Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35/*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41#include <linux/module.h>
42#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/mm.h>
45#include <linux/interrupt.h>
46#include <linux/in.h>
47#include <linux/inet.h>
48#include <linux/slab.h>
49#include <linux/tcp.h>
50#include <linux/udp.h>
51#include <linux/sctp.h>
52#include <linux/netdevice.h>
53#ifdef CONFIG_NET_CLS_ACT
54#include <net/pkt_sched.h>
55#endif
56#include <linux/string.h>
57#include <linux/skbuff.h>
58#include <linux/splice.h>
59#include <linux/cache.h>
60#include <linux/rtnetlink.h>
61#include <linux/init.h>
62#include <linux/scatterlist.h>
63#include <linux/errqueue.h>
64#include <linux/prefetch.h>
65#include <linux/if_vlan.h>
66
67#include <net/protocol.h>
68#include <net/dst.h>
69#include <net/sock.h>
70#include <net/checksum.h>
71#include <net/ip6_checksum.h>
72#include <net/xfrm.h>
73
74#include <linux/uaccess.h>
75#include <trace/events/skb.h>
76#include <linux/highmem.h>
77#include <linux/capability.h>
78#include <linux/user_namespace.h>
79
80struct kmem_cache *skbuff_head_cache __ro_after_init;
81static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83EXPORT_SYMBOL(sysctl_max_skb_frags);
84
85/**
86 * skb_panic - private function for out-of-line support
87 * @skb: buffer
88 * @sz: size
89 * @addr: address
90 * @msg: skb_over_panic or skb_under_panic
91 *
92 * Out-of-line support for skb_put() and skb_push().
93 * Called via the wrapper skb_over_panic() or skb_under_panic().
94 * Keep out of line to prevent kernel bloat.
95 * __builtin_return_address is not used because it is not always reliable.
96 */
97static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 const char msg[])
99{
100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 msg, addr, skb->len, sz, skb->head, skb->data,
102 (unsigned long)skb->tail, (unsigned long)skb->end,
103 skb->dev ? skb->dev->name : "<NULL>");
104 BUG();
105}
106
107static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108{
109 skb_panic(skb, sz, addr, __func__);
110}
111
112static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113{
114 skb_panic(skb, sz, addr, __func__);
115}
116
117/*
118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119 * the caller if emergency pfmemalloc reserves are being used. If it is and
120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121 * may be used. Otherwise, the packet data may be discarded until enough
122 * memory is free
123 */
124#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126
127static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 unsigned long ip, bool *pfmemalloc)
129{
130 void *obj;
131 bool ret_pfmemalloc = false;
132
133 /*
134 * Try a regular allocation, when that fails and we're not entitled
135 * to the reserves, fail.
136 */
137 obj = kmalloc_node_track_caller(size,
138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 node);
140 if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 goto out;
142
143 /* Try again but now we are using pfmemalloc reserves */
144 ret_pfmemalloc = true;
145 obj = kmalloc_node_track_caller(size, flags, node);
146
147out:
148 if (pfmemalloc)
149 *pfmemalloc = ret_pfmemalloc;
150
151 return obj;
152}
153
154/* Allocate a new skbuff. We do this ourselves so we can fill in a few
155 * 'private' fields and also do memory statistics to find all the
156 * [BEEP] leaks.
157 *
158 */
159
160/**
161 * __alloc_skb - allocate a network buffer
162 * @size: size to allocate
163 * @gfp_mask: allocation mask
164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165 * instead of head cache and allocate a cloned (child) skb.
166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167 * allocations in case the data is required for writeback
168 * @node: numa node to allocate memory on
169 *
170 * Allocate a new &sk_buff. The returned buffer has no headroom and a
171 * tail room of at least size bytes. The object has a reference count
172 * of one. The return is the buffer. On a failure the return is %NULL.
173 *
174 * Buffers may only be allocated from interrupts using a @gfp_mask of
175 * %GFP_ATOMIC.
176 */
177struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 int flags, int node)
179{
180 struct kmem_cache *cache;
181 struct skb_shared_info *shinfo;
182 struct sk_buff *skb;
183 u8 *data;
184 bool pfmemalloc;
185
186 cache = (flags & SKB_ALLOC_FCLONE)
187 ? skbuff_fclone_cache : skbuff_head_cache;
188
189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 gfp_mask |= __GFP_MEMALLOC;
191
192 /* Get the HEAD */
193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 if (!skb)
195 goto out;
196 prefetchw(skb);
197
198 /* We do our best to align skb_shared_info on a separate cache
199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 * Both skb->head and skb_shared_info are cache line aligned.
202 */
203 size = SKB_DATA_ALIGN(size);
204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 if (!data)
207 goto nodata;
208 /* kmalloc(size) might give us more room than requested.
209 * Put skb_shared_info exactly at the end of allocated zone,
210 * to allow max possible filling before reallocation.
211 */
212 size = SKB_WITH_OVERHEAD(ksize(data));
213 prefetchw(data + size);
214
215 /*
216 * Only clear those fields we need to clear, not those that we will
217 * actually initialise below. Hence, don't put any more fields after
218 * the tail pointer in struct sk_buff!
