Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/ptrace.h>
27#include <linux/seq_file.h>
28#include <linux/string.h>
29#include <linux/timer.h>
30#include <linux/major.h>
31#include <linux/fs.h>
32#include <linux/err.h>
33#include <linux/ioctl.h>
34#include <linux/init.h>
35#include <linux/of.h>
36#include <linux/proc_fs.h>
37#include <linux/idr.h>
38#include <linux/backing-dev.h>
39#include <linux/gfp.h>
40#include <linux/slab.h>
41#include <linux/reboot.h>
42#include <linux/leds.h>
43#include <linux/debugfs.h>
44
45#include <linux/mtd/mtd.h>
46#include <linux/mtd/partitions.h>
47
48#include "mtdcore.h"
49
50struct backing_dev_info *mtd_bdi;
51
52#ifdef CONFIG_PM_SLEEP
53
54static int mtd_cls_suspend(struct device *dev)
55{
56 struct mtd_info *mtd = dev_get_drvdata(dev);
57
58 return mtd ? mtd_suspend(mtd) : 0;
59}
60
61static int mtd_cls_resume(struct device *dev)
62{
63 struct mtd_info *mtd = dev_get_drvdata(dev);
64
65 if (mtd)
66 mtd_resume(mtd);
67 return 0;
68}
69
70static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
72#else
73#define MTD_CLS_PM_OPS NULL
74#endif
75
76static struct class mtd_class = {
77 .name = "mtd",
78 .owner = THIS_MODULE,
79 .pm = MTD_CLS_PM_OPS,
80};
81
82static DEFINE_IDR(mtd_idr);
83
84/* These are exported solely for the purpose of mtd_blkdevs.c. You
85 should not use them for _anything_ else */
86DEFINE_MUTEX(mtd_table_mutex);
87EXPORT_SYMBOL_GPL(mtd_table_mutex);
88
89struct mtd_info *__mtd_next_device(int i)
90{
91 return idr_get_next(&mtd_idr, &i);
92}
93EXPORT_SYMBOL_GPL(__mtd_next_device);
94
95static LIST_HEAD(mtd_notifiers);
96
97
98#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
99
100/* REVISIT once MTD uses the driver model better, whoever allocates
101 * the mtd_info will probably want to use the release() hook...
102 */
103static void mtd_release(struct device *dev)
104{
105 struct mtd_info *mtd = dev_get_drvdata(dev);
106 dev_t index = MTD_DEVT(mtd->index);
107
108 /* remove /dev/mtdXro node */
109 device_destroy(&mtd_class, index + 1);
110}
111
112static ssize_t mtd_type_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
114{
115 struct mtd_info *mtd = dev_get_drvdata(dev);
116 char *type;
117
118 switch (mtd->type) {
119 case MTD_ABSENT:
120 type = "absent";
121 break;
122 case MTD_RAM:
123 type = "ram";
124 break;
125 case MTD_ROM:
126 type = "rom";
127 break;
128 case MTD_NORFLASH:
129 type = "nor";
130 break;
131 case MTD_NANDFLASH:
132 type = "nand";
133 break;
134 case MTD_DATAFLASH:
135 type = "dataflash";
136 break;
137 case MTD_UBIVOLUME:
138 type = "ubi";
139 break;
140 case MTD_MLCNANDFLASH:
141 type = "mlc-nand";
142 break;
143 default:
144 type = "unknown";
145 }
146
147 return snprintf(buf, PAGE_SIZE, "%s\n", type);
148}
149static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
150
151static ssize_t mtd_flags_show(struct device *dev,
152 struct device_attribute *attr, char *buf)
153{
154 struct mtd_info *mtd = dev_get_drvdata(dev);
155
156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
157
158}
159static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
160
161static ssize_t mtd_size_show(struct device *dev,
162 struct device_attribute *attr, char *buf)
163{
164 struct mtd_info *mtd = dev_get_drvdata(dev);
165
166 return snprintf(buf, PAGE_SIZE, "%llu\n",
167 (unsigned long long)mtd->size);
168
169}
170static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
171
172static ssize_t mtd_erasesize_show(struct device *dev,
173 struct device_attribute *attr, char *buf)
174{
175 struct mtd_info *mtd = dev_get_drvdata(dev);
176
177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
178
179}
180static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
181
182static ssize_t mtd_writesize_show(struct device *dev,
183 struct device_attribute *attr, char *buf)
184{
185 struct mtd_info *mtd = dev_get_drvdata(dev);
186
187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
188
189}
190static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
191
192static ssize_t mtd_subpagesize_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
194{
195 struct mtd_info *mtd = dev_get_drvdata(dev);
196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
197
198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
199
200}
201static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
202
203static ssize_t mtd_oobsize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205{
206 struct mtd_info *mtd = dev_get_drvdata(dev);
207
208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
209
210}
211static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
212
213static ssize_t mtd_oobavail_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215{
216 struct mtd_info *mtd = dev_get_drvdata(dev);
217
218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
219}
220static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
221
222static ssize_t mtd_numeraseregions_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
224{
225 struct mtd_info *mtd = dev_get_drvdata(dev);
226
227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
228
229}
230static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
231 NULL);
232
233static ssize_t mtd_name_show(struct device *dev,
234 struct device_attribute *attr, char *buf)
235{
236 struct mtd_info *mtd = dev_get_drvdata(dev);
237
238 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
239
240}
241static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
242
243static ssize_t mtd_ecc_strength_show(struct device *dev,
244 struct device_attribute *attr, char *buf)
245{
246 struct mtd_info *mtd = dev_get_drvdata(dev);
247
248 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
249}
250static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
251
252static ssize_t mtd_bitflip_threshold_show(struct device *dev,
253 struct device_attribute *attr,
254 char *buf)
255{
256 struct mtd_info *mtd = dev_get_drvdata(dev);
257
258 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
259}
260
261static ssize_t mtd_bitflip_threshold_store(struct device *dev,
262 struct device_attribute *attr,
263 const char *buf, size_t count)
264{
265 struct mtd_info *mtd = dev_get_drvdata(dev);
266 unsigned int bitflip_threshold;
267 int retval;
268
269 retval = kstrtouint(buf, 0, &bitflip_threshold);
270 if (retval)
271 return retval;
272
273 mtd->bitflip_threshold = bitflip_threshold;
274 return count;
275}
276static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
277 mtd_bitflip_threshold_show,
278 mtd_bitflip_threshold_store);
279
280static ssize_t mtd_ecc_step_size_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282{
283 struct mtd_info *mtd = dev_get_drvdata(dev);
284
285 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
286
287}
288static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
289
290static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
291 struct device_attribute *attr, char *buf)
292{
293 struct mtd_info *mtd = dev_get_drvdata(dev);
294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295
296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
297}
298static DEVICE_ATTR(corrected_bits, S_IRUGO,
299 mtd_ecc_stats_corrected_show, NULL);
300
301static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303{
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306
307 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
308}
309static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
310
311static ssize_t mtd_badblocks_show(struct device *dev,
312 struct device_attribute *attr, char *buf)
313{
