at v4.18-rc3 2786 lines 88 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/range.h> 19#include <linux/pfn.h> 20#include <linux/percpu-refcount.h> 21#include <linux/bit_spinlock.h> 22#include <linux/shrinker.h> 23#include <linux/resource.h> 24#include <linux/page_ext.h> 25#include <linux/err.h> 26#include <linux/page_ref.h> 27#include <linux/memremap.h> 28#include <linux/overflow.h> 29 30struct mempolicy; 31struct anon_vma; 32struct anon_vma_chain; 33struct file_ra_state; 34struct user_struct; 35struct writeback_control; 36struct bdi_writeback; 37 38void init_mm_internals(void); 39 40#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 41extern unsigned long max_mapnr; 42 43static inline void set_max_mapnr(unsigned long limit) 44{ 45 max_mapnr = limit; 46} 47#else 48static inline void set_max_mapnr(unsigned long limit) { } 49#endif 50 51extern unsigned long totalram_pages; 52extern void * high_memory; 53extern int page_cluster; 54 55#ifdef CONFIG_SYSCTL 56extern int sysctl_legacy_va_layout; 57#else 58#define sysctl_legacy_va_layout 0 59#endif 60 61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 62extern const int mmap_rnd_bits_min; 63extern const int mmap_rnd_bits_max; 64extern int mmap_rnd_bits __read_mostly; 65#endif 66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 67extern const int mmap_rnd_compat_bits_min; 68extern const int mmap_rnd_compat_bits_max; 69extern int mmap_rnd_compat_bits __read_mostly; 70#endif 71 72#include <asm/page.h> 73#include <asm/pgtable.h> 74#include <asm/processor.h> 75 76#ifndef __pa_symbol 77#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 78#endif 79 80#ifndef page_to_virt 81#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 82#endif 83 84#ifndef lm_alias 85#define lm_alias(x) __va(__pa_symbol(x)) 86#endif 87 88/* 89 * To prevent common memory management code establishing 90 * a zero page mapping on a read fault. 91 * This macro should be defined within <asm/pgtable.h>. 92 * s390 does this to prevent multiplexing of hardware bits 93 * related to the physical page in case of virtualization. 94 */ 95#ifndef mm_forbids_zeropage 96#define mm_forbids_zeropage(X) (0) 97#endif 98 99/* 100 * On some architectures it is expensive to call memset() for small sizes. 101 * Those architectures should provide their own implementation of "struct page" 102 * zeroing by defining this macro in <asm/pgtable.h>. 103 */ 104#ifndef mm_zero_struct_page 105#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 106#endif 107 108/* 109 * Default maximum number of active map areas, this limits the number of vmas 110 * per mm struct. Users can overwrite this number by sysctl but there is a 111 * problem. 112 * 113 * When a program's coredump is generated as ELF format, a section is created 114 * per a vma. In ELF, the number of sections is represented in unsigned short. 115 * This means the number of sections should be smaller than 65535 at coredump. 116 * Because the kernel adds some informative sections to a image of program at 117 * generating coredump, we need some margin. The number of extra sections is 118 * 1-3 now and depends on arch. We use "5" as safe margin, here. 119 * 120 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 121 * not a hard limit any more. Although some userspace tools can be surprised by 122 * that. 123 */ 124#define MAPCOUNT_ELF_CORE_MARGIN (5) 125#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 126 127extern int sysctl_max_map_count; 128 129extern unsigned long sysctl_user_reserve_kbytes; 130extern unsigned long sysctl_admin_reserve_kbytes; 131 132extern int sysctl_overcommit_memory; 133extern int sysctl_overcommit_ratio; 134extern unsigned long sysctl_overcommit_kbytes; 135 136extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 137 size_t *, loff_t *); 138extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 139 size_t *, loff_t *); 140 141#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 142 143/* to align the pointer to the (next) page boundary */ 144#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 145 146/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 147#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 148 149/* 150 * Linux kernel virtual memory manager primitives. 151 * The idea being to have a "virtual" mm in the same way 152 * we have a virtual fs - giving a cleaner interface to the 153 * mm details, and allowing different kinds of memory mappings 154 * (from shared memory to executable loading to arbitrary 155 * mmap() functions). 156 */ 157 158extern struct kmem_cache *vm_area_cachep; 159 160#ifndef CONFIG_MMU 161extern struct rb_root nommu_region_tree; 162extern struct rw_semaphore nommu_region_sem; 163 164extern unsigned int kobjsize(const void *objp); 165#endif 166 167/* 168 * vm_flags in vm_area_struct, see mm_types.h. 169 * When changing, update also include/trace/events/mmflags.h 170 */ 171#define VM_NONE 0x00000000 172 173#define VM_READ 0x00000001 /* currently active flags */ 174#define VM_WRITE 0x00000002 175#define VM_EXEC 0x00000004 176#define VM_SHARED 0x00000008 177 178/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 179#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 180#define VM_MAYWRITE 0x00000020 181#define VM_MAYEXEC 0x00000040 182#define VM_MAYSHARE 0x00000080 183 184#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 185#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 186#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 187#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 188#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 189 190#define VM_LOCKED 0x00002000 191#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 192 193 /* Used by sys_madvise() */ 194#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 195#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 196 197#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 198#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 199#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 200#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 201#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 202#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 203#define VM_SYNC 0x00800000 /* Synchronous page faults */ 204#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 205#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 206#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 207 208#ifdef CONFIG_MEM_SOFT_DIRTY 209# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 210#else 211# define VM_SOFTDIRTY 0 212#endif 213 214#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 215#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 216#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 217#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 218 219#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 220#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 221#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 222#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 223#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 224#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 225#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 226#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 227#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 228#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 229#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 230#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 231 232#ifdef CONFIG_ARCH_HAS_PKEYS 233# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 234# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 235# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 236# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 237# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 238#ifdef CONFIG_PPC 239# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 240#else 241# define VM_PKEY_BIT4 0 242#endif 243#endif /* CONFIG_ARCH_HAS_PKEYS */ 244 245#if defined(CONFIG_X86) 246# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 247#elif defined(CONFIG_PPC) 248# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 249#elif defined(CONFIG_PARISC) 250# define VM_GROWSUP VM_ARCH_1 251#elif defined(CONFIG_IA64) 252# define VM_GROWSUP VM_ARCH_1 253#elif defined(CONFIG_SPARC64) 254# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 255# define VM_ARCH_CLEAR VM_SPARC_ADI 256#elif !defined(CONFIG_MMU) 257# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 258#endif 259 260#if defined(CONFIG_X86_INTEL_MPX) 261/* MPX specific bounds table or bounds directory */ 262# define VM_MPX VM_HIGH_ARCH_4 263#else 264# define VM_MPX VM_NONE 265#endif 266 267#ifndef VM_GROWSUP 268# define VM_GROWSUP VM_NONE 269#endif 270 271/* Bits set in the VMA until the stack is in its final location */ 272#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 273 274#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 275#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 276#endif 277 278#ifdef CONFIG_STACK_GROWSUP 279#define VM_STACK VM_GROWSUP 280#else 281#define VM_STACK VM_GROWSDOWN 282#endif 283 284#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 285 286/* 287 * Special vmas that are non-mergable, non-mlock()able. 288 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 289 */ 290#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 291 292/* This mask defines which mm->def_flags a process can inherit its parent */ 293#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 294 295/* This mask is used to clear all the VMA flags used by mlock */ 296#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 297 298/* Arch-specific flags to clear when updating VM flags on protection change */ 299#ifndef VM_ARCH_CLEAR 300# define VM_ARCH_CLEAR VM_NONE 301#endif 302#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 303 304/* 305 * mapping from the currently active vm_flags protection bits (the 306 * low four bits) to a page protection mask.. 307 */ 308extern pgprot_t protection_map[16]; 309 310#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 311#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 312#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 313#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 314#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 315#define FAULT_FLAG_TRIED 0x20 /* Second try */ 316#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 317#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 318#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 319 320#define FAULT_FLAG_TRACE \ 321 { FAULT_FLAG_WRITE, "WRITE" }, \ 322 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 323 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 324 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 325 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 326 { FAULT_FLAG_TRIED, "TRIED" }, \ 327 { FAULT_FLAG_USER, "USER" }, \ 328 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 329 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 330 331/* 332 * vm_fault is filled by the the pagefault handler and passed to the vma's 333 * ->fault function. The vma's ->fault is responsible for returning a bitmask 334 * of VM_FAULT_xxx flags that give details about how the fault was handled. 335 * 336 * MM layer fills up gfp_mask for page allocations but fault handler might 337 * alter it if its implementation requires a different allocation context. 338 * 339 * pgoff should be used in favour of virtual_address, if possible. 