Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
18#include <linux/range.h>
19#include <linux/pfn.h>
20#include <linux/percpu-refcount.h>
21#include <linux/bit_spinlock.h>
22#include <linux/shrinker.h>
23#include <linux/resource.h>
24#include <linux/page_ext.h>
25#include <linux/err.h>
26#include <linux/page_ref.h>
27#include <linux/memremap.h>
28#include <linux/overflow.h>
29
30struct mempolicy;
31struct anon_vma;
32struct anon_vma_chain;
33struct file_ra_state;
34struct user_struct;
35struct writeback_control;
36struct bdi_writeback;
37
38void init_mm_internals(void);
39
40#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
41extern unsigned long max_mapnr;
42
43static inline void set_max_mapnr(unsigned long limit)
44{
45 max_mapnr = limit;
46}
47#else
48static inline void set_max_mapnr(unsigned long limit) { }
49#endif
50
51extern unsigned long totalram_pages;
52extern void * high_memory;
53extern int page_cluster;
54
55#ifdef CONFIG_SYSCTL
56extern int sysctl_legacy_va_layout;
57#else
58#define sysctl_legacy_va_layout 0
59#endif
60
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62extern const int mmap_rnd_bits_min;
63extern const int mmap_rnd_bits_max;
64extern int mmap_rnd_bits __read_mostly;
65#endif
66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67extern const int mmap_rnd_compat_bits_min;
68extern const int mmap_rnd_compat_bits_max;
69extern int mmap_rnd_compat_bits __read_mostly;
70#endif
71
72#include <asm/page.h>
73#include <asm/pgtable.h>
74#include <asm/processor.h>
75
76#ifndef __pa_symbol
77#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
78#endif
79
80#ifndef page_to_virt
81#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
82#endif
83
84#ifndef lm_alias
85#define lm_alias(x) __va(__pa_symbol(x))
86#endif
87
88/*
89 * To prevent common memory management code establishing
90 * a zero page mapping on a read fault.
91 * This macro should be defined within <asm/pgtable.h>.
92 * s390 does this to prevent multiplexing of hardware bits
93 * related to the physical page in case of virtualization.
94 */
95#ifndef mm_forbids_zeropage
96#define mm_forbids_zeropage(X) (0)
97#endif
98
99/*
100 * On some architectures it is expensive to call memset() for small sizes.
101 * Those architectures should provide their own implementation of "struct page"
102 * zeroing by defining this macro in <asm/pgtable.h>.
103 */
104#ifndef mm_zero_struct_page
105#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
106#endif
107
108/*
109 * Default maximum number of active map areas, this limits the number of vmas
110 * per mm struct. Users can overwrite this number by sysctl but there is a
111 * problem.
112 *
113 * When a program's coredump is generated as ELF format, a section is created
114 * per a vma. In ELF, the number of sections is represented in unsigned short.
115 * This means the number of sections should be smaller than 65535 at coredump.
116 * Because the kernel adds some informative sections to a image of program at
117 * generating coredump, we need some margin. The number of extra sections is
118 * 1-3 now and depends on arch. We use "5" as safe margin, here.
119 *
120 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
121 * not a hard limit any more. Although some userspace tools can be surprised by
122 * that.
123 */
124#define MAPCOUNT_ELF_CORE_MARGIN (5)
125#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
126
127extern int sysctl_max_map_count;
128
129extern unsigned long sysctl_user_reserve_kbytes;
130extern unsigned long sysctl_admin_reserve_kbytes;
131
132extern int sysctl_overcommit_memory;
133extern int sysctl_overcommit_ratio;
134extern unsigned long sysctl_overcommit_kbytes;
135
136extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
137 size_t *, loff_t *);
138extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
139 size_t *, loff_t *);
140
141#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
142
143/* to align the pointer to the (next) page boundary */
144#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
145
146/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
147#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
148
149/*
150 * Linux kernel virtual memory manager primitives.
151 * The idea being to have a "virtual" mm in the same way
152 * we have a virtual fs - giving a cleaner interface to the
153 * mm details, and allowing different kinds of memory mappings
154 * (from shared memory to executable loading to arbitrary
155 * mmap() functions).
156 */
157
158extern struct kmem_cache *vm_area_cachep;
159
160#ifndef CONFIG_MMU
161extern struct rb_root nommu_region_tree;
162extern struct rw_semaphore nommu_region_sem;
163
164extern unsigned int kobjsize(const void *objp);
165#endif
166
167/*
168 * vm_flags in vm_area_struct, see mm_types.h.
169 * When changing, update also include/trace/events/mmflags.h
170 */
171#define VM_NONE 0x00000000
172
173#define VM_READ 0x00000001 /* currently active flags */
174#define VM_WRITE 0x00000002
175#define VM_EXEC 0x00000004
176#define VM_SHARED 0x00000008
177
178/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
179#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
180#define VM_MAYWRITE 0x00000020
181#define VM_MAYEXEC 0x00000040
182#define VM_MAYSHARE 0x00000080
183
184#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
185#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
186#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
187#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
188#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
189
190#define VM_LOCKED 0x00002000
191#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
192
193 /* Used by sys_madvise() */
194#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
195#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
196
197#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
198#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
199#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
200#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
201#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
202#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
203#define VM_SYNC 0x00800000 /* Synchronous page faults */
204#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
205#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
206#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
207
208#ifdef CONFIG_MEM_SOFT_DIRTY
209# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
210#else
211# define VM_SOFTDIRTY 0
212#endif
213
214#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
215#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
216#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
217#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
218
219#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
220#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
221#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
222#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
223#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
224#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
225#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
226#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
227#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
228#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
229#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
230#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
231
232#ifdef CONFIG_ARCH_HAS_PKEYS
233# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
234# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
235# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
236# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
237# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
238#ifdef CONFIG_PPC
239# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
240#else
241# define VM_PKEY_BIT4 0
242#endif
243#endif /* CONFIG_ARCH_HAS_PKEYS */
244
245#if defined(CONFIG_X86)
246# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
247#elif defined(CONFIG_PPC)
248# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
249#elif defined(CONFIG_PARISC)
250# define VM_GROWSUP VM_ARCH_1
251#elif defined(CONFIG_IA64)
252# define VM_GROWSUP VM_ARCH_1
253#elif defined(CONFIG_SPARC64)
254# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
255# define VM_ARCH_CLEAR VM_SPARC_ADI
256#elif !defined(CONFIG_MMU)
257# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
258#endif
259
260#if defined(CONFIG_X86_INTEL_MPX)
261/* MPX specific bounds table or bounds directory */
262# define VM_MPX VM_HIGH_ARCH_4
263#else
264# define VM_MPX VM_NONE
265#endif
266
267#ifndef VM_GROWSUP
268# define VM_GROWSUP VM_NONE
269#endif
270
271/* Bits set in the VMA until the stack is in its final location */
272#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
273
274#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
275#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
276#endif
277
278#ifdef CONFIG_STACK_GROWSUP
279#define VM_STACK VM_GROWSUP
280#else
281#define VM_STACK VM_GROWSDOWN
282#endif
283
284#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
285
286/*
287 * Special vmas that are non-mergable, non-mlock()able.
288 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
289 */
290#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
291
292/* This mask defines which mm->def_flags a process can inherit its parent */
293#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
294
295/* This mask is used to clear all the VMA flags used by mlock */
296#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
297
298/* Arch-specific flags to clear when updating VM flags on protection change */
299#ifndef VM_ARCH_CLEAR
300# define VM_ARCH_CLEAR VM_NONE
301#endif
302#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
303
304/*
305 * mapping from the currently active vm_flags protection bits (the
306 * low four bits) to a page protection mask..
307 */
308extern pgprot_t protection_map[16];
309
310#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
311#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
312#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
313#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
314#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
315#define FAULT_FLAG_TRIED 0x20 /* Second try */
316#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
317#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
318#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
319
320#define FAULT_FLAG_TRACE \
321 { FAULT_FLAG_WRITE, "WRITE" }, \
322 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
323 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
324 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
325 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
326 { FAULT_FLAG_TRIED, "TRIED" }, \
327 { FAULT_FLAG_USER, "USER" }, \
328 { FAULT_FLAG_REMOTE, "REMOTE" }, \
329 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
330
331/*
332 * vm_fault is filled by the the pagefault handler and passed to the vma's
333 * ->fault function. The vma's ->fault is responsible for returning a bitmask
334 * of VM_FAULT_xxx flags that give details about how the fault was handled.
335 *
336 * MM layer fills up gfp_mask for page allocations but fault handler might
337 * alter it if its implementation requires a different allocation context.
338 *
339 * pgoff should be used in favour of virtual_address, if possible.
340 */
341struct vm_fault {
342 struct vm_area_struct *vma; /* Target VMA */
343 unsigned int flags; /* FAULT_FLAG_xxx flags */
344 gfp_t gfp_mask; /* gfp mask to be used for allocations */
345 pgoff_t pgoff; /* Logical page offset based on vma */
346 unsigned long address; /* Faulting virtual address */
347 pmd_t *pmd; /* Pointer to pmd entry matching
348 * the 'address' */
349 pud_t *pud; /* Pointer to pud entry matching
350 * the 'address'
351 */
352 pte_t orig_pte; /* Value of PTE at the time of fault */
353
354 struct page *cow_page; /* Page handler may use for COW fault */
355 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
356 struct page *page; /* ->fault handlers should return a
357 * page here, unless VM_FAULT_NOPAGE
358 * is set (which is also implied by
359 * VM_FAULT_ERROR).
360 */
361 /* These three entries are valid only while holding ptl lock */
362 pte_t *pte; /* Pointer to pte entry matching
363 * the 'address'. NULL if the page
364 * table hasn't been allocated.
365 */
366 spinlock_t *ptl; /* Page table lock.
367 * Protects pte page table if 'pte'
368 * is not NULL, otherwise pmd.
369 */
370 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
371 * vm_ops->map_pages() calls
372 * alloc_set_pte() from atomic context.
373 * do_fault_around() pre-allocates
374 * page table to avoid allocation from
375 * atomic context.
