at v4.18-rc2 789 lines 19 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * General Purpose functions for the global management of the 4 * Communication Processor Module. 5 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net) 6 * 7 * In addition to the individual control of the communication 8 * channels, there are a few functions that globally affect the 9 * communication processor. 10 * 11 * Buffer descriptors must be allocated from the dual ported memory 12 * space. The allocator for that is here. When the communication 13 * process is reset, we reclaim the memory available. There is 14 * currently no deallocator for this memory. 15 * The amount of space available is platform dependent. On the 16 * MBX, the EPPC software loads additional microcode into the 17 * communication processor, and uses some of the DP ram for this 18 * purpose. Current, the first 512 bytes and the last 256 bytes of 19 * memory are used. Right now I am conservative and only use the 20 * memory that can never be used for microcode. If there are 21 * applications that require more DP ram, we can expand the boundaries 22 * but then we have to be careful of any downloaded microcode. 23 */ 24#include <linux/errno.h> 25#include <linux/sched.h> 26#include <linux/kernel.h> 27#include <linux/dma-mapping.h> 28#include <linux/param.h> 29#include <linux/string.h> 30#include <linux/mm.h> 31#include <linux/interrupt.h> 32#include <linux/irq.h> 33#include <linux/module.h> 34#include <linux/spinlock.h> 35#include <linux/slab.h> 36#include <asm/page.h> 37#include <asm/pgtable.h> 38#include <asm/8xx_immap.h> 39#include <asm/cpm1.h> 40#include <asm/io.h> 41#include <asm/tlbflush.h> 42#include <asm/rheap.h> 43#include <asm/prom.h> 44#include <asm/cpm.h> 45 46#include <asm/fs_pd.h> 47 48#ifdef CONFIG_8xx_GPIO 49#include <linux/of_gpio.h> 50#endif 51 52#define CPM_MAP_SIZE (0x4000) 53 54cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */ 55immap_t __iomem *mpc8xx_immr; 56static cpic8xx_t __iomem *cpic_reg; 57 58static struct irq_domain *cpm_pic_host; 59 60static void cpm_mask_irq(struct irq_data *d) 61{ 62 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d); 63 64 clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec)); 65} 66 67static void cpm_unmask_irq(struct irq_data *d) 68{ 69 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d); 70 71 setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec)); 72} 73 74static void cpm_end_irq(struct irq_data *d) 75{ 76 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d); 77 78 out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec)); 79} 80 81static struct irq_chip cpm_pic = { 82 .name = "CPM PIC", 83 .irq_mask = cpm_mask_irq, 84 .irq_unmask = cpm_unmask_irq, 85 .irq_eoi = cpm_end_irq, 86}; 87 88int cpm_get_irq(void) 89{ 90 int cpm_vec; 91 92 /* Get the vector by setting the ACK bit and then reading 93 * the register. 94 */ 95 out_be16(&cpic_reg->cpic_civr, 1); 96 cpm_vec = in_be16(&cpic_reg->cpic_civr); 97 cpm_vec >>= 11; 98 99 return irq_linear_revmap(cpm_pic_host, cpm_vec); 100} 101 102static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq, 103 irq_hw_number_t hw) 104{ 105 pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw); 106 107 irq_set_status_flags(virq, IRQ_LEVEL); 108 irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq); 109 return 0; 110} 111 112/* The CPM can generate the error interrupt when there is a race condition 113 * between generating and masking interrupts. All we have to do is ACK it 114 * and return. This is a no-op function so we don't need any special 115 * tests in the interrupt handler. 