Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * RTC subsystem, interface functions
3 *
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
6 *
7 * based on arch/arm/common/rtctime.c
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12*/
13
14#include <linux/rtc.h>
15#include <linux/sched.h>
16#include <linux/module.h>
17#include <linux/log2.h>
18#include <linux/workqueue.h>
19
20#define CREATE_TRACE_POINTS
21#include <trace/events/rtc.h>
22
23static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
24static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
25
26static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
27{
28 time64_t secs;
29
30 if (!rtc->offset_secs)
31 return;
32
33 secs = rtc_tm_to_time64(tm);
34
35 /*
36 * Since the reading time values from RTC device are always in the RTC
37 * original valid range, but we need to skip the overlapped region
38 * between expanded range and original range, which is no need to add
39 * the offset.
40 */
41 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
42 (rtc->start_secs < rtc->range_min &&
43 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
44 return;
45
46 rtc_time64_to_tm(secs + rtc->offset_secs, tm);
47}
48
49static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
50{
51 time64_t secs;
52
53 if (!rtc->offset_secs)
54 return;
55
56 secs = rtc_tm_to_time64(tm);
57
58 /*
59 * If the setting time values are in the valid range of RTC hardware
60 * device, then no need to subtract the offset when setting time to RTC
61 * device. Otherwise we need to subtract the offset to make the time
62 * values are valid for RTC hardware device.
63 */
64 if (secs >= rtc->range_min && secs <= rtc->range_max)
65 return;
66
67 rtc_time64_to_tm(secs - rtc->offset_secs, tm);
68}
69
70static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
71{
72 if (rtc->range_min != rtc->range_max) {
73 time64_t time = rtc_tm_to_time64(tm);
74 time64_t range_min = rtc->set_start_time ? rtc->start_secs :
75 rtc->range_min;
76 time64_t range_max = rtc->set_start_time ?
77 (rtc->start_secs + rtc->range_max - rtc->range_min) :
78 rtc->range_max;
79
80 if (time < range_min || time > range_max)
81 return -ERANGE;
82 }
83
84 return 0;
85}
86
87static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
88{
89 int err;
90 if (!rtc->ops)
91 err = -ENODEV;
92 else if (!rtc->ops->read_time)
93 err = -EINVAL;
94 else {
95 memset(tm, 0, sizeof(struct rtc_time));
96 err = rtc->ops->read_time(rtc->dev.parent, tm);
97 if (err < 0) {
98 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
99 err);
100 return err;
101 }
102
103 rtc_add_offset(rtc, tm);
104
105 err = rtc_valid_tm(tm);
106 if (err < 0)
107 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
108 }
109 return err;
110}
111
112int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
113{
114 int err;
115
116 err = mutex_lock_interruptible(&rtc->ops_lock);
117 if (err)
118 return err;
119
120 err = __rtc_read_time(rtc, tm);
121 mutex_unlock(&rtc->ops_lock);
122
123 trace_rtc_read_time(rtc_tm_to_time64(tm), err);
124 return err;
125}
126EXPORT_SYMBOL_GPL(rtc_read_time);
127
128int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
129{
130 int err;
131
132 err = rtc_valid_tm(tm);
133 if (err != 0)
134 return err;
135
136 err = rtc_valid_range(rtc, tm);
137 if (err)
138 return err;
139
140 rtc_subtract_offset(rtc, tm);
141
142 err = mutex_lock_interruptible(&rtc->ops_lock);
143 if (err)
144 return err;
145
146 if (!rtc->ops)
147 err = -ENODEV;
148 else if (rtc->ops->set_time)
149 err = rtc->ops->set_time(rtc->dev.parent, tm);
150 else if (rtc->ops->set_mmss64) {
151 time64_t secs64 = rtc_tm_to_time64(tm);
152
153 err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
154 } else if (rtc->ops->set_mmss) {
155 time64_t secs64 = rtc_tm_to_time64(tm);
156 err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
157 } else
158 err = -EINVAL;
159
160 pm_stay_awake(rtc->dev.parent);
161 mutex_unlock(&rtc->ops_lock);