376 */
377};
378
379/* page entry size for vm->huge_fault() */
380enum page_entry_size {
381 PE_SIZE_PTE = 0,
382 PE_SIZE_PMD,
383 PE_SIZE_PUD,
384};
385
386/*
387 * These are the virtual MM functions - opening of an area, closing and
388 * unmapping it (needed to keep files on disk up-to-date etc), pointer
389 * to the functions called when a no-page or a wp-page exception occurs.
390 */
391struct vm_operations_struct {
392 void (*open)(struct vm_area_struct * area);
393 void (*close)(struct vm_area_struct * area);
394 int (*split)(struct vm_area_struct * area, unsigned long addr);
395 int (*mremap)(struct vm_area_struct * area);
396 vm_fault_t (*fault)(struct vm_fault *vmf);
397 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
398 enum page_entry_size pe_size);
399 void (*map_pages)(struct vm_fault *vmf,
400 pgoff_t start_pgoff, pgoff_t end_pgoff);
401 unsigned long (*pagesize)(struct vm_area_struct * area);
402
403 /* notification that a previously read-only page is about to become
404 * writable, if an error is returned it will cause a SIGBUS */
405 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
406
407 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
408 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
409
410 /* called by access_process_vm when get_user_pages() fails, typically
411 * for use by special VMAs that can switch between memory and hardware
412 */
413 int (*access)(struct vm_area_struct *vma, unsigned long addr,
414 void *buf, int len, int write);
415
416 /* Called by the /proc/PID/maps code to ask the vma whether it
417 * has a special name. Returning non-NULL will also cause this
418 * vma to be dumped unconditionally. */
419 const char *(*name)(struct vm_area_struct *vma);
420
421#ifdef CONFIG_NUMA
422 /*
423 * set_policy() op must add a reference to any non-NULL @new mempolicy
424 * to hold the policy upon return. Caller should pass NULL @new to
425 * remove a policy and fall back to surrounding context--i.e. do not
426 * install a MPOL_DEFAULT policy, nor the task or system default
427 * mempolicy.
428 */
429 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
430
431 /*
432 * get_policy() op must add reference [mpol_get()] to any policy at
433 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
434 * in mm/mempolicy.c will do this automatically.
435 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
436 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
437 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
438 * must return NULL--i.e., do not "fallback" to task or system default
439 * policy.
440 */
441 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
442 unsigned long addr);
443#endif
444 /*
445 * Called by vm_normal_page() for special PTEs to find the
446 * page for @addr. This is useful if the default behavior
447 * (using pte_page()) would not find the correct page.
448 */
449 struct page *(*find_special_page)(struct vm_area_struct *vma,
450 unsigned long addr);
451};
452
453struct mmu_gather;
454struct inode;
455
456#define page_private(page) ((page)->private)
457#define set_page_private(page, v) ((page)->private = (v))
458
459#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
460static inline int pmd_devmap(pmd_t pmd)
461{
462 return 0;
463}
464static inline int pud_devmap(pud_t pud)
465{
466 return 0;
467}
468static inline int pgd_devmap(pgd_t pgd)
469{
470 return 0;
471}
472#endif
473
474/*
475 * FIXME: take this include out, include page-flags.h in
476 * files which need it (119 of them)
477 */
478#include <linux/page-flags.h>
479#include <linux/huge_mm.h>
480
481/*
482 * Methods to modify the page usage count.
483 *
484 * What counts for a page usage:
485 * - cache mapping (page->mapping)
486 * - private data (page->private)
487 * - page mapped in a task's page tables, each mapping
488 * is counted separately
489 *
490 * Also, many kernel routines increase the page count before a critical
491 * routine so they can be sure the page doesn't go away from under them.
492 */
493
494/*
495 * Drop a ref, return true if the refcount fell to zero (the page has no users)
496 */
497static inline int put_page_testzero(struct page *page)
498{
499 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
500 return page_ref_dec_and_test(page);
501}
502
503/*
504 * Try to grab a ref unless the page has a refcount of zero, return false if
505 * that is the case.
506 * This can be called when MMU is off so it must not access
507 * any of the virtual mappings.
508 */
509static inline int get_page_unless_zero(struct page *page)
510{
511 return page_ref_add_unless(page, 1, 0);
512}
513
514extern int page_is_ram(unsigned long pfn);
515
516enum {
517 REGION_INTERSECTS,
518 REGION_DISJOINT,
519 REGION_MIXED,
520};
521
522int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
523 unsigned long desc);
524
525/* Support for virtually mapped pages */
526struct page *vmalloc_to_page(const void *addr);
527unsigned long vmalloc_to_pfn(const void *addr);
528
529/*
530 * Determine if an address is within the vmalloc range
531 *
532 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
533 * is no special casing required.
534 */
535static inline bool is_vmalloc_addr(const void *x)
536{
537#ifdef CONFIG_MMU
538 unsigned long addr = (unsigned long)x;
539
540 return addr >= VMALLOC_START && addr < VMALLOC_END;
541#else
542 return false;
543#endif
544}
545#ifdef CONFIG_MMU
546extern int is_vmalloc_or_module_addr(const void *x);
547#else
548static inline int is_vmalloc_or_module_addr(const void *x)
549{
550 return 0;
551}
552#endif
553
554extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
555static inline void *kvmalloc(size_t size, gfp_t flags)
556{
557 return kvmalloc_node(size, flags, NUMA_NO_NODE);
558}
559static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
560{
561 return kvmalloc_node(size, flags | __GFP_ZERO, node);
562}
563static inline void *kvzalloc(size_t size, gfp_t flags)
564{
565 return kvmalloc(size, flags | __GFP_ZERO);
566}
567
568static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
569{
570 size_t bytes;
571
572 if (unlikely(check_mul_overflow(n, size, &bytes)))
573 return NULL;
574
575 return kvmalloc(bytes, flags);
576}
577
578static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
579{
580 return kvmalloc_array(n, size, flags | __GFP_ZERO);
581}
582
583extern void kvfree(const void *addr);
584
585static inline atomic_t *compound_mapcount_ptr(struct page *page)
586{
587 return &page[1].compound_mapcount;
588}
589
590static inline int compound_mapcount(struct page *page)
591{
592 VM_BUG_ON_PAGE(!PageCompound(page), page);
593 page = compound_head(page);
594 return atomic_read(compound_mapcount_ptr(page)) + 1;
595}
596
597/*
598 * The atomic page->_mapcount, starts from -1: so that transitions
599 * both from it and to it can be tracked, using atomic_inc_and_test
600 * and atomic_add_negative(-1).
601 */
602static inline void page_mapcount_reset(struct page *page)
603{
604 atomic_set(&(page)->_mapcount, -1);
605}
606
607int __page_mapcount(struct page *page);
608
609static inline int page_mapcount(struct page *page)
610{
611 VM_BUG_ON_PAGE(PageSlab(page), page);
612
613 if (unlikely(PageCompound(page)))
614 return __page_mapcount(page);
615 return atomic_read(&page->_mapcount) + 1;
616}
617
618#ifdef CONFIG_TRANSPARENT_HUGEPAGE
619int total_mapcount(struct page *page);
620int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
621#else
622static inline int total_mapcount(struct page *page)
623{
624 return page_mapcount(page);
625}
626static inline int page_trans_huge_mapcount(struct page *page,
627 int *total_mapcount)
628{
629 int mapcount = page_mapcount(page);
630 if (total_mapcount)
631 *total_mapcount = mapcount;
632 return mapcount;
633}
634#endif
635
636static inline struct page *virt_to_head_page(const void *x)
637{
638 struct page *page = virt_to_page(x);
639
640 return compound_head(page);
641}
642
643void __put_page(struct page *page);
644
645void put_pages_list(struct list_head *pages);
646
647void split_page(struct page *page, unsigned int order);
648
649/*
650 * Compound pages have a destructor function. Provide a
651 * prototype for that function and accessor functions.
652 * These are _only_ valid on the head of a compound page.
653 */
654typedef void compound_page_dtor(struct page *);
655
656/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
657enum compound_dtor_id {
658 NULL_COMPOUND_DTOR,
659 COMPOUND_PAGE_DTOR,
660#ifdef CONFIG_HUGETLB_PAGE
661 HUGETLB_PAGE_DTOR,
662#endif
663#ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 TRANSHUGE_PAGE_DTOR,
665#endif
666 NR_COMPOUND_DTORS,
667};
668extern compound_page_dtor * const compound_page_dtors[];
669
670static inline void set_compound_page_dtor(struct page *page,
671 enum compound_dtor_id compound_dtor)
672{
673 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
674 page[1].compound_dtor = compound_dtor;
675}
676
677static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
678{
679 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
680 return compound_page_dtors[page[1].compound_dtor];
681}
682
683static inline unsigned int compound_order(struct page *page)
684{
685 if (!PageHead(page))
686 return 0;
687 return page[1].compound_order;
688}
689
690static inline void set_compound_order(struct page *page, unsigned int order)
691{
692 page[1].compound_order = order;
693}
694
695void free_compound_page(struct page *page);
696
697#ifdef CONFIG_MMU
698/*
699 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
700 * servicing faults for write access. In the normal case, do always want
701 * pte_mkwrite. But get_user_pages can cause write faults for mappings
702 * that do not have writing enabled, when used by access_process_vm.
703 */
704static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
705{
706 if (likely(vma->vm_flags & VM_WRITE))
707 pte = pte_mkwrite(pte);
708 return pte;
709}
710
711int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
712 struct page *page);
713int finish_fault(struct vm_fault *vmf);
714int finish_mkwrite_fault(struct vm_fault *vmf);
715#endif
716
717/*
718 * Multiple processes may "see" the same page. E.g. for untouched
719 * mappings of /dev/null, all processes see the same page full of
720 * zeroes, and text pages of executables and shared libraries have
721 * only one copy in memory, at most, normally.
722 *
723 * For the non-reserved pages, page_count(page) denotes a reference count.
724 * page_count() == 0 means the page is free. page->lru is then used for
725 * freelist management in the buddy allocator.