314 struct mtd_info *mtd = dev_get_drvdata(dev);
315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316
317 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
318}
319static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
320
321static ssize_t mtd_bbtblocks_show(struct device *dev,
322 struct device_attribute *attr, char *buf)
323{
324 struct mtd_info *mtd = dev_get_drvdata(dev);
325 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
326
327 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
328}
329static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
330
331static struct attribute *mtd_attrs[] = {
332 &dev_attr_type.attr,
333 &dev_attr_flags.attr,
334 &dev_attr_size.attr,
335 &dev_attr_erasesize.attr,
336 &dev_attr_writesize.attr,
337 &dev_attr_subpagesize.attr,
338 &dev_attr_oobsize.attr,
339 &dev_attr_oobavail.attr,
340 &dev_attr_numeraseregions.attr,
341 &dev_attr_name.attr,
342 &dev_attr_ecc_strength.attr,
343 &dev_attr_ecc_step_size.attr,
344 &dev_attr_corrected_bits.attr,
345 &dev_attr_ecc_failures.attr,
346 &dev_attr_bad_blocks.attr,
347 &dev_attr_bbt_blocks.attr,
348 &dev_attr_bitflip_threshold.attr,
349 NULL,
350};
351ATTRIBUTE_GROUPS(mtd);
352
353static const struct device_type mtd_devtype = {
354 .name = "mtd",
355 .groups = mtd_groups,
356 .release = mtd_release,
357};
358
359#ifndef CONFIG_MMU
360unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
361{
362 switch (mtd->type) {
363 case MTD_RAM:
364 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
365 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
366 case MTD_ROM:
367 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
368 NOMMU_MAP_READ;
369 default:
370 return NOMMU_MAP_COPY;
371 }
372}
373EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
374#endif
375
376static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
377 void *cmd)
378{
379 struct mtd_info *mtd;
380
381 mtd = container_of(n, struct mtd_info, reboot_notifier);
382 mtd->_reboot(mtd);
383
384 return NOTIFY_DONE;
385}
386
387/**
388 * mtd_wunit_to_pairing_info - get pairing information of a wunit
389 * @mtd: pointer to new MTD device info structure
390 * @wunit: write unit we are interested in
391 * @info: returned pairing information
392 *
393 * Retrieve pairing information associated to the wunit.
394 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
395 * paired together, and where programming a page may influence the page it is
396 * paired with.
397 * The notion of page is replaced by the term wunit (write-unit) to stay
398 * consistent with the ->writesize field.
399 *
400 * The @wunit argument can be extracted from an absolute offset using
401 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
402 * to @wunit.
403 *
404 * From the pairing info the MTD user can find all the wunits paired with
405 * @wunit using the following loop:
406 *
407 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
408 * info.pair = i;
409 * mtd_pairing_info_to_wunit(mtd, &info);
410 * ...
411 * }
412 */
413int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
414 struct mtd_pairing_info *info)
415{
416 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
417
418 if (wunit < 0 || wunit >= npairs)
419 return -EINVAL;
420
421 if (mtd->pairing && mtd->pairing->get_info)
422 return mtd->pairing->get_info(mtd, wunit, info);
423
424 info->group = 0;
425 info->pair = wunit;
426
427 return 0;
428}
429EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
430
431/**
432 * mtd_pairing_info_to_wunit - get wunit from pairing information
433 * @mtd: pointer to new MTD device info structure
434 * @info: pairing information struct
435 *
436 * Returns a positive number representing the wunit associated to the info
437 * struct, or a negative error code.
438 *
439 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
440 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
441 * doc).
442 *
443 * It can also be used to only program the first page of each pair (i.e.
444 * page attached to group 0), which allows one to use an MLC NAND in
445 * software-emulated SLC mode:
446 *
447 * info.group = 0;
448 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
449 * for (info.pair = 0; info.pair < npairs; info.pair++) {
450 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
451 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
452 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
453 * }
454 */
455int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
456 const struct mtd_pairing_info *info)
457{
458 int ngroups = mtd_pairing_groups(mtd);
459 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
460
461 if (!info || info->pair < 0 || info->pair >= npairs ||
462 info->group < 0 || info->group >= ngroups)
463 return -EINVAL;
464
465 if (mtd->pairing && mtd->pairing->get_wunit)
466 return mtd->pairing->get_wunit(mtd, info);
467
468 return info->pair;
469}
470EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
471
472/**
473 * mtd_pairing_groups - get the number of pairing groups
474 * @mtd: pointer to new MTD device info structure
475 *
476 * Returns the number of pairing groups.
477 *
478 * This number is usually equal to the number of bits exposed by a single
479 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
480 * to iterate over all pages of a given pair.
481 */
482int mtd_pairing_groups(struct mtd_info *mtd)
483{
484 if (!mtd->pairing || !mtd->pairing->ngroups)
485 return 1;
486
487 return mtd->pairing->ngroups;
488}
489EXPORT_SYMBOL_GPL(mtd_pairing_groups);
490
491static struct dentry *dfs_dir_mtd;
492
493/**
494 * add_mtd_device - register an MTD device
495 * @mtd: pointer to new MTD device info structure
496 *
497 * Add a device to the list of MTD devices present in the system, and
498 * notify each currently active MTD 'user' of its arrival. Returns
499 * zero on success or non-zero on failure.
500 */
501
502int add_mtd_device(struct mtd_info *mtd)
503{
504 struct mtd_notifier *not;
505 int i, error;
506
507 /*
508 * May occur, for instance, on buggy drivers which call
509 * mtd_device_parse_register() multiple times on the same master MTD,
510 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
511 */
512 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
513 return -EEXIST;
514
515 BUG_ON(mtd->writesize == 0);
516
517 if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
518 !(mtd->flags & MTD_NO_ERASE)))
519 return -EINVAL;
520
521 mutex_lock(&mtd_table_mutex);
522
523 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
524 if (i < 0) {
525 error = i;
526 goto fail_locked;
527 }
528
529 mtd->index = i;
530 mtd->usecount = 0;
531
532 /* default value if not set by driver */
533 if (mtd->bitflip_threshold == 0)
534 mtd->bitflip_threshold = mtd->ecc_strength;
535
536 if (is_power_of_2(mtd->erasesize))
537 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
538 else
539 mtd->erasesize_shift = 0;
540
541 if (is_power_of_2(mtd->writesize))
542 mtd->writesize_shift = ffs(mtd->writesize) - 1;
543 else
544 mtd->writesize_shift = 0;
545
546 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
547 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
548
549 /* Some chips always power up locked. Unlock them now */
550 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
551 error = mtd_unlock(mtd, 0, mtd->size);
552 if (error && error != -EOPNOTSUPP)
553 printk(KERN_WARNING
554 "%s: unlock failed, writes may not work\n",
555 mtd->name);
556 /* Ignore unlock failures? */
557 error = 0;
558 }
559
560 /* Caller should have set dev.parent to match the
561 * physical device, if appropriate.
