at v4.18-rc2 35 kB view raw
1/* 2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix 3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics 4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the version 2 of the GNU General Public License 8 * as published by the Free Software Foundation 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19#include <linux/module.h> 20#include <linux/kernel.h> 21#include <linux/slab.h> 22#include <linux/netdevice.h> 23#include <linux/if_arp.h> 24#include <linux/workqueue.h> 25#include <linux/can.h> 26#include <linux/can/dev.h> 27#include <linux/can/skb.h> 28#include <linux/can/netlink.h> 29#include <linux/can/led.h> 30#include <linux/of.h> 31#include <net/rtnetlink.h> 32 33#define MOD_DESC "CAN device driver interface" 34 35MODULE_DESCRIPTION(MOD_DESC); 36MODULE_LICENSE("GPL v2"); 37MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>"); 38 39/* CAN DLC to real data length conversion helpers */ 40 41static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7, 42 8, 12, 16, 20, 24, 32, 48, 64}; 43 44/* get data length from can_dlc with sanitized can_dlc */ 45u8 can_dlc2len(u8 can_dlc) 46{ 47 return dlc2len[can_dlc & 0x0F]; 48} 49EXPORT_SYMBOL_GPL(can_dlc2len); 50 51static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */ 52 9, 9, 9, 9, /* 9 - 12 */ 53 10, 10, 10, 10, /* 13 - 16 */ 54 11, 11, 11, 11, /* 17 - 20 */ 55 12, 12, 12, 12, /* 21 - 24 */ 56 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */ 57 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */ 58 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */ 59 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */ 60 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */ 61 62/* map the sanitized data length to an appropriate data length code */ 63u8 can_len2dlc(u8 len) 64{ 65 if (unlikely(len > 64)) 66 return 0xF; 67 68 return len2dlc[len]; 69} 70EXPORT_SYMBOL_GPL(can_len2dlc); 71 72#ifdef CONFIG_CAN_CALC_BITTIMING 73#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ 74#define CAN_CALC_SYNC_SEG 1 75 76/* 77 * Bit-timing calculation derived from: 78 * 79 * Code based on LinCAN sources and H8S2638 project 80 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz 81 * Copyright 2005 Stanislav Marek 82 * email: pisa@cmp.felk.cvut.cz 83 * 84 * Calculates proper bit-timing parameters for a specified bit-rate 85 * and sample-point, which can then be used to set the bit-timing 86 * registers of the CAN controller. You can find more information 87 * in the header file linux/can/netlink.h. 88 */ 89static int can_update_sample_point(const struct can_bittiming_const *btc, 90 unsigned int sample_point_nominal, unsigned int tseg, 91 unsigned int *tseg1_ptr, unsigned int *tseg2_ptr, 92 unsigned int *sample_point_error_ptr) 93{ 94 unsigned int sample_point_error, best_sample_point_error = UINT_MAX; 95 unsigned int sample_point, best_sample_point = 0; 96 unsigned int tseg1, tseg2; 97 int i; 98 99 for (i = 0; i <= 1; i++) { 100 tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i; 101 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max); 102 tseg1 = tseg - tseg2; 103 if (tseg1 > btc->tseg1_max) { 104 tseg1 = btc->tseg1_max; 105 tseg2 = tseg - tseg1; 106 } 107 108 sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG); 109 sample_point_error = abs(sample_point_nominal - sample_point); 110 111 if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) { 112 best_sample_point = sample_point; 113 best_sample_point_error = sample_point_error; 114 *tseg1_ptr = tseg1; 115 *tseg2_ptr = tseg2; 116 } 117 } 118 119 if (sample_point_error_ptr) 120 *sample_point_error_ptr = best_sample_point_error; 121 122 return best_sample_point; 123} 124 125static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 126 const struct can_bittiming_const *btc) 127{ 128 struct can_priv *priv = netdev_priv(dev); 129 unsigned int bitrate; /* current bitrate */ 130 unsigned int bitrate_error; /* difference between current and nominal value */ 131 unsigned int best_bitrate_error = UINT_MAX; 132 unsigned int sample_point_error; /* difference between current and nominal value */ 133 unsigned int best_sample_point_error = UINT_MAX; 134 unsigned int sample_point_nominal; /* nominal sample point */ 135 unsigned int best_tseg = 0; /* current best value for tseg */ 136 unsigned int best_brp = 0; /* current best value for brp */ 137 unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0; 138 u64 v64; 139 140 /* Use CiA recommended sample points */ 141 if (bt->sample_point) { 142 sample_point_nominal = bt->sample_point; 143 } else { 144 if (bt->bitrate > 800000) 145 