Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Linux Socket Filter Data Structures
4 */
5#ifndef __LINUX_FILTER_H__
6#define __LINUX_FILTER_H__
7
8#include <stdarg.h>
9
10#include <linux/atomic.h>
11#include <linux/refcount.h>
12#include <linux/compat.h>
13#include <linux/skbuff.h>
14#include <linux/linkage.h>
15#include <linux/printk.h>
16#include <linux/workqueue.h>
17#include <linux/sched.h>
18#include <linux/capability.h>
19#include <linux/cryptohash.h>
20#include <linux/set_memory.h>
21#include <linux/kallsyms.h>
22#include <linux/if_vlan.h>
23
24#include <net/sch_generic.h>
25
26#include <uapi/linux/filter.h>
27#include <uapi/linux/bpf.h>
28
29struct sk_buff;
30struct sock;
31struct seccomp_data;
32struct bpf_prog_aux;
33struct xdp_rxq_info;
34struct xdp_buff;
35
36/* ArgX, context and stack frame pointer register positions. Note,
37 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
38 * calls in BPF_CALL instruction.
39 */
40#define BPF_REG_ARG1 BPF_REG_1
41#define BPF_REG_ARG2 BPF_REG_2
42#define BPF_REG_ARG3 BPF_REG_3
43#define BPF_REG_ARG4 BPF_REG_4
44#define BPF_REG_ARG5 BPF_REG_5
45#define BPF_REG_CTX BPF_REG_6
46#define BPF_REG_FP BPF_REG_10
47
48/* Additional register mappings for converted user programs. */
49#define BPF_REG_A BPF_REG_0
50#define BPF_REG_X BPF_REG_7
51#define BPF_REG_TMP BPF_REG_2 /* scratch reg */
52#define BPF_REG_D BPF_REG_8 /* data, callee-saved */
53#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */
54
55/* Kernel hidden auxiliary/helper register for hardening step.
56 * Only used by eBPF JITs. It's nothing more than a temporary
57 * register that JITs use internally, only that here it's part
58 * of eBPF instructions that have been rewritten for blinding
59 * constants. See JIT pre-step in bpf_jit_blind_constants().
60 */
61#define BPF_REG_AX MAX_BPF_REG
62#define MAX_BPF_JIT_REG (MAX_BPF_REG + 1)
63
64/* unused opcode to mark special call to bpf_tail_call() helper */
65#define BPF_TAIL_CALL 0xf0
66
67/* unused opcode to mark call to interpreter with arguments */
68#define BPF_CALL_ARGS 0xe0
69
70/* As per nm, we expose JITed images as text (code) section for
71 * kallsyms. That way, tools like perf can find it to match
72 * addresses.
73 */
74#define BPF_SYM_ELF_TYPE 't'
75
76/* BPF program can access up to 512 bytes of stack space. */
77#define MAX_BPF_STACK 512
78
79/* Helper macros for filter block array initializers. */
80
81/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
82
83#define BPF_ALU64_REG(OP, DST, SRC) \
84 ((struct bpf_insn) { \
85 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
86 .dst_reg = DST, \
87 .src_reg = SRC, \
88 .off = 0, \
89 .imm = 0 })
90
91#define BPF_ALU32_REG(OP, DST, SRC) \
92 ((struct bpf_insn) { \
93 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \
94 .dst_reg = DST, \
95 .src_reg = SRC, \
96 .off = 0, \
97 .imm = 0 })
98
99/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
100
101#define BPF_ALU64_IMM(OP, DST, IMM) \
102 ((struct bpf_insn) { \
103 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
104 .dst_reg = DST, \
105 .src_reg = 0, \
106 .off = 0, \
107 .imm = IMM })
108
109#define BPF_ALU32_IMM(OP, DST, IMM) \
110 ((struct bpf_insn) { \
111 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \
112 .dst_reg = DST, \
113 .src_reg = 0, \
114 .off = 0, \
115 .imm = IMM })
116
117/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
118
119#define BPF_ENDIAN(TYPE, DST, LEN) \
120 ((struct bpf_insn) { \
121 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
122 .dst_reg = DST, \
123 .src_reg = 0, \
124 .off = 0, \
125 .imm = LEN })
126
127/* Short form of mov, dst_reg = src_reg */
128
129#define BPF_MOV64_REG(DST, SRC) \
130 ((struct bpf_insn) { \
131 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
132 .dst_reg = DST, \
133 .src_reg = SRC, \
134 .off = 0, \