562 */
563 mtd->dev.type = &mtd_devtype;
564 mtd->dev.class = &mtd_class;
565 mtd->dev.devt = MTD_DEVT(i);
566 dev_set_name(&mtd->dev, "mtd%d", i);
567 dev_set_drvdata(&mtd->dev, mtd);
568 of_node_get(mtd_get_of_node(mtd));
569 error = device_register(&mtd->dev);
570 if (error)
571 goto fail_added;
572
573 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
574 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
575 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
576 pr_debug("mtd device %s won't show data in debugfs\n",
577 dev_name(&mtd->dev));
578 }
579 }
580
581 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
582 "mtd%dro", i);
583
584 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
585 /* No need to get a refcount on the module containing
586 the notifier, since we hold the mtd_table_mutex */
587 list_for_each_entry(not, &mtd_notifiers, list)
588 not->add(mtd);
589
590 mutex_unlock(&mtd_table_mutex);
591 /* We _know_ we aren't being removed, because
592 our caller is still holding us here. So none
593 of this try_ nonsense, and no bitching about it
594 either. :) */
595 __module_get(THIS_MODULE);
596 return 0;
597
598fail_added:
599 of_node_put(mtd_get_of_node(mtd));
600 idr_remove(&mtd_idr, i);
601fail_locked:
602 mutex_unlock(&mtd_table_mutex);
603 return error;
604}
605
606/**
607 * del_mtd_device - unregister an MTD device
608 * @mtd: pointer to MTD device info structure
609 *
610 * Remove a device from the list of MTD devices present in the system,
611 * and notify each currently active MTD 'user' of its departure.
612 * Returns zero on success or 1 on failure, which currently will happen
613 * if the requested device does not appear to be present in the list.
614 */
615
616int del_mtd_device(struct mtd_info *mtd)
617{
618 int ret;
619 struct mtd_notifier *not;
620
621 mutex_lock(&mtd_table_mutex);
622
623 debugfs_remove_recursive(mtd->dbg.dfs_dir);
624
625 if (idr_find(&mtd_idr, mtd->index) != mtd) {
626 ret = -ENODEV;
627 goto out_error;
628 }
629
630 /* No need to get a refcount on the module containing
631 the notifier, since we hold the mtd_table_mutex */
632 list_for_each_entry(not, &mtd_notifiers, list)
633 not->remove(mtd);
634
635 if (mtd->usecount) {
636 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
637 mtd->index, mtd->name, mtd->usecount);
638 ret = -EBUSY;
639 } else {
640 device_unregister(&mtd->dev);
641
642 idr_remove(&mtd_idr, mtd->index);
643 of_node_put(mtd_get_of_node(mtd));
644
645 module_put(THIS_MODULE);
646 ret = 0;
647 }
648
649out_error:
650 mutex_unlock(&mtd_table_mutex);
651 return ret;
652}
653
654/*
655 * Set a few defaults based on the parent devices, if not provided by the
656 * driver
657 */
658static void mtd_set_dev_defaults(struct mtd_info *mtd)
659{
660 if (mtd->dev.parent) {
661 if (!mtd->owner && mtd->dev.parent->driver)
662 mtd->owner = mtd->dev.parent->driver->owner;
663 if (!mtd->name)
664 mtd->name = dev_name(mtd->dev.parent);
665 } else {
666 pr_debug("mtd device won't show a device symlink in sysfs\n");
667 }
668}
669
670/**
671 * mtd_device_parse_register - parse partitions and register an MTD device.
672 *
673 * @mtd: the MTD device to register
674 * @types: the list of MTD partition probes to try, see
675 * 'parse_mtd_partitions()' for more information
676 * @parser_data: MTD partition parser-specific data
677 * @parts: fallback partition information to register, if parsing fails;
678 * only valid if %nr_parts > %0
679 * @nr_parts: the number of partitions in parts, if zero then the full
680 * MTD device is registered if no partition info is found
681 *
682 * This function aggregates MTD partitions parsing (done by
683 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
684 * basically follows the most common pattern found in many MTD drivers:
685 *
686 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
687 * registered first.
688 * * Then It tries to probe partitions on MTD device @mtd using parsers
689 * specified in @types (if @types is %NULL, then the default list of parsers
690 * is used, see 'parse_mtd_partitions()' for more information). If none are
691 * found this functions tries to fallback to information specified in
692 * @parts/@nr_parts.
693 * * If no partitions were found this function just registers the MTD device
694 * @mtd and exits.
695 *
696 * Returns zero in case of success and a negative error code in case of failure.
697 */
698int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
699 struct mtd_part_parser_data *parser_data,
700 const struct mtd_partition *parts,
701 int nr_parts)
702{
703 int ret;
704
705 mtd_set_dev_defaults(mtd);
706
707 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
708 ret = add_mtd_device(mtd);
709 if (ret)
710 return ret;
711 }
712
713 /* Prefer parsed partitions over driver-provided fallback */
714 ret = parse_mtd_partitions(mtd, types, parser_data);
715 if (ret > 0)
716 ret = 0;
717 else if (nr_parts)
718 ret = add_mtd_partitions(mtd, parts, nr_parts);
719 else if (!device_is_registered(&mtd->dev))
720 ret = add_mtd_device(mtd);
721 else
722 ret = 0;
723
724 if (ret)
725 goto out;
726
727 /*
728 * FIXME: some drivers unfortunately call this function more than once.
729 * So we have to check if we've already assigned the reboot notifier.
730 *
731 * Generally, we can make multiple calls work for most cases, but it
732 * does cause problems with parse_mtd_partitions() above (e.g.,
733 * cmdlineparts will register partitions more than once).
734 */
735 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
736 "MTD already registered\n");
737 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
738 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
739 register_reboot_notifier(&mtd->reboot_notifier);
740 }
741
742out:
743 if (ret && device_is_registered(&mtd->dev))
744 del_mtd_device(mtd);
745
746 return ret;
747}
748EXPORT_SYMBOL_GPL(mtd_device_parse_register);
749
750/**
751 * mtd_device_unregister - unregister an existing MTD device.