726 * page_count() > 0 means the page has been allocated.
727 *
728 * Pages are allocated by the slab allocator in order to provide memory
729 * to kmalloc and kmem_cache_alloc. In this case, the management of the
730 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
731 * unless a particular usage is carefully commented. (the responsibility of
732 * freeing the kmalloc memory is the caller's, of course).
733 *
734 * A page may be used by anyone else who does a __get_free_page().
735 * In this case, page_count still tracks the references, and should only
736 * be used through the normal accessor functions. The top bits of page->flags
737 * and page->virtual store page management information, but all other fields
738 * are unused and could be used privately, carefully. The management of this
739 * page is the responsibility of the one who allocated it, and those who have
740 * subsequently been given references to it.
741 *
742 * The other pages (we may call them "pagecache pages") are completely
743 * managed by the Linux memory manager: I/O, buffers, swapping etc.
744 * The following discussion applies only to them.
745 *
746 * A pagecache page contains an opaque `private' member, which belongs to the
747 * page's address_space. Usually, this is the address of a circular list of
748 * the page's disk buffers. PG_private must be set to tell the VM to call
749 * into the filesystem to release these pages.
750 *
751 * A page may belong to an inode's memory mapping. In this case, page->mapping
752 * is the pointer to the inode, and page->index is the file offset of the page,
753 * in units of PAGE_SIZE.
754 *
755 * If pagecache pages are not associated with an inode, they are said to be
756 * anonymous pages. These may become associated with the swapcache, and in that
757 * case PG_swapcache is set, and page->private is an offset into the swapcache.
758 *
759 * In either case (swapcache or inode backed), the pagecache itself holds one
760 * reference to the page. Setting PG_private should also increment the
761 * refcount. The each user mapping also has a reference to the page.
762 *
763 * The pagecache pages are stored in a per-mapping radix tree, which is
764 * rooted at mapping->i_pages, and indexed by offset.
765 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
766 * lists, we instead now tag pages as dirty/writeback in the radix tree.
767 *
768 * All pagecache pages may be subject to I/O:
769 * - inode pages may need to be read from disk,
770 * - inode pages which have been modified and are MAP_SHARED may need
771 * to be written back to the inode on disk,
772 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
773 * modified may need to be swapped out to swap space and (later) to be read
774 * back into memory.
775 */
776
777/*
778 * The zone field is never updated after free_area_init_core()
779 * sets it, so none of the operations on it need to be atomic.
780 */
781
782/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
783#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
784#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
785#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
786#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
787
788/*
789 * Define the bit shifts to access each section. For non-existent
790 * sections we define the shift as 0; that plus a 0 mask ensures
791 * the compiler will optimise away reference to them.
792 */
793#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
794#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
795#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
796#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
797
798/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
799#ifdef NODE_NOT_IN_PAGE_FLAGS
800#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
801#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
802 SECTIONS_PGOFF : ZONES_PGOFF)
803#else
804#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
805#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
806 NODES_PGOFF : ZONES_PGOFF)
807#endif
808
809#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
810
811#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
812#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
813#endif
814
815#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
816#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
817#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
818#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
819#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
820
821static inline enum zone_type page_zonenum(const struct page *page)
822{
823 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
824}
825
826#ifdef CONFIG_ZONE_DEVICE
827static inline bool is_zone_device_page(const struct page *page)
828{
829 return page_zonenum(page) == ZONE_DEVICE;
830}
831#else
832static inline bool is_zone_device_page(const struct page *page)
833{
834 return false;
835}
836#endif
837
838#ifdef CONFIG_DEV_PAGEMAP_OPS
839void dev_pagemap_get_ops(void);
840void dev_pagemap_put_ops(void);
841void __put_devmap_managed_page(struct page *page);
842DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
843static inline bool put_devmap_managed_page(struct page *page)
844{
845 if (!static_branch_unlikely(&devmap_managed_key))
846 return false;
847 if (!is_zone_device_page(page))
848 return false;
849 switch (page->pgmap->type) {
850 case MEMORY_DEVICE_PRIVATE:
851 case MEMORY_DEVICE_PUBLIC:
852 case MEMORY_DEVICE_FS_DAX:
853 __put_devmap_managed_page(page);
854 return true;
855 default:
856 break;
857 }
858 return false;
859}
860
861static inline bool is_device_private_page(const struct page *page)
862{
863 return is_zone_device_page(page) &&
864 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
865}
866
867static inline bool is_device_public_page(const struct page *page)
868{
869 return is_zone_device_page(page) &&
870 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
871}
872
873#else /* CONFIG_DEV_PAGEMAP_OPS */
874static inline void dev_pagemap_get_ops(void)
875{
876}
877
878static inline void dev_pagemap_put_ops(void)
879{
880}
881
882static inline bool put_devmap_managed_page(struct page *page)
883{
884 return false;
885}
886
887static inline bool is_device_private_page(const struct page *page)
888{
889 return false;
890}
891
892static inline bool is_device_public_page(const struct page *page)
893{
894 return false;
895}
896#endif /* CONFIG_DEV_PAGEMAP_OPS */
897
898static inline void get_page(struct page *page)
899{
900 page = compound_head(page);
901 /*
902 * Getting a normal page or the head of a compound page
903 * requires to already have an elevated page->_refcount.
904 */
905 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
906 page_ref_inc(page);
907}
908
909static inline void put_page(struct page *page)
910{
911 page = compound_head(page);
912
913 /*
914 * For devmap managed pages we need to catch refcount transition from
915 * 2 to 1, when refcount reach one it means the page is free and we
916 * need to inform the device driver through callback. See
917 * include/linux/memremap.h and HMM for details.
918 */
919 if (put_devmap_managed_page(page))
920 return;
921
922 if (put_page_testzero(page))
923 __put_page(page);
924}
925
926#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
927#define SECTION_IN_PAGE_FLAGS
928#endif
929
930/*
931 * The identification function is mainly used by the buddy allocator for
932 * determining if two pages could be buddies. We are not really identifying
933 * the zone since we could be using the section number id if we do not have
934 * node id available in page flags.
935 * We only guarantee that it will return the same value for two combinable
936 * pages in a zone.
937 */
938static inline int page_zone_id(struct page *page)
939{
940 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
941}
942
943static inline int zone_to_nid(struct zone *zone)
944{
945#ifdef CONFIG_NUMA
946 return zone->node;
947#else
948 return 0;
949#endif
950}
951
952#ifdef NODE_NOT_IN_PAGE_FLAGS
953extern int page_to_nid(const struct page *page);
954#else
955static inline int page_to_nid(const struct page *page)
956{
957 struct page *p = (struct page *)page;
958
959 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
960}
961#endif
962
963#ifdef CONFIG_NUMA_BALANCING
964static inline int cpu_pid_to_cpupid(int cpu, int pid)
965{
966 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
967}
968
969static inline int cpupid_to_pid(int cpupid)
970{
971 return cpupid & LAST__PID_MASK;
972}
973
974static inline int cpupid_to_cpu(int cpupid)
975{
976 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
977}
978
979static inline int cpupid_to_nid(int cpupid)
980{
981 return cpu_to_node(cpupid_to_cpu(cpupid));
982}
983
984static inline bool cpupid_pid_unset(int cpupid)
985{
986 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
987}
988
989static inline bool cpupid_cpu_unset(int cpupid)
990{
991 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
992}
993
994static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
995{
996 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
997}
998
999#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1000#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1001static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1002{
1003 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1004}
1005
1006static inline int page_cpupid_last(struct page *page)
1007{
1008 return page->_last_cpupid;
1009}
1010static inline void page_cpupid_reset_last(struct page *page)
1011{
1012 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1013}
1014#else
1015static inline int page_cpupid_last(struct page *page)
1016{
1017 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1018}
1019
1020extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1021
1022static inline void page_cpupid_reset_last(struct page *page)
1023{
1024 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1025}
1026#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1027#else /* !CONFIG_NUMA_BALANCING */
1028static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1029{
1030 return page_to_nid(page); /* XXX */
1031}
1032
1033static inline int page_cpupid_last(struct page *page)
1034{
1035 return page_to_nid(page); /* XXX */
1036}
1037
1038static inline int cpupid_to_nid(int cpupid)
1039{
1040 return -1;
1041}
1042
1043static inline int cpupid_to_pid(int cpupid)
1044{
1045 return -1;
1046}
1047
1048static inline int cpupid_to_cpu(int cpupid)
1049{
1050 return -1;
1051}
1052
1053static inline int cpu_pid_to_cpupid(int nid, int pid)
1054{
1055 return -1;
1056}
1057
1058static inline bool cpupid_pid_unset(int cpupid)
1059{
1060 return 1;
1061}
1062
1063static inline void page_cpupid_reset_last(struct page *page)
1064{
1065}
1066
1067static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1068{
1069 return false;
1070}
1071#endif /* CONFIG_NUMA_BALANCING */
1072
1073static inline struct zone *page_zone(const struct page *page)
1074{
1075 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1076}
1077
1078static inline pg_data_t *page_pgdat(const struct page *page)
1079{
1080 return NODE_DATA(page_to_nid(page));
1081}
1082
1083#ifdef SECTION_IN_PAGE_FLAGS
1084static inline void set_page_section(struct page *page, unsigned long section)
1085{
1086 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1087 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1088}
1089
1090static inline unsigned long page_to_section(const struct page *page)
1091{
1092 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1093}
1094#endif
1095
1096static inline void set_page_zone(struct page *page, enum zone_type zone)
1097{
1098 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1099 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1100}
1101
1102static inline void set_page_node(struct page *page, unsigned long node)
1103{
1104 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1105 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1106}
1107
1108static inline void set_page_links(struct page *page, enum zone_type zone,
1109 unsigned long node, unsigned long pfn)
1110{
1111 set_page_zone(page, zone);
1112 set_page_node(page, node);
1113#ifdef SECTION_IN_PAGE_FLAGS
1114 set_page_section(page, pfn_to_section_nr(pfn));
1115#endif
1116}
1117
1118#ifdef CONFIG_MEMCG
1119static inline struct mem_cgroup *page_memcg(struct page *page)
1120{
1121 return page->mem_cgroup;
1122}
1123static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1124{
1125 WARN_ON_ONCE(!rcu_read_lock_held());
1126 return READ_ONCE(page->mem_cgroup);
1127}
1128#else
1129static inline struct mem_cgroup *page_memcg(struct page *page)
1130{
1131 return NULL;
1132}
1133static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1134{
1135 WARN_ON_ONCE(!rcu_read_lock_held());
1136 return NULL;
1137}
1138#endif
1139
1140/*
1141 * Some inline functions in vmstat.h depend on page_zone()
1142 */
1143#include <linux/vmstat.h>
1144
1145static __always_inline void *lowmem_page_address(const struct page *page)
1146{
1147 return page_to_virt(page);
1148}
1149
1150#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1151#define HASHED_PAGE_VIRTUAL
1152#endif
1153
1154#if defined(WANT_PAGE_VIRTUAL)
1155static inline void *page_address(const struct page *page)
1156{
1157 return page->virtual;
1158}
1159static inline void set_page_address(struct page *page, void *address)
1160{
1161 page->virtual = address;
1162}
1163#define page_address_init() do { } while(0)
1164#endif
1165
1166#if defined(HASHED_PAGE_VIRTUAL)
1167void *page_address(const struct page *page);
1168void set_page_address(struct page *page, void *virtual);
1169void page_address_init(void);
1170#endif
1171
1172#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1173#define page_address(page) lowmem_page_address(page)
1174#define set_page_address(page, address) do { } while(0)
1175#define page_address_init() do { } while(0)
1176#endif
1177
1178extern void *page_rmapping(struct page *page);
1179extern struct anon_vma *page_anon_vma(struct page *page);
1180extern struct address_space *page_mapping(struct page *page);
1181
1182extern struct address_space *__page_file_mapping(struct page *);
1183
1184static inline
1185struct address_space *page_file_mapping(struct page *page)
1186{
1187 if (unlikely(PageSwapCache(page)))
1188 return __page_file_mapping(page);
1189
1190 return page->mapping;
1191}
1192
1193extern pgoff_t __page_file_index(struct page *page);
1194
1195/*
1196 * Return the pagecache index of the passed page. Regular pagecache pages
1197 * use ->index whereas swapcache pages use swp_offset(->private)
1198 */
1199static inline pgoff_t page_index(struct page *page)
1200{
1201 if (unlikely(PageSwapCache(page)))
1202 return __page_file_index(page);
1203 return page->index;
1204}
1205
1206bool page_mapped(struct page *page);
1207struct address_space *page_mapping(struct page *page);
1208struct address_space *page_mapping_file(struct page *page);
1209
1210/*
1211 * Return true only if the page has been allocated with
1212 * ALLOC_NO_WATERMARKS and the low watermark was not
1213 * met implying that the system is under some pressure.