162 /* A timer might have just expired */
163 schedule_work(&rtc->irqwork);
164
165 trace_rtc_set_time(rtc_tm_to_time64(tm), err);
166 return err;
167}
168EXPORT_SYMBOL_GPL(rtc_set_time);
169
170static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
171{
172 int err;
173
174 err = mutex_lock_interruptible(&rtc->ops_lock);
175 if (err)
176 return err;
177
178 if (rtc->ops == NULL)
179 err = -ENODEV;
180 else if (!rtc->ops->read_alarm)
181 err = -EINVAL;
182 else {
183 alarm->enabled = 0;
184 alarm->pending = 0;
185 alarm->time.tm_sec = -1;
186 alarm->time.tm_min = -1;
187 alarm->time.tm_hour = -1;
188 alarm->time.tm_mday = -1;
189 alarm->time.tm_mon = -1;
190 alarm->time.tm_year = -1;
191 alarm->time.tm_wday = -1;
192 alarm->time.tm_yday = -1;
193 alarm->time.tm_isdst = -1;
194 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
195 }
196
197 mutex_unlock(&rtc->ops_lock);
198
199 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
200 return err;
201}
202
203int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
204{
205 int err;
206 struct rtc_time before, now;
207 int first_time = 1;
208 time64_t t_now, t_alm;
209 enum { none, day, month, year } missing = none;
210 unsigned days;
211
212 /* The lower level RTC driver may return -1 in some fields,
213 * creating invalid alarm->time values, for reasons like:
214 *
215 * - The hardware may not be capable of filling them in;
216 * many alarms match only on time-of-day fields, not
217 * day/month/year calendar data.
218 *
219 * - Some hardware uses illegal values as "wildcard" match
220 * values, which non-Linux firmware (like a BIOS) may try
221 * to set up as e.g. "alarm 15 minutes after each hour".
222 * Linux uses only oneshot alarms.
223 *
224 * When we see that here, we deal with it by using values from
225 * a current RTC timestamp for any missing (-1) values. The
226 * RTC driver prevents "periodic alarm" modes.
227 *
228 * But this can be racey, because some fields of the RTC timestamp
229 * may have wrapped in the interval since we read the RTC alarm,
230 * which would lead to us inserting inconsistent values in place
231 * of the -1 fields.
232 *
233 * Reading the alarm and timestamp in the reverse sequence
234 * would have the same race condition, and not solve the issue.
235 *
236 * So, we must first read the RTC timestamp,
237 * then read the RTC alarm value,
238 * and then read a second RTC timestamp.
239 *
240 * If any fields of the second timestamp have changed
241 * when compared with the first timestamp, then we know
242 * our timestamp may be inconsistent with that used by
243 * the low-level rtc_read_alarm_internal() function.
244 *
245 * So, when the two timestamps disagree, we just loop and do
246 * the process again to get a fully consistent set of values.
247 *
248 * This could all instead be done in the lower level driver,
249 * but since more than one lower level RTC implementation needs it,
250 * then it's probably best best to do it here instead of there..
251 */
252
253 /* Get the "before" timestamp */
254 err = rtc_read_time(rtc, &before);
255 if (err < 0)
256 return err;
257 do {
258 if (!first_time)
259 memcpy(&before, &now, sizeof(struct rtc_time));
260 first_time = 0;
261
262 /* get the RTC alarm values, which may be incomplete */
263 err = rtc_read_alarm_internal(rtc, alarm);
264 if (err)
265 return err;
266
267 /* full-function RTCs won't have such missing fields */
268 if (rtc_valid_tm(&alarm->time) == 0)
269 return 0;
270
271 /* get the "after" timestamp, to detect wrapped fields */
272 err = rtc_read_time(rtc, &now);
273 if (err < 0)
274 return err;
275
276 /* note that tm_sec is a "don't care" value here: */
277 } while ( before.tm_min != now.tm_min
278 || before.tm_hour != now.tm_hour
279 || before.tm_mon != now.tm_mon
280 || before.tm_year != now.tm_year);
281
282 /* Fill in the missing alarm fields using the timestamp; we
283 * know there's at least one since alarm->time is invalid.