752 *
753 * @master: the MTD device to unregister. This will unregister both the master
754 * and any partitions if registered.
755 */
756int mtd_device_unregister(struct mtd_info *master)
757{
758 int err;
759
760 if (master->_reboot)
761 unregister_reboot_notifier(&master->reboot_notifier);
762
763 err = del_mtd_partitions(master);
764 if (err)
765 return err;
766
767 if (!device_is_registered(&master->dev))
768 return 0;
769
770 return del_mtd_device(master);
771}
772EXPORT_SYMBOL_GPL(mtd_device_unregister);
773
774/**
775 * register_mtd_user - register a 'user' of MTD devices.
776 * @new: pointer to notifier info structure
777 *
778 * Registers a pair of callbacks function to be called upon addition
779 * or removal of MTD devices. Causes the 'add' callback to be immediately
780 * invoked for each MTD device currently present in the system.
781 */
782void register_mtd_user (struct mtd_notifier *new)
783{
784 struct mtd_info *mtd;
785
786 mutex_lock(&mtd_table_mutex);
787
788 list_add(&new->list, &mtd_notifiers);
789
790 __module_get(THIS_MODULE);
791
792 mtd_for_each_device(mtd)
793 new->add(mtd);
794
795 mutex_unlock(&mtd_table_mutex);
796}
797EXPORT_SYMBOL_GPL(register_mtd_user);
798
799/**
800 * unregister_mtd_user - unregister a 'user' of MTD devices.
801 * @old: pointer to notifier info structure
802 *
803 * Removes a callback function pair from the list of 'users' to be
804 * notified upon addition or removal of MTD devices. Causes the
805 * 'remove' callback to be immediately invoked for each MTD device
806 * currently present in the system.
807 */
808int unregister_mtd_user (struct mtd_notifier *old)
809{
810 struct mtd_info *mtd;
811
812 mutex_lock(&mtd_table_mutex);
813
814 module_put(THIS_MODULE);
815
816 mtd_for_each_device(mtd)
817 old->remove(mtd);
818
819 list_del(&old->list);
820 mutex_unlock(&mtd_table_mutex);
821 return 0;
822}
823EXPORT_SYMBOL_GPL(unregister_mtd_user);
824
825/**
826 * get_mtd_device - obtain a validated handle for an MTD device
827 * @mtd: last known address of the required MTD device
828 * @num: internal device number of the required MTD device
829 *
830 * Given a number and NULL address, return the num'th entry in the device
831 * table, if any. Given an address and num == -1, search the device table
832 * for a device with that address and return if it's still present. Given
833 * both, return the num'th driver only if its address matches. Return
834 * error code if not.
835 */
836struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
837{
838 struct mtd_info *ret = NULL, *other;
839 int err = -ENODEV;
840
841 mutex_lock(&mtd_table_mutex);
842
843 if (num == -1) {
844 mtd_for_each_device(other) {
845 if (other == mtd) {
846 ret = mtd;
847 break;
848 }
849 }
850 } else if (num >= 0) {
851 ret = idr_find(&mtd_idr, num);
852 if (mtd && mtd != ret)
853 ret = NULL;
854 }
855
856 if (!ret) {
857 ret = ERR_PTR(err);
858 goto out;
859 }
860
861 err = __get_mtd_device(ret);
862 if (err)
863 ret = ERR_PTR(err);
864out:
865 mutex_unlock(&mtd_table_mutex);
866 return ret;
867}
868EXPORT_SYMBOL_GPL(get_mtd_device);
869
870
871int __get_mtd_device(struct mtd_info *mtd)
872{
873 int err;
874
875 if (!try_module_get(mtd->owner))
876 return -ENODEV;
877
878 if (mtd->_get_device) {
879 err = mtd->_get_device(mtd);
880
881 if (err) {
882 module_put(mtd->owner);
883 return err;
884 }
885 }
886 mtd->usecount++;
887 return 0;
888}
889EXPORT_SYMBOL_GPL(__get_mtd_device);
890
891/**
892 * get_mtd_device_nm - obtain a validated handle for an MTD device by
893 * device name
894 * @name: MTD device name to open
895 *
896 * This function returns MTD device description structure in case of
897 * success and an error code in case of failure.
898 */
899struct mtd_info *get_mtd_device_nm(const char *name)
900{
901 int err = -ENODEV;
902 struct mtd_info *mtd = NULL, *other;
903
904 mutex_lock(&mtd_table_mutex);
905
906 mtd_for_each_device(other) {
907 if (!strcmp(name, other->name)) {
908 mtd = other;
909 break;
910 }
911 }
912
913 if (!mtd)
914 goto out_unlock;
915
916 err = __get_mtd_device(mtd);
917 if (err)
918 goto out_unlock;
919
920 mutex_unlock(&mtd_table_mutex);
921 return mtd;
922
923out_unlock:
924 mutex_unlock(&mtd_table_mutex);
925 return ERR_PTR(err);
926}
927EXPORT_SYMBOL_GPL(get_mtd_device_nm);
928
929void put_mtd_device(struct mtd_info *mtd)
930{
931 mutex_lock(&mtd_table_mutex);
932 __put_mtd_device(mtd);
933 mutex_unlock(&mtd_table_mutex);
934
935}
936EXPORT_SYMBOL_GPL(put_mtd_device);
937
938void __put_mtd_device(struct mtd_info *mtd)
939{
940 --mtd->usecount;
941 BUG_ON(mtd->usecount < 0);
942
943 if (mtd->_put_device)
944 mtd->_put_device(mtd);
945
946 module_put(mtd->owner);
947}
948EXPORT_SYMBOL_GPL(__put_mtd_device);
949
950/*
951 * Erase is an synchronous operation. Device drivers are epected to return a
952 * negative error code if the operation failed and update instr->fail_addr
953 * to point the portion that was not properly erased.