135 .imm = 0 })
136
137#define BPF_MOV32_REG(DST, SRC) \
138 ((struct bpf_insn) { \
139 .code = BPF_ALU | BPF_MOV | BPF_X, \
140 .dst_reg = DST, \
141 .src_reg = SRC, \
142 .off = 0, \
143 .imm = 0 })
144
145/* Short form of mov, dst_reg = imm32 */
146
147#define BPF_MOV64_IMM(DST, IMM) \
148 ((struct bpf_insn) { \
149 .code = BPF_ALU64 | BPF_MOV | BPF_K, \
150 .dst_reg = DST, \
151 .src_reg = 0, \
152 .off = 0, \
153 .imm = IMM })
154
155#define BPF_MOV32_IMM(DST, IMM) \
156 ((struct bpf_insn) { \
157 .code = BPF_ALU | BPF_MOV | BPF_K, \
158 .dst_reg = DST, \
159 .src_reg = 0, \
160 .off = 0, \
161 .imm = IMM })
162
163/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
164#define BPF_LD_IMM64(DST, IMM) \
165 BPF_LD_IMM64_RAW(DST, 0, IMM)
166
167#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
168 ((struct bpf_insn) { \
169 .code = BPF_LD | BPF_DW | BPF_IMM, \
170 .dst_reg = DST, \
171 .src_reg = SRC, \
172 .off = 0, \
173 .imm = (__u32) (IMM) }), \
174 ((struct bpf_insn) { \
175 .code = 0, /* zero is reserved opcode */ \
176 .dst_reg = 0, \
177 .src_reg = 0, \
178 .off = 0, \
179 .imm = ((__u64) (IMM)) >> 32 })
180
181/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
182#define BPF_LD_MAP_FD(DST, MAP_FD) \
183 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
184
185/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
186
187#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
188 ((struct bpf_insn) { \
189 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
190 .dst_reg = DST, \
191 .src_reg = SRC, \
192 .off = 0, \
193 .imm = IMM })
194
195#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
196 ((struct bpf_insn) { \
197 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
198 .dst_reg = DST, \
199 .src_reg = SRC, \
200 .off = 0, \
201 .imm = IMM })
202
203/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
204
205#define BPF_LD_ABS(SIZE, IMM) \
206 ((struct bpf_insn) { \
207 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
208 .dst_reg = 0, \
209 .src_reg = 0, \
210 .off = 0, \
211 .imm = IMM })
212
213/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
214
215#define BPF_LD_IND(SIZE, SRC, IMM) \
216 ((struct bpf_insn) { \
217 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
218 .dst_reg = 0, \
219 .src_reg = SRC, \
220 .off = 0, \
221 .imm = IMM })
222
223/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
224
225#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
226 ((struct bpf_insn) { \
227 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
228 .dst_reg = DST, \
229 .src_reg = SRC, \
230 .off = OFF, \
231 .imm = 0 })
232
233/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
234
235#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
236 ((struct bpf_insn) { \
237 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
238 .dst_reg = DST, \
239 .src_reg = SRC, \
240 .off = OFF, \
241 .imm = 0 })
242
243/* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
244
245#define BPF_STX_XADD(SIZE, DST, SRC, OFF) \
246 ((struct bpf_insn) { \
247 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \
248 .dst_reg = DST, \
249 .src_reg = SRC, \
250 .off = OFF, \
251 .imm = 0 })
252
253/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
254
255#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
256 ((struct bpf_insn) { \
257 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
258 .dst_reg = DST, \
259 .src_reg = 0, \
260 .off = OFF, \
261 .imm = IMM })
262
263/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
264
265#define BPF_JMP_REG(OP, DST, SRC, OFF) \
266 ((struct bpf_insn) { \
267 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \
268 .dst_reg = DST, \
269 .src_reg = SRC, \
270 .off = OFF, \
271 .imm = 0 })
272
273/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
274
275#define BPF_JMP_IMM(OP, DST, IMM, OFF) \