219 */
220 memset(skb, 0, offsetof(struct sk_buff, tail));
221 /* Account for allocated memory : skb + skb->head */
222 skb->truesize = SKB_TRUESIZE(size);
223 skb->pfmemalloc = pfmemalloc;
224 refcount_set(&skb->users, 1);
225 skb->head = data;
226 skb->data = data;
227 skb_reset_tail_pointer(skb);
228 skb->end = skb->tail + size;
229 skb->mac_header = (typeof(skb->mac_header))~0U;
230 skb->transport_header = (typeof(skb->transport_header))~0U;
231
232 /* make sure we initialize shinfo sequentially */
233 shinfo = skb_shinfo(skb);
234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 atomic_set(&shinfo->dataref, 1);
236
237 if (flags & SKB_ALLOC_FCLONE) {
238 struct sk_buff_fclones *fclones;
239
240 fclones = container_of(skb, struct sk_buff_fclones, skb1);
241
242 skb->fclone = SKB_FCLONE_ORIG;
243 refcount_set(&fclones->fclone_ref, 1);
244
245 fclones->skb2.fclone = SKB_FCLONE_CLONE;
246 }
247out:
248 return skb;
249nodata:
250 kmem_cache_free(cache, skb);
251 skb = NULL;
252 goto out;
253}
254EXPORT_SYMBOL(__alloc_skb);
255
256/**
257 * __build_skb - build a network buffer
258 * @data: data buffer provided by caller
259 * @frag_size: size of data, or 0 if head was kmalloced
260 *
261 * Allocate a new &sk_buff. Caller provides space holding head and
262 * skb_shared_info. @data must have been allocated by kmalloc() only if
263 * @frag_size is 0, otherwise data should come from the page allocator
264 * or vmalloc()
265 * The return is the new skb buffer.
266 * On a failure the return is %NULL, and @data is not freed.
267 * Notes :
268 * Before IO, driver allocates only data buffer where NIC put incoming frame
269 * Driver should add room at head (NET_SKB_PAD) and
270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
272 * before giving packet to stack.
273 * RX rings only contains data buffers, not full skbs.
274 */
275struct sk_buff *__build_skb(void *data, unsigned int frag_size)
276{
277 struct skb_shared_info *shinfo;
278 struct sk_buff *skb;
279 unsigned int size = frag_size ? : ksize(data);
280
281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 if (!skb)
283 return NULL;
284
285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
286
287 memset(skb, 0, offsetof(struct sk_buff, tail));
288 skb->truesize = SKB_TRUESIZE(size);
289 refcount_set(&skb->users, 1);
290 skb->head = data;
291 skb->data = data;
292 skb_reset_tail_pointer(skb);
293 skb->end = skb->tail + size;
294 skb->mac_header = (typeof(skb->mac_header))~0U;
295 skb->transport_header = (typeof(skb->transport_header))~0U;
296
297 /* make sure we initialize shinfo sequentially */
298 shinfo = skb_shinfo(skb);
299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 atomic_set(&shinfo->dataref, 1);
301
302 return skb;
303}
304
305/* build_skb() is wrapper over __build_skb(), that specifically
306 * takes care of skb->head and skb->pfmemalloc
307 * This means that if @frag_size is not zero, then @data must be backed
308 * by a page fragment, not kmalloc() or vmalloc()
309 */
310struct sk_buff *build_skb(void *data, unsigned int frag_size)
311{
312 struct sk_buff *skb = __build_skb(data, frag_size);
313
314 if (skb && frag_size) {
315 skb->head_frag = 1;
316 if (page_is_pfmemalloc(virt_to_head_page(data)))
317 skb->pfmemalloc = 1;
318 }
319 return skb;
320}
321EXPORT_SYMBOL(build_skb);
322
323#define NAPI_SKB_CACHE_SIZE 64
324
325struct napi_alloc_cache {
326 struct page_frag_cache page;
327 unsigned int skb_count;
328 void *skb_cache[NAPI_SKB_CACHE_SIZE];
329};
330
331static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
333
334static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
335{
336 struct page_frag_cache *nc;
337 unsigned long flags;
338 void *data;
339
340 local_irq_save(flags);
341 nc = this_cpu_ptr(&netdev_alloc_cache);
342 data = page_frag_alloc(nc, fragsz, gfp_mask);
343 local_irq_restore(flags);
344 return data;
345}
346
347/**
348 * netdev_alloc_frag - allocate a page fragment
349 * @fragsz: fragment size
350 *
351 * Allocates a frag from a page for receive buffer.
352 * Uses GFP_ATOMIC allocations.
353 */
354void *netdev_alloc_frag(unsigned int fragsz)
355{
356 return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
357}
358EXPORT_SYMBOL(netdev_alloc_frag);
359
360static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
361{
362 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
363
364 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
365}
366
367void *napi_alloc_frag(unsigned int fragsz)
368{
369 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
370}
371EXPORT_SYMBOL(napi_alloc_frag);
372
373/**
374 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
375 * @dev: network device to receive on
376 * @len: length to allocate
377 * @gfp_mask: get_free_pages mask, passed to alloc_skb
378 *
379 * Allocate a new &sk_buff and assign it a usage count of one. The
380 * buffer has NET_SKB_PAD headroom built in. Users should allocate
381 * the headroom they think they need without accounting for the
382 * built in space. The built in space is used for optimisations.