340 */ 341struct vm_fault { 342 struct vm_area_struct *vma; /* Target VMA */ 343 unsigned int flags; /* FAULT_FLAG_xxx flags */ 344 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 345 pgoff_t pgoff; /* Logical page offset based on vma */ 346 unsigned long address; /* Faulting virtual address */ 347 pmd_t *pmd; /* Pointer to pmd entry matching 348 * the 'address' */ 349 pud_t *pud; /* Pointer to pud entry matching 350 * the 'address' 351 */ 352 pte_t orig_pte; /* Value of PTE at the time of fault */ 353 354 struct page *cow_page; /* Page handler may use for COW fault */ 355 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 356 struct page *page; /* ->fault handlers should return a 357 * page here, unless VM_FAULT_NOPAGE 358 * is set (which is also implied by 359 * VM_FAULT_ERROR). 360 */ 361 /* These three entries are valid only while holding ptl lock */ 362 pte_t *pte; /* Pointer to pte entry matching 363 * the 'address'. NULL if the page 364 * table hasn't been allocated. 365 */ 366 spinlock_t *ptl; /* Page table lock. 367 * Protects pte page table if 'pte' 368 * is not NULL, otherwise pmd. 369 */ 370 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 371 * vm_ops->map_pages() calls 372 * alloc_set_pte() from atomic context. 373 * do_fault_around() pre-allocates 374 * page table to avoid allocation from 375 * atomic context. 376 */ 377}; 378 379/* page entry size for vm->huge_fault() */ 380enum page_entry_size { 381 PE_SIZE_PTE = 0, 382 PE_SIZE_PMD, 383 PE_SIZE_PUD, 384}; 385 386/* 387 * These are the virtual MM functions - opening of an area, closing and 388 * unmapping it (needed to keep files on disk up-to-date etc), pointer 389 * to the functions called when a no-page or a wp-page exception occurs. 390 */ 391struct vm_operations_struct { 392 void (*open)(struct vm_area_struct * area); 393 void (*close)(struct vm_area_struct * area); 394 int (*split)(struct vm_area_struct * area, unsigned long addr); 395 int (*mremap)(struct vm_area_struct * area); 396 vm_fault_t (*fault)(struct vm_fault *vmf); 397 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 398 enum page_entry_size pe_size); 399 void (*map_pages)(struct vm_fault *vmf, 400 pgoff_t start_pgoff, pgoff_t end_pgoff); 401 unsigned long (*pagesize)(struct vm_area_struct * area); 402 403 /* notification that a previously read-only page is about to become 404 * writable, if an error is returned it will cause a SIGBUS */ 405 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 406 407 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 408 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 409 410 /* called by access_process_vm when get_user_pages() fails, typically 411 * for use by special VMAs that can switch between memory and hardware 412 */ 413 int (*access)(struct vm_area_struct *vma, unsigned long addr, 414 void *buf, int len, int write); 415 416 /* Called by the /proc/PID/maps code to ask the vma whether it 417 * has a special name. Returning non-NULL will also cause this 418 * vma to be dumped unconditionally. */ 419 const char *(*name)(struct vm_area_struct *vma); 420 421#ifdef CONFIG_NUMA 422 /* 423 * set_policy() op must add a reference to any non-NULL @new mempolicy 424 * to hold the policy upon return. Caller should pass NULL @new to 425 * remove a policy and fall back to surrounding context--i.e. do not 426 * install a MPOL_DEFAULT policy, nor the task or system default 427 * mempolicy. 428 */ 429 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 430 431 /* 432 * get_policy() op must add reference [mpol_get()] to any policy at 433 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 434 * in mm/mempolicy.c will do this automatically. 435 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 436 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 437 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 438 * must return NULL--i.e., do not "fallback" to task or system default 439 * policy. 440 */ 441 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 442 unsigned long addr); 443#endif 444 /* 445 * Called by vm_normal_page() for special PTEs to find the 446 * page for @addr. This is useful if the default behavior 447 * (using pte_page()) would not find the correct page. 448 */ 449 struct page *(*find_special_page)(struct vm_area_struct *vma, 450 unsigned long addr); 451}; 452 453struct mmu_gather; 454struct inode; 455 456#define page_private(page) ((page)->private) 457#define set_page_private(page, v) ((page)->private = (v)) 458 459#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 460static inline int pmd_devmap(pmd_t pmd) 461{ 462 return 0; 463} 464static inline int pud_devmap(pud_t pud) 465{ 466 return 0; 467} 468static inline int pgd_devmap(pgd_t pgd) 469{ 470 return 0; 471} 472#endif 473 474/* 475 * FIXME: take this include out, include page-flags.h in 476 * files which need it (119 of them) 477 */ 478#include <linux/page-flags.h> 479#include <linux/huge_mm.h> 480 481/* 482 * Methods to modify the page usage count. 483 * 484 * What counts for a page usage: 485 * - cache mapping (page->mapping) 486 * - private data (page->private) 487 * - page mapped in a task's page tables, each mapping 488 * is counted separately 489 * 490 * Also, many kernel routines increase the page count before a critical 491 * routine so they can be sure the page doesn't go away from under them. 492 */ 493 494/* 495 * Drop a ref, return true if the refcount fell to zero (the page has no users) 496 */ 497static inline int put_page_testzero(struct page *page) 498{ 499 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 500 return page_ref_dec_and_test(page); 501} 502 503/* 504 * Try to grab a ref unless the page has a refcount of zero, return false if 505 * that is the case. 506 * This can be called when MMU is off so it must not access 507 * any of the virtual mappings. 508 */ 509static inline int get_page_unless_zero(struct page *page) 510{ 511 return page_ref_add_unless(page, 1, 0); 512} 513 514extern int page_is_ram(unsigned long pfn); 515 516enum { 517 REGION_INTERSECTS, 518 REGION_DISJOINT, 519 REGION_MIXED, 520}; 521 522int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 523 unsigned long desc); 524 525/* Support for virtually mapped pages */ 526struct page *vmalloc_to_page(const void *addr); 527unsigned long vmalloc_to_pfn(const void *addr); 528 529/* 530 * Determine if an address is within the vmalloc range 531 * 532 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 533 * is no special casing required. 534 */ 535static inline bool is_vmalloc_addr(const void *x) 536{ 537#ifdef CONFIG_MMU 538 unsigned long addr = (unsigned long)x; 539 540 return addr >= VMALLOC_START && addr < VMALLOC_END; 541#else 542 return false; 543#endif 544} 545#ifdef CONFIG_MMU 546extern int is_vmalloc_or_module_addr(const void *x); 547#else 548static inline int is_vmalloc_or_module_addr(const void *x) 549{ 550 return 0; 551} 552#endif 553 554extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 555static inline void *kvmalloc(size_t size, gfp_t flags) 556{ 557 return kvmalloc_node(size, flags, NUMA_NO_NODE); 558} 559static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 560{ 561 return kvmalloc_node(size, flags | __GFP_ZERO, node); 562} 563static inline void *kvzalloc(size_t size, gfp_t flags) 564{ 565 return kvmalloc(size, flags | __GFP_ZERO); 566} 567 568static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 569{ 570 size_t bytes; 571 572 if (unlikely(check_mul_overflow(n, size, &bytes))) 573 return NULL; 574 575 return kvmalloc(bytes, flags); 576} 577 578static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 579{ 580 return kvmalloc_array(n, size, flags | __GFP_ZERO); 581} 582 583extern void kvfree(const void *addr); 584 585static inline atomic_t *compound_mapcount_ptr(struct page *page) 586{ 587 return &page[1].compound_mapcount; 588} 589 590static inline int compound_mapcount(struct page *page) 591{ 592 VM_BUG_ON_PAGE(!PageCompound(page), page); 593 page = compound_head(page); 594 return atomic_read(compound_mapcount_ptr(page)) + 1; 595} 596 597/* 598 * The atomic page->_mapcount, starts from -1: so that transitions 599 * both from it and to it can be tracked, using atomic_inc_and_test 600 * and atomic_add_negative(-1). 601 */ 602static inline void page_mapcount_reset(struct page *page) 603{ 604 atomic_set(&(page)->_mapcount, -1); 605} 606 607int __page_mapcount(struct page *page); 608 609static inline int page_mapcount(struct page *page) 610{ 611 VM_BUG_ON_PAGE(PageSlab(page), page); 612 613 if (unlikely(PageCompound(page))) 614 return __page_mapcount(page); 615 return atomic_read(&page->_mapcount) + 1; 616} 617 618#ifdef CONFIG_TRANSPARENT_HUGEPAGE 619int total_mapcount(struct page *page); 620int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 621#else 622static inline int total_mapcount(struct page *page) 623{ 624 return page_mapcount(page); 625} 626static inline int page_trans_huge_mapcount(struct page *page, 627 int *total_mapcount) 628{ 629 int mapcount = page_mapcount(page); 630 if (total_mapcount) 631 *total_mapcount = mapcount; 632 return mapcount; 633} 634#endif 635 636static inline struct page *virt_to_head_page(const void *x) 637{ 638 struct page *page = virt_to_page(x); 639 640 return compound_head(page); 641} 642 643void __put_page(struct page *page); 644 645void put_pages_list(struct list_head *pages); 646 647void split_page(struct page *page, unsigned int order); 648 649/* 650 * Compound pages have a destructor function. Provide a 651 * prototype for that function and accessor functions. 652 * These are _only_ valid on the head of a compound page. 653 */ 654typedef void compound_page_dtor(struct page *); 655 656/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 657enum compound_dtor_id { 658 NULL_COMPOUND_DTOR, 659 COMPOUND_PAGE_DTOR, 660#ifdef CONFIG_HUGETLB_PAGE 661 HUGETLB_PAGE_DTOR, 662#endif 663#ifdef CONFIG_TRANSPARENT_HUGEPAGE 664 TRANSHUGE_PAGE_DTOR, 665#endif 666 NR_COMPOUND_DTORS, 667}; 668extern compound_page_dtor * const compound_page_dtors[]; 669 670static inline void set_compound_page_dtor(struct page *page, 671 enum compound_dtor_id compound_dtor) 672{ 673 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 674 page[1].compound_dtor = compound_dtor; 675} 676 677static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 678{ 679 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 680 return compound_page_dtors[page[1].compound_dtor]; 681} 682 683static inline unsigned int compound_order(struct page *page) 684{ 685 if (!PageHead(page)) 686 return 0; 687 return page[1].compound_order; 688} 689 690static inline void set_compound_order(struct page *page, unsigned int order) 691{ 692 page[1].compound_order = order; 693} 694 695void free_compound_page(struct page *page); 696 697#ifdef CONFIG_MMU 698/* 699 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 700 * servicing faults for write access. In the normal case, do always want 701 * pte_mkwrite. But get_user_pages can cause write faults for mappings 702 * that do not have writing enabled, when used by access_process_vm. 703 */ 704static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 705{ 706 if (likely(vma->vm_flags & VM_WRITE)) 707 pte = pte_mkwrite(pte); 708 return pte; 709} 710 711int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 712 struct page *page); 713int finish_fault(struct vm_fault *vmf); 714int finish_mkwrite_fault(struct vm_fault *vmf); 715#endif 716 717/* 718 * Multiple processes may "see" the same page. E.g. for untouched 719 * mappings of /dev/null, all processes see the same page full of 720 * zeroes, and text pages of executables and shared libraries have 721 * only one copy in memory, at most, normally. 