276 ((struct bpf_insn) { \
277 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \
278 .dst_reg = DST, \
279 .src_reg = 0, \
280 .off = OFF, \
281 .imm = IMM })
282
283/* Unconditional jumps, goto pc + off16 */
284
285#define BPF_JMP_A(OFF) \
286 ((struct bpf_insn) { \
287 .code = BPF_JMP | BPF_JA, \
288 .dst_reg = 0, \
289 .src_reg = 0, \
290 .off = OFF, \
291 .imm = 0 })
292
293/* Relative call */
294
295#define BPF_CALL_REL(TGT) \
296 ((struct bpf_insn) { \
297 .code = BPF_JMP | BPF_CALL, \
298 .dst_reg = 0, \
299 .src_reg = BPF_PSEUDO_CALL, \
300 .off = 0, \
301 .imm = TGT })
302
303/* Function call */
304
305#define BPF_CAST_CALL(x) \
306 ((u64 (*)(u64, u64, u64, u64, u64))(x))
307
308#define BPF_EMIT_CALL(FUNC) \
309 ((struct bpf_insn) { \
310 .code = BPF_JMP | BPF_CALL, \
311 .dst_reg = 0, \
312 .src_reg = 0, \
313 .off = 0, \
314 .imm = ((FUNC) - __bpf_call_base) })
315
316/* Raw code statement block */
317
318#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
319 ((struct bpf_insn) { \
320 .code = CODE, \
321 .dst_reg = DST, \
322 .src_reg = SRC, \
323 .off = OFF, \
324 .imm = IMM })
325
326/* Program exit */
327
328#define BPF_EXIT_INSN() \
329 ((struct bpf_insn) { \
330 .code = BPF_JMP | BPF_EXIT, \
331 .dst_reg = 0, \
332 .src_reg = 0, \
333 .off = 0, \
334 .imm = 0 })
335
336/* Internal classic blocks for direct assignment */
337
338#define __BPF_STMT(CODE, K) \
339 ((struct sock_filter) BPF_STMT(CODE, K))
340
341#define __BPF_JUMP(CODE, K, JT, JF) \
342 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
343
344#define bytes_to_bpf_size(bytes) \
345({ \
346 int bpf_size = -EINVAL; \
347 \
348 if (bytes == sizeof(u8)) \
349 bpf_size = BPF_B; \
350 else if (bytes == sizeof(u16)) \
351 bpf_size = BPF_H; \
352 else if (bytes == sizeof(u32)) \
353 bpf_size = BPF_W; \
354 else if (bytes == sizeof(u64)) \
355 bpf_size = BPF_DW; \
356 \
357 bpf_size; \
358})
359
360#define bpf_size_to_bytes(bpf_size) \
361({ \
362 int bytes = -EINVAL; \
363 \
364 if (bpf_size == BPF_B) \
365 bytes = sizeof(u8); \
366 else if (bpf_size == BPF_H) \
367 bytes = sizeof(u16); \
368 else if (bpf_size == BPF_W) \
369 bytes = sizeof(u32); \
370 else if (bpf_size == BPF_DW) \
371 bytes = sizeof(u64); \
372 \
373 bytes; \
374})
375
376#define BPF_SIZEOF(type) \
377 ({ \
378 const int __size = bytes_to_bpf_size(sizeof(type)); \
379 BUILD_BUG_ON(__size < 0); \
380 __size; \
381 })
382
383#define BPF_FIELD_SIZEOF(type, field) \
384 ({ \
385 const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \
386 BUILD_BUG_ON(__size < 0); \
387 __size; \
388 })
389
390#define BPF_LDST_BYTES(insn) \
391 ({ \
392 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
393 WARN_ON(__size < 0); \
394 __size; \
395 })
396
397#define __BPF_MAP_0(m, v, ...) v
398#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
399#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
400#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
401#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
402#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
403
404#define __BPF_REG_0(...) __BPF_PAD(5)
405#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
406#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
407#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
408#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
409#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
410
411#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
412#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
413
414#define __BPF_CAST(t, a) \
415 (__force t) \
416 (__force \
417 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \
418 (unsigned long)0, (t)0))) a
419#define __BPF_V void
420#define __BPF_N
421
422#define __BPF_DECL_ARGS(t, a) t a
423#define __BPF_DECL_REGS(t, a) u64 a
424
425#define __BPF_PAD(n) \