954 */
955int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
956{
957 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
958
959 if (!mtd->erasesize || !mtd->_erase)
960 return -ENOTSUPP;
961
962 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
963 return -EINVAL;
964 if (!(mtd->flags & MTD_WRITEABLE))
965 return -EROFS;
966
967 if (!instr->len)
968 return 0;
969
970 ledtrig_mtd_activity();
971 return mtd->_erase(mtd, instr);
972}
973EXPORT_SYMBOL_GPL(mtd_erase);
974
975/*
976 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
977 */
978int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
979 void **virt, resource_size_t *phys)
980{
981 *retlen = 0;
982 *virt = NULL;
983 if (phys)
984 *phys = 0;
985 if (!mtd->_point)
986 return -EOPNOTSUPP;
987 if (from < 0 || from >= mtd->size || len > mtd->size - from)
988 return -EINVAL;
989 if (!len)
990 return 0;
991 return mtd->_point(mtd, from, len, retlen, virt, phys);
992}
993EXPORT_SYMBOL_GPL(mtd_point);
994
995/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
996int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
997{
998 if (!mtd->_unpoint)
999 return -EOPNOTSUPP;
1000 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1001 return -EINVAL;
1002 if (!len)
1003 return 0;
1004 return mtd->_unpoint(mtd, from, len);
1005}
1006EXPORT_SYMBOL_GPL(mtd_unpoint);
1007
1008/*
1009 * Allow NOMMU mmap() to directly map the device (if not NULL)
1010 * - return the address to which the offset maps
1011 * - return -ENOSYS to indicate refusal to do the mapping
1012 */
1013unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1014 unsigned long offset, unsigned long flags)
1015{
1016 size_t retlen;
1017 void *virt;
1018 int ret;
1019
1020 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1021 if (ret)
1022 return ret;
1023 if (retlen != len) {
1024 mtd_unpoint(mtd, offset, retlen);
1025 return -ENOSYS;
1026 }
1027 return (unsigned long)virt;
1028}
1029EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1030
1031int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1032 u_char *buf)
1033{
1034 int ret_code;
1035 *retlen = 0;
1036 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1037 return -EINVAL;
1038 if (!len)
1039 return 0;
1040
1041 ledtrig_mtd_activity();
1042 /*
1043 * In the absence of an error, drivers return a non-negative integer
1044 * representing the maximum number of bitflips that were corrected on
1045 * any one ecc region (if applicable; zero otherwise).
1046 */
1047 if (mtd->_read) {
1048 ret_code = mtd->_read(mtd, from, len, retlen, buf);
1049 } else if (mtd->_read_oob) {
1050 struct mtd_oob_ops ops = {
1051 .len = len,
1052 .datbuf = buf,
1053 };
1054
1055 ret_code = mtd->_read_oob(mtd, from, &ops);
1056 *retlen = ops.retlen;
1057 } else {
1058 return -ENOTSUPP;
1059 }
1060
1061 if (unlikely(ret_code < 0))
1062 return ret_code;
1063 if (mtd->ecc_strength == 0)
1064 return 0; /* device lacks ecc */
1065 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1066}
1067EXPORT_SYMBOL_GPL(mtd_read);
1068
1069int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1070 const u_char *buf)
1071{
1072 *retlen = 0;
1073 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1074 return -EINVAL;
1075 if ((!mtd->_write && !mtd->_write_oob) ||
1076 !(mtd->flags & MTD_WRITEABLE))
1077 return -EROFS;
1078 if (!len)
1079 return 0;
1080 ledtrig_mtd_activity();
1081
1082 if (!mtd->_write) {
1083 struct mtd_oob_ops ops = {
1084 .len = len,
1085 .datbuf = (u8 *)buf,
1086 };
1087 int ret;
1088
1089 ret = mtd->_write_oob(mtd, to, &ops);
1090 *retlen = ops.retlen;
1091 return ret;
1092 }
1093
1094 return mtd->_write(mtd, to, len, retlen, buf);
1095}
1096EXPORT_SYMBOL_GPL(mtd_write);
1097
1098/*
1099 * In blackbox flight recorder like scenarios we want to make successful writes
1100 * in interrupt context. panic_write() is only intended to be called when its
1101 * known the kernel is about to panic and we need the write to succeed. Since
1102 * the kernel is not going to be running for much longer, this function can
1103 * break locks and delay to ensure the write succeeds (but not sleep).
1104 */
1105int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1106 const u_char *buf)
1107{
1108 *retlen = 0;
1109 if (!mtd->_panic_write)
1110 return -EOPNOTSUPP;
1111 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1112 return -EINVAL;
1113 if (!(mtd->flags & MTD_WRITEABLE))
1114 return -EROFS;
1115 if (!len)
1116 return 0;
1117 return mtd->_panic_write(mtd, to, len, retlen, buf);
1118}
1119EXPORT_SYMBOL_GPL(mtd_panic_write);
1120
1121static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1122 struct mtd_oob_ops *ops)
1123{
1124 /*
1125 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1126 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1127 * this case.
1128 */
1129 if (!ops->datbuf)
1130 ops->len = 0;
1131
1132 if (!ops->oobbuf)
1133 ops->ooblen = 0;
1134
1135 if (offs < 0 || offs + ops->len > mtd->size)
1136 return -EINVAL;
1137
1138 if (ops->ooblen) {
1139 u64 maxooblen;
1140
1141 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1142 return -EINVAL;
1143
1144 maxooblen = ((mtd_div_by_ws(mtd->size, mtd) -
1145 mtd_div_by_ws(offs, mtd)) *
1146 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1147 if (ops->ooblen > maxooblen)
1148 return -EINVAL;
1149 }
1150
1151 return 0;
1152}
1153
1154int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1155{
1156 int ret_code;
1157 ops->retlen = ops->oobretlen = 0;
1158 if (!mtd->_read_oob)
1159 return -EOPNOTSUPP;
1160
1161 ret_code = mtd_check_oob_ops(mtd, from, ops);
1162 if (ret_code)
1163 return ret_code;
1164
1165 ledtrig_mtd_activity();
1166 /*
1167 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1168 * similar to mtd->_read(), returning a non-negative integer
1169 * representing max bitflips. In other cases, mtd->_read_oob() may
1170 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1171 */
1172 ret_code = mtd->_read_oob(mtd, from, ops);
1173 if (unlikely(ret_code < 0))
1174 return ret_code;
1175 if (mtd->ecc_strength == 0)
1176 return 0; /* device lacks ecc */
1177 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1178}
1179EXPORT_SYMBOL_GPL(mtd_read_oob);
1180
1181int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1182 struct mtd_oob_ops *ops)
1183{
1184 int ret;
1185
1186 ops->retlen = ops->oobretlen = 0;
1187 if (!mtd->_write_oob)
1188 return -EOPNOTSUPP;
1189 if (!(mtd->flags & MTD_WRITEABLE))
1190 return -EROFS;
1191
1192 ret = mtd_check_oob_ops(mtd, to, ops);
1193 if (ret)
1194 return ret;
1195
1196 ledtrig_mtd_activity();
1197 return mtd->_write_oob(mtd, to, ops);
1198}
1199EXPORT_SYMBOL_GPL(mtd_write_oob);
1200
1201/**
1202 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1203 * @mtd: MTD device structure
1204 * @section: ECC section. Depending on the layout you may have all the ECC
1205 * bytes stored in a single contiguous section, or one section
1206 * per ECC chunk (and sometime several sections for a single ECC
1207 * ECC chunk)
1208 * @oobecc: OOB region struct filled with the appropriate ECC position
1209 * information
1210 *
1211 * This function returns ECC section information in the OOB area. If you want
1212 * to get all the ECC bytes information, then you should call
1213 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1214 *
1215 * Returns zero on success, a negative error code otherwise.