sample_point_nominal = 750; 146 else if (bt->bitrate > 500000) 147 sample_point_nominal = 800; 148 else 149 sample_point_nominal = 875; 150 } 151 152 /* tseg even = round down, odd = round up */ 153 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; 154 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { 155 tsegall = CAN_CALC_SYNC_SEG + tseg / 2; 156 157 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ 158 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; 159 160 /* choose brp step which is possible in system */ 161 brp = (brp / btc->brp_inc) * btc->brp_inc; 162 if ((brp < btc->brp_min) || (brp > btc->brp_max)) 163 continue; 164 165 bitrate = priv->clock.freq / (brp * tsegall); 166 bitrate_error = abs(bt->bitrate - bitrate); 167 168 /* tseg brp biterror */ 169 if (bitrate_error > best_bitrate_error) 170 continue; 171 172 /* reset sample point error if we have a better bitrate */ 173 if (bitrate_error < best_bitrate_error) 174 best_sample_point_error = UINT_MAX; 175 176 can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error); 177 if (sample_point_error > best_sample_point_error) 178 continue; 179 180 best_sample_point_error = sample_point_error; 181 best_bitrate_error = bitrate_error; 182 best_tseg = tseg / 2; 183 best_brp = brp; 184 185 if (bitrate_error == 0 && sample_point_error == 0) 186 break; 187 } 188 189 if (best_bitrate_error) { 190 /* Error in one-tenth of a percent */ 191 v64 = (u64)best_bitrate_error * 1000; 192 do_div(v64, bt->bitrate); 193 bitrate_error = (u32)v64; 194 if (bitrate_error > CAN_CALC_MAX_ERROR) { 195 netdev_err(dev, 196 "bitrate error %d.%d%% too high\n", 197 bitrate_error / 10, bitrate_error % 10); 198 return -EDOM; 199 } 200 netdev_warn(dev, "bitrate error %d.%d%%\n", 201 bitrate_error / 10, bitrate_error % 10); 202 } 203 204 /* real sample point */ 205 bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg, 206 &tseg1, &tseg2, NULL); 207 208 v64 = (u64)best_brp * 1000 * 1000 * 1000; 209 do_div(v64, priv->clock.freq); 210 bt->tq = (u32)v64; 211 bt->prop_seg = tseg1 / 2; 212 bt->phase_seg1 = tseg1 - bt->prop_seg; 213 bt->phase_seg2 = tseg2; 214 215 /* check for sjw user settings */ 216 if (!bt->sjw || !btc->sjw_max) { 217 bt->sjw = 1; 218 } else { 219 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */ 220 if (bt->sjw > btc->sjw_max) 221 bt->sjw = btc->sjw_max; 222 /* bt->sjw must not be higher than tseg2 */ 223 if (tseg2 < bt->sjw) 224 bt->sjw = tseg2; 225 } 226 227 bt->brp = best_brp; 228 229 /* real bitrate */ 230 bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2)); 231 232 return 0; 233} 234#else /* !CONFIG_CAN_CALC_BITTIMING */ 235static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 236 const struct can_bittiming_const *btc) 237{ 238 netdev_err(dev, "bit-timing calculation not available\n"); 239 return -EINVAL; 240} 241#endif /* CONFIG_CAN_CALC_BITTIMING */ 242 243/* 244 * Checks the validity of the specified bit-timing parameters prop_seg, 245 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate 246 * prescaler value brp. You can find more information in the header 247 * file linux/can/netlink.h. 248 */ 249static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt, 250 const struct can_bittiming_const *btc) 251{ 252 struct can_priv *priv = netdev_priv(dev); 253 int tseg1, alltseg; 254 u64 brp64; 255 256 tseg1 = bt->prop_seg + bt->phase_seg1; 257 if (!bt->sjw) 258 bt->sjw = 1; 259 if (bt->sjw > btc->sjw_max || 260 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max || 261 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max) 262 return -ERANGE; 263 264 brp64 = (u64)priv->clock.freq * (u64)bt->tq; 265 if (btc->brp_inc > 1) 266 do_div(brp64, btc->brp_inc); 267 brp64 += 500000000UL - 1; 268 do_div(brp64, 1000000000UL); /* the practicable BRP */ 269 if (btc->brp_inc > 1) 270 brp64 *= btc->brp_inc; 271 bt->brp = (u32)brp64; 272 273 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max) 274 return -EINVAL; 275 276 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1; 277 bt->bitrate = priv->clock.freq / (bt->brp * alltseg); 278 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg; 279 280 return 0; 281} 282 283/* Checks the validity of predefined bitrate settings */ 284static int can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt, 285 const u32 *bitrate_const, 286 const unsigned int bitrate_const_cnt) 287{ 288 struct can_priv *priv = netdev_priv(dev); 289 unsigned int i; 290 291 for (i = 0; i < bitrate_const_cnt; i++) { 292 if (bt->bitrate == bitrate_const[i]) 293 break; 294 } 295 296 if (i >= priv->bitrate_const_cnt) 297 return -EINVAL; 298 299 