722 * 723 * For the non-reserved pages, page_count(page) denotes a reference count. 724 * page_count() == 0 means the page is free. page->lru is then used for 725 * freelist management in the buddy allocator. 726 * page_count() > 0 means the page has been allocated. 727 * 728 * Pages are allocated by the slab allocator in order to provide memory 729 * to kmalloc and kmem_cache_alloc. In this case, the management of the 730 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 731 * unless a particular usage is carefully commented. (the responsibility of 732 * freeing the kmalloc memory is the caller's, of course). 733 * 734 * A page may be used by anyone else who does a __get_free_page(). 735 * In this case, page_count still tracks the references, and should only 736 * be used through the normal accessor functions. The top bits of page->flags 737 * and page->virtual store page management information, but all other fields 738 * are unused and could be used privately, carefully. The management of this 739 * page is the responsibility of the one who allocated it, and those who have 740 * subsequently been given references to it. 741 * 742 * The other pages (we may call them "pagecache pages") are completely 743 * managed by the Linux memory manager: I/O, buffers, swapping etc. 744 * The following discussion applies only to them. 745 * 746 * A pagecache page contains an opaque `private' member, which belongs to the 747 * page's address_space. Usually, this is the address of a circular list of 748 * the page's disk buffers. PG_private must be set to tell the VM to call 749 * into the filesystem to release these pages. 750 * 751 * A page may belong to an inode's memory mapping. In this case, page->mapping 752 * is the pointer to the inode, and page->index is the file offset of the page, 753 * in units of PAGE_SIZE. 754 * 755 * If pagecache pages are not associated with an inode, they are said to be 756 * anonymous pages. These may become associated with the swapcache, and in that 757 * case PG_swapcache is set, and page->private is an offset into the swapcache. 758 * 759 * In either case (swapcache or inode backed), the pagecache itself holds one 760 * reference to the page. Setting PG_private should also increment the 761 * refcount. The each user mapping also has a reference to the page. 762 * 763 * The pagecache pages are stored in a per-mapping radix tree, which is 764 * rooted at mapping->i_pages, and indexed by offset. 765 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 766 * lists, we instead now tag pages as dirty/writeback in the radix tree. 767 * 768 * All pagecache pages may be subject to I/O: 769 * - inode pages may need to be read from disk, 770 * - inode pages which have been modified and are MAP_SHARED may need 771 * to be written back to the inode on disk, 772 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 773 * modified may need to be swapped out to swap space and (later) to be read 774 * back into memory. 775 */ 776 777/* 778 * The zone field is never updated after free_area_init_core() 779 * sets it, so none of the operations on it need to be atomic. 780 */ 781 782/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 783#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 784#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 785#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 786#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 787 788/* 789 * Define the bit shifts to access each section. For non-existent 790 * sections we define the shift as 0; that plus a 0 mask ensures 791 * the compiler will optimise away reference to them. 792 */ 793#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 794#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 795#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 796#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 797 798/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 799#ifdef NODE_NOT_IN_PAGE_FLAGS 800#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 801#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 802 SECTIONS_PGOFF : ZONES_PGOFF) 803#else 804#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 805#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 806 NODES_PGOFF : ZONES_PGOFF) 807#endif 808 809#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 810 811#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 812#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 813#endif 814 815#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 816#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 817#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 818#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 819#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 820 821static inline enum zone_type page_zonenum(const struct page *page) 822{ 823 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 824} 825 826#ifdef CONFIG_ZONE_DEVICE 827static inline bool is_zone_device_page(const struct page *page) 828{ 829 return page_zonenum(page) == ZONE_DEVICE; 830} 831#else 832static inline bool is_zone_device_page(const struct page *page) 833{ 834 return false; 835} 836#endif 837 838#ifdef CONFIG_DEV_PAGEMAP_OPS 839void dev_pagemap_get_ops(void); 840void dev_pagemap_put_ops(void); 841void __put_devmap_managed_page(struct page *page); 842DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 843static inline bool put_devmap_managed_page(struct page *page) 844{ 845 if (!static_branch_unlikely(&devmap_managed_key)) 846 return false; 847 if (!is_zone_device_page(page)) 848 return false; 849 switch (page->pgmap->type) { 850 case MEMORY_DEVICE_PRIVATE: 851 case MEMORY_DEVICE_PUBLIC: 852 case MEMORY_DEVICE_FS_DAX: 853 __put_devmap_managed_page(page); 854 return true; 855 default: 856 break; 857 } 858 return false; 859} 860 861static inline bool is_device_private_page(const struct page *page) 862{ 863 return is_zone_device_page(page) && 864 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 865} 866 867static inline bool is_device_public_page(const struct page *page) 868{ 869 return is_zone_device_page(page) && 870 page->pgmap->type == MEMORY_DEVICE_PUBLIC; 871} 872 873#else /* CONFIG_DEV_PAGEMAP_OPS */ 874static inline void dev_pagemap_get_ops(void) 875{ 876} 877 878static inline void dev_pagemap_put_ops(void) 879{ 880} 881 882static inline bool put_devmap_managed_page(struct page *page) 883{ 884 return false; 885} 886 887static inline bool is_device_private_page(const struct page *page) 888{ 889 return false; 890} 891 892static inline bool is_device_public_page(const struct page *page) 893{ 894 return false; 895} 896#endif /* CONFIG_DEV_PAGEMAP_OPS */ 897 898static inline void get_page(struct page *page) 899{ 900 page = compound_head(page); 901 /* 902 * Getting a normal page or the head of a compound page 903 * requires to already have an elevated page->_refcount. 904 */ 905 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 906 page_ref_inc(page); 907} 908 909static inline void put_page(struct page *page) 910{ 911 page = compound_head(page); 912 913 /* 914 * For devmap managed pages we need to catch refcount transition from 915 * 2 to 1, when refcount reach one it means the page is free and we 916 * need to inform the device driver through callback. See 917 * include/linux/memremap.h and HMM for details. 918 */ 919 if (put_devmap_managed_page(page)) 920 return; 921 922 if (put_page_testzero(page)) 923 __put_page(page); 924} 925 926#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 927#define SECTION_IN_PAGE_FLAGS 928#endif 929 930/* 931 * The identification function is mainly used by the buddy allocator for 932 * determining if two pages could be buddies. We are not really identifying 933 * the zone since we could be using the section number id if we do not have 934 * node id available in page flags. 935 * We only guarantee that it will return the same value for two combinable 936 * pages in a zone. 937 */ 938static inline int page_zone_id(struct page *page) 939{ 940 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 941} 942 943static inline int zone_to_nid(struct zone *zone) 944{ 945#ifdef CONFIG_NUMA 946 return zone->node; 947#else 948 return 0; 949#endif 950} 951 952#ifdef NODE_NOT_IN_PAGE_FLAGS 953extern int page_to_nid(const struct page *page); 954#else 955static inline int page_to_nid(const struct page *page) 956{ 957 struct page *p = (struct page *)page; 958 959 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 960} 961#endif 962 963#ifdef CONFIG_NUMA_BALANCING 964static inline int cpu_pid_to_cpupid(int cpu, int pid) 965{ 966 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 967} 968 969static inline int cpupid_to_pid(int cpupid) 970{ 971 return cpupid & LAST__PID_MASK; 972} 973 974static inline int cpupid_to_cpu(int cpupid) 975{ 976 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 977} 978 979static inline int cpupid_to_nid(int cpupid) 980{ 981 return cpu_to_node(cpupid_to_cpu(cpupid)); 982} 983 984static inline bool cpupid_pid_unset(int cpupid) 985{ 986 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 987} 988 989static inline bool cpupid_cpu_unset(int cpupid) 990{ 991 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 992} 993 994static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 995{ 996 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 997} 998 999#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1000#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1001static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1002{ 1003 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1004} 1005 1006static inline int page_cpupid_last(struct page *page) 1007{ 1008 return page->_last_cpupid; 1009} 1010static inline void page_cpupid_reset_last(struct page *page) 1011{ 1012 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1013} 1014#else 1015static inline int page_cpupid_last(struct page *page) 1016{ 1017 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1018} 1019 1020extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1021 1022static inline void page_cpupid_reset_last(struct page *page) 1023{ 1024 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1025} 1026#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1027#else /* !CONFIG_NUMA_BALANCING */ 1028static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1029{ 1030 return page_to_nid(page); /* XXX */ 1031} 1032 1033static inline int page_cpupid_last(struct page *page) 1034{ 1035 return page_to_nid(page); /* XXX */ 1036} 1037 1038static inline int cpupid_to_nid(int cpupid) 1039{ 1040 return -1; 1041} 1042 1043static inline int cpupid_to_pid(int cpupid) 1044{ 1045 return -1; 1046} 1047 1048static inline int cpupid_to_cpu(int cpupid) 1049{ 1050 return -1; 1051} 1052 1053static inline int cpu_pid_to_cpupid(int nid, int pid) 1054{ 1055 return -1; 1056} 1057 1058static inline bool cpupid_pid_unset(int cpupid) 1059{ 1060 return 1; 1061} 1062 1063static inline void page_cpupid_reset_last(struct page *page) 1064{ 1065} 1066 1067static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1068{ 1069 return false; 1070} 1071#endif /* CONFIG_NUMA_BALANCING */ 1072 1073static inline struct zone *page_zone(const struct page *page) 1074{ 1075 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1076} 1077 1078static inline pg_data_t *page_pgdat(const struct page *page) 1079{ 1080 return NODE_DATA(page_to_nid(page)); 1081} 1082 1083#ifdef SECTION_IN_PAGE_FLAGS 1084static inline void set_page_section(struct page *page, unsigned long section) 1085{ 1086 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1087 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1088} 1089 1090static inline unsigned long page_to_section(const struct page *page) 1091{ 1092 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1093} 1094#endif 1095 1096static inline void set_page_zone(struct page *page, enum zone_type zone) 1097{ 1098 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1099 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1100} 1101 1102static inline void set_page_node(struct page *page, unsigned long node) 1103{ 1104 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1105 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1106} 1107 1108static inline void set_page_links(struct page *page, enum zone_type zone, 1109 unsigned long node, unsigned long pfn) 1110{ 1111 set_page_zone(page, zone); 1112 set_page_node(page, node); 1113#ifdef SECTION_IN_PAGE_FLAGS 1114 set_page_section(page, pfn_to_section_nr(pfn)); 1115#endif 1116} 1117 1118#ifdef CONFIG_MEMCG 1119static inline struct mem_cgroup *page_memcg(struct page *page) 1120{ 1121 return page->mem_cgroup; 1122} 1123static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1124{ 1125 WARN_ON_ONCE(!rcu_read_lock_held()); 1126 return READ_ONCE(page->mem_cgroup); 1127} 1128#else 1129static inline struct mem_cgroup *page_memcg(struct page *page) 1130{ 1131 return NULL; 1132} 1133static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1134{ 1135 WARN_ON_ONCE(!rcu_read_lock_held()); 1136 return NULL; 1137} 1138#endif 1139 1140/* 1141 * Some inline functions in vmstat.h depend on page_zone() 1142 */ 1143#include <linux/vmstat.h> 1144 1145static __always_inline void *lowmem_page_address(const struct page *page) 1146{ 1147 return page_to_virt(page); 1148} 1149 1150#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1151#define HASHED_PAGE_VIRTUAL 1152#endif 1153 1154#if defined(WANT_PAGE_VIRTUAL) 1155static inline void *page_address(const struct page *page) 1156{ 1157 return page->virtual; 1158} 1159static inline void set_page_address(struct page *page, void *address) 1160{ 1161 page->virtual = address; 1162} 1163#define page_address_init() do { } while(0) 1164#endif 1165 1166#if defined(HASHED_PAGE_VIRTUAL) 1167void *page_address(const struct page *page); 1168void set_page_address(struct page *page, void *virtual); 1169void page_address_init(void); 1170#endif 1171 1172#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1173#define page_address(page) lowmem_page_address(page) 1174#define set_page_address(page, address) do { } while(0) 1175#define page_address_init() do { } while(0) 1176#endif 1177 1178extern void *page_rmapping(struct page *page); 1179extern struct anon_vma *page_anon_vma(struct page *page); 1180extern struct address_space *page_mapping(struct page *page); 1181 1182extern struct address_space *__page_file_mapping(struct page *); 1183 1184static inline 1185struct address_space *page_file_mapping(struct page *page) 1186{ 1187 if (unlikely(PageSwapCache(page))) 1188 return __page_file_mapping(page); 1189 1190 return page->mapping; 1191} 1192 1193extern pgoff_t __page_file_index(struct page *page); 1194 1195/* 1196 * Return the pagecache index of the passed page. Regular pagecache pages 1197 * use ->index whereas swapcache pages use swp_offset(->private) 1198 */ 1199static inline pgoff_t page_index(struct page *page) 1200{ 1201 if (unlikely(PageSwapCache(page))) 1202 return __page_file_index(page); 1203 return page->index; 1204} 1205 1206bool page_mapped(struct page *page); 1207struct address_space *page_mapping(struct page *page); 1208struct address_space *page_mapping_file(struct page *page); 1209 1210/* 1211 * Return true only if the page has been allocated with 1212 * ALLOC_NO_WATERMARKS and the low watermark was not 1213 * met implying that the system is under some pressure. 1214 */ 1215static inline bool page_is_pfmemalloc(struct page *page) 1216{ 1217 /* 1218 * Page index cannot be this large so this must be 1219 * a pfmemalloc page. 1220 */ 1221 return page->index == -1UL; 1222} 1223 1224/* 1225 * Only to be called by the page allocator on a freshly allocated 1226 * page. 1227 */ 1228static inline void set_page_pfmemalloc(struct page *page) 1229{ 1230 page->index = -1UL; 1231} 1232 1233static inline void clear_page_pfmemalloc(struct page *page) 1234{ 1235 page->index = 0; 1236} 1237 1238/* 1239 * Different kinds of faults, as returned by handle_mm_fault(). 1240 * Used to decide whether a process gets delivered SIGBUS or 1241 * just gets major/minor fault counters bumped up. 1242 */ 1243 1244#define VM_FAULT_OOM 0x0001 1245#define VM_FAULT_SIGBUS 0x0002 1246#define VM_FAULT_MAJOR 0x0004 1247#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1248#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1249#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1250#define VM_FAULT_SIGSEGV 0x0040 1251 1252#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1253#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1254#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1255#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1256#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1257#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables 1258 * and needs fsync() to complete (for 1259 * synchronous page faults in DAX) */ 1260 1261#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1262 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1263 VM_FAULT_FALLBACK) 1264 1265#define VM_FAULT_RESULT_TRACE \ 1266 { VM_FAULT_OOM, "OOM" }, \ 1267 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1268 { VM_FAULT_MAJOR, "MAJOR" }, \ 1269 { VM_FAULT_WRITE, "WRITE" }, \ 1270 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1271 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1272 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1273 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1274 { VM_FAULT_LOCKED, "LOCKED" }, \ 1275 { VM_FAULT_RETRY, "RETRY" }, \ 1276 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1277 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1278 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 1279 1280/* Encode hstate index for a hwpoisoned large page */ 1281#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1282#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1283 1284/* 1285 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1286 */ 1287extern void pagefault_out_of_memory(void); 1288 1289#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1290 1291/* 1292 * Flags passed to show_mem() and show_free_areas() to suppress output in 1293 * various contexts. 1294 */ 1295#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1296 1297extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1298 1299extern bool can_do_mlock(void); 1300extern int user_shm_lock(size_t, struct user_struct *); 1301extern void user_shm_unlock(size_t, struct user_struct *); 1302 1303/* 1304 * Parameter block passed down to zap_pte_range in exceptional cases. 1305 */ 1306struct zap_details { 1307 struct address_space *check_mapping; /* Check page->mapping if set */ 1308 pgoff_t first_index; /* Lowest page->index to unmap */ 1309 pgoff_t last_index; /* Highest page->index to unmap */ 1310}; 1311 1312struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1313 pte_t pte, bool with_public_device); 1314#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false) 1315 1316struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1317 pmd_t pmd); 1318 1319void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1320 unsigned long size); 1321void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1322 unsigned long size); 1323void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1324 unsigned long start, unsigned long end); 1325 1326/** 1327 * mm_walk - callbacks for walk_page_range 1328 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1329 * this handler should only handle pud_trans_huge() puds. 1330 * the pmd_entry or pte_entry callbacks will be used for 1331 * regular PUDs. 1332 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1333 * this handler is required to be able to handle 1334 * pmd_trans_huge() pmds. They may simply choose to 1335 * split_huge_page() instead of handling it explicitly. 1336 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1337 * @pte_hole: if set, called for each hole at all levels 1338 * @hugetlb_entry: if set, called for each hugetlb entry 1339 * @test_walk: caller specific callback function to determine whether 1340 * we walk over the current vma or not. Returning 0 1341 * value means "do page table walk over the current vma," 1342 * and a negative one means "abort current page table walk 1343 * right now." 1 means "skip the current vma." 1344 * @mm: mm_struct representing the target process of page table walk 1345 * @vma: vma currently walked (NULL if walking outside vmas) 1346 * @private: private data for callbacks' usage 1347 * 1348 * (see the comment on walk_page_range() for more details) 1349 */ 1350struct mm_walk { 1351 int (*pud_entry)(pud_t *pud, unsigned long addr, 1352 unsigned long next, struct mm_walk *walk); 1353 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1354 unsigned long next, struct mm_walk *walk); 1355 int (*pte_entry)(pte_t *pte, unsigned long addr, 1356 unsigned long next, struct mm_walk *walk); 1357 int (*pte_hole)(unsigned long addr, unsigned long next, 1358 struct mm_walk *walk); 1359 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1360 unsigned long addr, unsigned long next, 1361 struct mm_walk *walk); 1362 int (*test_walk)(unsigned long addr, unsigned long next, 1363 struct mm_walk *walk); 1364 struct mm_struct *mm; 1365 struct vm_area_struct *vma; 1366 void *private; 1367}; 1368 1369int walk_page_range(unsigned long addr, unsigned long end, 1370 struct mm_walk *walk); 1371int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1372void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1373 unsigned long end, unsigned long floor, unsigned long ceiling); 1374int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1375 struct vm_area_struct *vma); 1376int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1377 unsigned long *start, unsigned long *end, 1378 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1379int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1380 unsigned long *pfn); 1381int follow_phys(struct vm_area_struct *vma, unsigned long address, 1382 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1383int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1384 void *buf, int len, int write); 1385 1386extern void truncate_pagecache(struct inode *inode, loff_t new); 1387extern void truncate_setsize(struct inode *inode, loff_t newsize); 1388void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1389void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1390int truncate_inode_page(struct address_space *mapping, struct page *page); 1391int generic_error_remove_page(struct address_space *mapping, struct page *page); 1392int invalidate_inode_page(struct page *page); 1393 1394#ifdef CONFIG_MMU 1395extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1396 