383 *
384 * %NULL is returned if there is no free memory.
385 */
386struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 gfp_t gfp_mask)
388{
389 struct page_frag_cache *nc;
390 unsigned long flags;
391 struct sk_buff *skb;
392 bool pfmemalloc;
393 void *data;
394
395 len += NET_SKB_PAD;
396
397 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 if (!skb)
401 goto skb_fail;
402 goto skb_success;
403 }
404
405 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 len = SKB_DATA_ALIGN(len);
407
408 if (sk_memalloc_socks())
409 gfp_mask |= __GFP_MEMALLOC;
410
411 local_irq_save(flags);
412
413 nc = this_cpu_ptr(&netdev_alloc_cache);
414 data = page_frag_alloc(nc, len, gfp_mask);
415 pfmemalloc = nc->pfmemalloc;
416
417 local_irq_restore(flags);
418
419 if (unlikely(!data))
420 return NULL;
421
422 skb = __build_skb(data, len);
423 if (unlikely(!skb)) {
424 skb_free_frag(data);
425 return NULL;
426 }
427
428 /* use OR instead of assignment to avoid clearing of bits in mask */
429 if (pfmemalloc)
430 skb->pfmemalloc = 1;
431 skb->head_frag = 1;
432
433skb_success:
434 skb_reserve(skb, NET_SKB_PAD);
435 skb->dev = dev;
436
437skb_fail:
438 return skb;
439}
440EXPORT_SYMBOL(__netdev_alloc_skb);
441
442/**
443 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444 * @napi: napi instance this buffer was allocated for
445 * @len: length to allocate
446 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
447 *
448 * Allocate a new sk_buff for use in NAPI receive. This buffer will
449 * attempt to allocate the head from a special reserved region used
450 * only for NAPI Rx allocation. By doing this we can save several
451 * CPU cycles by avoiding having to disable and re-enable IRQs.
452 *
453 * %NULL is returned if there is no free memory.
454 */
455struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 gfp_t gfp_mask)
457{
458 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 struct sk_buff *skb;
460 void *data;
461
462 len += NET_SKB_PAD + NET_IP_ALIGN;
463
464 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 if (!skb)
468 goto skb_fail;
469 goto skb_success;
470 }
471
472 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 len = SKB_DATA_ALIGN(len);
474
475 if (sk_memalloc_socks())
476 gfp_mask |= __GFP_MEMALLOC;
477
478 data = page_frag_alloc(&nc->page, len, gfp_mask);
479 if (unlikely(!data))
480 return NULL;
481
482 skb = __build_skb(data, len);
483 if (unlikely(!skb)) {
484 skb_free_frag(data);
485 return NULL;
486 }
487
488 /* use OR instead of assignment to avoid clearing of bits in mask */
489 if (nc->page.pfmemalloc)
490 skb->pfmemalloc = 1;
491 skb->head_frag = 1;
492
493skb_success:
494 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 skb->dev = napi->dev;
496
497skb_fail:
498 return skb;
499}
500EXPORT_SYMBOL(__napi_alloc_skb);
501
502void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 int size, unsigned int truesize)
504{
505 skb_fill_page_desc(skb, i, page, off, size);
506 skb->len += size;
507 skb->data_len += size;
508 skb->truesize += truesize;
509}
510EXPORT_SYMBOL(skb_add_rx_frag);
511
512void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 unsigned int truesize)
514{
515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
516
517 skb_frag_size_add(frag, size);
518 skb->len += size;
519 skb->data_len += size;
520 skb->truesize += truesize;
521}
522EXPORT_SYMBOL(skb_coalesce_rx_frag);
523
524static void skb_drop_list(struct sk_buff **listp)
525{
526 kfree_skb_list(*listp);
527 *listp = NULL;
528}
529
530static inline void skb_drop_fraglist(struct sk_buff *skb)
531{
532 skb_drop_list(&skb_shinfo(skb)->frag_list);
533}
534
535static void skb_clone_fraglist(struct sk_buff *skb)
536{
537 struct sk_buff *list;
538
539 skb_walk_frags(skb, list)
540 skb_get(list);
541}
542
543static void skb_free_head(struct sk_buff *skb)
544{
545 unsigned char *head = skb->head;
546
547 if (skb->head_frag)
548 skb_free_frag(head);
549 else
550 kfree(head);
551}
552
553static void skb_release_data(struct sk_buff *skb)
554{
555 struct skb_shared_info *shinfo = skb_shinfo(skb);
556 int i;
557
558 if (skb->cloned &&
559 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 &shinfo->dataref))
561 return;
562
563 for (i = 0; i < shinfo->nr_frags; i++)
564 __skb_frag_unref(&shinfo->frags[i]);
565
566 if (shinfo->frag_list)
567 kfree_skb_list(shinfo->frag_list);
568
569 skb_zcopy_clear(skb, true);
570 skb_free_head(skb);
571}
572
573/*
574 * Free an skbuff by memory without cleaning the state.