1214 */
1215static inline bool page_is_pfmemalloc(struct page *page)
1216{
1217 /*
1218 * Page index cannot be this large so this must be
1219 * a pfmemalloc page.
1220 */
1221 return page->index == -1UL;
1222}
1223
1224/*
1225 * Only to be called by the page allocator on a freshly allocated
1226 * page.
1227 */
1228static inline void set_page_pfmemalloc(struct page *page)
1229{
1230 page->index = -1UL;
1231}
1232
1233static inline void clear_page_pfmemalloc(struct page *page)
1234{
1235 page->index = 0;
1236}
1237
1238/*
1239 * Different kinds of faults, as returned by handle_mm_fault().
1240 * Used to decide whether a process gets delivered SIGBUS or
1241 * just gets major/minor fault counters bumped up.
1242 */
1243
1244#define VM_FAULT_OOM 0x0001
1245#define VM_FAULT_SIGBUS 0x0002
1246#define VM_FAULT_MAJOR 0x0004
1247#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1248#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1249#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1250#define VM_FAULT_SIGSEGV 0x0040
1251
1252#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1253#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1254#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1255#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1256#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1257#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1258 * and needs fsync() to complete (for
1259 * synchronous page faults in DAX) */
1260
1261#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1262 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1263 VM_FAULT_FALLBACK)
1264
1265#define VM_FAULT_RESULT_TRACE \
1266 { VM_FAULT_OOM, "OOM" }, \
1267 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1268 { VM_FAULT_MAJOR, "MAJOR" }, \
1269 { VM_FAULT_WRITE, "WRITE" }, \
1270 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1271 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1272 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1273 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1274 { VM_FAULT_LOCKED, "LOCKED" }, \
1275 { VM_FAULT_RETRY, "RETRY" }, \
1276 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1277 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1278 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
1279
1280/* Encode hstate index for a hwpoisoned large page */
1281#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1282#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1283
1284/*
1285 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1286 */
1287extern void pagefault_out_of_memory(void);
1288
1289#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1290
1291/*
1292 * Flags passed to show_mem() and show_free_areas() to suppress output in
1293 * various contexts.
1294 */
1295#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1296
1297extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1298
1299extern bool can_do_mlock(void);
1300extern int user_shm_lock(size_t, struct user_struct *);
1301extern void user_shm_unlock(size_t, struct user_struct *);
1302
1303/*
1304 * Parameter block passed down to zap_pte_range in exceptional cases.
1305 */
1306struct zap_details {
1307 struct address_space *check_mapping; /* Check page->mapping if set */
1308 pgoff_t first_index; /* Lowest page->index to unmap */
1309 pgoff_t last_index; /* Highest page->index to unmap */
1310};
1311
1312struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1313 pte_t pte, bool with_public_device);
1314#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1315
1316struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1317 pmd_t pmd);
1318
1319void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1320 unsigned long size);
1321void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1322 unsigned long size);
1323void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1324 unsigned long start, unsigned long end);
1325
1326/**
1327 * mm_walk - callbacks for walk_page_range
1328 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1329 * this handler should only handle pud_trans_huge() puds.
1330 * the pmd_entry or pte_entry callbacks will be used for
1331 * regular PUDs.
1332 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1333 * this handler is required to be able to handle
1334 * pmd_trans_huge() pmds. They may simply choose to
1335 * split_huge_page() instead of handling it explicitly.
1336 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1337 * @pte_hole: if set, called for each hole at all levels
1338 * @hugetlb_entry: if set, called for each hugetlb entry
1339 * @test_walk: caller specific callback function to determine whether
1340 * we walk over the current vma or not. Returning 0
1341 * value means "do page table walk over the current vma,"
1342 * and a negative one means "abort current page table walk
1343 * right now." 1 means "skip the current vma."
1344 * @mm: mm_struct representing the target process of page table walk
1345 * @vma: vma currently walked (NULL if walking outside vmas)
1346 * @private: private data for callbacks' usage
1347 *
1348 * (see the comment on walk_page_range() for more details)
1349 */
1350struct mm_walk {
1351 int (*pud_entry)(pud_t *pud, unsigned long addr,
1352 unsigned long next, struct mm_walk *walk);
1353 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1354 unsigned long next, struct mm_walk *walk);
1355 int (*pte_entry)(pte_t *pte, unsigned long addr,
1356 unsigned long next, struct mm_walk *walk);
1357 int (*pte_hole)(unsigned long addr, unsigned long next,
1358 struct mm_walk *walk);
1359 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1360 unsigned long addr, unsigned long next,
1361 struct mm_walk *walk);
1362 int (*test_walk)(unsigned long addr, unsigned long next,
1363 struct mm_walk *walk);
1364 struct mm_struct *mm;
1365 struct vm_area_struct *vma;
1366 void *private;
1367};
1368
1369int walk_page_range(unsigned long addr, unsigned long end,
1370 struct mm_walk *walk);
1371int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1372void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1373 unsigned long end, unsigned long floor, unsigned long ceiling);
1374int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1375 struct vm_area_struct *vma);
1376int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1377 unsigned long *start, unsigned long *end,
1378 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1379int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1380 unsigned long *pfn);
1381int follow_phys(struct vm_area_struct *vma, unsigned long address,
1382 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1383int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1384 void *buf, int len, int write);
1385
1386extern void truncate_pagecache(struct inode *inode, loff_t new);
1387extern void truncate_setsize(struct inode *inode, loff_t newsize);
1388void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1389void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1390int truncate_inode_page(struct address_space *mapping, struct page *page);
1391int generic_error_remove_page(struct address_space *mapping, struct page *page);
1392int invalidate_inode_page(struct page *page);
1393
1394#ifdef CONFIG_MMU
1395extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1396 unsigned int flags);
1397extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1398 unsigned long address, unsigned int fault_flags,
1399 bool *unlocked);
1400void unmap_mapping_pages(struct address_space *mapping,
1401 pgoff_t start, pgoff_t nr, bool even_cows);
1402void unmap_mapping_range(struct address_space *mapping,
1403 loff_t const holebegin, loff_t const holelen, int even_cows);
1404#else
1405static inline int handle_mm_fault(struct vm_area_struct *vma,
1406 unsigned long address, unsigned int flags)
1407{
1408 /* should never happen if there's no MMU */
1409 BUG();
1410 return VM_FAULT_SIGBUS;
1411}
1412static inline int fixup_user_fault(struct task_struct *tsk,
1413 struct mm_struct *mm, unsigned long address,
1414 unsigned int fault_flags, bool *unlocked)
1415{
1416 /* should never happen if there's no MMU */
1417 BUG();
1418 return -EFAULT;
1419}
1420static inline void unmap_mapping_pages(struct address_space *mapping,
1421 pgoff_t start, pgoff_t nr, bool even_cows) { }
1422static inline void unmap_mapping_range(struct address_space *mapping,
1423 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1424#endif
1425
1426static inline void unmap_shared_mapping_range(struct address_space *mapping,
1427 loff_t const holebegin, loff_t const holelen)
1428{
1429 unmap_mapping_range(mapping, holebegin, holelen, 0);
1430}
1431
1432extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1433 void *buf, int len, unsigned int gup_flags);
1434extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1435 void *buf, int len, unsigned int gup_flags);
1436extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1437 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1438
1439long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1440 unsigned long start, unsigned long nr_pages,
1441 unsigned int gup_flags, struct page **pages,
1442 struct vm_area_struct **vmas, int *locked);
1443long get_user_pages(unsigned long start, unsigned long nr_pages,
1444 unsigned int gup_flags, struct page **pages,
1445 struct vm_area_struct **vmas);
1446long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1447 unsigned int gup_flags, struct page **pages, int *locked);
1448long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1449 struct page **pages, unsigned int gup_flags);
1450#ifdef CONFIG_FS_DAX
1451long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1452 unsigned int gup_flags, struct page **pages,
1453 struct vm_area_struct **vmas);
1454#else
1455static inline long get_user_pages_longterm(unsigned long start,
1456 unsigned long nr_pages, unsigned int gup_flags,