unsigned int flags); 1397extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1398 unsigned long address, unsigned int fault_flags, 1399 bool *unlocked); 1400void unmap_mapping_pages(struct address_space *mapping, 1401 pgoff_t start, pgoff_t nr, bool even_cows); 1402void unmap_mapping_range(struct address_space *mapping, 1403 loff_t const holebegin, loff_t const holelen, int even_cows); 1404#else 1405static inline int handle_mm_fault(struct vm_area_struct *vma, 1406 unsigned long address, unsigned int flags) 1407{ 1408 /* should never happen if there's no MMU */ 1409 BUG(); 1410 return VM_FAULT_SIGBUS; 1411} 1412static inline int fixup_user_fault(struct task_struct *tsk, 1413 struct mm_struct *mm, unsigned long address, 1414 unsigned int fault_flags, bool *unlocked) 1415{ 1416 /* should never happen if there's no MMU */ 1417 BUG(); 1418 return -EFAULT; 1419} 1420static inline void unmap_mapping_pages(struct address_space *mapping, 1421 pgoff_t start, pgoff_t nr, bool even_cows) { } 1422static inline void unmap_mapping_range(struct address_space *mapping, 1423 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1424#endif 1425 1426static inline void unmap_shared_mapping_range(struct address_space *mapping, 1427 loff_t const holebegin, loff_t const holelen) 1428{ 1429 unmap_mapping_range(mapping, holebegin, holelen, 0); 1430} 1431 1432extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1433 void *buf, int len, unsigned int gup_flags); 1434extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1435 void *buf, int len, unsigned int gup_flags); 1436extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1437 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1438 1439long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1440 unsigned long start, unsigned long nr_pages, 1441 unsigned int gup_flags, struct page **pages, 1442 struct vm_area_struct **vmas, int *locked); 1443long get_user_pages(unsigned long start, unsigned long nr_pages, 1444 unsigned int gup_flags, struct page **pages, 1445 struct vm_area_struct **vmas); 1446long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1447 unsigned int gup_flags, struct page **pages, int *locked); 1448long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1449 struct page **pages, unsigned int gup_flags); 1450#ifdef CONFIG_FS_DAX 1451long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1452 unsigned int gup_flags, struct page **pages, 1453 struct vm_area_struct **vmas); 1454#else 1455static inline long get_user_pages_longterm(unsigned long start, 1456 unsigned long nr_pages, unsigned int gup_flags, 1457 struct page **pages, struct vm_area_struct **vmas) 1458{ 1459 return get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1460} 1461#endif /* CONFIG_FS_DAX */ 1462 1463int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1464 struct page **pages); 1465 1466/* Container for pinned pfns / pages */ 1467struct frame_vector { 1468 unsigned int nr_allocated; /* Number of frames we have space for */ 1469 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1470 bool got_ref; /* Did we pin pages by getting page ref? */ 1471 bool is_pfns; /* Does array contain pages or pfns? */ 1472 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1473 * pfns_vector_pages() or pfns_vector_pfns() 1474 * for access */ 1475}; 1476 1477struct frame_vector *frame_vector_create(unsigned int nr_frames); 1478void frame_vector_destroy(struct frame_vector *vec); 1479int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1480 unsigned int gup_flags, struct frame_vector *vec); 1481void put_vaddr_frames(struct frame_vector *vec); 1482int frame_vector_to_pages(struct frame_vector *vec); 1483void frame_vector_to_pfns(struct frame_vector *vec); 1484 1485static inline unsigned int frame_vector_count(struct frame_vector *vec) 1486{ 1487 return vec->nr_frames; 1488} 1489 1490static inline struct page **frame_vector_pages(struct frame_vector *vec) 1491{ 1492 if (vec->is_pfns) { 1493 int err = frame_vector_to_pages(vec); 1494 1495 if (err) 1496 return ERR_PTR(err); 1497 } 1498 return (struct page **)(vec->ptrs); 1499} 1500 1501static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1502{ 1503 if (!vec->is_pfns) 1504 frame_vector_to_pfns(vec); 1505 return (unsigned long *)(vec->ptrs); 1506} 1507 1508struct kvec; 1509int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1510 struct page **pages); 1511int get_kernel_page(unsigned long start, int write, struct page **pages); 1512struct page *get_dump_page(unsigned long addr); 1513 1514extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1515extern void do_invalidatepage(struct page *page, unsigned int offset, 1516 unsigned int length); 1517 1518void __set_page_dirty(struct page *, struct address_space *, int warn); 1519int __set_page_dirty_nobuffers(struct page *page); 1520int __set_page_dirty_no_writeback(struct page *page); 1521int redirty_page_for_writepage(struct writeback_control *wbc, 1522 struct page *page); 1523void account_page_dirtied(struct page *page, struct address_space *mapping); 1524void account_page_cleaned(struct page *page, struct address_space *mapping, 1525 struct bdi_writeback *wb); 1526int set_page_dirty(struct page *page); 1527int set_page_dirty_lock(struct page *page); 1528void __cancel_dirty_page(struct page *page); 1529static inline void cancel_dirty_page(struct page *page) 1530{ 1531 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1532 if (PageDirty(page)) 1533 __cancel_dirty_page(page); 1534} 1535int clear_page_dirty_for_io(struct page *page); 1536 1537int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1538 1539static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1540{ 1541 return !vma->vm_ops; 1542} 1543 1544#ifdef CONFIG_SHMEM 1545/* 1546 * The vma_is_shmem is not inline because it is used only by slow 1547 * paths in userfault. 1548 */ 1549bool vma_is_shmem(struct vm_area_struct *vma); 1550#else 1551static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1552#endif 1553 1554int vma_is_stack_for_current(struct vm_area_struct *vma); 1555 1556extern unsigned long move_page_tables(struct vm_area_struct *vma, 1557 unsigned long old_addr, struct vm_area_struct *new_vma, 1558 unsigned long new_addr, unsigned long len, 1559 bool need_rmap_locks); 1560extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1561 unsigned long end, pgprot_t newprot, 1562 int dirty_accountable, int prot_numa); 1563extern int mprotect_fixup(struct vm_area_struct *vma, 1564 struct vm_area_struct **pprev, unsigned long start, 1565 unsigned long end, unsigned long newflags); 1566 1567/* 1568 * doesn't attempt to fault and will return short. 1569 */ 1570int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1571 struct page **pages); 1572/* 1573 * per-process(per-mm_struct) statistics. 1574 */ 1575static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1576{ 1577 long val = atomic_long_read(&mm->rss_stat.count[member]); 1578 1579#ifdef SPLIT_RSS_COUNTING 1580 /* 1581 * counter is updated in asynchronous manner and may go to minus. 1582 * But it's never be expected number for users. 1583 */ 1584 if (val < 0) 1585 val = 0; 1586#endif 1587 return (unsigned long)val; 1588} 1589 1590static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1591{ 1592 atomic_long_add(value, &mm->rss_stat.count[member]); 1593} 1594 1595static inline void inc_mm_counter(struct mm_struct *mm, int member) 1596{ 1597 atomic_long_inc(&mm->rss_stat.count[member]); 1598} 1599 1600static inline void dec_mm_counter(struct mm_struct *mm, int member) 1601{ 1602 atomic_long_dec(&mm->rss_stat.count[member]); 1603} 1604 1605/* Optimized variant when page is already known not to be PageAnon */ 1606static inline int mm_counter_file(struct page *page) 1607{ 1608 if (PageSwapBacked(page)) 1609 return MM_SHMEMPAGES; 1610 return MM_FILEPAGES; 1611} 1612 1613static inline int mm_counter(struct page *page) 1614{ 1615 if (PageAnon(page)) 1616 return MM_ANONPAGES; 1617 return mm_counter_file(page); 1618} 1619 1620static inline unsigned long get_mm_rss(struct mm_struct *mm) 1621{ 1622 return get_mm_counter(mm, MM_FILEPAGES) + 1623 get_mm_counter(mm, MM_ANONPAGES) + 1624 get_mm_counter(mm, MM_SHMEMPAGES); 1625} 1626 1627static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1628{ 1629 return max(mm->hiwater_rss, get_mm_rss(mm)); 1630} 1631 1632static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1633{ 1634 return max(mm->hiwater_vm, mm->total_vm); 1635} 1636 1637static inline void update_hiwater_rss(struct mm_struct *mm) 1638{ 1639 unsigned long _rss = get_mm_rss(mm); 1640 1641 if ((mm)->hiwater_rss < _rss) 1642 (mm)->hiwater_rss = _rss; 1643} 1644 1645static inline void update_hiwater_vm(struct mm_struct *mm) 1646{ 1647 if (mm->hiwater_vm < mm->total_vm) 1648 mm->hiwater_vm = mm->total_vm; 1649} 1650 1651static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1652{ 1653 mm->hiwater_rss = get_mm_rss(mm); 1654} 1655 1656static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1657 struct mm_struct *mm) 1658{ 1659 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1660 1661 if (*maxrss < hiwater_rss) 1662 *maxrss = hiwater_rss; 1663} 1664 1665#if defined(SPLIT_RSS_COUNTING) 1666void sync_mm_rss(struct mm_struct *mm); 1667#else 1668static inline void sync_mm_rss(struct mm_struct *mm) 1669{ 1670} 1671#endif 1672 1673#ifndef __HAVE_ARCH_PTE_DEVMAP 1674static inline int pte_devmap(pte_t pte) 1675{ 1676 return 0; 1677} 1678#endif 1679 1680int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1681 1682extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1683 spinlock_t **ptl); 1684static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1685 spinlock_t **ptl) 1686{ 1687 pte_t *ptep; 1688 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1689 return ptep; 1690} 1691 1692#ifdef __PAGETABLE_P4D_FOLDED 1693static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1694 unsigned long address) 1695{ 1696 return 0; 1697} 1698#else 1699int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1700#endif 1701 1702#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1703static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1704 unsigned long address) 1705{ 1706 return 0; 1707} 1708static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1709static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1710 1711#else 1712int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1713 1714static inline void mm_inc_nr_puds(struct mm_struct *mm) 1715{ 1716 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1717} 1718 1719static inline void mm_dec_nr_puds(struct mm_struct *mm) 1720{ 1721 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1722} 1723#endif 1724 1725#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1726static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1727 unsigned long address) 1728{ 1729 return 0; 1730} 1731 1732static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1733static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1734 1735#else 1736int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1737 1738static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1739{ 1740 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1741} 1742 1743static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1744{ 1745 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1746} 1747#endif 1748 1749#ifdef CONFIG_MMU 1750static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1751{ 1752 atomic_long_set(&mm->pgtables_bytes, 0); 1753} 1754 1755static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1756{ 1757 return atomic_long_read(&mm->pgtables_bytes); 1758} 1759 1760static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1761{ 1762 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1763} 1764 1765static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1766{ 1767 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1768} 1769#else 1770 1771static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1772static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1773{ 1774 return 0; 1775} 1776 1777static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1778static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1779#endif 1780 1781int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1782int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1783 1784/* 1785 * The following ifdef needed to get the 4level-fixup.h header to work. 1786 * Remove it when 4level-fixup.h has been removed. 