return 0; 300} 301 302static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt, 303 const struct can_bittiming_const *btc, 304 const u32 *bitrate_const, 305 const unsigned int bitrate_const_cnt) 306{ 307 int err; 308 309 /* 310 * Depending on the given can_bittiming parameter structure the CAN 311 * timing parameters are calculated based on the provided bitrate OR 312 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are 313 * provided directly which are then checked and fixed up. 314 */ 315 if (!bt->tq && bt->bitrate && btc) 316 err = can_calc_bittiming(dev, bt, btc); 317 else if (bt->tq && !bt->bitrate && btc) 318 err = can_fixup_bittiming(dev, bt, btc); 319 else if (!bt->tq && bt->bitrate && bitrate_const) 320 err = can_validate_bitrate(dev, bt, bitrate_const, 321 bitrate_const_cnt); 322 else 323 err = -EINVAL; 324 325 return err; 326} 327 328static void can_update_state_error_stats(struct net_device *dev, 329 enum can_state new_state) 330{ 331 struct can_priv *priv = netdev_priv(dev); 332 333 if (new_state <= priv->state) 334 return; 335 336 switch (new_state) { 337 case CAN_STATE_ERROR_WARNING: 338 priv->can_stats.error_warning++; 339 break; 340 case CAN_STATE_ERROR_PASSIVE: 341 priv->can_stats.error_passive++; 342 break; 343 case CAN_STATE_BUS_OFF: 344 priv->can_stats.bus_off++; 345 break; 346 default: 347 break; 348 } 349} 350 351static int can_tx_state_to_frame(struct net_device *dev, enum can_state state) 352{ 353 switch (state) { 354 case CAN_STATE_ERROR_ACTIVE: 355 return CAN_ERR_CRTL_ACTIVE; 356 case CAN_STATE_ERROR_WARNING: 357 return CAN_ERR_CRTL_TX_WARNING; 358 case CAN_STATE_ERROR_PASSIVE: 359 return CAN_ERR_CRTL_TX_PASSIVE; 360 default: 361 return 0; 362 } 363} 364 365static int can_rx_state_to_frame(struct net_device *dev, enum can_state state) 366{ 367 switch (state) { 368 case CAN_STATE_ERROR_ACTIVE: 369 return CAN_ERR_CRTL_ACTIVE; 370 case CAN_STATE_ERROR_WARNING: 371 return CAN_ERR_CRTL_RX_WARNING; 372 case CAN_STATE_ERROR_PASSIVE: 373 return CAN_ERR_CRTL_RX_PASSIVE; 374 default: 375 return 0; 376 } 377} 378 379void can_change_state(struct net_device *dev, struct can_frame *cf, 380 enum can_state tx_state, enum can_state rx_state) 381{ 382 struct can_priv *priv = netdev_priv(dev); 383 enum can_state new_state = max(tx_state, rx_state); 384 385 if (unlikely(new_state == priv->state)) { 386 netdev_warn(dev, "%s: oops, state did not change", __func__); 387 return; 388 } 389 390 netdev_dbg(dev, "New error state: %d\n", new_state); 391 392 can_update_state_error_stats(dev, new_state); 393 priv->state = new_state; 394 395 if (!cf) 396 return; 397 398 if (unlikely(new_state == CAN_STATE_BUS_OFF)) { 399 cf->can_id |= CAN_ERR_BUSOFF; 400 return; 401 } 402 403 cf->can_id |= CAN_ERR_CRTL; 404 cf->data[1] |= tx_state >= rx_state ? 405 can_tx_state_to_frame(dev, tx_state) : 0; 406 cf->data[1] |= tx_state <= rx_state ? 407 can_rx_state_to_frame(dev, rx_state) : 0; 408} 409EXPORT_SYMBOL_GPL(can_change_state); 410 411/* 412 * Local echo of CAN messages 413 * 414 * CAN network devices *should* support a local echo functionality 415 * (see Documentation/networking/can.rst). To test the handling of CAN 416 * interfaces that do not support the local echo both driver types are 417 * implemented. In the case that the driver does not support the echo 418 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core 419 * to perform the echo as a fallback solution. 420 */ 421static void can_flush_echo_skb(struct net_device *dev) 422{ 423 struct can_priv *priv = netdev_priv(dev); 424 struct net_device_stats *stats = &dev->stats; 425 int i; 426 427 for (i = 0; i < priv->echo_skb_max; i++) { 428 if (priv->echo_skb[i]) { 429 kfree_skb(priv->echo_skb[i]); 430 priv->echo_skb[i] = NULL; 431 stats->tx_dropped++; 432 stats->tx_aborted_errors++; 433 } 434 } 435} 436 437/* 438 * Put the skb on the stack to be looped backed locally lateron 439 * 440 * The function is typically called in the start_xmit function 441 * of the device driver. The driver must protect access to 442 * priv->echo_skb, if necessary. 