284 */
285 if (alarm->time.tm_sec == -1)
286 alarm->time.tm_sec = now.tm_sec;
287 if (alarm->time.tm_min == -1)
288 alarm->time.tm_min = now.tm_min;
289 if (alarm->time.tm_hour == -1)
290 alarm->time.tm_hour = now.tm_hour;
291
292 /* For simplicity, only support date rollover for now */
293 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
294 alarm->time.tm_mday = now.tm_mday;
295 missing = day;
296 }
297 if ((unsigned)alarm->time.tm_mon >= 12) {
298 alarm->time.tm_mon = now.tm_mon;
299 if (missing == none)
300 missing = month;
301 }
302 if (alarm->time.tm_year == -1) {
303 alarm->time.tm_year = now.tm_year;
304 if (missing == none)
305 missing = year;
306 }
307
308 /* Can't proceed if alarm is still invalid after replacing
309 * missing fields.
310 */
311 err = rtc_valid_tm(&alarm->time);
312 if (err)
313 goto done;
314
315 /* with luck, no rollover is needed */
316 t_now = rtc_tm_to_time64(&now);
317 t_alm = rtc_tm_to_time64(&alarm->time);
318 if (t_now < t_alm)
319 goto done;
320
321 switch (missing) {
322
323 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
324 * that will trigger at 5am will do so at 5am Tuesday, which
325 * could also be in the next month or year. This is a common
326 * case, especially for PCs.
327 */
328 case day:
329 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
330 t_alm += 24 * 60 * 60;
331 rtc_time64_to_tm(t_alm, &alarm->time);
332 break;
333
334 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
335 * be next month. An alarm matching on the 30th, 29th, or 28th
336 * may end up in the month after that! Many newer PCs support
337 * this type of alarm.
338 */
339 case month:
340 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
341 do {
342 if (alarm->time.tm_mon < 11)
343 alarm->time.tm_mon++;
344 else {
345 alarm->time.tm_mon = 0;
346 alarm->time.tm_year++;
347 }
348 days = rtc_month_days(alarm->time.tm_mon,
349 alarm->time.tm_year);
350 } while (days < alarm->time.tm_mday);
351 break;
352
353 /* Year rollover ... easy except for leap years! */
354 case year:
355 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
356 do {
357 alarm->time.tm_year++;
358 } while (!is_leap_year(alarm->time.tm_year + 1900)
359 && rtc_valid_tm(&alarm->time) != 0);
360 break;
361
362 default:
363 dev_warn(&rtc->dev, "alarm rollover not handled\n");
364 }
365
366 err = rtc_valid_tm(&alarm->time);
367
368done:
369 if (err) {
370 dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
371 alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
372 alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
373 alarm->time.tm_sec);
374 }
375
376 return err;
377}
378
379int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
380{
381 int err;
382
383 err = mutex_lock_interruptible(&rtc->ops_lock);
384 if (err)
385 return err;
386 if (rtc->ops == NULL)
387 err = -ENODEV;
388 else if (!rtc->ops->read_alarm)
389 err = -EINVAL;
390 else {
391 memset(alarm, 0, sizeof(struct rtc_wkalrm));
392 alarm->enabled = rtc->aie_timer.enabled;
393 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
394 }
395 mutex_unlock(&rtc->ops_lock);
396
397 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
398 return err;
399}
400EXPORT_SYMBOL_GPL(rtc_read_alarm);
401
402static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
403{
404 struct rtc_time tm;
405 time64_t now, scheduled;
406 int err;
407
408 err = rtc_valid_tm(&alarm->time);
409 if (err)
410 return err;
411
412 rtc_subtract_offset(rtc, &alarm->time);
413 scheduled = rtc_tm_to_time64(&alarm->time);
414
415 /* Make sure we're not setting alarms in the past */
416 err = __rtc_read_time(rtc, &tm);
417 if (err)
418 return err;
419 now = rtc_tm_to_time64(&tm);
420 if (scheduled <= now)
421 return -ETIME;
422 /*
423 * XXX - We just checked to make sure the alarm time is not
424 * in the past, but there is still a race window where if
425 * the is alarm set for the next second and the second ticks
426 * over right here, before we set the alarm.