575 */
576static void kfree_skbmem(struct sk_buff *skb)
577{
578 struct sk_buff_fclones *fclones;
579
580 switch (skb->fclone) {
581 case SKB_FCLONE_UNAVAILABLE:
582 kmem_cache_free(skbuff_head_cache, skb);
583 return;
584
585 case SKB_FCLONE_ORIG:
586 fclones = container_of(skb, struct sk_buff_fclones, skb1);
587
588 /* We usually free the clone (TX completion) before original skb
589 * This test would have no chance to be true for the clone,
590 * while here, branch prediction will be good.
591 */
592 if (refcount_read(&fclones->fclone_ref) == 1)
593 goto fastpath;
594 break;
595
596 default: /* SKB_FCLONE_CLONE */
597 fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 break;
599 }
600 if (!refcount_dec_and_test(&fclones->fclone_ref))
601 return;
602fastpath:
603 kmem_cache_free(skbuff_fclone_cache, fclones);
604}
605
606void skb_release_head_state(struct sk_buff *skb)
607{
608 skb_dst_drop(skb);
609 secpath_reset(skb);
610 if (skb->destructor) {
611 WARN_ON(in_irq());
612 skb->destructor(skb);
613 }
614#if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 nf_conntrack_put(skb_nfct(skb));
616#endif
617#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 nf_bridge_put(skb->nf_bridge);
619#endif
620}
621
622/* Free everything but the sk_buff shell. */
623static void skb_release_all(struct sk_buff *skb)
624{
625 skb_release_head_state(skb);
626 if (likely(skb->head))
627 skb_release_data(skb);
628}
629
630/**
631 * __kfree_skb - private function
632 * @skb: buffer
633 *
634 * Free an sk_buff. Release anything attached to the buffer.
635 * Clean the state. This is an internal helper function. Users should
636 * always call kfree_skb
637 */
638
639void __kfree_skb(struct sk_buff *skb)
640{
641 skb_release_all(skb);
642 kfree_skbmem(skb);
643}
644EXPORT_SYMBOL(__kfree_skb);
645
646/**
647 * kfree_skb - free an sk_buff
648 * @skb: buffer to free
649 *
650 * Drop a reference to the buffer and free it if the usage count has
651 * hit zero.
652 */
653void kfree_skb(struct sk_buff *skb)
654{
655 if (!skb_unref(skb))
656 return;
657
658 trace_kfree_skb(skb, __builtin_return_address(0));
659 __kfree_skb(skb);
660}
661EXPORT_SYMBOL(kfree_skb);
662
663void kfree_skb_list(struct sk_buff *segs)
664{
665 while (segs) {
666 struct sk_buff *next = segs->next;
667
668 kfree_skb(segs);
669 segs = next;
670 }
671}
672EXPORT_SYMBOL(kfree_skb_list);
673
674/**
675 * skb_tx_error - report an sk_buff xmit error
676 * @skb: buffer that triggered an error
677 *
678 * Report xmit error if a device callback is tracking this skb.
679 * skb must be freed afterwards.
680 */
681void skb_tx_error(struct sk_buff *skb)
682{
683 skb_zcopy_clear(skb, true);
684}
685EXPORT_SYMBOL(skb_tx_error);
686
687/**
688 * consume_skb - free an skbuff
689 * @skb: buffer to free
690 *
691 * Drop a ref to the buffer and free it if the usage count has hit zero
692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
693 * is being dropped after a failure and notes that
694 */
695void consume_skb(struct sk_buff *skb)
696{
697 if (!skb_unref(skb))
698 return;
699
700 trace_consume_skb(skb);
701 __kfree_skb(skb);
702}
703EXPORT_SYMBOL(consume_skb);
704
705/**
706 * consume_stateless_skb - free an skbuff, assuming it is stateless
707 * @skb: buffer to free
708 *
709 * Alike consume_skb(), but this variant assumes that this is the last
710 * skb reference and all the head states have been already dropped
711 */
712void __consume_stateless_skb(struct sk_buff *skb)
713{
714 trace_consume_skb(skb);
715 skb_release_data(skb);
716 kfree_skbmem(skb);
717}
718
719void __kfree_skb_flush(void)
720{
721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
722
723 /* flush skb_cache if containing objects */
724 if (nc->skb_count) {
725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 nc->skb_cache);
727 nc->skb_count = 0;
728 }
729}
730
731static inline void _kfree_skb_defer(struct sk_buff *skb)
732{
733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