1457 struct page **pages, struct vm_area_struct **vmas)
1458{
1459 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1460}
1461#endif /* CONFIG_FS_DAX */
1462
1463int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1464 struct page **pages);
1465
1466/* Container for pinned pfns / pages */
1467struct frame_vector {
1468 unsigned int nr_allocated; /* Number of frames we have space for */
1469 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1470 bool got_ref; /* Did we pin pages by getting page ref? */
1471 bool is_pfns; /* Does array contain pages or pfns? */
1472 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1473 * pfns_vector_pages() or pfns_vector_pfns()
1474 * for access */
1475};
1476
1477struct frame_vector *frame_vector_create(unsigned int nr_frames);
1478void frame_vector_destroy(struct frame_vector *vec);
1479int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1480 unsigned int gup_flags, struct frame_vector *vec);
1481void put_vaddr_frames(struct frame_vector *vec);
1482int frame_vector_to_pages(struct frame_vector *vec);
1483void frame_vector_to_pfns(struct frame_vector *vec);
1484
1485static inline unsigned int frame_vector_count(struct frame_vector *vec)
1486{
1487 return vec->nr_frames;
1488}
1489
1490static inline struct page **frame_vector_pages(struct frame_vector *vec)
1491{
1492 if (vec->is_pfns) {
1493 int err = frame_vector_to_pages(vec);
1494
1495 if (err)
1496 return ERR_PTR(err);
1497 }
1498 return (struct page **)(vec->ptrs);
1499}
1500
1501static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1502{
1503 if (!vec->is_pfns)
1504 frame_vector_to_pfns(vec);
1505 return (unsigned long *)(vec->ptrs);
1506}
1507
1508struct kvec;
1509int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1510 struct page **pages);
1511int get_kernel_page(unsigned long start, int write, struct page **pages);
1512struct page *get_dump_page(unsigned long addr);
1513
1514extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1515extern void do_invalidatepage(struct page *page, unsigned int offset,
1516 unsigned int length);
1517
1518void __set_page_dirty(struct page *, struct address_space *, int warn);
1519int __set_page_dirty_nobuffers(struct page *page);
1520int __set_page_dirty_no_writeback(struct page *page);
1521int redirty_page_for_writepage(struct writeback_control *wbc,
1522 struct page *page);
1523void account_page_dirtied(struct page *page, struct address_space *mapping);
1524void account_page_cleaned(struct page *page, struct address_space *mapping,
1525 struct bdi_writeback *wb);
1526int set_page_dirty(struct page *page);
1527int set_page_dirty_lock(struct page *page);
1528void __cancel_dirty_page(struct page *page);
1529static inline void cancel_dirty_page(struct page *page)
1530{
1531 /* Avoid atomic ops, locking, etc. when not actually needed. */
1532 if (PageDirty(page))
1533 __cancel_dirty_page(page);
1534}
1535int clear_page_dirty_for_io(struct page *page);
1536
1537int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1538
1539static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1540{
1541 return !vma->vm_ops;
1542}
1543
1544#ifdef CONFIG_SHMEM
1545/*
1546 * The vma_is_shmem is not inline because it is used only by slow
1547 * paths in userfault.
1548 */
1549bool vma_is_shmem(struct vm_area_struct *vma);
1550#else
1551static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1552#endif
1553
1554int vma_is_stack_for_current(struct vm_area_struct *vma);
1555
1556extern unsigned long move_page_tables(struct vm_area_struct *vma,
1557 unsigned long old_addr, struct vm_area_struct *new_vma,
1558 unsigned long new_addr, unsigned long len,
1559 bool need_rmap_locks);
1560extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1561 unsigned long end, pgprot_t newprot,
1562 int dirty_accountable, int prot_numa);
1563extern int mprotect_fixup(struct vm_area_struct *vma,
1564 struct vm_area_struct **pprev, unsigned long start,
1565 unsigned long end, unsigned long newflags);
1566
1567/*
1568 * doesn't attempt to fault and will return short.
1569 */
1570int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1571 struct page **pages);
1572/*
1573 * per-process(per-mm_struct) statistics.
1574 */
1575static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1576{
1577 long val = atomic_long_read(&mm->rss_stat.count[member]);
1578
1579#ifdef SPLIT_RSS_COUNTING
1580 /*
1581 * counter is updated in asynchronous manner and may go to minus.
1582 * But it's never be expected number for users.
1583 */
1584 if (val < 0)
1585 val = 0;
1586#endif
1587 return (unsigned long)val;
1588}
1589
1590static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1591{
1592 atomic_long_add(value, &mm->rss_stat.count[member]);
1593}
1594
1595static inline void inc_mm_counter(struct mm_struct *mm, int member)
1596{
1597 atomic_long_inc(&mm->rss_stat.count[member]);
1598}
1599
1600static inline void dec_mm_counter(struct mm_struct *mm, int member)
1601{
1602 atomic_long_dec(&mm->rss_stat.count[member]);
1603}
1604
1605/* Optimized variant when page is already known not to be PageAnon */
1606static inline int mm_counter_file(struct page *page)
1607{
1608 if (PageSwapBacked(page))
1609 return MM_SHMEMPAGES;
1610 return MM_FILEPAGES;
1611}
1612
1613static inline int mm_counter(struct page *page)
1614{
1615 if (PageAnon(page))
1616 return MM_ANONPAGES;
1617 return mm_counter_file(page);
1618}
1619
1620static inline unsigned long get_mm_rss(struct mm_struct *mm)
1621{
1622 return get_mm_counter(mm, MM_FILEPAGES) +
1623 get_mm_counter(mm, MM_ANONPAGES) +
1624 get_mm_counter(mm, MM_SHMEMPAGES);
1625}
1626
1627static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1628{
1629 return max(mm->hiwater_rss, get_mm_rss(mm));
1630}
1631
1632static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1633{
1634 return max(mm->hiwater_vm, mm->total_vm);
1635}
1636
1637static inline void update_hiwater_rss(struct mm_struct *mm)
1638{
1639 unsigned long _rss = get_mm_rss(mm);
1640
1641 if ((mm)->hiwater_rss < _rss)
1642 (mm)->hiwater_rss = _rss;
1643}
1644
1645static inline void update_hiwater_vm(struct mm_struct *mm)
1646{
1647 if (mm->hiwater_vm < mm->total_vm)
1648 mm->hiwater_vm = mm->total_vm;
1649}
1650
1651static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1652{
1653 mm->hiwater_rss = get_mm_rss(mm);
1654}
1655
1656static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1657 struct mm_struct *mm)
1658{
1659 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1660
1661 if (*maxrss < hiwater_rss)
1662 *maxrss = hiwater_rss;
1663}
1664
1665#if defined(SPLIT_RSS_COUNTING)
1666void sync_mm_rss(struct mm_struct *mm);
1667#else
1668static inline void sync_mm_rss(struct mm_struct *mm)
1669{
1670}
1671#endif
1672
1673#ifndef __HAVE_ARCH_PTE_DEVMAP
1674static inline int pte_devmap(pte_t pte)
1675{
1676 return 0;
1677}
1678#endif
1679
1680int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1681
1682extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1683 spinlock_t **ptl);
1684static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1685 spinlock_t **ptl)
1686{
1687 pte_t *ptep;
1688 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1689 return ptep;
1690}
1691
1692#ifdef __PAGETABLE_P4D_FOLDED
1693static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1694 unsigned long address)
1695{
1696 return 0;
1697}
1698#else
1699int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1700#endif
1701
1702#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1703static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1704 unsigned long address)
1705{
1706 return 0;
1707}
1708static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1709static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1710
1711#else
1712int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1713
1714static inline void mm_inc_nr_puds(struct mm_struct *mm)
1715{
1716 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1717}
1718
1719static inline void mm_dec_nr_puds(struct mm_struct *mm)
1720{
1721 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1722}
1723#endif
1724
1725#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1726static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1727 unsigned long address)
1728{
1729 return 0;
1730}
1731
1732static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1733static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1734
1735#else
1736int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1737
1738static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1739{
1740 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1741}
1742
1743static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1744{
1745 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1746}
1747#endif
1748
1749#ifdef CONFIG_MMU
1750static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1751{
1752 atomic_long_set(&mm->pgtables_bytes, 0);
1753}
1754
1755static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1756{
1757 return atomic_long_read(&mm->pgtables_bytes);
1758}
1759
1760static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1761{
1762 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1763}
1764
1765static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1766{
1767 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1768}
1769#else
1770
1771static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1772static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1773{
1774 return 0;
1775}
1776
1777static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1778static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1779#endif
1780
1781int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1782int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1783
1784/*
1785 * The following ifdef needed to get the 4level-fixup.h header to work.
1786 * Remove it when 4level-fixup.h has been removed.