426 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \
427 u64, __ur_3, u64, __ur_4, u64, __ur_5)
428
429#define BPF_CALL_x(x, name, ...) \
430 static __always_inline \
431 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
432 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
433 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
434 { \
435 return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
436 } \
437 static __always_inline \
438 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
439
440#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__)
441#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__)
442#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__)
443#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__)
444#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__)
445#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__)
446
447#define bpf_ctx_range(TYPE, MEMBER) \
448 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
449#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \
450 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
451
452#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \
453 ({ \
454 BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE)); \
455 *(PTR_SIZE) = (SIZE); \
456 offsetof(TYPE, MEMBER); \
457 })
458
459#ifdef CONFIG_COMPAT
460/* A struct sock_filter is architecture independent. */
461struct compat_sock_fprog {
462 u16 len;
463 compat_uptr_t filter; /* struct sock_filter * */
464};
465#endif
466
467struct sock_fprog_kern {
468 u16 len;
469 struct sock_filter *filter;
470};
471
472struct bpf_binary_header {
473 u16 pages;
474 u16 locked:1;
475
476 /* Some arches need word alignment for their instructions */
477 u8 image[] __aligned(4);
478};
479
480struct bpf_prog {
481 u16 pages; /* Number of allocated pages */
482 u16 jited:1, /* Is our filter JIT'ed? */
483 jit_requested:1,/* archs need to JIT the prog */
484 locked:1, /* Program image locked? */
485 gpl_compatible:1, /* Is filter GPL compatible? */
486 cb_access:1, /* Is control block accessed? */
487 dst_needed:1, /* Do we need dst entry? */
488 blinded:1, /* Was blinded */
489 is_func:1, /* program is a bpf function */
490 kprobe_override:1, /* Do we override a kprobe? */
491 has_callchain_buf:1; /* callchain buffer allocated? */
492 enum bpf_prog_type type; /* Type of BPF program */
493 enum bpf_attach_type expected_attach_type; /* For some prog types */
494 u32 len; /* Number of filter blocks */
495 u32 jited_len; /* Size of jited insns in bytes */
496 u8 tag[BPF_TAG_SIZE];
497 struct bpf_prog_aux *aux; /* Auxiliary fields */
498 struct sock_fprog_kern *orig_prog; /* Original BPF program */
499 unsigned int (*bpf_func)(const void *ctx,
500 const struct bpf_insn *insn);
501 /* Instructions for interpreter */
502 union {
503 struct sock_filter insns[0];
504 struct bpf_insn insnsi[0];
505 };
506};
507
508struct sk_filter {
509 refcount_t refcnt;
510 struct rcu_head rcu;
511 struct bpf_prog *prog;
512};
513
514#define BPF_PROG_RUN(filter, ctx) (*(filter)->bpf_func)(ctx, (filter)->insnsi)
515
516#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
517
518struct bpf_skb_data_end {
519 struct qdisc_skb_cb qdisc_cb;
520 void *data_meta;
521 void *data_end;
522};
523
524struct sk_msg_buff {
525 void *data;
526 void *data_end;
527 __u32 apply_bytes;
528 __u32 cork_bytes;
529 int sg_copybreak;
530 int sg_start;
531 int sg_curr;
532 int sg_end;
533 struct scatterlist sg_data[MAX_SKB_FRAGS];
534 bool sg_copy[MAX_SKB_FRAGS];
535 __u32 flags;
536 struct sock *sk_redir;
537 struct sock *sk;
538 struct sk_buff *skb;
539 struct list_head list;
540};
541
542/* Compute the linear packet data range [data, data_end) which
543 * will be accessed by various program types (cls_bpf, act_bpf,
544 * lwt, ...). Subsystems allowing direct data access must (!)