734
735 /* drop skb->head and call any destructors for packet */
736 skb_release_all(skb);
737
738 /* record skb to CPU local list */
739 nc->skb_cache[nc->skb_count++] = skb;
740
741#ifdef CONFIG_SLUB
742 /* SLUB writes into objects when freeing */
743 prefetchw(skb);
744#endif
745
746 /* flush skb_cache if it is filled */
747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 nc->skb_cache);
750 nc->skb_count = 0;
751 }
752}
753void __kfree_skb_defer(struct sk_buff *skb)
754{
755 _kfree_skb_defer(skb);
756}
757
758void napi_consume_skb(struct sk_buff *skb, int budget)
759{
760 if (unlikely(!skb))
761 return;
762
763 /* Zero budget indicate non-NAPI context called us, like netpoll */
764 if (unlikely(!budget)) {
765 dev_consume_skb_any(skb);
766 return;
767 }
768
769 if (!skb_unref(skb))
770 return;
771
772 /* if reaching here SKB is ready to free */
773 trace_consume_skb(skb);
774
775 /* if SKB is a clone, don't handle this case */
776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 __kfree_skb(skb);
778 return;
779 }
780
781 _kfree_skb_defer(skb);
782}
783EXPORT_SYMBOL(napi_consume_skb);
784
785/* Make sure a field is enclosed inside headers_start/headers_end section */
786#define CHECK_SKB_FIELD(field) \
787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
788 offsetof(struct sk_buff, headers_start)); \
789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
790 offsetof(struct sk_buff, headers_end)); \
791
792static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793{
794 new->tstamp = old->tstamp;
795 /* We do not copy old->sk */
796 new->dev = old->dev;
797 memcpy(new->cb, old->cb, sizeof(old->cb));
798 skb_dst_copy(new, old);
799#ifdef CONFIG_XFRM
800 new->sp = secpath_get(old->sp);
801#endif
802 __nf_copy(new, old, false);
803
804 /* Note : this field could be in headers_start/headers_end section
805 * It is not yet because we do not want to have a 16 bit hole
806 */
807 new->queue_mapping = old->queue_mapping;
808
809 memcpy(&new->headers_start, &old->headers_start,
810 offsetof(struct sk_buff, headers_end) -
811 offsetof(struct sk_buff, headers_start));
812 CHECK_SKB_FIELD(protocol);
813 CHECK_SKB_FIELD(csum);
814 CHECK_SKB_FIELD(hash);
815 CHECK_SKB_FIELD(priority);
816 CHECK_SKB_FIELD(skb_iif);
817 CHECK_SKB_FIELD(vlan_proto);
818 CHECK_SKB_FIELD(vlan_tci);
819 CHECK_SKB_FIELD(transport_header);
820 CHECK_SKB_FIELD(network_header);
821 CHECK_SKB_FIELD(mac_header);
822 CHECK_SKB_FIELD(inner_protocol);
823 CHECK_SKB_FIELD(inner_transport_header);
824 CHECK_SKB_FIELD(inner_network_header);
825 CHECK_SKB_FIELD(inner_mac_header);
826 CHECK_SKB_FIELD(mark);
827#ifdef CONFIG_NETWORK_SECMARK
828 CHECK_SKB_FIELD(secmark);
829#endif
830#ifdef CONFIG_NET_RX_BUSY_POLL
831 CHECK_SKB_FIELD(napi_id);
832#endif
833#ifdef CONFIG_XPS
834 CHECK_SKB_FIELD(sender_cpu);
835#endif
836#ifdef CONFIG_NET_SCHED
837 CHECK_SKB_FIELD(tc_index);
838#endif
839
840}
841
842/*
843 * You should not add any new code to this function. Add it to
844 * __copy_skb_header above instead.
845 */
846static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
847{
848#define C(x) n->x = skb->x
849
850 n->next = n->prev = NULL;
851 n->sk = NULL;
852 __copy_skb_header(n, skb);
853
854 C(len);
855 C(data_len);
856 C(mac_len);
857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 n->cloned = 1;
859 n->nohdr = 0;
860 n->peeked = 0;
861 n->destructor = NULL;
862 C(tail);
863 C(end);
864 C(head);
865 C(head_frag);
866 C(data);
867 C(truesize);
868 refcount_set(&n->users, 1);
869
870 atomic_inc(&(skb_shinfo(skb)->dataref));
871 skb->cloned = 1;
872
873 return n;
874#undef C
875}
876
877/**
878 * skb_morph - morph one skb into another
879 * @dst: the skb to receive the contents
880 * @src: the skb to supply the contents
881 *
882 * This is identical to skb_clone except that the target skb is
883 * supplied by the user.
884 *
885 * The target skb is returned upon exit.