443 */ 444void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, 445 unsigned int idx) 446{ 447 struct can_priv *priv = netdev_priv(dev); 448 449 BUG_ON(idx >= priv->echo_skb_max); 450 451 /* check flag whether this packet has to be looped back */ 452 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK || 453 (skb->protocol != htons(ETH_P_CAN) && 454 skb->protocol != htons(ETH_P_CANFD))) { 455 kfree_skb(skb); 456 return; 457 } 458 459 if (!priv->echo_skb[idx]) { 460 461 skb = can_create_echo_skb(skb); 462 if (!skb) 463 return; 464 465 /* make settings for echo to reduce code in irq context */ 466 skb->pkt_type = PACKET_BROADCAST; 467 skb->ip_summed = CHECKSUM_UNNECESSARY; 468 skb->dev = dev; 469 470 /* save this skb for tx interrupt echo handling */ 471 priv->echo_skb[idx] = skb; 472 } else { 473 /* locking problem with netif_stop_queue() ?? */ 474 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__); 475 kfree_skb(skb); 476 } 477} 478EXPORT_SYMBOL_GPL(can_put_echo_skb); 479 480/* 481 * Get the skb from the stack and loop it back locally 482 * 483 * The function is typically called when the TX done interrupt 484 * is handled in the device driver. The driver must protect 485 * access to priv->echo_skb, if necessary. 486 */ 487unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx) 488{ 489 struct can_priv *priv = netdev_priv(dev); 490 491 BUG_ON(idx >= priv->echo_skb_max); 492 493 if (priv->echo_skb[idx]) { 494 struct sk_buff *skb = priv->echo_skb[idx]; 495 struct can_frame *cf = (struct can_frame *)skb->data; 496 u8 dlc = cf->can_dlc; 497 498 netif_rx(priv->echo_skb[idx]); 499 priv->echo_skb[idx] = NULL; 500 501 return dlc; 502 } 503 504 return 0; 505} 506EXPORT_SYMBOL_GPL(can_get_echo_skb); 507 508/* 509 * Remove the skb from the stack and free it. 510 * 511 * The function is typically called when TX failed. 512 */ 513void can_free_echo_skb(struct net_device *dev, unsigned int idx) 514{ 515 struct can_priv *priv = netdev_priv(dev); 516 517 BUG_ON(idx >= priv->echo_skb_max); 518 519 if (priv->echo_skb[idx]) { 520 dev_kfree_skb_any(priv->echo_skb[idx]); 521 priv->echo_skb[idx] = NULL; 522 } 523} 524EXPORT_SYMBOL_GPL(can_free_echo_skb); 525 526/* 527 * CAN device restart for bus-off recovery 528 */ 529static void can_restart(struct net_device *dev) 530{ 531 struct can_priv *priv = netdev_priv(dev); 532 struct net_device_stats *stats = &dev->stats; 533 struct sk_buff *skb; 534 struct can_frame *cf; 535 int err; 536 537 BUG_ON(netif_carrier_ok(dev)); 538 539 /* 540 * No synchronization needed because the device is bus-off and 541 * no messages can come in or go out. 542 */ 543 can_flush_echo_skb(dev); 544 545 /* send restart message upstream */ 546 skb = alloc_can_err_skb(dev, &cf); 547 if (skb == NULL) { 548 err = -ENOMEM; 549 goto restart; 550 } 551 cf->can_id |= CAN_ERR_RESTARTED; 552 553 netif_rx(skb); 554 555 stats->rx_packets++; 556 stats->rx_bytes += cf->can_dlc; 557 558restart: 559 netdev_dbg(dev, "restarted\n"); 560 priv->can_stats.restarts++; 561 562 /* Now restart the device */ 563 err = priv->do_set_mode(dev, CAN_MODE_START); 564 565 netif_carrier_on(dev); 566 if (err) 567 netdev_err(dev, "Error %d during restart", err); 568} 569 570static void can_restart_work(struct work_struct *work) 571{ 572 struct delayed_work *dwork = to_delayed_work(work); 573 struct can_priv *priv = container_of(dwork, struct can_priv, restart_work); 574 575 can_restart(priv->dev); 576} 577 578int can_restart_now(struct net_device *dev) 579{ 580 struct can_priv *priv = netdev_priv(dev); 581 582 /* 583 * A manual restart is only permitted if automatic restart is 584 * disabled and the device is in the bus-off state 585 */ 586 if (priv->restart_ms) 587 return -EINVAL; 588 if (priv->state != CAN_STATE_BUS_OFF) 589 return -EBUSY; 590 591 cancel_delayed_work_sync(&priv->restart_work); 592 can_restart(dev); 593 594 return 0; 595} 596 597/* 598 * CAN bus-off 599 * 600 * This functions should be called when the device goes bus-off to 601 * tell the netif layer that no more packets can be sent or received. 602 * If enabled, a timer is started to trigger bus-off recovery. 603 */ 604void can_bus_off(struct net_device *dev) 605{ 606 struct can_priv *priv = netdev_priv(dev); 607 608 netdev_info(dev, "bus-off\n"); 609 610 netif_carrier_off(dev); 611 612 if (priv->restart_ms) 613 schedule_delayed_work(&priv->restart_work, 614 msecs_to_jiffies(priv->restart_ms)); 615} 616EXPORT_SYMBOL_GPL(can_bus_off); 617 618static void can_setup(struct net_device *dev) 619{ 620 dev->type = ARPHRD_CAN; 621 dev->mtu = CAN_MTU; 622 dev->hard_header_len = 0; 623 dev->addr_len = 0; 624 dev->tx_queue_len = 10; 625 626 /* New-style flags. */ 627 dev->flags = IFF_NOARP; 628 dev->features = NETIF_F_HW_CSUM; 629} 630 631struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf) 632{ 633 struct sk_buff *skb; 634 635 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 636 sizeof(struct can_frame)); 637 if (unlikely(!skb)) 638 return NULL; 639 640 skb->protocol = htons(ETH_P_CAN); 641 skb->pkt_type = PACKET_BROADCAST; 642 skb->ip_summed = CHECKSUM_UNNECESSARY; 643 644 skb_reset_mac_header(skb); 645 skb_reset_network_header(skb); 646 