545 * ensure that cb[] area can be written to when BPF program is
546 * invoked (otherwise cb[] save/restore is necessary).
547 */
548static inline void bpf_compute_data_pointers(struct sk_buff *skb)
549{
550 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
551
552 BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb));
553 cb->data_meta = skb->data - skb_metadata_len(skb);
554 cb->data_end = skb->data + skb_headlen(skb);
555}
556
557static inline u8 *bpf_skb_cb(struct sk_buff *skb)
558{
559 /* eBPF programs may read/write skb->cb[] area to transfer meta
560 * data between tail calls. Since this also needs to work with
561 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
562 *
563 * In some socket filter cases, the cb unfortunately needs to be
564 * saved/restored so that protocol specific skb->cb[] data won't
565 * be lost. In any case, due to unpriviledged eBPF programs
566 * attached to sockets, we need to clear the bpf_skb_cb() area
567 * to not leak previous contents to user space.
568 */
569 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
570 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
571 FIELD_SIZEOF(struct qdisc_skb_cb, data));
572
573 return qdisc_skb_cb(skb)->data;
574}
575
576static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
577 struct sk_buff *skb)
578{
579 u8 *cb_data = bpf_skb_cb(skb);
580 u8 cb_saved[BPF_SKB_CB_LEN];
581 u32 res;
582
583 if (unlikely(prog->cb_access)) {
584 memcpy(cb_saved, cb_data, sizeof(cb_saved));
585 memset(cb_data, 0, sizeof(cb_saved));
586 }
587
588 res = BPF_PROG_RUN(prog, skb);
589
590 if (unlikely(prog->cb_access))
591 memcpy(cb_data, cb_saved, sizeof(cb_saved));
592
593 return res;
594}
595
596static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
597 struct sk_buff *skb)
598{
599 u8 *cb_data = bpf_skb_cb(skb);
600
601 if (unlikely(prog->cb_access))
602 memset(cb_data, 0, BPF_SKB_CB_LEN);
603
604 return BPF_PROG_RUN(prog, skb);
605}
606
607static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
608 struct xdp_buff *xdp)
609{
610 /* Caller needs to hold rcu_read_lock() (!), otherwise program
611 * can be released while still running, or map elements could be
612 * freed early while still having concurrent users. XDP fastpath
613 * already takes rcu_read_lock() when fetching the program, so
614 * it's not necessary here anymore.
615 */
616 return BPF_PROG_RUN(prog, xdp);
617}
618
619static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
620{
621 return prog->len * sizeof(struct bpf_insn);
622}
623
624static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
625{
626 return round_up(bpf_prog_insn_size(prog) +
627 sizeof(__be64) + 1, SHA_MESSAGE_BYTES);
628}
629
630static inline unsigned int bpf_prog_size(unsigned int proglen)
631{
632 return max(sizeof(struct bpf_prog),
633 offsetof(struct bpf_prog, insns[proglen]));
634}
635
636static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
637{
638 /* When classic BPF programs have been loaded and the arch
639 * does not have a classic BPF JIT (anymore), they have been
640 * converted via bpf_migrate_filter() to eBPF and thus always
641 * have an unspec program type.