116 */ 117static irqreturn_t cpm_error_interrupt(int irq, void *dev) 118{ 119 return IRQ_HANDLED; 120} 121 122static struct irqaction cpm_error_irqaction = { 123 .handler = cpm_error_interrupt, 124 .flags = IRQF_NO_THREAD, 125 .name = "error", 126}; 127 128static const struct irq_domain_ops cpm_pic_host_ops = { 129 .map = cpm_pic_host_map, 130}; 131 132unsigned int cpm_pic_init(void) 133{ 134 struct device_node *np = NULL; 135 struct resource res; 136 unsigned int sirq = 0, hwirq, eirq; 137 int ret; 138 139 pr_debug("cpm_pic_init\n"); 140 141 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic"); 142 if (np == NULL) 143 np = of_find_compatible_node(NULL, "cpm-pic", "CPM"); 144 if (np == NULL) { 145 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n"); 146 return sirq; 147 } 148 149 ret = of_address_to_resource(np, 0, &res); 150 if (ret) 151 goto end; 152 153 cpic_reg = ioremap(res.start, resource_size(&res)); 154 if (cpic_reg == NULL) 155 goto end; 156 157 sirq = irq_of_parse_and_map(np, 0); 158 if (!sirq) 159 goto end; 160 161 /* Initialize the CPM interrupt controller. */ 162 hwirq = (unsigned int)virq_to_hw(sirq); 163 out_be32(&cpic_reg->cpic_cicr, 164 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) | 165 ((hwirq/2) << 13) | CICR_HP_MASK); 166 167 out_be32(&cpic_reg->cpic_cimr, 0); 168 169 cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL); 170 if (cpm_pic_host == NULL) { 171 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n"); 172 sirq = 0; 173 goto end; 174 } 175 176 /* Install our own error handler. */ 177 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1"); 178 if (np == NULL) 179 np = of_find_node_by_type(NULL, "cpm"); 180 if (np == NULL) { 181 printk(KERN_ERR "CPM PIC init: can not find cpm node\n"); 182 goto end; 183 } 184 185 eirq = irq_of_parse_and_map(np, 0); 186 if (!eirq) 187 goto end; 188 189 if (setup_irq(eirq, &cpm_error_irqaction)) 190 printk(KERN_ERR "Could not allocate CPM error IRQ!"); 191 192 setbits32(&cpic_reg->cpic_cicr, CICR_IEN); 193 194end: 195 of_node_put(np); 196 return sirq; 197} 198 199void __init cpm_reset(void) 200{ 201 sysconf8xx_t __iomem *siu_conf; 202 203 mpc8xx_immr = ioremap(get_immrbase(), 0x4000); 204 if (!mpc8xx_immr) { 205 printk(KERN_CRIT "Could not map IMMR\n"); 206 return; 207 } 208 209 cpmp = &mpc8xx_immr->im_cpm; 210 211#ifndef CONFIG_PPC_EARLY_DEBUG_CPM 212 /* Perform a reset. 213 */ 214 out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG); 215 216 /* Wait for it. 217 */ 218 while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG); 219#endif 220 221#ifdef CONFIG_UCODE_PATCH 222 cpm_load_patch(cpmp); 223#endif 224 225 /* Set SDMA Bus Request priority 5. 226 * On 860T, this also enables FEC priority 6. I am not sure 227 * this is what we really want for some applications, but the 228 * manual recommends it. 229 * Bit 25, FAM can also be set to use FEC aggressive mode (860T). 