427 */
428
429 if (!rtc->ops)
430 err = -ENODEV;
431 else if (!rtc->ops->set_alarm)
432 err = -EINVAL;
433 else
434 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
435
436 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
437 return err;
438}
439
440int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
441{
442 int err;
443
444 if (!rtc->ops)
445 return -ENODEV;
446 else if (!rtc->ops->set_alarm)
447 return -EINVAL;
448
449 err = rtc_valid_tm(&alarm->time);
450 if (err != 0)
451 return err;
452
453 err = rtc_valid_range(rtc, &alarm->time);
454 if (err)
455 return err;
456
457 err = mutex_lock_interruptible(&rtc->ops_lock);
458 if (err)
459 return err;
460 if (rtc->aie_timer.enabled)
461 rtc_timer_remove(rtc, &rtc->aie_timer);
462
463 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
464 rtc->aie_timer.period = 0;
465 if (alarm->enabled)
466 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
467
468 mutex_unlock(&rtc->ops_lock);
469
470 rtc_add_offset(rtc, &alarm->time);
471 return err;
472}
473EXPORT_SYMBOL_GPL(rtc_set_alarm);
474
475/* Called once per device from rtc_device_register */
476int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
477{
478 int err;
479 struct rtc_time now;
480
481 err = rtc_valid_tm(&alarm->time);
482 if (err != 0)
483 return err;
484
485 err = rtc_read_time(rtc, &now);
486 if (err)
487 return err;
488
489 err = mutex_lock_interruptible(&rtc->ops_lock);
490 if (err)
491 return err;
492
493 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
494 rtc->aie_timer.period = 0;
495
496 /* Alarm has to be enabled & in the future for us to enqueue it */
497 if (alarm->enabled && (rtc_tm_to_ktime(now) <
498 rtc->aie_timer.node.expires)) {
499
500 rtc->aie_timer.enabled = 1;
501 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
502 trace_rtc_timer_enqueue(&rtc->aie_timer);
503 }
504 mutex_unlock(&rtc->ops_lock);
505 return err;
506}
507EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
508
509int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
510{
511 int err = mutex_lock_interruptible(&rtc->ops_lock);
512 if (err)
513 return err;
514
515 if (rtc->aie_timer.enabled != enabled) {
516 if (enabled)
517 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
518 else
519 rtc_timer_remove(rtc, &rtc->aie_timer);
520 }
521
522 if (err)
523 /* nothing */;
524 else if (!rtc->ops)
525 err = -ENODEV;
526 else if (!rtc->ops->alarm_irq_enable)
527 err = -EINVAL;
528 else
529 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
530
531 mutex_unlock(&rtc->ops_lock);
532
533 trace_rtc_alarm_irq_enable(enabled, err);
534 return err;
535}
536EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
537
538int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
539{
540 int err = mutex_lock_interruptible(&rtc->ops_lock);
541 if (err)
542 return err;
543
544#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
545 if (enabled == 0 && rtc->uie_irq_active) {
546 mutex_unlock(&rtc->ops_lock);
547 return rtc_dev_update_irq_enable_emul(rtc, 0);
548 }
549#endif
550 /* make sure we're changing state */
551 if (rtc->uie_rtctimer.enabled == enabled)
552 goto out;
553
554 if (rtc->uie_unsupported) {
555 err = -EINVAL;
556 goto out;
557 }
558
559 if (enabled) {
560 struct rtc_time tm;
561 ktime_t now, onesec;
562
563 __rtc_read_time(rtc, &tm);
564 onesec = ktime_set(1, 0);
565 now = rtc_tm_to_ktime(tm);
566 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
567 rtc->uie_rtctimer.period = ktime_set(1, 0);
568 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
569 } else
570 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
571
572out:
573 mutex_unlock(&rtc->ops_lock);
574#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
575 /*
576 * Enable emulation if the driver did not provide
577 * the update_irq_enable function pointer or if returned
578 * -EINVAL to signal that it has been configured without
579 * interrupts or that are not available at the moment.