886 */
887struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
888{
889 skb_release_all(dst);
890 return __skb_clone(dst, src);
891}
892EXPORT_SYMBOL_GPL(skb_morph);
893
894int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
895{
896 unsigned long max_pg, num_pg, new_pg, old_pg;
897 struct user_struct *user;
898
899 if (capable(CAP_IPC_LOCK) || !size)
900 return 0;
901
902 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
903 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
904 user = mmp->user ? : current_user();
905
906 do {
907 old_pg = atomic_long_read(&user->locked_vm);
908 new_pg = old_pg + num_pg;
909 if (new_pg > max_pg)
910 return -ENOBUFS;
911 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
912 old_pg);
913
914 if (!mmp->user) {
915 mmp->user = get_uid(user);
916 mmp->num_pg = num_pg;
917 } else {
918 mmp->num_pg += num_pg;
919 }
920
921 return 0;
922}
923EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
924
925void mm_unaccount_pinned_pages(struct mmpin *mmp)
926{
927 if (mmp->user) {
928 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
929 free_uid(mmp->user);
930 }
931}
932EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
933
934struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
935{
936 struct ubuf_info *uarg;
937 struct sk_buff *skb;
938
939 WARN_ON_ONCE(!in_task());
940
941 if (!sock_flag(sk, SOCK_ZEROCOPY))
942 return NULL;
943
944 skb = sock_omalloc(sk, 0, GFP_KERNEL);
945 if (!skb)
946 return NULL;
947
948 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
949 uarg = (void *)skb->cb;
950 uarg->mmp.user = NULL;
951
952 if (mm_account_pinned_pages(&uarg->mmp, size)) {
953 kfree_skb(skb);
954 return NULL;
955 }
956
957 uarg->callback = sock_zerocopy_callback;
958 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
959 uarg->len = 1;
960 uarg->bytelen = size;
961 uarg->zerocopy = 1;
962 refcount_set(&uarg->refcnt, 1);
963 sock_hold(sk);
964
965 return uarg;
966}
967EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
968
969static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
970{
971 return container_of((void *)uarg, struct sk_buff, cb);
972}
973
974struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
975 struct ubuf_info *uarg)
976{
977 if (uarg) {
978 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
979 u32 bytelen, next;
980
981 /* realloc only when socket is locked (TCP, UDP cork),
982 * so uarg->len and sk_zckey access is serialized
983 */
984 if (!sock_owned_by_user(sk)) {
985 WARN_ON_ONCE(1);
986 return NULL;
987 }
988
989 bytelen = uarg->bytelen + size;
990 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
991 /* TCP can create new skb to attach new uarg */
992 if (sk->sk_type == SOCK_STREAM)
993 goto new_alloc;
994 return NULL;
995 }
996
997 next = (u32)atomic_read(&sk->sk_zckey);
998 if ((u32)(uarg->id + uarg->len) == next) {
999 if (mm_account_pinned_pages(&uarg->mmp, size))
1000 return NULL;
1001 uarg->len++;
1002 uarg->bytelen = bytelen;
1003 atomic_set(&sk->sk_zckey, ++next);
1004 sock_zerocopy_get(uarg);
1005 return uarg;
1006 }
1007 }
1008
1009new_alloc:
1010 return sock_zerocopy_alloc(sk, size);
1011}
1012EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1013
1014static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1015{
1016 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1017 u32 old_lo, old_hi;
1018 u64 sum_len;
1019
1020 old_lo = serr->ee.ee_info;
1021 old_hi = serr->ee.ee_data;
1022 sum_len = old_hi - old_lo + 1ULL + len;
1023
1024 if (sum_len >= (1ULL << 32))
1025 return false;
1026
1027 if (lo != old_hi + 1)
1028 return false;
1029
1030 serr->ee.ee_data += len;
1031 return true;
1032}
1033
1034void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1035{
1036 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1037 struct sock_exterr_skb *serr;
1038 struct sock *sk = skb->sk;
1039 struct sk_buff_head *q;
1040 unsigned long flags;
1041 u32 lo, hi;
1042 u16 len;
1043
1044 mm_unaccount_pinned_pages(&uarg->mmp);
1045
1046 /* if !len, there was only 1 call, and it was aborted
1047 * so do not queue a completion notification
1048 */
1049 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1050 goto release;
1051
1052 len = uarg->len;
1053 lo = uarg->id;
1054 hi = uarg->id + len - 1;
1055
1056 serr = SKB_EXT_ERR(skb);
1057 memset(serr, 0, sizeof(*serr));
1058 serr->ee.ee_errno = 0;
1059 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1060 serr->ee.ee_data = hi;
1061 serr->ee.ee_info = lo;
1062 if (!success)
1063 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1064
1065 q = &sk->sk_error_queue;
1066 spin_lock_irqsave(&q->lock, flags);
1067 tail = skb_peek_tail(q);
1068 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1069 !skb_zerocopy_notify_extend(tail, lo, len)) {
1070 __skb_queue_tail(q, skb);
1071 skb = NULL;
1072 }
1073 spin_unlock_irqrestore(&q->lock, flags);
1074
1075 sk->sk_error_report(sk);
1076
1077release:
1078 consume_skb(skb);
1079 sock_put(sk);
1080}
1081EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1082
1083void sock_zerocopy_put(struct ubuf_info *uarg)
1084{
1085 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1086 if (uarg->callback)
1087 uarg->callback(uarg, uarg->zerocopy);
1088 else
1089 consume_skb(skb_from_uarg(uarg));
1090 }
1091}
1092EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1093
1094void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1095{
1096 if (uarg) {
1097 struct sock *sk = skb_from_uarg(uarg)->sk;
1098
1099 atomic_dec(&sk->sk_zckey);
1100 uarg->len--;
1101
1102 sock_zerocopy_put(uarg);
1103 }
1104}
1105EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1106
1107extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1108 struct iov_iter *from, size_t length);
1109
1110int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1111 struct msghdr *msg, int len,
1112 struct ubuf_info *uarg)
1113{
1114 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1115 struct iov_iter orig_iter = msg->msg_iter;
1116 int err, orig_len = skb->len;
1117
1118 /* An skb can only point to one uarg. This edge case happens when
1119 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1120 */
1121 if (orig_uarg && uarg != orig_uarg)
1122 return -EEXIST;
1123
1124 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1125 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1126 struct sock *save_sk = skb->sk;
1127
1128 /* Streams do not free skb on error. Reset to prev state. */
1129 msg->msg_iter = orig_iter;
1130 skb->sk = sk;
1131 ___pskb_trim(skb, orig_len);
1132 skb->sk = save_sk;
1133 return err;
1134 }
1135
1136 skb_zcopy_set(skb, uarg);
1137 return skb->len - orig_len;
1138}
1139EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1140
1141static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1142 gfp_t gfp_mask)
1143{
1144 if (skb_zcopy(orig)) {
1145 if (skb_zcopy(nskb)) {
1146 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1147 if (!gfp_mask) {
1148 WARN_ON_ONCE(1);
1149 return -ENOMEM;
1150 }
1151 if (skb_uarg(nskb) == skb_uarg(orig))
1152 return 0;
1153 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1154 return -EIO;
1155 }
1156 skb_zcopy_set(nskb, skb_uarg(orig));
1157 }
1158 return 0;
1159}
1160
1161/**
1162 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1163 * @skb: the skb to modify
1164 * @gfp_mask: allocation priority
1165 *
1166 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1167 * It will copy all frags into kernel and drop the reference
1168 * to userspace pages.