642 */
643 return prog->type == BPF_PROG_TYPE_UNSPEC;
644}
645
646static inline u32 bpf_ctx_off_adjust_machine(u32 size)
647{
648 const u32 size_machine = sizeof(unsigned long);
649
650 if (size > size_machine && size % size_machine == 0)
651 size = size_machine;
652
653 return size;
654}
655
656static inline bool bpf_ctx_narrow_align_ok(u32 off, u32 size_access,
657 u32 size_default)
658{
659 size_default = bpf_ctx_off_adjust_machine(size_default);
660 size_access = bpf_ctx_off_adjust_machine(size_access);
661
662#ifdef __LITTLE_ENDIAN
663 return (off & (size_default - 1)) == 0;
664#else
665 return (off & (size_default - 1)) + size_access == size_default;
666#endif
667}
668
669static inline bool
670bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
671{
672 return bpf_ctx_narrow_align_ok(off, size, size_default) &&
673 size <= size_default && (size & (size - 1)) == 0;
674}
675
676#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
677
678static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
679{
680#ifdef CONFIG_ARCH_HAS_SET_MEMORY
681 fp->locked = 1;
682 if (set_memory_ro((unsigned long)fp, fp->pages))
683 fp->locked = 0;
684#endif
685}
686
687static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
688{
689#ifdef CONFIG_ARCH_HAS_SET_MEMORY
690 if (fp->locked) {
691 WARN_ON_ONCE(set_memory_rw((unsigned long)fp, fp->pages));
692 /* In case set_memory_rw() fails, we want to be the first
693 * to crash here instead of some random place later on.
694 */
695 fp->locked = 0;
696 }
697#endif
698}
699
700static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
701{
702#ifdef CONFIG_ARCH_HAS_SET_MEMORY
703 hdr->locked = 1;
704 if (set_memory_ro((unsigned long)hdr, hdr->pages))
705 hdr->locked = 0;
706#endif
707}
708
709static inline void bpf_jit_binary_unlock_ro(struct bpf_binary_header *hdr)
710{
711#ifdef CONFIG_ARCH_HAS_SET_MEMORY
712 if (hdr->locked) {
713 WARN_ON_ONCE(set_memory_rw((unsigned long)hdr, hdr->pages));
714 /* In case set_memory_rw() fails, we want to be the first
715 * to crash here instead of some random place later on.
716 */
717 hdr->locked = 0;
718 }
719#endif
720}
721
722static inline struct bpf_binary_header *
723bpf_jit_binary_hdr(const struct bpf_prog *fp)
724{
725 unsigned long real_start = (unsigned long)fp->bpf_func;
726 unsigned long addr = real_start & PAGE_MASK;
727
728 return (void *)addr;
729}
730
731#ifdef CONFIG_ARCH_HAS_SET_MEMORY
732static inline int bpf_prog_check_pages_ro_single(const struct bpf_prog *fp)
733{
734 if (!fp->locked)
735 return -ENOLCK;
736 if (fp->jited) {
737 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
738
739 if (!hdr->locked)
740 return -ENOLCK;
741 }
742
743 return 0;
744}
745#endif
746
747int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
748static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
749{
750 return sk_filter_trim_cap(sk, skb, 1);
751}
752
753struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
754void bpf_prog_free(struct bpf_prog *fp);
755
756bool bpf_opcode_in_insntable(u8 code);
757
758struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
759struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
760 gfp_t gfp_extra_flags);
761void __bpf_prog_free(struct bpf_prog *fp);
762
763static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
764{
765 bpf_prog_unlock_ro(fp);
766 __bpf_prog_free(fp);
767}
768
769typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
770 unsigned int flen);
771
772int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
773int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
774 bpf_aux_classic_check_t trans, bool save_orig);
775void bpf_prog_destroy(struct bpf_prog *fp);
776
777int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
778int sk_attach_bpf(u32 ufd, struct sock *sk);
779int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
780int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
781int sk_detach_filter(struct sock *sk);
782int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
783 unsigned int len);
784
785bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
786void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
787
788u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
789#define __bpf_call_base_args \
790 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
791 __bpf_call_base)
792
793struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
794void bpf_jit_compile(struct bpf_prog *prog);
795bool bpf_helper_changes_pkt_data(void *func);
796
797static inline bool bpf_dump_raw_ok(void)
798{
799 /* Reconstruction of call-sites is dependent on kallsyms,
800 * thus make dump the same restriction.