230 */ 231 siu_conf = immr_map(im_siu_conf); 232 if ((mfspr(SPRN_IMMR) & 0xffff) == 0x0900) /* MPC885 */ 233 out_be32(&siu_conf->sc_sdcr, 0x40); 234 else 235 out_be32(&siu_conf->sc_sdcr, 1); 236 immr_unmap(siu_conf); 237} 238 239static DEFINE_SPINLOCK(cmd_lock); 240 241#define MAX_CR_CMD_LOOPS 10000 242 243int cpm_command(u32 command, u8 opcode) 244{ 245 int i, ret; 246 unsigned long flags; 247 248 if (command & 0xffffff0f) 249 return -EINVAL; 250 251 spin_lock_irqsave(&cmd_lock, flags); 252 253 ret = 0; 254 out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8)); 255 for (i = 0; i < MAX_CR_CMD_LOOPS; i++) 256 if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0) 257 goto out; 258 259 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__); 260 ret = -EIO; 261out: 262 spin_unlock_irqrestore(&cmd_lock, flags); 263 return ret; 264} 265EXPORT_SYMBOL(cpm_command); 266 267/* Set a baud rate generator. This needs lots of work. There are 268 * four BRGs, any of which can be wired to any channel. 269 * The internal baud rate clock is the system clock divided by 16. 270 * This assumes the baudrate is 16x oversampled by the uart. 271 */ 272#define BRG_INT_CLK (get_brgfreq()) 273#define BRG_UART_CLK (BRG_INT_CLK/16) 274#define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16) 275 276void 277cpm_setbrg(uint brg, uint rate) 278{ 279 u32 __iomem *bp; 280 281 /* This is good enough to get SMCs running..... 282 */ 283 bp = &cpmp->cp_brgc1; 284 bp += brg; 285 /* The BRG has a 12-bit counter. For really slow baud rates (or 286 * really fast processors), we may have to further divide by 16. 287 */ 288 if (((BRG_UART_CLK / rate) - 1) < 4096) 289 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN); 290 else 291 out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) | 292 CPM_BRG_EN | CPM_BRG_DIV16); 293} 294 295struct cpm_ioport16 { 296 __be16 dir, par, odr_sor, dat, intr; 297 __be16 res[3]; 298}; 299 300struct cpm_ioport32b { 301 __be32 dir, par, odr, dat; 302}; 303 304struct cpm_ioport32e { 305 __be32 dir, par, sor, odr, dat; 306}; 307 308static void cpm1_set_pin32(int port, int pin, int flags) 309{ 310 struct cpm_ioport32e __iomem *iop; 311 pin = 1 << (31 - pin); 312 313 if (port == CPM_PORTB) 314 iop = (struct cpm_ioport32e __iomem *) 315 &mpc8xx_immr->im_cpm.cp_pbdir; 316 else 317 iop = (struct cpm_ioport32e __iomem *) 318 &mpc8xx_immr->im_cpm.cp_pedir; 319 320 if (flags & CPM_PIN_OUTPUT) 321 setbits32(&iop->dir, pin); 322 else 323 clrbits32(&iop->dir, pin); 324 325 if (!(flags & CPM_PIN_GPIO)) 326 setbits32(&iop->par, pin); 327 else 328 clrbits32(&iop->par, pin); 329 330 if (port == CPM_PORTB) { 331 if (flags & CPM_PIN_OPENDRAIN) 332 setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin); 333 else 334 clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin); 335 } 336 337 if (port == CPM_PORTE) { 338 if (flags & CPM_PIN_SECONDARY) 339 setbits32(&iop->sor, pin); 340 else 341 clrbits32(&iop->sor, pin); 342 343 if (flags & CPM_PIN_OPENDRAIN) 344 setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin); 345 else 346 clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin); 347 } 348} 349 350static void cpm1_set_pin16(int port, int pin, int flags) 351{ 352 struct cpm_ioport16 __iomem *iop = 353 (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport; 354 355 pin = 1 << (15 - pin); 356 357 if (port != 0) 358 iop += port - 1; 359 360 if (flags & CPM_PIN_OUTPUT) 361 setbits16(&iop->dir, pin); 362 else 363 clrbits16(&iop->dir, pin); 364 365 if (!