1787 */ 1788#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1789 1790#ifndef __ARCH_HAS_5LEVEL_HACK 1791static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1792 unsigned long address) 1793{ 1794 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1795 NULL : p4d_offset(pgd, address); 1796} 1797 1798static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1799 unsigned long address) 1800{ 1801 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1802 NULL : pud_offset(p4d, address); 1803} 1804#endif /* !__ARCH_HAS_5LEVEL_HACK */ 1805 1806static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1807{ 1808 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1809 NULL: pmd_offset(pud, address); 1810} 1811#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1812 1813#if USE_SPLIT_PTE_PTLOCKS 1814#if ALLOC_SPLIT_PTLOCKS 1815void __init ptlock_cache_init(void); 1816extern bool ptlock_alloc(struct page *page); 1817extern void ptlock_free(struct page *page); 1818 1819static inline spinlock_t *ptlock_ptr(struct page *page) 1820{ 1821 return page->ptl; 1822} 1823#else /* ALLOC_SPLIT_PTLOCKS */ 1824static inline void ptlock_cache_init(void) 1825{ 1826} 1827 1828static inline bool ptlock_alloc(struct page *page) 1829{ 1830 return true; 1831} 1832 1833static inline void ptlock_free(struct page *page) 1834{ 1835} 1836 1837static inline spinlock_t *ptlock_ptr(struct page *page) 1838{ 1839 return &page->ptl; 1840} 1841#endif /* ALLOC_SPLIT_PTLOCKS */ 1842 1843static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1844{ 1845 return ptlock_ptr(pmd_page(*pmd)); 1846} 1847 1848static inline bool ptlock_init(struct page *page) 1849{ 1850 /* 1851 * prep_new_page() initialize page->private (and therefore page->ptl) 1852 * with 0. Make sure nobody took it in use in between. 1853 * 1854 * It can happen if arch try to use slab for page table allocation: 1855 * slab code uses page->slab_cache, which share storage with page->ptl. 1856 */ 1857 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1858 if (!ptlock_alloc(page)) 1859 return false; 1860 spin_lock_init(ptlock_ptr(page)); 1861 return true; 1862} 1863 1864/* Reset page->mapping so free_pages_check won't complain. */ 1865static inline void pte_lock_deinit(struct page *page) 1866{ 1867 page->mapping = NULL; 1868 ptlock_free(page); 1869} 1870 1871#else /* !USE_SPLIT_PTE_PTLOCKS */ 1872/* 1873 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1874 */ 1875static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1876{ 1877 return &mm->page_table_lock; 1878} 1879static inline void ptlock_cache_init(void) {} 1880static inline bool ptlock_init(struct page *page) { return true; } 1881static inline void pte_lock_deinit(struct page *page) {} 1882#endif /* USE_SPLIT_PTE_PTLOCKS */ 1883 1884static inline void pgtable_init(void) 1885{ 1886 ptlock_cache_init(); 1887 pgtable_cache_init(); 1888} 1889 1890static inline bool pgtable_page_ctor(struct page *page) 1891{ 1892 if (!ptlock_init(page)) 1893 return false; 1894 __SetPageTable(page); 1895 inc_zone_page_state(page, NR_PAGETABLE); 1896 return true; 1897} 1898 1899static inline void pgtable_page_dtor(struct page *page) 1900{ 1901 pte_lock_deinit(page); 1902 __ClearPageTable(page); 1903 dec_zone_page_state(page, NR_PAGETABLE); 1904} 1905 1906#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1907({ \ 1908 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1909 pte_t *__pte = pte_offset_map(pmd, address); \ 1910 *(ptlp) = __ptl; \ 1911 spin_lock(__ptl); \ 1912 __pte; \ 1913}) 1914 1915#define pte_unmap_unlock(pte, ptl) do { \ 1916 spin_unlock(ptl); \ 1917 pte_unmap(pte); \ 1918} while (0) 1919 1920#define pte_alloc(mm, pmd, address) \ 1921 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1922 1923#define pte_alloc_map(mm, pmd, address) \ 1924 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1925 1926#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1927 (pte_alloc(mm, pmd, address) ? \ 1928 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1929 1930#define pte_alloc_kernel(pmd, address) \ 1931 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1932 NULL: pte_offset_kernel(pmd, address)) 1933 1934#if USE_SPLIT_PMD_PTLOCKS 1935 1936static struct page *pmd_to_page(pmd_t *pmd) 1937{ 1938 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1939 return virt_to_page((void *)((unsigned long) pmd & mask)); 1940} 1941 1942static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1943{ 1944 return ptlock_ptr(pmd_to_page(pmd)); 1945} 1946 1947static inline bool pgtable_pmd_page_ctor(struct page *page) 1948{ 1949#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1950 page->pmd_huge_pte = NULL; 1951#endif 1952 return ptlock_init(page); 1953} 1954 1955static inline void pgtable_pmd_page_dtor(struct page *page) 1956{ 1957#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1958 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1959#endif 1960 ptlock_free(page); 1961} 1962 1963#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1964 1965#else 1966 1967static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1968{ 1969 return &mm->page_table_lock; 1970} 1971 1972static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1973static inline void pgtable_pmd_page_dtor(struct page *page) {} 1974 1975#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1976 1977#endif 1978 1979static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1980{ 1981 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1982 spin_lock(ptl); 1983 return ptl; 1984} 1985 1986/* 1987 * No scalability reason to split PUD locks yet, but follow the same pattern 1988 * as the PMD locks to make it easier if we decide to. The VM should not be 1989 * considered ready to switch to split PUD locks yet; there may be places 1990 * which need to be converted from page_table_lock. 1991 */ 1992static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 1993{ 1994 return &mm->page_table_lock; 1995} 1996 1997static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 1998{ 1999 spinlock_t *ptl = pud_lockptr(mm, pud); 2000 2001 spin_lock(ptl); 2002 return ptl; 2003} 2004 2005extern void __init pagecache_init(void); 2006extern void free_area_init(unsigned long * zones_size); 2007extern void free_area_init_node(int nid, unsigned long * zones_size, 2008 unsigned long zone_start_pfn, unsigned long *zholes_size); 2009extern void free_initmem(void); 2010 2011/* 2012 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2013 * into the buddy system. The freed pages will be poisoned with pattern 2014 * "poison" if it's within range [0, UCHAR_MAX]. 2015 * Return pages freed into the buddy system. 2016 */ 2017extern unsigned long free_reserved_area(void *start, void *end, 2018 int poison, char *s); 2019 2020#ifdef CONFIG_HIGHMEM 2021/* 2022 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2023 * and totalram_pages. 2024 */ 2025extern void free_highmem_page(struct page *page); 2026#endif 2027 2028extern void adjust_managed_page_count(struct page *page, long count); 2029extern void mem_init_print_info(const char *str); 2030 2031extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2032 2033/* Free the reserved page into the buddy system, so it gets managed. */ 2034static inline void __free_reserved_page(struct page *page) 2035{ 2036 ClearPageReserved(page); 2037 init_page_count(page); 2038 __free_page(page); 2039} 2040 2041static inline void free_reserved_page(struct page *page) 2042{ 2043 __free_reserved_page(page); 2044 adjust_managed_page_count(page, 1); 2045} 2046 2047static inline void mark_page_reserved(struct page *page) 2048{ 2049 SetPageReserved(page); 2050 adjust_managed_page_count(page, -1); 2051} 2052 2053/* 2054 * Default method to free all the __init memory into the buddy system. 2055 * The freed pages will be poisoned with pattern "poison" if it's within 2056 * range [0, UCHAR_MAX]. 2057 * Return pages freed into the buddy system. 2058 */ 2059static inline unsigned long free_initmem_default(int poison) 2060{ 2061 extern char __init_begin[], __init_end[]; 2062 2063 return free_reserved_area(&__init_begin, &__init_end, 2064 poison, "unused kernel"); 2065} 2066 2067static inline unsigned long get_num_physpages(void) 2068{ 2069 int nid; 2070 unsigned long phys_pages = 0; 2071 2072 for_each_online_node(nid) 2073 phys_pages += node_present_pages(nid); 2074 2075 return phys_pages; 2076} 2077 2078#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2079/* 2080 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2081 * zones, allocate the backing mem_map and account for memory holes in a more 2082 * architecture independent manner. This is a substitute for creating the 2083 * zone_sizes[] and zholes_size[] arrays and passing them to 2084 * free_area_init_node() 2085 * 2086 * An architecture is expected to register range of page frames backed by 2087 * physical memory with memblock_add[_node]() before calling 2088 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2089 * usage, an architecture is expected to do something like 2090 * 2091 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2092 * max_highmem_pfn}; 2093 * for_each_valid_physical_page_range() 2094 * memblock_add_node(base, size, nid) 2095 * free_area_init_nodes(max_zone_pfns); 2096 * 2097 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2098 * registered physical page range. Similarly 2099 * sparse_memory_present_with_active_regions() calls memory_present() for 2100 * each range when SPARSEMEM is enabled. 