1787 */
1788#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1789
1790#ifndef __ARCH_HAS_5LEVEL_HACK
1791static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1792 unsigned long address)
1793{
1794 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1795 NULL : p4d_offset(pgd, address);
1796}
1797
1798static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1799 unsigned long address)
1800{
1801 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1802 NULL : pud_offset(p4d, address);
1803}
1804#endif /* !__ARCH_HAS_5LEVEL_HACK */
1805
1806static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1807{
1808 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1809 NULL: pmd_offset(pud, address);
1810}
1811#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1812
1813#if USE_SPLIT_PTE_PTLOCKS
1814#if ALLOC_SPLIT_PTLOCKS
1815void __init ptlock_cache_init(void);
1816extern bool ptlock_alloc(struct page *page);
1817extern void ptlock_free(struct page *page);
1818
1819static inline spinlock_t *ptlock_ptr(struct page *page)
1820{
1821 return page->ptl;
1822}
1823#else /* ALLOC_SPLIT_PTLOCKS */
1824static inline void ptlock_cache_init(void)
1825{
1826}
1827
1828static inline bool ptlock_alloc(struct page *page)
1829{
1830 return true;
1831}
1832
1833static inline void ptlock_free(struct page *page)
1834{
1835}
1836
1837static inline spinlock_t *ptlock_ptr(struct page *page)
1838{
1839 return &page->ptl;
1840}
1841#endif /* ALLOC_SPLIT_PTLOCKS */
1842
1843static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1844{
1845 return ptlock_ptr(pmd_page(*pmd));
1846}
1847
1848static inline bool ptlock_init(struct page *page)
1849{
1850 /*
1851 * prep_new_page() initialize page->private (and therefore page->ptl)
1852 * with 0. Make sure nobody took it in use in between.
1853 *
1854 * It can happen if arch try to use slab for page table allocation:
1855 * slab code uses page->slab_cache, which share storage with page->ptl.
1856 */
1857 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1858 if (!ptlock_alloc(page))
1859 return false;
1860 spin_lock_init(ptlock_ptr(page));
1861 return true;
1862}
1863
1864/* Reset page->mapping so free_pages_check won't complain. */
1865static inline void pte_lock_deinit(struct page *page)
1866{
1867 page->mapping = NULL;
1868 ptlock_free(page);
1869}
1870
1871#else /* !USE_SPLIT_PTE_PTLOCKS */
1872/*
1873 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1874 */
1875static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1876{
1877 return &mm->page_table_lock;
1878}
1879static inline void ptlock_cache_init(void) {}
1880static inline bool ptlock_init(struct page *page) { return true; }
1881static inline void pte_lock_deinit(struct page *page) {}
1882#endif /* USE_SPLIT_PTE_PTLOCKS */
1883
1884static inline void pgtable_init(void)
1885{
1886 ptlock_cache_init();
1887 pgtable_cache_init();
1888}
1889
1890static inline bool pgtable_page_ctor(struct page *page)
1891{
1892 if (!ptlock_init(page))
1893 return false;
1894 __SetPageTable(page);
1895 inc_zone_page_state(page, NR_PAGETABLE);
1896 return true;
1897}
1898
1899static inline void pgtable_page_dtor(struct page *page)
1900{
1901 pte_lock_deinit(page);
1902 __ClearPageTable(page);
1903 dec_zone_page_state(page, NR_PAGETABLE);
1904}
1905
1906#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1907({ \
1908 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1909 pte_t *__pte = pte_offset_map(pmd, address); \
1910 *(ptlp) = __ptl; \
1911 spin_lock(__ptl); \
1912 __pte; \
1913})
1914
1915#define pte_unmap_unlock(pte, ptl) do { \
1916 spin_unlock(ptl); \
1917 pte_unmap(pte); \
1918} while (0)
1919
1920#define pte_alloc(mm, pmd, address) \
1921 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1922
1923#define pte_alloc_map(mm, pmd, address) \
1924 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1925
1926#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1927 (pte_alloc(mm, pmd, address) ? \
1928 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1929
1930#define pte_alloc_kernel(pmd, address) \
1931 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1932 NULL: pte_offset_kernel(pmd, address))
1933
1934#if USE_SPLIT_PMD_PTLOCKS
1935
1936static struct page *pmd_to_page(pmd_t *pmd)
1937{
1938 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1939 return virt_to_page((void *)((unsigned long) pmd & mask));
1940}
1941
1942static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1943{
1944 return ptlock_ptr(pmd_to_page(pmd));
1945}
1946
1947static inline bool pgtable_pmd_page_ctor(struct page *page)
1948{
1949#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1950 page->pmd_huge_pte = NULL;
1951#endif
1952 return ptlock_init(page);
1953}
1954
1955static inline void pgtable_pmd_page_dtor(struct page *page)
1956{
1957#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1958 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1959#endif
1960 ptlock_free(page);
1961}
1962
1963#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1964
1965#else
1966
1967static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1968{
1969 return &mm->page_table_lock;
1970}
1971
1972static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1973static inline void pgtable_pmd_page_dtor(struct page *page) {}
1974
1975#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1976
1977#endif
1978
1979static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1980{
1981 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1982 spin_lock(ptl);
1983 return ptl;
1984}
1985
1986/*
1987 * No scalability reason to split PUD locks yet, but follow the same pattern
1988 * as the PMD locks to make it easier if we decide to. The VM should not be
1989 * considered ready to switch to split PUD locks yet; there may be places
1990 * which need to be converted from page_table_lock.
1991 */
1992static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1993{
1994 return &mm->page_table_lock;
1995}
1996
1997static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1998{
1999 spinlock_t *ptl = pud_lockptr(mm, pud);
2000
2001 spin_lock(ptl);
2002 return ptl;
2003}
2004
2005extern void __init pagecache_init(void);
2006extern void free_area_init(unsigned long * zones_size);
2007extern void free_area_init_node(int nid, unsigned long * zones_size,
2008 unsigned long zone_start_pfn, unsigned long *zholes_size);
2009extern void free_initmem(void);
2010
2011/*
2012 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2013 * into the buddy system. The freed pages will be poisoned with pattern
2014 * "poison" if it's within range [0, UCHAR_MAX].
2015 * Return pages freed into the buddy system.
2016 */
2017extern unsigned long free_reserved_area(void *start, void *end,
2018 int poison, char *s);
2019
2020#ifdef CONFIG_HIGHMEM
2021/*
2022 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2023 * and totalram_pages.
2024 */
2025extern void free_highmem_page(struct page *page);
2026#endif
2027
2028extern void adjust_managed_page_count(struct page *page, long count);
2029extern void mem_init_print_info(const char *str);
2030
2031extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2032
2033/* Free the reserved page into the buddy system, so it gets managed. */
2034static inline void __free_reserved_page(struct page *page)
2035{
2036 ClearPageReserved(page);
2037 init_page_count(page);
2038 __free_page(page);
2039}
2040
2041static inline void free_reserved_page(struct page *page)
2042{
2043 __free_reserved_page(page);
2044 adjust_managed_page_count(page, 1);
2045}
2046
2047static inline void mark_page_reserved(struct page *page)
2048{
2049 SetPageReserved(page);
2050 adjust_managed_page_count(page, -1);
2051}
2052
2053/*
2054 * Default method to free all the __init memory into the buddy system.
2055 * The freed pages will be poisoned with pattern "poison" if it's within
2056 * range [0, UCHAR_MAX].
2057 * Return pages freed into the buddy system.
2058 */
2059static inline unsigned long free_initmem_default(int poison)
2060{
2061 extern char __init_begin[], __init_end[];
2062
2063 return free_reserved_area(&__init_begin, &__init_end,
2064 poison, "unused kernel");
2065}
2066
2067static inline unsigned long get_num_physpages(void)
2068{
2069 int nid;
2070 unsigned long phys_pages = 0;
2071
2072 for_each_online_node(nid)
2073 phys_pages += node_present_pages(nid);
2074
2075 return phys_pages;
2076}
2077
2078#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2079/*
2080 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2081 * zones, allocate the backing mem_map and account for memory holes in a more
2082 * architecture independent manner. This is a substitute for creating the
2083 * zone_sizes[] and zholes_size[] arrays and passing them to
2084 * free_area_init_node()
2085 *
2086 * An architecture is expected to register range of page frames backed by
2087 * physical memory with memblock_add[_node]() before calling
2088 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2089 * usage, an architecture is expected to do something like
2090 *
2091 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2092 * max_highmem_pfn};
2093 * for_each_valid_physical_page_range()
2094 * memblock_add_node(base, size, nid)
2095 * free_area_init_nodes(max_zone_pfns);
2096 *
2097 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2098 * registered physical page range. Similarly
2099 * sparse_memory_present_with_active_regions() calls memory_present() for
2100 * each range when SPARSEMEM is enabled.