580 */
581 if (err == -EINVAL)
582 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
583#endif
584 return err;
585
586}
587EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
588
589
590/**
591 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
592 * @rtc: pointer to the rtc device
593 *
594 * This function is called when an AIE, UIE or PIE mode interrupt
595 * has occurred (or been emulated).
596 *
597 * Triggers the registered irq_task function callback.
598 */
599void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
600{
601 unsigned long flags;
602
603 /* mark one irq of the appropriate mode */
604 spin_lock_irqsave(&rtc->irq_lock, flags);
605 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
606 spin_unlock_irqrestore(&rtc->irq_lock, flags);
607
608 /* call the task func */
609 spin_lock_irqsave(&rtc->irq_task_lock, flags);
610 if (rtc->irq_task)
611 rtc->irq_task->func(rtc->irq_task->private_data);
612 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
613
614 wake_up_interruptible(&rtc->irq_queue);
615 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
616}
617
618
619/**
620 * rtc_aie_update_irq - AIE mode rtctimer hook
621 * @private: pointer to the rtc_device
622 *
623 * This functions is called when the aie_timer expires.
624 */
625void rtc_aie_update_irq(void *private)
626{
627 struct rtc_device *rtc = (struct rtc_device *)private;
628 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
629}
630
631
632/**
633 * rtc_uie_update_irq - UIE mode rtctimer hook
634 * @private: pointer to the rtc_device
635 *
636 * This functions is called when the uie_timer expires.
637 */
638void rtc_uie_update_irq(void *private)
639{
640 struct rtc_device *rtc = (struct rtc_device *)private;
641 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
642}
643
644
645/**
646 * rtc_pie_update_irq - PIE mode hrtimer hook
647 * @timer: pointer to the pie mode hrtimer
648 *
649 * This function is used to emulate PIE mode interrupts
650 * using an hrtimer. This function is called when the periodic
651 * hrtimer expires.
652 */
653enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
654{
655 struct rtc_device *rtc;
656 ktime_t period;
657 int count;
658 rtc = container_of(timer, struct rtc_device, pie_timer);
659
660 period = NSEC_PER_SEC / rtc->irq_freq;
661 count = hrtimer_forward_now(timer, period);
662
663 rtc_handle_legacy_irq(rtc, count, RTC_PF);
664
665 return HRTIMER_RESTART;
666}
667
668/**
669 * rtc_update_irq - Triggered when a RTC interrupt occurs.
670 * @rtc: the rtc device
671 * @num: how many irqs are being reported (usually one)
672 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
673 * Context: any
674 */
675void rtc_update_irq(struct rtc_device *rtc,
676 unsigned long num, unsigned long events)
677{
678 if (IS_ERR_OR_NULL(rtc))
679 return;
680
681 pm_stay_awake(rtc->dev.parent);
682 schedule_work(&rtc->irqwork);
683}
684EXPORT_SYMBOL_GPL(rtc_update_irq);
685
686static int __rtc_match(struct device *dev, const void *data)
687{
688 const char *name = data;
689
690 if (strcmp(dev_name(dev), name) == 0)
691 return 1;
692 return 0;
693}
694
695struct rtc_device *rtc_class_open(const char *name)
696{
697 struct device *dev;
698 struct rtc_device *rtc = NULL;
699
700 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
701 if (dev)
702 rtc = to_rtc_device(dev);
703
704 if (rtc) {
705 if (!try_module_get(rtc->owner)) {
706 put_device(dev);
707 rtc = NULL;
708 }
709 }
710
711 return rtc;
712}
713EXPORT_SYMBOL_GPL(rtc_class_open);
714
715void rtc_class_close(struct rtc_device *rtc)
716{
717 module_put(rtc->owner);
718 put_device(&rtc->dev);
719}
720EXPORT_SYMBOL_GPL(rtc_class_close);
721
722int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
723{
724 int retval = -EBUSY;
725
726 if (task == NULL || task->func == NULL)
727 return -EINVAL;
728
729 /* Cannot register while the char dev is in use */
730 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
731 return -EBUSY;
732
733 spin_lock_irq(&rtc->irq_task_lock);
734 if (rtc->irq_task == NULL) {
735 rtc->irq_task = task;
736 retval = 0;
737 }
738 spin_unlock_irq(&rtc->irq_task_lock);
739
740 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
741
742 return retval;
743}
744EXPORT_SYMBOL_GPL(rtc_irq_register);
745
746void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
747{
748 spin_lock_irq(&rtc->irq_task_lock);
749 if (rtc->irq_task == task)
750 rtc->irq_task = NULL;
751 spin_unlock_irq(&rtc->irq_task_lock);
752}
753EXPORT_SYMBOL_GPL(rtc_irq_unregister);
754
755static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
756{
757 /*
758 * We always cancel the timer here first, because otherwise
759 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
760 * when we manage to start the timer before the callback
761 * returns HRTIMER_RESTART.