2101 * 2102 * See mm/page_alloc.c for more information on each function exposed by 2103 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2104 */ 2105extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2106unsigned long node_map_pfn_alignment(void); 2107unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2108 unsigned long end_pfn); 2109extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2110 unsigned long end_pfn); 2111extern void get_pfn_range_for_nid(unsigned int nid, 2112 unsigned long *start_pfn, unsigned long *end_pfn); 2113extern unsigned long find_min_pfn_with_active_regions(void); 2114extern void free_bootmem_with_active_regions(int nid, 2115 unsigned long max_low_pfn); 2116extern void sparse_memory_present_with_active_regions(int nid); 2117 2118#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2119 2120#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2121 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2122static inline int __early_pfn_to_nid(unsigned long pfn, 2123 struct mminit_pfnnid_cache *state) 2124{ 2125 return 0; 2126} 2127#else 2128/* please see mm/page_alloc.c */ 2129extern int __meminit early_pfn_to_nid(unsigned long pfn); 2130/* there is a per-arch backend function. */ 2131extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2132 struct mminit_pfnnid_cache *state); 2133#endif 2134 2135#ifdef CONFIG_HAVE_MEMBLOCK 2136void zero_resv_unavail(void); 2137#else 2138static inline void zero_resv_unavail(void) {} 2139#endif 2140 2141extern void set_dma_reserve(unsigned long new_dma_reserve); 2142extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2143 enum memmap_context, struct vmem_altmap *); 2144extern void setup_per_zone_wmarks(void); 2145extern int __meminit init_per_zone_wmark_min(void); 2146extern void mem_init(void); 2147extern void __init mmap_init(void); 2148extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2149extern long si_mem_available(void); 2150extern void si_meminfo(struct sysinfo * val); 2151extern void si_meminfo_node(struct sysinfo *val, int nid); 2152#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2153extern unsigned long arch_reserved_kernel_pages(void); 2154#endif 2155 2156extern __printf(3, 4) 2157void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2158 2159extern void setup_per_cpu_pageset(void); 2160 2161extern void zone_pcp_update(struct zone *zone); 2162extern void zone_pcp_reset(struct zone *zone); 2163 2164/* page_alloc.c */ 2165extern int min_free_kbytes; 2166extern int watermark_scale_factor; 2167 2168/* nommu.c */ 2169extern atomic_long_t mmap_pages_allocated; 2170extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2171 2172/* interval_tree.c */ 2173void vma_interval_tree_insert(struct vm_area_struct *node, 2174 struct rb_root_cached *root); 2175void vma_interval_tree_insert_after(struct vm_area_struct *node, 2176 struct vm_area_struct *prev, 2177 struct rb_root_cached *root); 2178void vma_interval_tree_remove(struct vm_area_struct *node, 2179 struct rb_root_cached *root); 2180struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2181 unsigned long start, unsigned long last); 2182struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2183 unsigned long start, unsigned long last); 2184 2185#define vma_interval_tree_foreach(vma, root, start, last) \ 2186 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2187 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2188 2189void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2190 struct rb_root_cached *root); 2191void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2192 struct rb_root_cached *root); 2193struct anon_vma_chain * 2194anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2195 unsigned long start, unsigned long last); 2196struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2197 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2198#ifdef CONFIG_DEBUG_VM_RB 2199void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2200#endif 2201 2202#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2203 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2204 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2205 2206/* mmap.c */ 2207extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2208extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2209 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2210 struct vm_area_struct *expand); 2211static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2212 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2213{ 2214 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2215} 2216extern struct vm_area_struct *vma_merge(struct mm_struct *, 2217 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2218 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2219 struct mempolicy *, struct vm_userfaultfd_ctx); 2220extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2221extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2222 unsigned long addr, int new_below); 2223extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2224 unsigned long addr, int new_below); 2225extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2226extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2227 struct rb_node **, struct rb_node *); 2228extern void unlink_file_vma(struct vm_area_struct *); 2229extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2230 unsigned long addr, unsigned long len, pgoff_t pgoff, 2231 bool *need_rmap_locks); 2232extern void exit_mmap(struct mm_struct *); 2233 2234static inline int check_data_rlimit(unsigned long rlim, 2235 unsigned long new, 2236 unsigned long start, 2237 unsigned long end_data, 2238 unsigned long start_data) 2239{ 2240 if (rlim < RLIM_INFINITY) { 2241 if (((new - start) + (end_data - start_data)) > rlim) 2242 return -ENOSPC; 2243 } 2244 2245 return 0; 2246} 2247 2248extern int mm_take_all_locks(struct mm_struct *mm); 2249extern void mm_drop_all_locks(struct mm_struct *mm); 2250 2251extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2252extern struct file *get_mm_exe_file(struct mm_struct *mm); 2253extern struct file *get_task_exe_file(struct task_struct *task); 2254 2255extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2256extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2257 2258extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2259 const struct vm_special_mapping *sm); 2260extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2261 unsigned long addr, unsigned long len, 2262 unsigned long flags, 2263 const struct vm_special_mapping *spec); 2264/* This is an obsolete alternative to _install_special_mapping. */ 2265extern int install_special_mapping(struct mm_struct *mm, 2266 unsigned long addr, unsigned long len, 2267 unsigned long flags, struct page **pages); 2268 2269extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2270 2271extern unsigned long mmap_region(struct file *file, unsigned long addr, 2272 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2273 struct list_head *uf); 2274extern unsigned long do_mmap(struct file *file, unsigned long addr, 2275 unsigned long len, unsigned long prot, unsigned long flags, 2276 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2277 struct list_head *uf); 2278extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2279 struct list_head *uf); 2280 2281static inline unsigned long 2282do_mmap_pgoff(struct file *file, unsigned long addr, 2283 unsigned long len, unsigned long prot, unsigned long flags, 2284 unsigned long pgoff, unsigned long *populate, 2285 struct list_head *uf) 2286{ 2287 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2288} 2289 2290#ifdef CONFIG_MMU 2291extern int __mm_populate(unsigned long addr, unsigned long len, 2292 int ignore_errors); 2293static inline void mm_populate(unsigned long addr, unsigned long len) 2294{ 2295 /* Ignore errors */ 2296 (void) __mm_populate(addr, len, 1); 2297} 2298#else 2299static inline void mm_populate(unsigned long addr, unsigned long len) {} 2300#endif 2301 2302/* These take the mm semaphore themselves */ 2303extern int __must_check vm_brk(unsigned long, unsigned long); 2304extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2305extern int vm_munmap(unsigned long, size_t); 2306extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2307 unsigned long, unsigned long, 2308 unsigned long, unsigned long); 2309 2310struct vm_unmapped_area_info { 2311#define VM_UNMAPPED_AREA_TOPDOWN 1 2312 unsigned long flags; 2313 unsigned long length; 2314 unsigned long low_limit; 2315 unsigned long high_limit; 2316 unsigned long align_mask; 2317 unsigned long align_offset; 2318}; 2319 2320extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2321extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2322 2323/* 2324 * Search for an unmapped address range. 2325 * 2326 * We are looking for a range that: 2327 * - does not intersect with any VMA; 2328 * - is contained within the [low_limit, high_limit) interval; 2329 * - is at least the desired size. 2330 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2331 */ 2332static inline unsigned long 2333vm_unmapped_area(struct vm_unmapped_area_info *info) 2334{ 2335 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2336 return unmapped_area_topdown(info); 2337 else 2338 return unmapped_area(info); 2339} 2340 2341/* truncate.c */ 2342extern void truncate_inode_pages(struct address_space *, loff_t); 2343extern void truncate_inode_pages_range(struct address_space *, 2344 loff_t lstart, loff_t lend); 2345extern void truncate_inode_pages_final(struct address_space *); 2346 2347/* generic vm_area_ops exported for stackable file systems */ 2348extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2349extern void filemap_map_pages(struct vm_fault *vmf, 2350 pgoff_t start_pgoff, pgoff_t end_pgoff); 2351extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2352 2353/* mm/page-writeback.c */ 2354int __must_check write_one_page(struct page *page); 2355void task_dirty_inc(struct task_struct *tsk); 2356 2357/* readahead.c */ 2358#define VM_MAX_READAHEAD 128 /* kbytes */ 2359#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2360 2361int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2362 pgoff_t offset, unsigned long nr_to_read); 2363 2364void page_cache_sync_readahead(struct address_space *mapping, 2365 struct file_ra_state *ra, 2366 struct file *filp, 2367 pgoff_t offset, 2368 unsigned long size); 2369 2370void page_cache_async_readahead(struct address_space *mapping, 2371 struct file_ra_state *ra, 2372 struct file *filp, 2373 struct page *pg, 2374 pgoff_t offset, 2375 unsigned long size); 2376 2377extern unsigned long stack_guard_gap; 2378/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2379extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2380 2381/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2382extern int expand_downwards(struct vm_area_struct *vma, 2383 unsigned long address); 2384#if VM_GROWSUP 2385extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2386#else 2387 #define expand_upwards(vma, address) (0) 2388#endif 2389 2390/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2391extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2392extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2393 struct vm_area_struct **pprev); 2394 2395/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2396 NULL if none. Assume start_addr < end_addr. */ 2397static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2398{ 2399 struct vm_area_struct * vma = find_vma(mm,start_addr); 2400 2401 if (vma && end_addr <= vma->vm_start) 2402 vma = NULL; 2403 return vma; 2404} 2405 2406static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2407{ 2408 unsigned long vm_start = vma->vm_start; 2409 2410 if (vma->vm_flags & VM_GROWSDOWN) { 2411 vm_start -= stack_guard_gap; 2412 if (vm_start > vma->vm_start) 2413 vm_start = 0; 2414 } 2415 return vm_start; 2416} 2417 2418static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2419{ 2420 unsigned long vm_end = vma->vm_end; 2421 2422 if (vma->vm_flags & VM_GROWSUP) { 2423 vm_end += stack_guard_gap; 2424 if (vm_end < vma->vm_end) 2425 vm_end = -PAGE_SIZE; 2426 } 2427 return vm_end; 2428} 2429 2430static inline unsigned long vma_pages(struct vm_area_struct *vma) 2431{ 2432 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2433} 2434 2435/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2436static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2437 unsigned