1216 */
1217int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1218 struct mtd_oob_region *oobecc)
1219{
1220 memset(oobecc, 0, sizeof(*oobecc));
1221
1222 if (!mtd || section < 0)
1223 return -EINVAL;
1224
1225 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1226 return -ENOTSUPP;
1227
1228 return mtd->ooblayout->ecc(mtd, section, oobecc);
1229}
1230EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1231
1232/**
1233 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1234 * section
1235 * @mtd: MTD device structure
1236 * @section: Free section you are interested in. Depending on the layout
1237 * you may have all the free bytes stored in a single contiguous
1238 * section, or one section per ECC chunk plus an extra section
1239 * for the remaining bytes (or other funky layout).
1240 * @oobfree: OOB region struct filled with the appropriate free position
1241 * information
1242 *
1243 * This function returns free bytes position in the OOB area. If you want
1244 * to get all the free bytes information, then you should call
1245 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1246 *
1247 * Returns zero on success, a negative error code otherwise.
1248 */
1249int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1250 struct mtd_oob_region *oobfree)
1251{
1252 memset(oobfree, 0, sizeof(*oobfree));
1253
1254 if (!mtd || section < 0)
1255 return -EINVAL;
1256
1257 if (!mtd->ooblayout || !mtd->ooblayout->free)
1258 return -ENOTSUPP;
1259
1260 return mtd->ooblayout->free(mtd, section, oobfree);
1261}
1262EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1263
1264/**
1265 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1266 * @mtd: mtd info structure
1267 * @byte: the byte we are searching for
1268 * @sectionp: pointer where the section id will be stored
1269 * @oobregion: used to retrieve the ECC position
1270 * @iter: iterator function. Should be either mtd_ooblayout_free or
1271 * mtd_ooblayout_ecc depending on the region type you're searching for
1272 *
1273 * This function returns the section id and oobregion information of a
1274 * specific byte. For example, say you want to know where the 4th ECC byte is
1275 * stored, you'll use:
1276 *
1277 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1278 *
1279 * Returns zero on success, a negative error code otherwise.
1280 */
1281static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1282 int *sectionp, struct mtd_oob_region *oobregion,
1283 int (*iter)(struct mtd_info *,
1284 int section,
1285 struct mtd_oob_region *oobregion))
1286{
1287 int pos = 0, ret, section = 0;
1288
1289 memset(oobregion, 0, sizeof(*oobregion));
1290
1291 while (1) {
1292 ret = iter(mtd, section, oobregion);
1293 if (ret)
1294 return ret;
1295
1296 if (pos + oobregion->length > byte)
1297 break;
1298
1299 pos += oobregion->length;
1300 section++;
1301 }
1302
1303 /*
1304 * Adjust region info to make it start at the beginning at the
1305 * 'start' ECC byte.
1306 */
1307 oobregion->offset += byte - pos;
1308 oobregion->length -= byte - pos;
1309 *sectionp = section;
1310
1311 return 0;
1312}
1313
1314/**
1315 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1316 * ECC byte
1317 * @mtd: mtd info structure
1318 * @eccbyte: the byte we are searching for
1319 * @sectionp: pointer where the section id will be stored
1320 * @oobregion: OOB region information
1321 *
1322 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1323 * byte.
1324 *
1325 * Returns zero on success, a negative error code otherwise.
1326 */
1327int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1328 int *section,
1329 struct mtd_oob_region *oobregion)
1330{
1331 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1332 mtd_ooblayout_ecc);
1333}
1334EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1335
1336/**
1337 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1338 * @mtd: mtd info structure
1339 * @buf: destination buffer to store OOB bytes
1340 * @oobbuf: OOB buffer
1341 * @start: first byte to retrieve
1342 * @nbytes: number of bytes to retrieve
1343 * @iter: section iterator
1344 *
1345 * Extract bytes attached to a specific category (ECC or free)
1346 * from the OOB buffer and copy them into buf.
1347 *
1348 * Returns zero on success, a negative error code otherwise.
1349 */
1350static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1351 const u8 *oobbuf, int start, int nbytes,
1352 int (*iter)(struct mtd_info *,
1353 int section,
1354 struct mtd_oob_region *oobregion))
1355{
1356 struct mtd_oob_region oobregion;
1357 int section, ret;
1358
1359 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1360 &oobregion, iter);
1361
1362 while (!ret) {
1363 int cnt;
1364
1365 cnt = min_t(int, nbytes, oobregion.length);
1366 memcpy(buf, oobbuf + oobregion.offset, cnt);
1367 buf += cnt;
1368 nbytes -= cnt;
1369
1370 if (!nbytes)
1371 break;
1372
1373 ret = iter(mtd, ++section, &oobregion);
1374 }
1375
1376 return ret;
1377}
1378
1379/**
1380 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1381 * @mtd: mtd info structure
1382 * @buf: source buffer to get OOB bytes from
1383 * @oobbuf: OOB buffer
1384 * @start: first OOB byte to set
1385 * @nbytes: number of OOB bytes to set
1386 * @iter: section iterator
1387 *
1388 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1389 * is selected by passing the appropriate iterator.
1390 *
1391 * Returns zero on success, a negative error code otherwise.
1392 */
1393static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1394 u8 *oobbuf, int start, int nbytes,
1395 int (*iter)(struct mtd_info *,
1396 int section,
1397 struct mtd_oob_region *oobregion))
1398{
1399 struct mtd_oob_region oobregion;
1400 int section, ret;
1401
1402 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1403 &oobregion, iter);
1404
1405 while (!ret) {
1406 int cnt;
1407
1408 cnt = min_t(int, nbytes, oobregion.length);
1409 memcpy(oobbuf + oobregion.offset, buf, cnt);
1410 buf += cnt;
1411 nbytes -= cnt;
1412
1413 if (!nbytes)
1414 break;
1415
1416 ret = iter(mtd, ++section, &oobregion);
1417 }
1418
1419 return ret;
1420}
1421
1422/**
1423 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1424 * @mtd: mtd info structure
1425 * @iter: category iterator
1426 *
1427 * Count the number of bytes in a given category.
1428 *
1429 * Returns a positive value on success, a negative error code otherwise.