762 *
763 * We cannot use hrtimer_cancel() here as a running callback
764 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
765 * would spin forever.
766 */
767 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
768 return -1;
769
770 if (enabled) {
771 ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
772
773 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
774 }
775 return 0;
776}
777
778/**
779 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
780 * @rtc: the rtc device
781 * @task: currently registered with rtc_irq_register()
782 * @enabled: true to enable periodic IRQs
783 * Context: any
784 *
785 * Note that rtc_irq_set_freq() should previously have been used to
786 * specify the desired frequency of periodic IRQ task->func() callbacks.
787 */
788int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
789{
790 int err = 0;
791 unsigned long flags;
792
793retry:
794 spin_lock_irqsave(&rtc->irq_task_lock, flags);
795 if (rtc->irq_task != NULL && task == NULL)
796 err = -EBUSY;
797 else if (rtc->irq_task != task)
798 err = -EACCES;
799 else {
800 if (rtc_update_hrtimer(rtc, enabled) < 0) {
801 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
802 cpu_relax();
803 goto retry;
804 }
805 rtc->pie_enabled = enabled;
806 }
807 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
808
809 trace_rtc_irq_set_state(enabled, err);
810 return err;
811}
812EXPORT_SYMBOL_GPL(rtc_irq_set_state);
813
814/**
815 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
816 * @rtc: the rtc device
817 * @task: currently registered with rtc_irq_register()
818 * @freq: positive frequency with which task->func() will be called
819 * Context: any
820 *
821 * Note that rtc_irq_set_state() is used to enable or disable the
822 * periodic IRQs.
823 */
824int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
825{
826 int err = 0;
827 unsigned long flags;
828
829 if (freq <= 0 || freq > RTC_MAX_FREQ)
830 return -EINVAL;
831retry:
832 spin_lock_irqsave(&rtc->irq_task_lock, flags);
833 if (rtc->irq_task != NULL && task == NULL)
834 err = -EBUSY;
835 else if (rtc->irq_task != task)
836 err = -EACCES;
837 else {
838 rtc->irq_freq = freq;
839 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
840 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
841 cpu_relax();
842 goto retry;
843 }
844 }
845 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
846
847 trace_rtc_irq_set_freq(freq, err);
848 return err;
849}
850EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
851
852/**
853 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
854 * @rtc rtc device
855 * @timer timer being added.
856 *
857 * Enqueues a timer onto the rtc devices timerqueue and sets
858 * the next alarm event appropriately.
859 *
860 * Sets the enabled bit on the added timer.