skb_reset_transport_header(skb); 647 648 can_skb_reserve(skb); 649 can_skb_prv(skb)->ifindex = dev->ifindex; 650 can_skb_prv(skb)->skbcnt = 0; 651 652 *cf = skb_put(skb, sizeof(struct can_frame)); 653 memset(*cf, 0, sizeof(struct can_frame)); 654 655 return skb; 656} 657EXPORT_SYMBOL_GPL(alloc_can_skb); 658 659struct sk_buff *alloc_canfd_skb(struct net_device *dev, 660 struct canfd_frame **cfd) 661{ 662 struct sk_buff *skb; 663 664 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 665 sizeof(struct canfd_frame)); 666 if (unlikely(!skb)) 667 return NULL; 668 669 skb->protocol = htons(ETH_P_CANFD); 670 skb->pkt_type = PACKET_BROADCAST; 671 skb->ip_summed = CHECKSUM_UNNECESSARY; 672 673 skb_reset_mac_header(skb); 674 skb_reset_network_header(skb); 675 skb_reset_transport_header(skb); 676 677 can_skb_reserve(skb); 678 can_skb_prv(skb)->ifindex = dev->ifindex; 679 can_skb_prv(skb)->skbcnt = 0; 680 681 *cfd = skb_put(skb, sizeof(struct canfd_frame)); 682 memset(*cfd, 0, sizeof(struct canfd_frame)); 683 684 return skb; 685} 686EXPORT_SYMBOL_GPL(alloc_canfd_skb); 687 688struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf) 689{ 690 struct sk_buff *skb; 691 692 skb = alloc_can_skb(dev, cf); 693 if (unlikely(!skb)) 694 return NULL; 695 696 (*cf)->can_id = CAN_ERR_FLAG; 697 (*cf)->can_dlc = CAN_ERR_DLC; 698 699 return skb; 700} 701EXPORT_SYMBOL_GPL(alloc_can_err_skb); 702 703/* 704 * Allocate and setup space for the CAN network device 705 */ 706struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max) 707{ 708 struct net_device *dev; 709 struct can_priv *priv; 710 int size; 711 712 if (echo_skb_max) 713 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) + 714 echo_skb_max * sizeof(struct sk_buff *); 715 else 716 size = sizeof_priv; 717 718 dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup); 719 if (!dev) 720 return NULL; 721 722 priv = netdev_priv(dev); 723 priv->dev = dev; 724 725 if (echo_skb_max) { 726 priv->echo_skb_max = echo_skb_max; 727 priv->echo_skb = (void *)priv + 728 ALIGN(sizeof_priv, sizeof(struct sk_buff *)); 729 } 730 731 priv->state = CAN_STATE_STOPPED; 732 733 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work); 734 735 return dev; 736} 737EXPORT_SYMBOL_GPL(alloc_candev); 738 739/* 740 * Free space of the CAN network device 741 */ 742void free_candev(struct net_device *dev) 743{ 744 free_netdev(dev); 745} 746EXPORT_SYMBOL_GPL(free_candev); 747 748/* 749 * changing MTU and control mode for CAN/CANFD devices 750 */ 751int can_change_mtu(struct net_device *dev, int new_mtu) 752{ 753 struct can_priv *priv = netdev_priv(dev); 754 755 /* Do not allow changing the MTU while running */ 756 if (dev->flags & IFF_UP) 757 return -EBUSY; 758 759 /* allow change of MTU according to the CANFD ability of the device */ 760 switch (new_mtu) { 761 case CAN_MTU: 762 /* 'CANFD-only' controllers can not switch to CAN_MTU */ 763 if (priv->ctrlmode_static & CAN_CTRLMODE_FD) 764 return -EINVAL; 765 766 priv->ctrlmode &= ~CAN_CTRLMODE_FD; 767 break; 768 769 case CANFD_MTU: 770 /* check for potential CANFD ability */ 771 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) && 772 !(priv->ctrlmode_static & CAN_CTRLMODE_FD)) 773 return -EINVAL; 774 775 priv->ctrlmode |= CAN_CTRLMODE_FD; 776 break; 777 778 default: 779 return -EINVAL; 780 } 781 782 dev->mtu = new_mtu; 783 return 0; 784} 785EXPORT_SYMBOL_GPL(can_change_mtu); 786 787/* 788 * Common open function when the device gets opened. 789 * 790 * This function should be called in the open function of the device 791 * driver. 792 */ 793int open_candev(struct net_device *dev) 794{ 795 struct can_priv *priv = netdev_priv(dev); 796 797 if (!priv->bittiming.bitrate) { 798 netdev_err(dev, "bit-timing not yet defined\n"); 799 return -EINVAL; 800 } 801 802 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */ 803 if ((priv->ctrlmode & CAN_CTRLMODE_FD) && 804 (!priv->data_bittiming.bitrate || 805 (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) { 806 netdev_err(dev, "incorrect/missing data bit-timing\n"); 807 return -EINVAL; 808 } 809 810 /* Switch carrier on if device was stopped while in bus-off state */ 811 if (!netif_carrier_ok(dev)) 812 netif_carrier_on(dev); 813 814 return 0; 815} 816EXPORT_SYMBOL_GPL(open_candev); 817 818#ifdef CONFIG_OF 819/* Common function that can be used to understand the limitation of 820 * a transceiver when it provides no means to determine these limitations 821 * at runtime. 