801 */
802 return kallsyms_show_value() == 1;
803}
804
805struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
806 const struct bpf_insn *patch, u32 len);
807
808static inline int __xdp_generic_ok_fwd_dev(struct sk_buff *skb,
809 struct net_device *fwd)
810{
811 unsigned int len;
812
813 if (unlikely(!(fwd->flags & IFF_UP)))
814 return -ENETDOWN;
815
816 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
817 if (skb->len > len)
818 return -EMSGSIZE;
819
820 return 0;
821}
822
823/* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the
824 * same cpu context. Further for best results no more than a single map
825 * for the do_redirect/do_flush pair should be used. This limitation is
826 * because we only track one map and force a flush when the map changes.
827 * This does not appear to be a real limitation for existing software.
828 */
829int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
830 struct xdp_buff *xdp, struct bpf_prog *prog);
831int xdp_do_redirect(struct net_device *dev,
832 struct xdp_buff *xdp,
833 struct bpf_prog *prog);
834void xdp_do_flush_map(void);
835
836void bpf_warn_invalid_xdp_action(u32 act);
837
838struct sock *do_sk_redirect_map(struct sk_buff *skb);
839struct sock *do_msg_redirect_map(struct sk_msg_buff *md);
840
841#ifdef CONFIG_BPF_JIT
842extern int bpf_jit_enable;
843extern int bpf_jit_harden;
844extern int bpf_jit_kallsyms;
845
846typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
847
848struct bpf_binary_header *
849bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
850 unsigned int alignment,
851 bpf_jit_fill_hole_t bpf_fill_ill_insns);
852void bpf_jit_binary_free(struct bpf_binary_header *hdr);
853
854void bpf_jit_free(struct bpf_prog *fp);
855
856struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
857void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
858
859static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
860 u32 pass, void *image)
861{
862 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
863 proglen, pass, image, current->comm, task_pid_nr(current));
864
865 if (image)
866 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
867 16, 1, image, proglen, false);
868}
869
870static inline bool bpf_jit_is_ebpf(void)
871{
872# ifdef CONFIG_HAVE_EBPF_JIT
873 return true;
874# else
875 return false;
876# endif
877}
878
879static inline bool ebpf_jit_enabled(void)
880{
881 return bpf_jit_enable && bpf_jit_is_ebpf();
882}
883
884static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
885{
886 return fp->jited && bpf_jit_is_ebpf();
887}
888
889static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
890{
891 /* These are the prerequisites, should someone ever have the
892 * idea to call blinding outside of them, we make sure to
893 * bail out.
894 */
895 if (!bpf_jit_is_ebpf())
896 return false;
897 if (!prog->jit_requested)
898 return false;
899 if (!bpf_jit_harden)
900 return false;
901 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
902 return false;
903
904 return true;
905}
906
907static inline bool bpf_jit_kallsyms_enabled(void)
908{
909 /* There are a couple of corner cases where kallsyms should
910 * not be enabled f.e. on hardening.
911 */
912 if (bpf_jit_harden)
913 return false;
914 if (!bpf_jit_kallsyms)
915 return false;
916 if (bpf_jit_kallsyms == 1)
917 return true;
918
919 return false;
920}
921
922const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
923 unsigned long *off, char *sym);
924bool is_bpf_text_address(unsigned long addr);
925int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
926 char *sym);
927
928static inline const char *
929bpf_address_lookup(unsigned long addr, unsigned long *size,
930 unsigned long *off, char **modname, char *sym)
931{
932 const char *ret = __bpf_address_lookup(addr, size, off, sym);
933
934 if (ret && modname)
935 *modname = NULL;
936 return ret;
937}
938
939void bpf_prog_kallsyms_add(struct bpf_prog *fp);
940void bpf_prog_kallsyms_del(struct bpf_prog *fp);
941
942#else /* CONFIG_BPF_JIT */
943