1430 */
1431static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1432 int (*iter)(struct mtd_info *,
1433 int section,
1434 struct mtd_oob_region *oobregion))
1435{
1436 struct mtd_oob_region oobregion;
1437 int section = 0, ret, nbytes = 0;
1438
1439 while (1) {
1440 ret = iter(mtd, section++, &oobregion);
1441 if (ret) {
1442 if (ret == -ERANGE)
1443 ret = nbytes;
1444 break;
1445 }
1446
1447 nbytes += oobregion.length;
1448 }
1449
1450 return ret;
1451}
1452
1453/**
1454 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1455 * @mtd: mtd info structure
1456 * @eccbuf: destination buffer to store ECC bytes
1457 * @oobbuf: OOB buffer
1458 * @start: first ECC byte to retrieve
1459 * @nbytes: number of ECC bytes to retrieve
1460 *
1461 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1462 *
1463 * Returns zero on success, a negative error code otherwise.
1464 */
1465int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1466 const u8 *oobbuf, int start, int nbytes)
1467{
1468 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1469 mtd_ooblayout_ecc);
1470}
1471EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1472
1473/**
1474 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1475 * @mtd: mtd info structure
1476 * @eccbuf: source buffer to get ECC bytes from
1477 * @oobbuf: OOB buffer
1478 * @start: first ECC byte to set
1479 * @nbytes: number of ECC bytes to set
1480 *
1481 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1482 *
1483 * Returns zero on success, a negative error code otherwise.
1484 */
1485int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1486 u8 *oobbuf, int start, int nbytes)
1487{
1488 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1489 mtd_ooblayout_ecc);
1490}
1491EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1492
1493/**
1494 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1495 * @mtd: mtd info structure
1496 * @databuf: destination buffer to store ECC bytes
1497 * @oobbuf: OOB buffer
1498 * @start: first ECC byte to retrieve
1499 * @nbytes: number of ECC bytes to retrieve
1500 *
1501 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1502 *
1503 * Returns zero on success, a negative error code otherwise.
1504 */
1505int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1506 const u8 *oobbuf, int start, int nbytes)
1507{
1508 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1509 mtd_ooblayout_free);
1510}
1511EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1512
1513/**
1514 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1515 * @mtd: mtd info structure
1516 * @databuf: source buffer to get data bytes from
1517 * @oobbuf: OOB buffer
1518 * @start: first ECC byte to set
1519 * @nbytes: number of ECC bytes to set
1520 *
1521 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1522 *
1523 * Returns zero on success, a negative error code otherwise.
1524 */
1525int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1526 u8 *oobbuf, int start, int nbytes)
1527{
1528 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1529 mtd_ooblayout_free);
1530}
1531EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1532
1533/**
1534 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1535 * @mtd: mtd info structure
1536 *
1537 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1538 *
1539 * Returns zero on success, a negative error code otherwise.
1540 */
1541int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1542{
1543 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1544}
1545EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1546
1547/**
1548 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1549 * @mtd: mtd info structure
1550 *
1551 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1552 *
1553 * Returns zero on success, a negative error code otherwise.
1554 */
1555int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1556{
1557 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1558}
1559EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1560
1561/*
1562 * Method to access the protection register area, present in some flash
1563 * devices. The user data is one time programmable but the factory data is read
1564 * only.
1565 */
1566int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1567 struct otp_info *buf)
1568{
1569 if (!mtd->_get_fact_prot_info)
1570 return -EOPNOTSUPP;
1571 if (!len)
1572 return 0;
1573 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1574}
1575EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1576
1577int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1578 size_t *retlen, u_char *buf)
1579{
1580 *retlen = 0;
1581 if (!mtd->_read_fact_prot_reg)
1582 return -EOPNOTSUPP;
1583 if (!len)
1584 return 0;
1585 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1586}
1587EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1588
1589int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1590 struct otp_info *buf)
1591{
1592 if (!mtd->_get_user_prot_info)
1593 return -EOPNOTSUPP;
1594 if (!len)
1595 return 0;
1596 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1597}
1598EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1599
1600int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1601 size_t *retlen, u_char *buf)
1602{
1603 *retlen = 0;
1604 if (!mtd->_read_user_prot_reg)
1605 return -EOPNOTSUPP;
1606 if (!len)
1607 return 0;
1608 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1609}
1610EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1611
1612int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1613 size_t *retlen, u_char *buf)
1614{
1615 int ret;
1616
1617 *retlen = 0;
1618 if (!mtd->_write_user_prot_reg)
1619 return -EOPNOTSUPP;
1620 if (!len)
1621 return 0;
1622 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1623 if (ret)
1624 return ret;
1625
1626 /*
1627 * If no data could be written at all, we are out of memory and
1628 * must return -ENOSPC.
1629 */
1630 return (*retlen) ? 0 : -ENOSPC;
1631}
1632EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1633
1634int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1635{
1636 if (!mtd->_lock_user_prot_reg)
1637 return -EOPNOTSUPP;
1638 if (!len)
1639 return 0;
1640 return mtd->_lock_user_prot_reg(mtd, from, len);
1641}
1642EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1643
1644/* Chip-supported device locking */
1645int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1646{
1647 if (!mtd->_lock)
1648 return -EOPNOTSUPP;
1649 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1650 return -EINVAL;
1651 if (!len)
1652 return 0;
1653 return mtd->_lock(mtd, ofs, len);
1654}
1655EXPORT_SYMBOL_GPL(mtd_lock);
1656
1657int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1658{
1659 if (!mtd->_unlock)
1660 return -EOPNOTSUPP;
1661 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1662 return -EINVAL;
1663 if (!len)
1664 return 0;
1665 return mtd->_unlock(mtd, ofs, len);
1666}
1667EXPORT_SYMBOL_GPL(mtd_unlock);
1668
1669int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1670{
1671 if (!mtd->_is_locked)
1672 return -EOPNOTSUPP;
1673 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1674 return -EINVAL;
1675 if (!len)
1676 return 0;
1677 return mtd->_is_locked(mtd, ofs, len);
1678}
1679EXPORT_SYMBOL_GPL(mtd_is_locked);
1680
1681int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1682{
1683 if (ofs < 0 || ofs >= mtd->size)
1684 return -EINVAL;
1685 if (!mtd->_block_isreserved)
1686 return 0;
1687 return mtd->_block_isreserved(mtd, ofs);
1688}
1689EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1690
1691int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1692{
1693 if (ofs < 0 || ofs >= mtd->size)
1694 return -EINVAL;
1695 if (!mtd->_block_isbad)
1696 return 0;
1697 return mtd->_block_isbad(mtd, ofs);
1698}
1699EXPORT_SYMBOL_GPL(mtd_block_isbad);
1700
1701int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1702{
1703 if (!mtd->_block_markbad)
1704 return -EOPNOTSUPP;
1705 if (ofs < 0 || ofs >= mtd->size)
1706 return -EINVAL;
1707 if (!(mtd->flags & MTD_WRITEABLE))
1708 return -EROFS;
1709 return mtd->_block_markbad(mtd, ofs);
1710}
1711EXPORT_SYMBOL_GPL(mtd_block_markbad);
1712
1713/*
1714 * default_mtd_writev - the default writev method
1715 * @mtd: mtd device description object pointer
1716 * @vecs: the vectors to write
1717 * @count: count of vectors in @vecs
1718 * @to: the MTD device offset to write to
1719 * @retlen: on exit contains the count of bytes written to the MTD device.