822 */ 823void of_can_transceiver(struct net_device *dev) 824{ 825 struct device_node *dn; 826 struct can_priv *priv = netdev_priv(dev); 827 struct device_node *np = dev->dev.parent->of_node; 828 int ret; 829 830 dn = of_get_child_by_name(np, "can-transceiver"); 831 if (!dn) 832 return; 833 834 ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max); 835 if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max)) 836 netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n"); 837} 838EXPORT_SYMBOL_GPL(of_can_transceiver); 839#endif 840 841/* 842 * Common close function for cleanup before the device gets closed. 843 * 844 * This function should be called in the close function of the device 845 * driver. 846 */ 847void close_candev(struct net_device *dev) 848{ 849 struct can_priv *priv = netdev_priv(dev); 850 851 cancel_delayed_work_sync(&priv->restart_work); 852 can_flush_echo_skb(dev); 853} 854EXPORT_SYMBOL_GPL(close_candev); 855 856/* 857 * CAN netlink interface 858 */ 859static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = { 860 [IFLA_CAN_STATE] = { .type = NLA_U32 }, 861 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) }, 862 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 }, 863 [IFLA_CAN_RESTART] = { .type = NLA_U32 }, 864 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) }, 865 [IFLA_CAN_BITTIMING_CONST] 866 = { .len = sizeof(struct can_bittiming_const) }, 867 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) }, 868 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) }, 869 [IFLA_CAN_DATA_BITTIMING] 870 = { .len = sizeof(struct can_bittiming) }, 871 [IFLA_CAN_DATA_BITTIMING_CONST] 872 = { .len = sizeof(struct can_bittiming_const) }, 873}; 874 875static int can_validate(struct nlattr *tb[], struct nlattr *data[], 876 struct netlink_ext_ack *extack) 877{ 878 bool is_can_fd = false; 879 880 /* Make sure that valid CAN FD configurations always consist of 881 * - nominal/arbitration bittiming 882 * - data bittiming 883 * - control mode with CAN_CTRLMODE_FD set 884 */ 885 886 if (!data) 887 return 0; 888 889 if (data[IFLA_CAN_CTRLMODE]) { 890 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]); 891 892 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD; 893 } 894 895 if (is_can_fd) { 896 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING]) 897 return -EOPNOTSUPP; 898 } 899 900 if (data[IFLA_CAN_DATA_BITTIMING]) { 901 if (!is_can_fd || !data[IFLA_CAN_BITTIMING]) 902 return -EOPNOTSUPP; 903 } 904 905 return 0; 906} 907 908static int can_changelink(struct net_device *dev, struct nlattr *tb[], 909 struct nlattr *data[], 910 struct netlink_ext_ack *extack) 911{ 912 struct can_priv *priv = netdev_priv(dev); 913 int err; 914 915 /* We need synchronization with dev->stop() */ 916 ASSERT_RTNL(); 917 918 if (data[IFLA_CAN_BITTIMING]) { 919 struct can_bittiming bt; 920 921 /* Do not allow changing bittiming while running */ 922 if (dev->flags & IFF_UP) 923 return -EBUSY; 924 925 /* Calculate bittiming parameters based on 926 * bittiming_const if set, otherwise pass bitrate 927 * directly via do_set_bitrate(). Bail out if neither 928 * is given. 929 */ 930 if (!priv->bittiming_const && !priv->do_set_bittiming) 931 return -EOPNOTSUPP; 932 933 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt)); 934 err = can_get_bittiming(dev, &bt, 935 priv->bittiming_const, 936 priv->bitrate_const, 937 priv->bitrate_const_cnt); 938 if (err) 939 return err; 940 941 if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) { 942 netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n", 943 priv->bitrate_max); 944 return -EINVAL; 945 } 946 947 memcpy(&priv->bittiming, &bt, sizeof(bt)); 948 949 if (priv->do_set_bittiming) { 950 /* Finally, set the bit-timing registers */ 951 err = priv->do_set_bittiming(dev); 952 if (err) 953 return err; 954 } 955 } 956 957 if (data[IFLA_CAN_CTRLMODE]) { 958 struct can_ctrlmode *cm; 959 u32 ctrlstatic; 960 u32 maskedflags; 961 962 /* Do not allow changing controller mode while running */ 963 if (dev->flags & IFF_UP) 964 return -EBUSY; 965 cm = nla_data(data[IFLA_CAN_CTRLMODE]); 966 ctrlstatic = priv->ctrlmode_static; 967 maskedflags = cm->flags & cm->mask; 968 969 /* check whether provided bits are allowed to be passed */ 970 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic)) 971 return -EOPNOTSUPP; 972 973 /* do not check for static fd-non-iso if 'fd' is disabled */ 974 if (!