944static inline bool ebpf_jit_enabled(void)
945{
946 return false;
947}
948
949static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
950{
951 return false;
952}
953
954static inline void bpf_jit_free(struct bpf_prog *fp)
955{
956 bpf_prog_unlock_free(fp);
957}
958
959static inline bool bpf_jit_kallsyms_enabled(void)
960{
961 return false;
962}
963
964static inline const char *
965__bpf_address_lookup(unsigned long addr, unsigned long *size,
966 unsigned long *off, char *sym)
967{
968 return NULL;
969}
970
971static inline bool is_bpf_text_address(unsigned long addr)
972{
973 return false;
974}
975
976static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
977 char *type, char *sym)
978{
979 return -ERANGE;
980}
981
982static inline const char *
983bpf_address_lookup(unsigned long addr, unsigned long *size,
984 unsigned long *off, char **modname, char *sym)
985{
986 return NULL;
987}
988
989static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
990{
991}
992
993static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
994{
995}
996#endif /* CONFIG_BPF_JIT */
997
998void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp);
999void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1000
1001#define BPF_ANC BIT(15)
1002
1003static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1004{
1005 switch (first->code) {
1006 case BPF_RET | BPF_K:
1007 case BPF_LD | BPF_W | BPF_LEN:
1008 return false;
1009
1010 case BPF_LD | BPF_W | BPF_ABS:
1011 case BPF_LD | BPF_H | BPF_ABS:
1012 case BPF_LD | BPF_B | BPF_ABS:
1013 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1014 return true;
1015 return false;
1016
1017 default:
1018 return true;
1019 }
1020}
1021
1022static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1023{
1024 BUG_ON(ftest->code & BPF_ANC);
1025
1026 switch (ftest->code) {
1027 case BPF_LD | BPF_W | BPF_ABS:
1028 case BPF_LD | BPF_H | BPF_ABS:
1029 case BPF_LD | BPF_B | BPF_ABS:
1030#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
1031 return BPF_ANC | SKF_AD_##CODE
1032 switch (ftest->k) {
1033 BPF_ANCILLARY(PROTOCOL);
1034 BPF_ANCILLARY(PKTTYPE);
1035 BPF_ANCILLARY(IFINDEX);
1036 BPF_ANCILLARY(NLATTR);
1037 BPF_ANCILLARY(NLATTR_NEST);
1038 BPF_ANCILLARY(MARK);
1039 BPF_ANCILLARY(QUEUE);
1040 BPF_ANCILLARY(HATYPE);
1041 BPF_ANCILLARY(RXHASH);
1042 BPF_ANCILLARY(CPU);
1043 BPF_ANCILLARY(ALU_XOR_X);
1044 BPF_ANCILLARY(VLAN_TAG);
1045 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1046 BPF_ANCILLARY(PAY_OFFSET);
1047 BPF_ANCILLARY(RANDOM);
1048 BPF_ANCILLARY(VLAN_TPID);
1049 }
1050 /* Fallthrough. */
1051 default:
1052 return ftest->code;
1053 }
1054}
1055
1056void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1057 int k, unsigned int size);
1058
1059static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
1060 unsigned int size, void *buffer)
1061{
1062 if (k >= 0)
1063 return skb_header_pointer(skb, k, size, buffer);
1064
1065 return bpf_internal_load_pointer_neg_helper(skb, k, size);
1066}
1067
1068static inline int bpf_tell_extensions(void)
1069{
1070 return SKF_AD_MAX;
1071}
1072
1073struct bpf_sock_addr_kern {
1074 struct sock *sk;
1075 struct sockaddr *uaddr;
1076 /* Temporary "register" to make indirect stores to nested structures
1077 * defined above. We need three registers to make such a store, but
1078 * only two (src and dst) are available at convert_ctx_access time
1079 */
1080 u64 tmp_reg;
1081 void *t_ctx; /* Attach type specific context. */
1082};
1083
1084struct bpf_sock_ops_kern {
1085 struct sock *sk;
1086 u32 op;
1087 union {
1088 u32 args[4];
1089 u32 reply;
1090 u32 replylong[4];
1091 };
1092 u32 is_fullsock;
1093 u64 temp; /* temp and everything after is not
1094 * initialized to 0 before calling
1095 * the BPF program. New fields that
1096 * should be initialized to 0 should
1097 * be inserted before temp.
1098 * temp is scratch storage used by
1099 * sock_ops_convert_ctx_access
1100 * as temporary storage of a register.
1101 */
1102};
1103
1104#endif /* __LINUX_FILTER_H__ */