1720 *
1721 * This function returns zero in case of success and a negative error code in
1722 * case of failure.
1723 */
1724static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1725 unsigned long count, loff_t to, size_t *retlen)
1726{
1727 unsigned long i;
1728 size_t totlen = 0, thislen;
1729 int ret = 0;
1730
1731 for (i = 0; i < count; i++) {
1732 if (!vecs[i].iov_len)
1733 continue;
1734 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1735 vecs[i].iov_base);
1736 totlen += thislen;
1737 if (ret || thislen != vecs[i].iov_len)
1738 break;
1739 to += vecs[i].iov_len;
1740 }
1741 *retlen = totlen;
1742 return ret;
1743}
1744
1745/*
1746 * mtd_writev - the vector-based MTD write method
1747 * @mtd: mtd device description object pointer
1748 * @vecs: the vectors to write
1749 * @count: count of vectors in @vecs
1750 * @to: the MTD device offset to write to
1751 * @retlen: on exit contains the count of bytes written to the MTD device.
1752 *
1753 * This function returns zero in case of success and a negative error code in
1754 * case of failure.
1755 */
1756int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1757 unsigned long count, loff_t to, size_t *retlen)
1758{
1759 *retlen = 0;
1760 if (!(mtd->flags & MTD_WRITEABLE))
1761 return -EROFS;
1762 if (!mtd->_writev)
1763 return default_mtd_writev(mtd, vecs, count, to, retlen);
1764 return mtd->_writev(mtd, vecs, count, to, retlen);
1765}
1766EXPORT_SYMBOL_GPL(mtd_writev);
1767
1768/**
1769 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1770 * @mtd: mtd device description object pointer
1771 * @size: a pointer to the ideal or maximum size of the allocation, points
1772 * to the actual allocation size on success.
1773 *
1774 * This routine attempts to allocate a contiguous kernel buffer up to
1775 * the specified size, backing off the size of the request exponentially
1776 * until the request succeeds or until the allocation size falls below
1777 * the system page size. This attempts to make sure it does not adversely
1778 * impact system performance, so when allocating more than one page, we
1779 * ask the memory allocator to avoid re-trying, swapping, writing back
1780 * or performing I/O.
1781 *
1782 * Note, this function also makes sure that the allocated buffer is aligned to
1783 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1784 *
1785 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1786 * to handle smaller (i.e. degraded) buffer allocations under low- or
1787 * fragmented-memory situations where such reduced allocations, from a
1788 * requested ideal, are allowed.
1789 *
1790 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1791 */
1792void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1793{
1794 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1795 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1796 void *kbuf;
1797
1798 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1799
1800 while (*size > min_alloc) {
1801 kbuf = kmalloc(*size, flags);
1802 if (kbuf)
1803 return kbuf;
1804
1805 *size >>= 1;
1806 *size = ALIGN(*size, mtd->writesize);
1807 }
1808
1809 /*
1810 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1811 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1812 */
1813 return kmalloc(*size, GFP_KERNEL);
1814}
1815EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1816
1817#ifdef CONFIG_PROC_FS
1818
1819/*====================================================================*/
1820/* Support for /proc/mtd */
1821
1822static int mtd_proc_show(struct seq_file *m, void *v)
1823{
1824 struct mtd_info *mtd;
1825
1826 seq_puts(m, "dev: size erasesize name\n");
1827 mutex_lock(&mtd_table_mutex);
1828 mtd_for_each_device(mtd) {
1829 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1830 mtd->index, (unsigned long long)mtd->size,
1831 mtd->erasesize, mtd->name);
1832 }
1833 mutex_unlock(&mtd_table_mutex);
1834 return 0;
1835}
1836#endif /* CONFIG_PROC_FS */
1837
1838/*====================================================================*/
1839/* Init code */
1840
1841static struct backing_dev_info * __init mtd_bdi_init(char *name)
1842{
1843 struct backing_dev_info *bdi;
1844 int ret;
1845
1846 bdi = bdi_alloc(GFP_KERNEL);
1847 if (!bdi)
1848 return ERR_PTR(-ENOMEM);
1849
1850 bdi->name = name;
1851 /*
1852 * We put '-0' suffix to the name to get the same name format as we
1853 * used to get. Since this is called only once, we get a unique name.
1854 */
1855 ret = bdi_register(bdi, "%.28s-0", name);
1856 if (ret)
1857 bdi_put(bdi);
1858
1859 return ret ? ERR_PTR(ret) : bdi;
1860}
1861
1862static struct proc_dir_entry *proc_mtd;
1863
1864static int __init init_mtd(void)
1865{
1866 int ret;
1867
1868 ret = class_register(&mtd_class);
1869 if (ret)
1870 goto err_reg;
1871
1872 mtd_bdi = mtd_bdi_init("mtd");
1873 if (IS_ERR(mtd_bdi)) {
1874 ret = PTR_ERR(mtd_bdi);
1875 goto err_bdi;
1876 }
1877
1878 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
1879
1880 ret = init_mtdchar();
1881 if (ret)
1882 goto out_procfs;
1883
1884 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1885
1886 return 0;
1887
1888out_procfs:
1889 if (proc_mtd)
1890 remove_proc_entry("mtd", NULL);
1891 bdi_put(mtd_bdi);
1892err_bdi:
1893 class_unregister(&mtd_class);
1894err_reg:
1895 pr_err("Error registering mtd class or bdi: %d\n", ret);
1896 return ret;
1897}
1898
1899static void __exit cleanup_mtd(void)
1900{
1901 debugfs_remove_recursive(dfs_dir_mtd);
1902 cleanup_mtdchar();
1903 if (proc_mtd)
1904 remove_proc_entry("mtd", NULL);
1905 class_unregister(&mtd_class);
1906 bdi_put(mtd_bdi);
1907 idr_destroy(&mtd_idr);
1908}
1909
1910module_init(init_mtd);
1911module_exit(cleanup_mtd);
1912
1913MODULE_LICENSE("GPL");
1914MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1915MODULE_DESCRIPTION("Core MTD registration and access routines");