(maskedflags & CAN_CTRLMODE_FD)) 975 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO; 976 977 /* make sure static options are provided by configuration */ 978 if ((maskedflags & ctrlstatic) != ctrlstatic) 979 return -EOPNOTSUPP; 980 981 /* clear bits to be modified and copy the flag values */ 982 priv->ctrlmode &= ~cm->mask; 983 priv->ctrlmode |= maskedflags; 984 985 /* CAN_CTRLMODE_FD can only be set when driver supports FD */ 986 if (priv->ctrlmode & CAN_CTRLMODE_FD) 987 dev->mtu = CANFD_MTU; 988 else 989 dev->mtu = CAN_MTU; 990 } 991 992 if (data[IFLA_CAN_RESTART_MS]) { 993 /* Do not allow changing restart delay while running */ 994 if (dev->flags & IFF_UP) 995 return -EBUSY; 996 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]); 997 } 998 999 if (data[IFLA_CAN_RESTART]) { 1000 /* Do not allow a restart while not running */ 1001 if (!(dev->flags & IFF_UP)) 1002 return -EINVAL; 1003 err = can_restart_now(dev); 1004 if (err) 1005 return err; 1006 } 1007 1008 if (data[IFLA_CAN_DATA_BITTIMING]) { 1009 struct can_bittiming dbt; 1010 1011 /* Do not allow changing bittiming while running */ 1012 if (dev->flags & IFF_UP) 1013 return -EBUSY; 1014 1015 /* Calculate bittiming parameters based on 1016 * data_bittiming_const if set, otherwise pass bitrate 1017 * directly via do_set_bitrate(). Bail out if neither 1018 * is given. 1019 */ 1020 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming) 1021 return -EOPNOTSUPP; 1022 1023 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]), 1024 sizeof(dbt)); 1025 err = can_get_bittiming(dev, &dbt, 1026 priv->data_bittiming_const, 1027 priv->data_bitrate_const, 1028 priv->data_bitrate_const_cnt); 1029 if (err) 1030 return err; 1031 1032 if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) { 1033 netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n", 1034 priv->bitrate_max); 1035 return -EINVAL; 1036 } 1037 1038 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt)); 1039 1040 if (priv->do_set_data_bittiming) { 1041 /* Finally, set the bit-timing registers */ 1042 err = priv->do_set_data_bittiming(dev); 1043 if (err) 1044 return err; 1045 } 1046 } 1047 1048 if (data[IFLA_CAN_TERMINATION]) { 1049 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]); 1050 const unsigned int num_term = priv->termination_const_cnt; 1051 unsigned int i; 1052 1053 if (!priv->do_set_termination) 1054 return -EOPNOTSUPP; 1055 1056 /* check whether given value is supported by the interface */ 1057 for (i = 0; i < num_term; i++) { 1058 if (termval == priv->termination_const[i]) 1059 break; 1060 } 1061 if (i >= num_term) 1062 return -EINVAL; 1063 1064 /* Finally, set the termination value */ 1065 err = priv->do_set_termination(dev, termval); 1066 if (err) 1067 return err; 1068 1069 priv->termination = termval; 1070 } 1071 1072 return 0; 1073} 1074 1075static size_t can_get_size(const struct net_device *dev) 1076{ 1077 struct can_priv *priv = netdev_priv(dev); 1078 size_t size = 0; 1079 1080 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */ 1081 size += nla_total_size(sizeof(struct can_bittiming)); 1082 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */ 1083 size += nla_total_size(sizeof(struct can_bittiming_const)); 1084 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */ 1085 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */ 1086 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */ 1087 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */ 1088 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */ 1089 size += nla_total_size(sizeof(struct can_berr_counter)); 1090 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */ 1091 size += nla_total_size(sizeof(struct can_bittiming)); 1092 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */ 1093 size += nla_total_size(sizeof(struct can_bittiming_const)); 1094 if (priv->termination_const) { 1095 size += nla_total_size(sizeof(priv->termination)); /* IFLA_CAN_TERMINATION */ 1096 size += nla_total_size(sizeof(*priv->termination_const) * /* IFLA_CAN_TERMINATION_CONST */ 1097 priv->termination_const_cnt); 1098 } 1099 if (priv->bitrate_const) /* IFLA_CAN_BITRATE_CONST */ 1100 size += nla_total_size(sizeof(*priv->bitrate_const) * 1101 priv->bitrate_const_cnt); 1102 if (priv->data_bitrate_const) /* IFLA_CAN_DATA_BITRATE_CONST */ 1103 size += nla_total_size(sizeof(*priv->data_bitrate_const) * 1104 priv->data_bitrate_const_cnt); 1105 size += sizeof(priv->bitrate_max); /* IFLA_CAN_BITRATE_MAX */ 1106 1107 return size; 1108} 1109 1110static int can_fill_info(struct sk_buff *skb, const struct net_device *dev) 1111{ 1112 struct can_priv *priv = netdev_priv(dev); 1113 struct can_ctrlmode cm = {.flags = priv->ctrlmode}; 1114 struct can_berr_counter bec; 1115 enum can_state state = priv->state; 1116 1117 if (priv->do_get_state) 1118 priv->do_get_state(dev, &state); 1119 1120 if ((priv->bittiming.bitrate && 1121 nla_put(skb, IFLA_CAN_BITTIMING, 1122 sizeof(priv->bittiming), &priv->bittiming)) || 1123 1124 (priv->bittiming_const && 1125 nla_put(skb, IFLA_CAN_BITTIMING_CONST, 1126 sizeof(*priv->bittiming_const), priv->bittiming_const)) || 1127 1128 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) || 1129 nla_put_u32(skb, IFLA_CAN_STATE, state) || 1130 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) || 1131 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) || 1132 1133 (priv->do_get_berr_counter && 1134 !priv->do_get_berr_counter(dev, &bec) && 1135 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) || 1136 1137 (priv->data_bittiming.bitrate && 1138 nla_put(skb, IFLA_CAN_DATA_BITTIMING, 1139 sizeof(priv->data_bittiming), &priv->data_bittiming)) || 1140 1141 (priv->data_bittiming_const && 1142 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST, 1143 sizeof(*priv->data_bittiming_const), 1144 priv->data_bittiming_const)) || 1145 1146 (priv->termination_const && 1147 (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) || 1148 nla_put(skb, IFLA_CAN_TERMINATION_CONST, 1149 sizeof(*priv->termination_const) * 1150 priv->termination_const_cnt, 1151 priv->termination_const))) || 1152 1153 (priv->bitrate_const && 1154 nla_put(skb, IFLA_CAN_BITRATE_CONST, 1155 sizeof(*priv->bitrate_const) * 1156 priv->bitrate_const_cnt, 1157 priv->bitrate_const)) || 1158 1159 (priv->data_bitrate_const && 1160 nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST, 1161 sizeof(*priv->data_bitrate_const) * 1162 priv->data_bitrate_const_cnt, 1163 priv->data_bitrate_const)) || 1164 1165 (nla_put(skb, IFLA_CAN_BITRATE_MAX, 1166 sizeof(priv->bitrate_max), 1167 &priv->bitrate_max)) 1168 ) 1169 1170 return -EMSGSIZE; 1171 1172 return 0; 1173} 1174 1175static size_t can_get_xstats_size(const struct net_device *dev) 1176{ 1177 return sizeof(struct can_device_stats); 1178} 1179 1180static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev) 1181{ 1182 struct can_priv *priv = netdev_priv(dev); 1183 1184 if (nla_put(skb, IFLA_INFO_XSTATS, 1185 sizeof(priv->can_stats), &priv->can_stats)) 1186 goto nla_put_failure; 1187 return 0; 1188 1189nla_put_failure: 1190 return -EMSGSIZE; 1191} 1192 1193static int can_newlink(struct net *src_net, struct net_device *dev, 1194 struct nlattr *tb[], struct nlattr *data[], 1195 struct netlink_ext_ack *extack) 1196{ 1197 return -EOPNOTSUPP; 1198} 1199 1200static void can_dellink(struct net_device *dev, struct list_head *head) 1201{ 1202 return; 1203} 1204 1205static struct rtnl_link_ops can_link_ops __read_mostly = { 1206 .kind = "can", 1207 .maxtype = IFLA_CAN_MAX, 1208 .policy = can_policy, 1209 .setup = can_setup, 1210 .validate = can_validate, 1211 .newlink = can_newlink, 1212 .changelink = can_changelink, 1213 .dellink = can_dellink, 1214 .get_size = can_get_size, 1215 .fill_info = can_fill_info, 1216 .get_xstats_size = can_get_xstats_size, 1217 .fill_xstats = can_fill_xstats, 1218}; 1219 1220/* 1221 * Register the CAN network device 1222 */ 1223int register_candev(struct net_device *dev) 1224{ 1225 struct can_priv *priv = netdev_priv(dev); 1226 1227 /* Ensure termination_const, termination_const_cnt and 1228 * do_set_termination consistency. All must be either set or 1229 * unset. 1230 */ 1231 if ((!priv->termination_const != !priv->termination_const_cnt) || 1232 (!priv->termination_const != !priv->do_set_termination)) 1233 return -EINVAL; 1234 1235 if (!priv->bitrate_const != !priv->bitrate_const_cnt) 1236 return -EINVAL; 1237 1238 if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt) 1239 return -EINVAL; 1240 1241 dev->rtnl_link_ops = &can_link_ops; 1242 return register_netdev(dev); 1243} 1244EXPORT_SYMBOL_GPL(register_candev); 1245 1246/* 1247 * Unregister the CAN network device 1248 */ 1249void unregister_candev(struct net_device *dev) 1250{ 1251 unregister_netdev(dev); 1252} 1253EXPORT_SYMBOL_GPL(unregister_candev); 1254 1255/* 1256 * Test if a network device is a candev based device 1257 * and return the can_priv* if so. 1258 */ 1259struct can_priv *safe_candev_priv(struct net_device *dev) 1260{ 1261 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops)) 1262 return NULL; 1263 1264 return netdev_priv(dev); 1265} 1266EXPORT_SYMBOL_GPL(safe_candev_priv); 1267 1268static __init int can_dev_init(void) 1269{ 1270 int err; 1271 1272 can_led_notifier_init(); 1273 1274 err = rtnl_link_register(&can_link_ops); 1275 if (!err) 1276 printk(KERN_INFO MOD_DESC "\n"); 1277 1278 return err; 1279} 1280module_init(can_dev_init); 1281 1282static __exit void can_dev_exit(void) 1283{ 1284 rtnl_link_unregister(&can_link_ops); 1285 1286 can_led_notifier_exit(); 1287} 1288module_exit(can_dev_exit); 1289 1290MODULE_ALIAS_RTNL_LINK("can");