2101 *
2102 * See mm/page_alloc.c for more information on each function exposed by
2103 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2104 */
2105extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2106unsigned long node_map_pfn_alignment(void);
2107unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2108 unsigned long end_pfn);
2109extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2110 unsigned long end_pfn);
2111extern void get_pfn_range_for_nid(unsigned int nid,
2112 unsigned long *start_pfn, unsigned long *end_pfn);
2113extern unsigned long find_min_pfn_with_active_regions(void);
2114extern void free_bootmem_with_active_regions(int nid,
2115 unsigned long max_low_pfn);
2116extern void sparse_memory_present_with_active_regions(int nid);
2117
2118#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2119
2120#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2121 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2122static inline int __early_pfn_to_nid(unsigned long pfn,
2123 struct mminit_pfnnid_cache *state)
2124{
2125 return 0;
2126}
2127#else
2128/* please see mm/page_alloc.c */
2129extern int __meminit early_pfn_to_nid(unsigned long pfn);
2130/* there is a per-arch backend function. */
2131extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2132 struct mminit_pfnnid_cache *state);
2133#endif
2134
2135#ifdef CONFIG_HAVE_MEMBLOCK
2136void zero_resv_unavail(void);
2137#else
2138static inline void zero_resv_unavail(void) {}
2139#endif
2140
2141extern void set_dma_reserve(unsigned long new_dma_reserve);
2142extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2143 enum memmap_context, struct vmem_altmap *);
2144extern void setup_per_zone_wmarks(void);
2145extern int __meminit init_per_zone_wmark_min(void);
2146extern void mem_init(void);
2147extern void __init mmap_init(void);
2148extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2149extern long si_mem_available(void);
2150extern void si_meminfo(struct sysinfo * val);
2151extern void si_meminfo_node(struct sysinfo *val, int nid);
2152#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2153extern unsigned long arch_reserved_kernel_pages(void);
2154#endif
2155
2156extern __printf(3, 4)
2157void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2158
2159extern void setup_per_cpu_pageset(void);
2160
2161extern void zone_pcp_update(struct zone *zone);
2162extern void zone_pcp_reset(struct zone *zone);
2163
2164/* page_alloc.c */
2165extern int min_free_kbytes;
2166extern int watermark_scale_factor;
2167
2168/* nommu.c */
2169extern atomic_long_t mmap_pages_allocated;
2170extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2171
2172/* interval_tree.c */
2173void vma_interval_tree_insert(struct vm_area_struct *node,
2174 struct rb_root_cached *root);
2175void vma_interval_tree_insert_after(struct vm_area_struct *node,
2176 struct vm_area_struct *prev,
2177 struct rb_root_cached *root);
2178void vma_interval_tree_remove(struct vm_area_struct *node,
2179 struct rb_root_cached *root);
2180struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2181 unsigned long start, unsigned long last);
2182struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2183 unsigned long start, unsigned long last);
2184
2185#define vma_interval_tree_foreach(vma, root, start, last) \
2186 for (vma = vma_interval_tree_iter_first(root, start, last); \
2187 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2188
2189void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2190 struct rb_root_cached *root);
2191void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2192 struct rb_root_cached *root);
2193struct anon_vma_chain *
2194anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2195 unsigned long start, unsigned long last);
2196struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2197 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2198#ifdef CONFIG_DEBUG_VM_RB
2199void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2200#endif
2201
2202#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2203 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2204 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2205
2206/* mmap.c */
2207extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2208extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2209 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2210 struct vm_area_struct *expand);
2211static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2212 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2213{
2214 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2215}
2216extern struct vm_area_struct *vma_merge(struct mm_struct *,
2217 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2218 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2219 struct mempolicy *, struct vm_userfaultfd_ctx);
2220extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2221extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2222 unsigned long addr, int new_below);
2223extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2224 unsigned long addr, int new_below);
2225extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2226extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2227 struct rb_node **, struct rb_node *);
2228extern void unlink_file_vma(struct vm_area_struct *);
2229extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2230 unsigned long addr, unsigned long len, pgoff_t pgoff,
2231 bool *need_rmap_locks);
2232extern void exit_mmap(struct mm_struct *);
2233
2234static inline int check_data_rlimit(unsigned long rlim,
2235 unsigned long new,
2236 unsigned long start,
2237 unsigned long end_data,
2238 unsigned long start_data)
2239{
2240 if (rlim < RLIM_INFINITY) {
2241 if (((new - start) + (end_data - start_data)) > rlim)
2242 return -ENOSPC;
2243 }
2244
2245 return 0;
2246}
2247
2248extern int mm_take_all_locks(struct mm_struct *mm);
2249extern void mm_drop_all_locks(struct mm_struct *mm);
2250
2251extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2252extern struct file *get_mm_exe_file(struct mm_struct *mm);
2253extern struct file *get_task_exe_file(struct task_struct *task);
2254
2255extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2256extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2257
2258extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2259 const struct vm_special_mapping *sm);
2260extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2261 unsigned long addr, unsigned long len,
2262 unsigned long flags,
2263 const struct vm_special_mapping *spec);
2264/* This is an obsolete alternative to _install_special_mapping. */
2265extern int install_special_mapping(struct mm_struct *mm,
2266 unsigned long addr, unsigned long len,
2267 unsigned long flags, struct page **pages);
2268
2269extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2270
2271extern unsigned long mmap_region(struct file *file, unsigned long addr,
2272 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2273 struct list_head *uf);
2274extern unsigned long do_mmap(struct file *file, unsigned long addr,
2275 unsigned long len, unsigned long prot, unsigned long flags,
2276 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2277 struct list_head *uf);
2278extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2279 struct list_head *uf);
2280
2281static inline unsigned long
2282do_mmap_pgoff(struct file *file, unsigned long addr,
2283 unsigned long len, unsigned long prot, unsigned long flags,
2284 unsigned long pgoff, unsigned long *populate,
2285 struct list_head *uf)
2286{
2287 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2288}
2289
2290#ifdef CONFIG_MMU
2291extern int __mm_populate(unsigned long addr, unsigned long len,
2292 int ignore_errors);
2293static inline void mm_populate(unsigned long addr, unsigned long len)
2294{
2295 /* Ignore errors */
2296 (void) __mm_populate(addr, len, 1);
2297}
2298#else
2299static inline void mm_populate(unsigned long addr, unsigned long len) {}
2300#endif
2301
2302/* These take the mm semaphore themselves */
2303extern int __must_check vm_brk(unsigned long, unsigned long);
2304extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2305extern int vm_munmap(unsigned long, size_t);
2306extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2307 unsigned long, unsigned long,
2308 unsigned long, unsigned long);
2309
2310struct vm_unmapped_area_info {
2311#define VM_UNMAPPED_AREA_TOPDOWN 1
2312 unsigned long flags;
2313 unsigned long length;
2314 unsigned long low_limit;
2315 unsigned long high_limit;
2316 unsigned long align_mask;
2317 unsigned long align_offset;
2318};
2319
2320extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2321extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2322
2323/*
2324 * Search for an unmapped address range.
2325 *
2326 * We are looking for a range that:
2327 * - does not intersect with any VMA;
2328 * - is contained within the [low_limit, high_limit) interval;
2329 * - is at least the desired size.
2330 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2331 */
2332static inline unsigned long
2333vm_unmapped_area(struct vm_unmapped_area_info *info)
2334{
2335 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2336 return unmapped_area_topdown(info);
2337 else
2338 return unmapped_area(info);
2339}
2340
2341/* truncate.c */
2342extern void truncate_inode_pages(struct address_space *, loff_t);
2343extern void truncate_inode_pages_range(struct address_space *,
2344 loff_t lstart, loff_t lend);
2345extern void truncate_inode_pages_final(struct address_space *);
2346
2347/* generic vm_area_ops exported for stackable file systems */
2348extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2349extern void filemap_map_pages(struct vm_fault *vmf,
2350 pgoff_t start_pgoff, pgoff_t end_pgoff);
2351extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2352
2353/* mm/page-writeback.c */
2354int __must_check write_one_page(struct page *page);
2355void task_dirty_inc(struct task_struct *tsk);
2356
2357/* readahead.c */
2358#define VM_MAX_READAHEAD 128 /* kbytes */
2359#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2360
2361int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2362 pgoff_t offset, unsigned long nr_to_read);
2363
2364void page_cache_sync_readahead(struct address_space *mapping,
2365 struct file_ra_state *ra,
2366 struct file *filp,
2367 pgoff_t offset,
2368 unsigned long size);
2369
2370void page_cache_async_readahead(struct address_space *mapping,
2371 struct file_ra_state *ra,
2372 struct file *filp,
2373 struct page *pg,
2374 pgoff_t offset,
2375 unsigned long size);
2376
2377extern unsigned long stack_guard_gap;
2378/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2379extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2380
2381/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2382extern int expand_downwards(struct vm_area_struct *vma,
2383 unsigned long address);
2384#if VM_GROWSUP
2385extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2386#else
2387 #define expand_upwards(vma, address) (0)
2388#endif
2389
2390/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2391extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2392extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2393 struct vm_area_struct **pprev);
2394
2395/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2396 NULL if none. Assume start_addr < end_addr. */
2397static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2398{
2399 struct vm_area_struct * vma = find_vma(mm,start_addr);
2400
2401 if (vma && end_addr <= vma->vm_start)
2402 vma = NULL;
2403 return vma;
2404}
2405
2406static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2407{
2408 unsigned long vm_start = vma->vm_start;
2409
2410 if (vma->vm_flags & VM_GROWSDOWN) {
2411 vm_start -= stack_guard_gap;
2412 if (vm_start > vma->vm_start)
2413 vm_start = 0;
2414 }
2415 return vm_start;
2416}
2417
2418static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2419{