1169 *
1170 * If this function is called from an interrupt gfp_mask() must be
1171 * %GFP_ATOMIC.
1172 *
1173 * Returns 0 on success or a negative error code on failure
1174 * to allocate kernel memory to copy to.
1175 */
1176int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1177{
1178 int num_frags = skb_shinfo(skb)->nr_frags;
1179 struct page *page, *head = NULL;
1180 int i, new_frags;
1181 u32 d_off;
1182
1183 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1184 return -EINVAL;
1185
1186 if (!num_frags)
1187 goto release;
1188
1189 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1190 for (i = 0; i < new_frags; i++) {
1191 page = alloc_page(gfp_mask);
1192 if (!page) {
1193 while (head) {
1194 struct page *next = (struct page *)page_private(head);
1195 put_page(head);
1196 head = next;
1197 }
1198 return -ENOMEM;
1199 }
1200 set_page_private(page, (unsigned long)head);
1201 head = page;
1202 }
1203
1204 page = head;
1205 d_off = 0;
1206 for (i = 0; i < num_frags; i++) {
1207 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1208 u32 p_off, p_len, copied;
1209 struct page *p;
1210 u8 *vaddr;
1211
1212 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1213 p, p_off, p_len, copied) {
1214 u32 copy, done = 0;
1215 vaddr = kmap_atomic(p);
1216
1217 while (done < p_len) {
1218 if (d_off == PAGE_SIZE) {
1219 d_off = 0;
1220 page = (struct page *)page_private(page);
1221 }
1222 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1223 memcpy(page_address(page) + d_off,
1224 vaddr + p_off + done, copy);
1225 done += copy;
1226 d_off += copy;
1227 }
1228 kunmap_atomic(vaddr);
1229 }
1230 }
1231
1232 /* skb frags release userspace buffers */
1233 for (i = 0; i < num_frags; i++)
1234 skb_frag_unref(skb, i);
1235
1236 /* skb frags point to kernel buffers */
1237 for (i = 0; i < new_frags - 1; i++) {
1238 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1239 head = (struct page *)page_private(head);
1240 }
1241 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1242 skb_shinfo(skb)->nr_frags = new_frags;
1243
1244release:
1245 skb_zcopy_clear(skb, false);
1246 return 0;
1247}
1248EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1249
1250/**
1251 * skb_clone - duplicate an sk_buff
1252 * @skb: buffer to clone
1253 * @gfp_mask: allocation priority
1254 *
1255 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1256 * copies share the same packet data but not structure. The new
1257 * buffer has a reference count of 1. If the allocation fails the
1258 * function returns %NULL otherwise the new buffer is returned.
1259 *
1260 * If this function is called from an interrupt gfp_mask() must be
1261 * %GFP_ATOMIC.
1262 */
1263
1264struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1265{
1266 struct sk_buff_fclones *fclones = container_of(skb,
1267 struct sk_buff_fclones,
1268 skb1);
1269 struct sk_buff *n;
1270
1271 if (skb_orphan_frags(skb, gfp_mask))
1272 return NULL;
1273
1274 if (skb->fclone == SKB_FCLONE_ORIG &&
1275 refcount_read(&fclones->fclone_ref) == 1) {
1276 n = &fclones->skb2;
1277 refcount_set(&fclones->fclone_ref, 2);
1278 } else {
1279 if (skb_pfmemalloc(skb))
1280 gfp_mask |= __GFP_MEMALLOC;
1281
1282 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1283 if (!n)
1284 return NULL;
1285
1286 n->fclone = SKB_FCLONE_UNAVAILABLE;
1287 }
1288
1289 return __skb_clone(n, skb);
1290}
1291EXPORT_SYMBOL(skb_clone);
1292
1293static void skb_headers_offset_update(struct sk_buff *skb, int off)
1294{
1295 /* Only adjust this if it actually is csum_start rather than csum */
1296 if (skb->ip_summed == CHECKSUM_PARTIAL)
1297 skb->csum_start += off;
1298 /* {transport,network,mac}_header and tail are relative to skb->head */
1299 skb->transport_header += off;
1300 skb->network_header += off;
1301 if (skb_mac_header_was_set(skb))
1302 skb->mac_header += off;
1303 skb->inner_transport_header += off;
1304 skb->inner_network_header += off;
1305 skb->inner_mac_header += off;
1306}
1307
1308void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1309{
1310 __copy_skb_header(new, old);
1311
1312 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1313 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1314 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1315}
1316EXPORT_SYMBOL(skb_copy_header);
1317
1318static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1319{
1320 if (skb_pfmemalloc(skb))
1321 return SKB_ALLOC_RX;
1322 return 0;
1323}
1324
1325/**
1326 * skb_copy - create private copy of an sk_buff
1327 * @skb: buffer to copy
1328 * @gfp_mask: allocation priority
1329 *
1330 * Make a copy of both an &sk_buff and its data. This is used when the
1331 * caller wishes to modify the data and needs a private copy of the
1332 * data to alter. Returns %NULL on failure or the pointer to the buffer
1333 * on success. The returned buffer has a reference count of 1.