861 *
862 * Must hold ops_lock for proper serialization of timerqueue
863 */
864static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
865{
866 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
867 struct rtc_time tm;
868 ktime_t now;
869
870 timer->enabled = 1;
871 __rtc_read_time(rtc, &tm);
872 now = rtc_tm_to_ktime(tm);
873
874 /* Skip over expired timers */
875 while (next) {
876 if (next->expires >= now)
877 break;
878 next = timerqueue_iterate_next(next);
879 }
880
881 timerqueue_add(&rtc->timerqueue, &timer->node);
882 trace_rtc_timer_enqueue(timer);
883 if (!next || ktime_before(timer->node.expires, next->expires)) {
884 struct rtc_wkalrm alarm;
885 int err;
886 alarm.time = rtc_ktime_to_tm(timer->node.expires);
887 alarm.enabled = 1;
888 err = __rtc_set_alarm(rtc, &alarm);
889 if (err == -ETIME) {
890 pm_stay_awake(rtc->dev.parent);
891 schedule_work(&rtc->irqwork);
892 } else if (err) {
893 timerqueue_del(&rtc->timerqueue, &timer->node);
894 trace_rtc_timer_dequeue(timer);
895 timer->enabled = 0;
896 return err;
897 }
898 }
899 return 0;
900}
901
902static void rtc_alarm_disable(struct rtc_device *rtc)
903{
904 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
905 return;
906
907 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
908 trace_rtc_alarm_irq_enable(0, 0);
909}
910
911/**
912 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
913 * @rtc rtc device
914 * @timer timer being removed.
915 *
916 * Removes a timer onto the rtc devices timerqueue and sets
917 * the next alarm event appropriately.
918 *
919 * Clears the enabled bit on the removed timer.
920 *
921 * Must hold ops_lock for proper serialization of timerqueue
922 */
923static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
924{
925 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
926 timerqueue_del(&rtc->timerqueue, &timer->node);
927 trace_rtc_timer_dequeue(timer);
928 timer->enabled = 0;
929 if (next == &timer->node) {
930 struct rtc_wkalrm alarm;
931 int err;
932 next = timerqueue_getnext(&rtc->timerqueue);
933 if (!next) {
934 rtc_alarm_disable(rtc);
935 return;
936 }
937 alarm.time = rtc_ktime_to_tm(next->expires);
938 alarm.enabled = 1;
939 err = __rtc_set_alarm(rtc, &alarm);
940 if (err == -ETIME) {
941 pm_stay_awake(rtc->dev.parent);
942 schedule_work(&rtc->irqwork);
943 }
944 }
945}
946
947/**
948 * rtc_timer_do_work - Expires rtc timers
949 * @rtc rtc device
950 * @timer timer being removed.
951 *
952 * Expires rtc timers. Reprograms next alarm event if needed.
953 * Called via worktask.
954 *
955 * Serializes access to timerqueue via ops_lock mutex
956 */
957void rtc_timer_do_work(struct work_struct *work)
958{
959 struct rtc_timer *timer;
960 struct timerqueue_node *next;
961 ktime_t now;
962 struct rtc_time tm;
963
964 struct rtc_device *rtc =
965 container_of(work, struct rtc_device, irqwork);
966
967 mutex_lock(&rtc->ops_lock);
968again:
969 __rtc_read_time(rtc, &tm);
970 now = rtc_tm_to_ktime(tm);
971 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
972 if (next->expires > now)
973 break;
974
975 /* expire timer */
976 timer = container_of(next, struct rtc_timer, node);
977 timerqueue_del(&rtc->timerqueue, &timer->node);
978 trace_rtc_timer_dequeue(timer);
979 timer->enabled = 0;
980 if (timer->task.func)
981 timer->task.func(timer->task.private_data);
982
983 trace_rtc_timer_fired(timer);
984 /* Re-add/fwd periodic timers */
985 if (ktime_to_ns(timer->period)) {
986 timer->node.expires = ktime_add(timer->node.expires,
987 timer->period);
988 timer->enabled = 1;
989 timerqueue_add(&rtc->timerqueue, &timer->node);
990 trace_rtc_timer_enqueue(timer);
991 }
992 }
993
994 /* Set next alarm */
995 if (next) {
996 struct rtc_wkalrm alarm;
997 int err;
998 int retry = 3;
999
1000 alarm.time = rtc_ktime_to_tm(next->expires);
1001 alarm.enabled = 1;
1002reprogram:
1003 err = __rtc_set_alarm(rtc, &alarm);
1004 if (err == -ETIME)
1005 goto again;
1006 else if (err) {
1007 if (retry-- > 0)
1008 goto reprogram;
1009
1010 timer = container_of(next, struct rtc_timer, node);
1011 timerqueue_del(&rtc->timerqueue, &timer->node);
1012 trace_rtc_timer_dequeue(timer);
1013 timer->enabled = 0;
1014 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
1015 goto again;
1016 }
1017 } else
1018 rtc_alarm_disable(rtc);
1019
1020 pm_relax(rtc->dev.parent);
1021 mutex_unlock(&rtc->ops_lock);
1022}
1023
1024
1025/* rtc_timer_init - Initializes an rtc_timer
1026 * @timer: timer to be intiialized
1027 * @f: function pointer to be called when timer fires
1028 * @data: private data passed to function pointer
1029 *
1030 * Kernel interface to initializing an rtc_timer.