(flags & CPM_PIN_GPIO)) 366 setbits16(&iop->par, pin); 367 else 368 clrbits16(&iop->par, pin); 369 370 if (port == CPM_PORTA) { 371 if (flags & CPM_PIN_OPENDRAIN) 372 setbits16(&iop->odr_sor, pin); 373 else 374 clrbits16(&iop->odr_sor, pin); 375 } 376 if (port == CPM_PORTC) { 377 if (flags & CPM_PIN_SECONDARY) 378 setbits16(&iop->odr_sor, pin); 379 else 380 clrbits16(&iop->odr_sor, pin); 381 if (flags & CPM_PIN_FALLEDGE) 382 setbits16(&iop->intr, pin); 383 else 384 clrbits16(&iop->intr, pin); 385 } 386} 387 388void cpm1_set_pin(enum cpm_port port, int pin, int flags) 389{ 390 if (port == CPM_PORTB || port == CPM_PORTE) 391 cpm1_set_pin32(port, pin, flags); 392 else 393 cpm1_set_pin16(port, pin, flags); 394} 395 396int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode) 397{ 398 int shift; 399 int i, bits = 0; 400 u32 __iomem *reg; 401 u32 mask = 7; 402 403 u8 clk_map[][3] = { 404 {CPM_CLK_SCC1, CPM_BRG1, 0}, 405 {CPM_CLK_SCC1, CPM_BRG2, 1}, 406 {CPM_CLK_SCC1, CPM_BRG3, 2}, 407 {CPM_CLK_SCC1, CPM_BRG4, 3}, 408 {CPM_CLK_SCC1, CPM_CLK1, 4}, 409 {CPM_CLK_SCC1, CPM_CLK2, 5}, 410 {CPM_CLK_SCC1, CPM_CLK3, 6}, 411 {CPM_CLK_SCC1, CPM_CLK4, 7}, 412 413 {CPM_CLK_SCC2, CPM_BRG1, 0}, 414 {CPM_CLK_SCC2, CPM_BRG2, 1}, 415 {CPM_CLK_SCC2, CPM_BRG3, 2}, 416 {CPM_CLK_SCC2, CPM_BRG4, 3}, 417 {CPM_CLK_SCC2, CPM_CLK1, 4}, 418 {CPM_CLK_SCC2, CPM_CLK2, 5}, 419 {CPM_CLK_SCC2, CPM_CLK3, 6}, 420 {CPM_CLK_SCC2, CPM_CLK4, 7}, 421 422 {CPM_CLK_SCC3, CPM_BRG1, 0}, 423 {CPM_CLK_SCC3, CPM_BRG2, 1}, 424 {CPM_CLK_SCC3, CPM_BRG3, 2}, 425 {CPM_CLK_SCC3, CPM_BRG4, 3}, 426 {CPM_CLK_SCC3, CPM_CLK5, 4}, 427 {CPM_CLK_SCC3, CPM_CLK6, 5}, 428 {CPM_CLK_SCC3, CPM_CLK7, 6}, 429 {CPM_CLK_SCC3, CPM_CLK8, 7}, 430 431 {CPM_CLK_SCC4, CPM_BRG1, 0}, 432 {CPM_CLK_SCC4, CPM_BRG2, 1}, 433 {CPM_CLK_SCC4, CPM_BRG3, 2}, 434 {CPM_CLK_SCC4, CPM_BRG4, 3}, 435 {CPM_CLK_SCC4, CPM_CLK5, 4}, 436 {CPM_CLK_SCC4, CPM_CLK6, 5}, 437 {CPM_CLK_SCC4, CPM_CLK7, 6}, 438 {CPM_CLK_SCC4, CPM_CLK8, 7}, 439 440 {CPM_CLK_SMC1, CPM_BRG1, 0}, 441 {CPM_CLK_SMC1, CPM_BRG2, 1}, 442 {CPM_CLK_SMC1, CPM_BRG3, 2}, 443 {CPM_CLK_SMC1, CPM_BRG4, 3}, 444 {CPM_CLK_SMC1, CPM_CLK1, 4}, 445 {CPM_CLK_SMC1, CPM_CLK2, 5}, 446 {CPM_CLK_SMC1, CPM_CLK3, 6}, 447 {CPM_CLK_SMC1, CPM_CLK4, 7}, 448 449 {CPM_CLK_SMC2, CPM_BRG1, 0}, 450 {CPM_CLK_SMC2, CPM_BRG2, 1}, 451 {CPM_CLK_SMC2, CPM_BRG3, 2}, 452 {CPM_CLK_SMC2, CPM_BRG4, 3}, 453 {CPM_CLK_SMC2, CPM_CLK5, 4}, 454 {CPM_CLK_SMC2, CPM_CLK6, 5}, 455 {CPM_CLK_SMC2, CPM_CLK7, 6}, 456 {CPM_CLK_SMC2, CPM_CLK8, 7}, 457 }; 458 459 switch (target) { 460 case CPM_CLK_SCC1: 461 reg = &mpc8xx_immr->im_cpm.cp_sicr; 462 shift = 0; 463 break; 464 465 case CPM_CLK_SCC2: 466 reg = &mpc8xx_immr->im_cpm.cp_sicr; 467 shift = 8; 468 break; 469 470 case CPM_CLK_SCC3: 471 reg = &mpc8xx_immr->im_cpm.cp_sicr; 472 shift = 16; 473 break; 474 475 case CPM_CLK_SCC4: 476 reg = &mpc8xx_immr->im_cpm.cp_sicr; 477 shift = 24; 478 break; 479 480 case CPM_CLK_SMC1: 481 reg = &mpc8xx_immr->im_cpm.cp_simode; 482 shift = 12; 483 break; 484 485 case CPM_CLK_SMC2: 486 reg = &mpc8xx_immr->im_cpm.cp_simode; 487 shift = 28; 488 break; 489 490 default: 491 printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n"); 492 return -EINVAL; 493 } 494 495 for (i = 0; i < ARRAY_SIZE(clk_map); i++) { 496 if (clk_map[i][0] == target && clk_map[i][1] == clock) { 497 bits = clk_map[i][2]; 498 break; 499 } 500 } 501 502 if (i == ARRAY_SIZE(clk_map)) { 503 printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n"); 504 return -EINVAL; 505 } 506 507 bits <<= shift; 508 mask <<= shift; 509 510 if (reg == &mpc8xx_immr->im_cpm.cp_sicr) { 511 if (mode == CPM_CLK_RTX) { 512 bits |= bits << 3; 513 mask |= mask << 3; 514 } else if (mode == CPM_CLK_RX) { 515 bits <<= 3; 516 mask <<= 3; 517 } 518 } 519 520 out_be32(reg, (in_be32(reg) & ~mask) | bits); 521 522 return 0; 523} 524 525/* 526 * GPIO LIB API implementation 527 */ 528#ifdef CONFIG_8xx_GPIO 529 530struct cpm1_gpio16_chip { 531 struct of_mm_gpio_chip mm_gc; 532 spinlock_t lock; 533 534 /* shadowed