long vm_start, unsigned long vm_end) 2438{ 2439 struct vm_area_struct *vma = find_vma(mm, vm_start); 2440 2441 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2442 vma = NULL; 2443 2444 return vma; 2445} 2446 2447#ifdef CONFIG_MMU 2448pgprot_t vm_get_page_prot(unsigned long vm_flags); 2449void vma_set_page_prot(struct vm_area_struct *vma); 2450#else 2451static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2452{ 2453 return __pgprot(0); 2454} 2455static inline void vma_set_page_prot(struct vm_area_struct *vma) 2456{ 2457 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2458} 2459#endif 2460 2461#ifdef CONFIG_NUMA_BALANCING 2462unsigned long change_prot_numa(struct vm_area_struct *vma, 2463 unsigned long start, unsigned long end); 2464#endif 2465 2466struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2467int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2468 unsigned long pfn, unsigned long size, pgprot_t); 2469int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2470int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2471 unsigned long pfn); 2472int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2473 unsigned long pfn, pgprot_t pgprot); 2474int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2475 pfn_t pfn); 2476vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2477 unsigned long addr, pfn_t pfn); 2478int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2479 2480static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2481 unsigned long addr, struct page *page) 2482{ 2483 int err = vm_insert_page(vma, addr, page); 2484 2485 if (err == -ENOMEM) 2486 return VM_FAULT_OOM; 2487 if (err < 0 && err != -EBUSY) 2488 return VM_FAULT_SIGBUS; 2489 2490 return VM_FAULT_NOPAGE; 2491} 2492 2493static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, 2494 unsigned long addr, pfn_t pfn) 2495{ 2496 int err = vm_insert_mixed(vma, addr, pfn); 2497 2498 if (err == -ENOMEM) 2499 return VM_FAULT_OOM; 2500 if (err < 0 && err != -EBUSY) 2501 return VM_FAULT_SIGBUS; 2502 2503 return VM_FAULT_NOPAGE; 2504} 2505 2506static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, 2507 unsigned long addr, unsigned long pfn) 2508{ 2509 int err = vm_insert_pfn(vma, addr, pfn); 2510 2511 if (err == -ENOMEM) 2512 return VM_FAULT_OOM; 2513 if (err < 0 && err != -EBUSY) 2514 return VM_FAULT_SIGBUS; 2515 2516 return VM_FAULT_NOPAGE; 2517} 2518 2519static inline vm_fault_t vmf_error(int err) 2520{ 2521 if (err == -ENOMEM) 2522 return VM_FAULT_OOM; 2523 return VM_FAULT_SIGBUS; 2524} 2525 2526struct page *follow_page_mask(struct vm_area_struct *vma, 2527 unsigned long address, unsigned int foll_flags, 2528 unsigned int *page_mask); 2529 2530static inline struct page *follow_page(struct vm_area_struct *vma, 2531 unsigned long address, unsigned int foll_flags) 2532{ 2533 unsigned int unused_page_mask; 2534 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2535} 2536 2537#define FOLL_WRITE 0x01 /* check pte is writable */ 2538#define FOLL_TOUCH 0x02 /* mark page accessed */ 2539#define FOLL_GET 0x04 /* do get_page on page */ 2540#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2541#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2542#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2543 * and return without waiting upon it */ 2544#define FOLL_POPULATE 0x40 /* fault in page */ 2545#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2546#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2547#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2548#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2549#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2550#define FOLL_MLOCK 0x1000 /* lock present pages */ 2551#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2552#define FOLL_COW 0x4000 /* internal GUP flag */ 2553#define FOLL_ANON 0x8000 /* don't do file mappings */ 2554 2555static inline int vm_fault_to_errno(int vm_fault, int foll_flags) 2556{ 2557 if (vm_fault & VM_FAULT_OOM) 2558 return -ENOMEM; 2559 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2560 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2561 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2562 return -EFAULT; 2563 return 0; 2564} 2565 2566typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2567 void *data); 2568extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2569 unsigned long size, pte_fn_t fn, void *data); 2570 2571 2572#ifdef CONFIG_PAGE_POISONING 2573extern bool page_poisoning_enabled(void); 2574extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2575#else 2576static inline bool page_poisoning_enabled(void) { return false; } 2577static inline void kernel_poison_pages(struct page *page, int numpages, 2578 int enable) { } 2579#endif 2580 2581#ifdef CONFIG_DEBUG_PAGEALLOC 2582extern bool _debug_pagealloc_enabled; 2583extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2584 2585static inline bool debug_pagealloc_enabled(void) 2586{ 2587 return _debug_pagealloc_enabled; 2588} 2589 2590static inline void 2591kernel_map_pages(struct page *page, int numpages, int enable) 2592{ 2593 if (!debug_pagealloc_enabled()) 2594 return; 2595 2596 __kernel_map_pages(page, numpages, enable); 2597} 2598#ifdef CONFIG_HIBERNATION 2599extern bool kernel_page_present(struct page *page); 2600#endif /* CONFIG_HIBERNATION */ 2601#else /* CONFIG_DEBUG_PAGEALLOC */ 2602static inline void 2603kernel_map_pages(struct page *page, int numpages, int enable) {} 2604#ifdef CONFIG_HIBERNATION 2605static inline bool kernel_page_present(struct page *page) { return true; } 2606#endif /* CONFIG_HIBERNATION */ 2607static inline bool debug_pagealloc_enabled(void) 2608{ 2609 return false; 2610} 2611#endif /* CONFIG_DEBUG_PAGEALLOC */ 2612 2613#ifdef __HAVE_ARCH_GATE_AREA 2614extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2615extern int in_gate_area_no_mm(unsigned long addr); 2616extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2617#else 2618static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2619{ 2620 return NULL; 2621} 2622static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2623static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2624{ 2625 return 0; 2626} 2627#endif /* __HAVE_ARCH_GATE_AREA */ 2628 2629extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2630 2631#ifdef CONFIG_SYSCTL 2632extern int sysctl_drop_caches; 2633int drop_caches_sysctl_handler(struct ctl_table *, int, 2634 void __user *, size_t *, loff_t *); 2635#endif 2636 2637void drop_slab(void); 2638void drop_slab_node(int nid); 2639 2640#ifndef CONFIG_MMU 2641#define randomize_va_space 0 2642#else 2643extern int randomize_va_space; 2644#endif 2645 2646const char * arch_vma_name(struct vm_area_struct *vma); 2647void print_vma_addr(char *prefix, unsigned long rip); 2648 2649void sparse_mem_maps_populate_node(struct page **map_map, 2650 unsigned long pnum_begin, 2651 unsigned long pnum_end, 2652 unsigned long map_count, 2653 int nodeid); 2654 2655struct page *sparse_mem_map_populate(unsigned long pnum, int nid, 2656 struct vmem_altmap *altmap); 2657pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2658p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2659pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2660pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2661pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2662void *vmemmap_alloc_block(unsigned long size, int node); 2663struct vmem_altmap; 2664void *vmemmap_alloc_block_buf(unsigned long size, int node); 2665void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2666void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2667int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2668 int node); 2669int vmemmap_populate(unsigned long start, unsigned long end, int node, 2670 struct vmem_altmap *altmap); 2671void vmemmap_populate_print_last(void); 2672#ifdef CONFIG_MEMORY_HOTPLUG 2673void vmemmap_free(unsigned long start, unsigned long end, 2674 struct vmem_altmap *altmap); 2675#endif 2676void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2677 unsigned long nr_pages); 2678 2679enum mf_flags { 2680 MF_COUNT_INCREASED = 1 << 0, 2681 MF_ACTION_REQUIRED = 1 << 1, 2682 MF_MUST_KILL = 1 << 2, 2683 MF_SOFT_OFFLINE = 1 << 3, 2684}; 2685extern int memory_failure(unsigned long pfn, int flags); 2686extern void memory_failure_queue(unsigned long pfn, int flags); 2687extern int unpoison_memory(unsigned long pfn); 2688extern int get_hwpoison_page(struct page *page); 2689#define put_hwpoison_page(page) put_page(page) 2690extern int sysctl_memory_failure_early_kill; 2691extern int sysctl_memory_failure_recovery; 2692extern void shake_page(struct page *p, int access); 2693extern atomic_long_t num_poisoned_pages __read_mostly; 2694extern int soft_offline_page(struct page *page, int flags); 2695 2696 2697/* 2698 * Error handlers for various types of pages. 2699 */ 2700enum mf_result { 2701 MF_IGNORED, /* Error: cannot be handled */ 2702 MF_FAILED, /* Error: handling failed */ 2703 MF_DELAYED, /* Will be handled later */ 2704 MF_RECOVERED, /* Successfully recovered */ 2705}; 2706 2707enum mf_action_page_type { 2708 MF_MSG_KERNEL, 2709 MF_MSG_KERNEL_HIGH_ORDER, 2710 MF_MSG_SLAB, 2711 MF_MSG_DIFFERENT_COMPOUND, 2712 MF_MSG_POISONED_HUGE, 2713 MF_MSG_HUGE, 2714 MF_MSG_FREE_HUGE, 2715 MF_MSG_NON_PMD_HUGE, 2716 MF_MSG_UNMAP_FAILED, 2717 MF_MSG_DIRTY_SWAPCACHE, 2718 MF_MSG_CLEAN_SWAPCACHE, 2719 MF_MSG_DIRTY_MLOCKED_LRU, 2720 MF_MSG_CLEAN_MLOCKED_LRU, 2721 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2722 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2723 MF_MSG_DIRTY_LRU, 2724 MF_MSG_CLEAN_LRU, 2725 MF_MSG_TRUNCATED_LRU, 2726 MF_MSG_BUDDY, 2727 MF_MSG_BUDDY_2ND, 2728 MF_MSG_UNKNOWN, 2729}; 2730 2731#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2732extern void clear_huge_page(struct page *page, 2733 unsigned long addr_hint, 2734 unsigned int pages_per_huge_page); 2735extern void copy_user_huge_page(struct page *dst, struct page *src, 2736 unsigned long addr, struct vm_area_struct *vma, 2737 unsigned int pages_per_huge_page); 2738extern long copy_huge_page_from_user(struct page *dst_page, 2739 const void __user *usr_src, 2740 unsigned int pages_per_huge_page, 2741 bool allow_pagefault); 2742#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2743 2744extern struct page_ext_operations debug_guardpage_ops; 2745 2746#ifdef CONFIG_DEBUG_PAGEALLOC 2747extern unsigned int _debug_guardpage_minorder; 2748extern bool _debug_guardpage_enabled; 2749 2750static inline unsigned int debug_guardpage_minorder(void) 2751{ 2752 return _debug_guardpage_minorder; 2753} 2754 2755static inline bool debug_guardpage_enabled(void) 2756{ 2757 return _debug_guardpage_enabled; 2758} 2759 2760static inline bool page_is_guard(struct page *page) 2761{ 2762 struct page_ext *page_ext; 2763 2764 if (!debug_guardpage_enabled()) 2765 return false; 2766 2767 page_ext = lookup_page_ext(page); 2768 if (unlikely(!page_ext)) 2769 return false; 2770 2771 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2772} 2773#else 2774static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2775static inline bool debug_guardpage_enabled(void) { return false; } 2776static inline bool page_is_guard(struct page *page) { return false; } 2777#endif /* CONFIG_DEBUG_PAGEALLOC */ 2778 2779#if MAX_NUMNODES > 1 2780void __init setup_nr_node_ids(void); 2781#else 2782static inline void setup_nr_node_ids(void) {} 2783#endif 2784 2785#endif /* __KERNEL__ */ 2786#endif /* _LINUX_MM_H */