1031 */
1032void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
1033{
1034 timerqueue_init(&timer->node);
1035 timer->enabled = 0;
1036 timer->task.func = f;
1037 timer->task.private_data = data;
1038}
1039
1040/* rtc_timer_start - Sets an rtc_timer to fire in the future
1041 * @ rtc: rtc device to be used
1042 * @ timer: timer being set
1043 * @ expires: time at which to expire the timer
1044 * @ period: period that the timer will recur
1045 *
1046 * Kernel interface to set an rtc_timer
1047 */
1048int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
1049 ktime_t expires, ktime_t period)
1050{
1051 int ret = 0;
1052 mutex_lock(&rtc->ops_lock);
1053 if (timer->enabled)
1054 rtc_timer_remove(rtc, timer);
1055
1056 timer->node.expires = expires;
1057 timer->period = period;
1058
1059 ret = rtc_timer_enqueue(rtc, timer);
1060
1061 mutex_unlock(&rtc->ops_lock);
1062 return ret;
1063}
1064
1065/* rtc_timer_cancel - Stops an rtc_timer
1066 * @ rtc: rtc device to be used
1067 * @ timer: timer being set
1068 *
1069 * Kernel interface to cancel an rtc_timer
1070 */
1071void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1072{
1073 mutex_lock(&rtc->ops_lock);
1074 if (timer->enabled)
1075 rtc_timer_remove(rtc, timer);
1076 mutex_unlock(&rtc->ops_lock);
1077}
1078
1079/**
1080 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1081 * @ rtc: rtc device to be used
1082 * @ offset: the offset in parts per billion
1083 *
1084 * see below for details.
1085 *
1086 * Kernel interface to read rtc clock offset
1087 * Returns 0 on success, or a negative number on error.
1088 * If read_offset() is not implemented for the rtc, return -EINVAL
1089 */
1090int rtc_read_offset(struct rtc_device *rtc, long *offset)
1091{
1092 int ret;
1093
1094 if (!rtc->ops)
1095 return -ENODEV;
1096
1097 if (!rtc->ops->read_offset)
1098 return -EINVAL;
1099
1100 mutex_lock(&rtc->ops_lock);
1101 ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1102 mutex_unlock(&rtc->ops_lock);
1103
1104 trace_rtc_read_offset(*offset, ret);
1105 return ret;
1106}
1107
1108/**
1109 * rtc_set_offset - Adjusts the duration of the average second
1110 * @ rtc: rtc device to be used
1111 * @ offset: the offset in parts per billion
1112 *
1113 * Some rtc's allow an adjustment to the average duration of a second
1114 * to compensate for differences in the actual clock rate due to temperature,
1115 * the crystal, capacitor, etc.
1116 *
1117 * The adjustment applied is as follows:
1118 * t = t0 * (1 + offset * 1e-9)
1119 * where t0 is the measured length of 1 RTC second with offset = 0
1120 *
1121 * Kernel interface to adjust an rtc clock offset.
1122 * Return 0 on success, or a negative number on error.
1123 * If the rtc offset is not setable (or not implemented), return -EINVAL
1124 */
1125int rtc_set_offset(struct rtc_device *rtc, long offset)
1126{
1127 int ret;
1128
1129 if (!rtc->ops)
1130 return -ENODEV;
1131
1132 if (!rtc->ops->set_offset)
1133 return -EINVAL;
1134
1135 mutex_lock(&rtc->ops_lock);
1136 ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1137 mutex_unlock(&rtc->ops_lock);
1138
1139 trace_rtc_set_offset(offset, ret);
1140 return ret;
1141}