed() is DEPRECATED, use ->check_events() instead */
1964 int (*media_changed) (struct gendisk *);
1965 void (*unlock_native_capacity) (struct gendisk *);
1966 int (*revalidate_disk) (struct gendisk *);
1967 int (*getgeo)(struct block_device *, struct hd_geometry *);
1968 /* this callback is with swap_lock and sometimes page table lock held */
1969 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1970 struct module *owner;
1971 const struct pr_ops *pr_ops;
1972};
1973
1974extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1975 unsigned long);
1976extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1977extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1978 struct writeback_control *);
1979
1980#ifdef CONFIG_BLK_DEV_ZONED
1981bool blk_req_needs_zone_write_lock(struct request *rq);
1982void __blk_req_zone_write_lock(struct request *rq);
1983void __blk_req_zone_write_unlock(struct request *rq);
1984
1985static inline void blk_req_zone_write_lock(struct request *rq)
1986{
1987 if (blk_req_needs_zone_write_lock(rq))
1988 __blk_req_zone_write_lock(rq);
1989}
1990
1991static inline void blk_req_zone_write_unlock(struct request *rq)
1992{
1993 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1994 __blk_req_zone_write_unlock(rq);
1995}
1996
1997static inline bool blk_req_zone_is_write_locked(struct request *rq)
1998{
1999 return rq->q->seq_zones_wlock &&
2000 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
2001}
2002
2003static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
2004{
2005 if (!blk_req_needs_zone_write_lock(rq))
2006 return true;
2007 return !blk_req_zone_is_write_locked(rq);
2008}
2009#else
2010static inline bool blk_req_needs_zone_write_lock(struct request *rq)
2011{
2012 return false;
2013}
2014
2015static inline void blk_req_zone_write_lock(struct request *rq)
2016{
2017}
2018
2019static inline void blk_req_zone_write_unlock(struct request *rq)
2020{
2021}
2022static inline bool blk_req_zone_is_write_locked(struct request *rq)
2023{
2024 return false;
2025}
2026
2027static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
2028{
2029 return true;
2030}
2031#endif /* CONFIG_BLK_DEV_ZONED */
2032
2033#else /* CONFIG_BLOCK */
2034
2035struct block_device;
2036
2037/*
2038 * stubs for when the block layer is configured out
2039 */
2040#define buffer_heads_over_limit 0
2041
2042static inline long nr_blockdev_pages(void)
2043{
2044 return 0;
2045}
2046
2047struct blk_plug {
2048};
2049
2050static inline void blk_start_plug(struct blk_plug *plug)
2051{
2052}
2053
2054static inline void blk_finish_plug(struct blk_plug *plug)
2055{
2056}
2057
2058static inline void blk_flush_plug(struct task_struct *task)
2059{
2060}
2061
2062static inline void blk_schedule_flush_plug(struct task_struct *task)
2063{
2064}
2065
2066
2067static inline bool blk_needs_flush_plug(struct task_struct *tsk)
2068{
2069 return false;
2070}
2071
2072static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
2073 sector_t *error_sector)
2074{
2075 return 0;
2076}
2077
2078#endif /* CONFIG_BLOCK */
2079
2080#endif