data register to clear/set bits safely */ 535 u16 cpdata; 536 537 /* IRQ associated with Pins when relevant */ 538 int irq[16]; 539}; 540 541static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc) 542{ 543 struct cpm1_gpio16_chip *cpm1_gc = 544 container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc); 545 struct cpm_ioport16 __iomem *iop = mm_gc->regs; 546 547 cpm1_gc->cpdata = in_be16(&iop->dat); 548} 549 550static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio) 551{ 552 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 553 struct cpm_ioport16 __iomem *iop = mm_gc->regs; 554 u16 pin_mask; 555 556 pin_mask = 1 << (15 - gpio); 557 558 return !!(in_be16(&iop->dat) & pin_mask); 559} 560 561static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask, 562 int value) 563{ 564 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 565 struct cpm_ioport16 __iomem *iop = mm_gc->regs; 566 567 if (value) 568 cpm1_gc->cpdata |= pin_mask; 569 else 570 cpm1_gc->cpdata &= ~pin_mask; 571 572 out_be16(&iop->dat, cpm1_gc->cpdata); 573} 574 575static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value) 576{ 577 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 578 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 579 unsigned long flags; 580 u16 pin_mask = 1 << (15 - gpio); 581 582 spin_lock_irqsave(&cpm1_gc->lock, flags); 583 584 __cpm1_gpio16_set(mm_gc, pin_mask, value); 585 586 spin_unlock_irqrestore(&cpm1_gc->lock, flags); 587} 588 589static int cpm1_gpio16_to_irq(struct gpio_chip *gc, unsigned int gpio) 590{ 591 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 592 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 593 594 return cpm1_gc->irq[gpio] ? : -ENXIO; 595} 596 597static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val) 598{ 599 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 600 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 601 struct cpm_ioport16 __iomem *iop = mm_gc->regs; 602 unsigned long flags; 603 u16 pin_mask = 1 << (15 - gpio); 604 605 spin_lock_irqsave(&cpm1_gc->lock, flags); 606 607 setbits16(&iop->dir, pin_mask); 608 __cpm1_gpio16_set(mm_gc, pin_mask, val); 609 610 spin_unlock_irqrestore(&cpm1_gc->lock, flags); 611 612 return 0; 613} 614 615static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio) 616{ 617 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 618 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 619 struct cpm_ioport16 __iomem *iop = mm_gc->regs; 620 unsigned long flags; 621 u16 pin_mask = 1 << (15 - gpio); 622 623 spin_lock_irqsave(&cpm1_gc->lock, flags); 624 625 clrbits16(&iop->dir, pin_mask); 626 627 spin_unlock_irqrestore(&cpm1_gc->lock, flags); 628 629 return 0; 630} 631 632int cpm1_gpiochip_add16(struct device *dev) 633{ 634 struct device_node *np = dev->of_node; 635 struct cpm1_gpio16_chip *cpm1_gc; 636 struct of_mm_gpio_chip *mm_gc; 637 struct gpio_chip *gc; 638 u16 mask; 639 640 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL); 641 if (!cpm1_gc) 642 return -ENOMEM; 643 644 spin_lock_init(&cpm1_gc->lock); 645 646 if (!of_property_read_u16(np, "fsl,cpm1-gpio-irq-mask", &mask)) { 647 int i, j; 648 649 for (i = 0, j = 0; i < 16; i++) 650 if (mask & (1 << (15 - i))) 651 cpm1_gc->irq[i] = irq_of_parse_and_map(np, j++); 652 } 653 654 mm_gc = &cpm1_gc->mm_gc; 655 gc = &mm_gc->gc; 656 657 mm_gc->save_regs = cpm1_gpio16_save_regs; 658 gc->ngpio = 16; 659 gc->direction_input = cpm1_gpio16_dir_in; 660 gc->direction_output = cpm1_gpio16_dir_out; 661 gc->get = cpm1_gpio16_get; 662 gc->set = cpm1_gpio16_set; 663 gc->to_irq = cpm1_gpio16_to_irq; 664 gc->parent = dev; 665 gc->owner = THIS_MODULE; 666 667 return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc); 668} 669 670struct cpm1_gpio32_chip { 671 struct of_mm_gpio_chip mm_gc; 672 spinlock_t lock; 673 674 /* shadowed data register to clear/set bits safely */ 675 u32 cpdata; 676}; 677 678static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc) 679{ 680 struct cpm1_gpio32_chip *cpm1_gc = 681 container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc); 682 struct cpm_ioport32b __iomem *iop = mm_gc->regs; 683 684 cpm1_gc->cpdata = in_be32(&iop->dat); 685} 686 687static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio) 688{ 689 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 690 struct cpm_ioport32b __iomem *iop = mm_gc->regs; 691 u32 pin_mask; 692 693 pin_mask = 1 << (31 - gpio); 694 695 return !!(in_be32(&iop->dat) & pin_mask); 696} 697 698static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask, 699 int value) 700{ 701 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 702 struct cpm_ioport32b __iomem *iop = mm_gc->regs; 703 704 if (value) 705 cpm1_gc->cpdata |= pin_mask; 706 else 707 cpm1_gc->cpdata &= ~pin_mask; 708 709 out_be32(&iop->dat, cpm1_gc->cpdata); 710} 711 712static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value) 713{ 714 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 715 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 716 unsigned long flags; 717 u32 pin_mask = 1 << (31 - gpio); 718 719 spin_lock_irqsave(&cpm1_gc->lock, flags); 720 721 __cpm1_gpio32_set(mm_gc, pin_mask, value); 722 723 spin_unlock_irqrestore(&cpm1_gc->lock, flags); 724} 725 726static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val) 727{ 728 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 729 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 730 struct cpm_ioport32b __iomem *iop = mm_gc->regs; 731 unsigned long flags; 732 u32 pin_mask = 1 << (31 - gpio); 733 734 spin_lock_irqsave(&cpm1_gc->lock, flags); 735 736 setbits32(&iop->dir, pin_mask); 737 __cpm1_gpio32_set(mm_gc, pin_mask, val); 738 739 spin_unlock_irqrestore(&cpm1_gc->lock, flags); 740 741 return 0; 742} 743 744static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio) 745{ 746 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); 747 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc); 748 struct cpm_ioport32b __iomem *iop = mm_gc->regs; 749 unsigned long flags; 750 u32 pin_mask = 1 << (31 - gpio); 751 752 spin_lock_irqsave(&cpm1_gc->lock, flags); 753 754 clrbits32(&iop->dir, pin_mask); 755 756 spin_unlock_irqrestore(&cpm1_gc->lock, flags); 757 758 return 0; 759} 760 761int cpm1_gpiochip_add32(struct device *dev) 762{ 763 struct device_node *np = dev->of_node; 764 struct cpm1_gpio32_chip *cpm1_gc; 765 struct of_mm_gpio_chip *mm_gc; 766 struct gpio_chip *gc; 767 768 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL); 769 if (!cpm1_gc) 770 return -ENOMEM; 771 772 spin_lock_init(&cpm1_gc->lock); 773 774 mm_gc = &cpm1_gc->mm_gc; 775 gc = &mm_gc->gc; 776 777 mm_gc->save_regs = cpm1_gpio32_save_regs; 778 gc->ngpio = 32; 779 gc->direction_input = cpm1_gpio32_dir_in; 780 gc->direction_output = cpm1_gpio32_dir_out; 781 gc->get = cpm1_gpio32_get; 782 gc->set = cpm1_gpio32_set; 783 gc->parent = dev; 784 gc->owner = THIS_MODULE; 785 786 return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc); 787} 788 789#endif /* CONFIG_8xx_GPIO */