2420 unsigned long vm_end = vma->vm_end;
2421
2422 if (vma->vm_flags & VM_GROWSUP) {
2423 vm_end += stack_guard_gap;
2424 if (vm_end < vma->vm_end)
2425 vm_end = -PAGE_SIZE;
2426 }
2427 return vm_end;
2428}
2429
2430static inline unsigned long vma_pages(struct vm_area_struct *vma)
2431{
2432 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2433}
2434
2435/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2436static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2437 unsigned long vm_start, unsigned long vm_end)
2438{
2439 struct vm_area_struct *vma = find_vma(mm, vm_start);
2440
2441 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2442 vma = NULL;
2443
2444 return vma;
2445}
2446
2447#ifdef CONFIG_MMU
2448pgprot_t vm_get_page_prot(unsigned long vm_flags);
2449void vma_set_page_prot(struct vm_area_struct *vma);
2450#else
2451static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2452{
2453 return __pgprot(0);
2454}
2455static inline void vma_set_page_prot(struct vm_area_struct *vma)
2456{
2457 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2458}
2459#endif
2460
2461#ifdef CONFIG_NUMA_BALANCING
2462unsigned long change_prot_numa(struct vm_area_struct *vma,
2463 unsigned long start, unsigned long end);
2464#endif
2465
2466struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2467int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2468 unsigned long pfn, unsigned long size, pgprot_t);
2469int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2470int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2471 unsigned long pfn);
2472int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2473 unsigned long pfn, pgprot_t pgprot);
2474int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2475 pfn_t pfn);
2476vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2477 unsigned long addr, pfn_t pfn);
2478int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2479
2480static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2481 unsigned long addr, struct page *page)
2482{
2483 int err = vm_insert_page(vma, addr, page);
2484
2485 if (err == -ENOMEM)
2486 return VM_FAULT_OOM;
2487 if (err < 0 && err != -EBUSY)
2488 return VM_FAULT_SIGBUS;
2489
2490 return VM_FAULT_NOPAGE;
2491}
2492
2493static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
2494 unsigned long addr, pfn_t pfn)
2495{
2496 int err = vm_insert_mixed(vma, addr, pfn);
2497
2498 if (err == -ENOMEM)
2499 return VM_FAULT_OOM;
2500 if (err < 0 && err != -EBUSY)
2501 return VM_FAULT_SIGBUS;
2502
2503 return VM_FAULT_NOPAGE;
2504}
2505
2506static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
2507 unsigned long addr, unsigned long pfn)
2508{
2509 int err = vm_insert_pfn(vma, addr, pfn);
2510
2511 if (err == -ENOMEM)
2512 return VM_FAULT_OOM;
2513 if (err < 0 && err != -EBUSY)
2514 return VM_FAULT_SIGBUS;
2515
2516 return VM_FAULT_NOPAGE;
2517}
2518
2519static inline vm_fault_t vmf_error(int err)
2520{
2521 if (err == -ENOMEM)
2522 return VM_FAULT_OOM;
2523 return VM_FAULT_SIGBUS;
2524}
2525
2526struct page *follow_page_mask(struct vm_area_struct *vma,
2527 unsigned long address, unsigned int foll_flags,
2528 unsigned int *page_mask);
2529
2530static inline struct page *follow_page(struct vm_area_struct *vma,
2531 unsigned long address, unsigned int foll_flags)
2532{
2533 unsigned int unused_page_mask;
2534 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2535}
2536
2537#define FOLL_WRITE 0x01 /* check pte is writable */
2538#define FOLL_TOUCH 0x02 /* mark page accessed */
2539#define FOLL_GET 0x04 /* do get_page on page */
2540#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2541#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2542#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2543 * and return without waiting upon it */
2544#define FOLL_POPULATE 0x40 /* fault in page */
2545#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2546#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2547#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2548#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2549#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2550#define FOLL_MLOCK 0x1000 /* lock present pages */
2551#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2552#define FOLL_COW 0x4000 /* internal GUP flag */
2553#define FOLL_ANON 0x8000 /* don't do file mappings */
2554
2555static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2556{
2557 if (vm_fault & VM_FAULT_OOM)
2558 return -ENOMEM;
2559 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2560 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2561 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2562 return -EFAULT;
2563 return 0;
2564}
2565
2566typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2567 void *data);
2568extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2569 unsigned long size, pte_fn_t fn, void *data);
2570
2571
2572#ifdef CONFIG_PAGE_POISONING
2573extern bool page_poisoning_enabled(void);
2574extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2575#else
2576static inline bool page_poisoning_enabled(void) { return false; }
2577static inline void kernel_poison_pages(struct page *page, int numpages,
2578 int enable) { }
2579#endif
2580
2581#ifdef CONFIG_DEBUG_PAGEALLOC
2582extern bool _debug_pagealloc_enabled;
2583extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2584
2585static inline bool debug_pagealloc_enabled(void)
2586{
2587 return _debug_pagealloc_enabled;
2588}
2589
2590static inline void
2591kernel_map_pages(struct page *page, int numpages, int enable)
2592{
2593 if (!debug_pagealloc_enabled())
2594 return;
2595
2596 __kernel_map_pages(page, numpages, enable);
2597}
2598#ifdef CONFIG_HIBERNATION
2599extern bool kernel_page_present(struct page *page);
2600#endif /* CONFIG_HIBERNATION */
2601#else /* CONFIG_DEBUG_PAGEALLOC */
2602static inline void
2603kernel_map_pages(struct page *page, int numpages, int enable) {}
2604#ifdef CONFIG_HIBERNATION
2605static inline bool kernel_page_present(struct page *page) { return true; }
2606#endif /* CONFIG_HIBERNATION */
2607static inline bool debug_pagealloc_enabled(void)
2608{
2609 return false;
2610}
2611#endif /* CONFIG_DEBUG_PAGEALLOC */
2612
2613#ifdef __HAVE_ARCH_GATE_AREA
2614extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2615extern int in_gate_area_no_mm(unsigned long addr);
2616extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2617#else
2618static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2619{
2620 return NULL;
2621}
2622static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2623static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2624{
2625 return 0;
2626}
2627#endif /* __HAVE_ARCH_GATE_AREA */
2628
2629extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2630
2631#ifdef CONFIG_SYSCTL
2632extern int sysctl_drop_caches;
2633int drop_caches_sysctl_handler(struct ctl_table *, int,
2634 void __user *, size_t *, loff_t *);
2635#endif
2636
2637void drop_slab(void);
2638void drop_slab_node(int nid);
2639
2640#ifndef CONFIG_MMU
2641#define randomize_va_space 0
2642#else
2643extern int randomize_va_space;
2644#endif
2645
2646const char * arch_vma_name(struct vm_area_struct *vma);
2647void print_vma_addr(char *prefix, unsigned long rip);
2648
2649void sparse_mem_maps_populate_node(struct page **map_map,
2650 unsigned long pnum_begin,
2651 unsigned long pnum_end,
2652 unsigned long map_count,
2653 int nodeid);
2654
2655struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2656 struct vmem_altmap *altmap);
2657pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2658p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2659pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2660pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2661pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2662void *vmemmap_alloc_block(unsigned long size, int node);
2663struct vmem_altmap;
2664void *vmemmap_alloc_block_buf(unsigned long size, int node);
2665void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2666void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2667int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2668 int node);
2669int vmemmap_populate(unsigned long start, unsigned long end, int node,
2670 struct vmem_altmap *altmap);
2671void vmemmap_populate_print_last(void);
2672#ifdef CONFIG_MEMORY_HOTPLUG
2673void vmemmap_free(unsigned long start, unsigned long end,
2674 struct vmem_altmap *altmap);
2675#endif
2676void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2677 unsigned long nr_pages);
2678
2679enum mf_flags {
2680 MF_COUNT_INCREASED = 1 << 0,
2681 MF_ACTION_REQUIRED = 1 << 1,
2682 MF_MUST_KILL = 1 << 2,
2683 MF_SOFT_OFFLINE = 1 << 3,
2684};
2685extern int memory_failure(unsigned long pfn, int flags);
2686extern void memory_failure_queue(unsigned long pfn, int flags);
2687extern int unpoison_memory(unsigned long pfn);
2688extern int get_hwpoison_page(struct page *page);
2689#define put_hwpoison_page(page) put_page(page)
2690extern int sysctl_memory_failure_early_kill;
2691extern int sysctl_memory_failure_recovery;
2692extern void shake_page(struct page *p, int access);
2693extern atomic_long_t num_poisoned_pages __read_mostly;
2694extern int soft_offline_page(struct page *page, int flags);
2695
2696
2697/*
2698 * Error handlers for various types of pages.
2699 */
2700enum mf_result {
2701 MF_IGNORED, /* Error: cannot be handled */
2702 MF_FAILED, /* Error: handling failed */
2703 MF_DELAYED, /* Will be handled later */
2704 MF_RECOVERED, /* Successfully recovered */
2705};
2706
2707enum mf_action_page_type {
2708 MF_MSG_KERNEL,
2709 MF_MSG_KERNEL_HIGH_ORDER,
2710 MF_MSG_SLAB,
2711 MF_MSG_DIFFERENT_COMPOUND,
2712 MF_MSG_POISONED_HUGE,
2713 MF_MSG_HUGE,
2714 MF_MSG_FREE_HUGE,
2715 MF_MSG_NON_PMD_HUGE,
2716 MF_MSG_UNMAP_FAILED,
2717 MF_MSG_DIRTY_SWAPCACHE,
2718 MF_MSG_CLEAN_SWAPCACHE,
2719 MF_MSG_DIRTY_MLOCKED_LRU,
2720 MF_MSG_CLEAN_MLOCKED_LRU,
2721 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2722 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2723 MF_MSG_DIRTY_LRU,
2724 MF_MSG_CLEAN_LRU,
2725 MF_MSG_TRUNCATED_LRU,
2726 MF_MSG_BUDDY,
2727 MF_MSG_BUDDY_2ND,
2728 MF_MSG_UNKNOWN,
2729};
2730
2731#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2732extern void clear_huge_page(struct page *page,
2733 unsigned long addr_hint,
2734 unsigned int pages_per_huge_page);
2735extern void copy_user_huge_page(struct page *dst, struct page *src,
2736 unsigned long addr, struct vm_area_struct *vma,
2737 unsigned int pages_per_huge_page);
2738extern long copy_huge_page_from_user(struct page *dst_page,
2739 const void __user *usr_src,
2740 unsigned int pages_per_huge_page,
2741 bool allow_pagefault);
2742#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2743
2744extern struct page_ext_operations debug_guardpage_ops;
2745
2746#ifdef CONFIG_DEBUG_PAGEALLOC
2747extern unsigned int _debug_guardpage_minorder;
2748extern bool _debug_guardpage_enabled;
2749
2750static inline unsigned int debug_guardpage_minorder(void)
2751{
2752 return _debug_guardpage_minorder;
2753}
2754
2755static inline bool debug_guardpage_enabled(void)
2756{
2757 return _debug_guardpage_enabled;
2758}
2759
2760static inline bool page_is_guard(struct page *page)
2761{
2762 struct page_ext *page_ext;
2763
2764 if (!debug_guardpage_enabled())
2765 return false;
2766
2767 page_ext = lookup_page_ext(page);
2768 if (unlikely(!page_ext))
2769 return false;
2770
2771 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2772}
2773#else
2774static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2775static inline bool debug_guardpage_enabled(void) { return false; }
2776static inline bool page_is_guard(struct page *page) { return false; }
2777#endif /* CONFIG_DEBUG_PAGEALLOC */
2778
2779#if MAX_NUMNODES > 1
2780void __init setup_nr_node_ids(void);
2781#else
2782static inline void setup_nr_node_ids(void) {}
2783#endif
2784
2785#endif /* __KERNEL__ */
2786#endif /* _LINUX_MM_H */