1334 *
1335 * As by-product this function converts non-linear &sk_buff to linear
1336 * one, so that &sk_buff becomes completely private and caller is allowed
1337 * to modify all the data of returned buffer. This means that this
1338 * function is not recommended for use in circumstances when only
1339 * header is going to be modified. Use pskb_copy() instead.
1340 */
1341
1342struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1343{
1344 int headerlen = skb_headroom(skb);
1345 unsigned int size = skb_end_offset(skb) + skb->data_len;
1346 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1347 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1348
1349 if (!n)
1350 return NULL;
1351
1352 /* Set the data pointer */
1353 skb_reserve(n, headerlen);
1354 /* Set the tail pointer and length */
1355 skb_put(n, skb->len);
1356
1357 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1358
1359 skb_copy_header(n, skb);
1360 return n;
1361}
1362EXPORT_SYMBOL(skb_copy);
1363
1364/**
1365 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1366 * @skb: buffer to copy
1367 * @headroom: headroom of new skb
1368 * @gfp_mask: allocation priority
1369 * @fclone: if true allocate the copy of the skb from the fclone
1370 * cache instead of the head cache; it is recommended to set this
1371 * to true for the cases where the copy will likely be cloned
1372 *
1373 * Make a copy of both an &sk_buff and part of its data, located
1374 * in header. Fragmented data remain shared. This is used when
1375 * the caller wishes to modify only header of &sk_buff and needs
1376 * private copy of the header to alter. Returns %NULL on failure
1377 * or the pointer to the buffer on success.
1378 * The returned buffer has a reference count of 1.
1379 */
1380
1381struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1382 gfp_t gfp_mask, bool fclone)
1383{
1384 unsigned int size = skb_headlen(skb) + headroom;
1385 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1386 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1387
1388 if (!n)
1389 goto out;
1390
1391 /* Set the data pointer */
1392 skb_reserve(n, headroom);
1393 /* Set the tail pointer and length */
1394 skb_put(n, skb_headlen(skb));
1395 /* Copy the bytes */
1396 skb_copy_from_linear_data(skb, n->data, n->len);
1397
1398 n->truesize += skb->data_len;
1399 n->data_len = skb->data_len;
1400 n->len = skb->len;
1401
1402 if (skb_shinfo(skb)->nr_frags) {
1403 int i;
1404
1405 if (skb_orphan_frags(skb, gfp_mask) ||
1406 skb_zerocopy_clone(n, skb, gfp_mask)) {
1407 kfree_skb(n);
1408 n = NULL;
1409 goto out;
1410 }
1411 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1412 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1413 skb_frag_ref(skb, i);
1414 }
1415 skb_shinfo(n)->nr_frags = i;
1416 }
1417
1418 if (skb_has_frag_list(skb)) {
1419 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1420 skb_clone_fraglist(n);
1421 }
1422
1423 skb_copy_header(n, skb);
1424out:
1425 return n;
1426}
1427EXPORT_SYMBOL(__pskb_copy_fclone);
1428
1429/**
1430 * pskb_expand_head - reallocate header of &sk_buff
1431 * @skb: buffer to reallocate
1432 * @nhead: room to add at head
1433 * @ntail: room to add at tail
1434 * @gfp_mask: allocation priority
1435 *
1436 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1437 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1438 * reference count of 1. Returns zero in the case of success or error,
1439 * if expansion failed. In the last case, &sk_buff is not changed.
1440 *
1441 * All the pointers pointing into skb header may change and must be
1442 * reloaded after call to this function.
1443 */
1444
1445int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1446 gfp_t gfp_mask)
1447{
1448 int i, osize = skb_end_offset(skb);
1449 int size = osize + nhead + ntail;
1450 long off;
1451 u8 *data;
1452
1453 BUG_ON(nhead < 0);
1454
1455 BUG_ON(skb_shared(skb));
1456
1457 size = SKB_DATA_ALIGN(size);
1458
1459 if (skb_pfmemalloc(skb))
1460 gfp_mask |= __GFP_MEMALLOC;
1461 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1462 gfp_mask, NUMA_NO_NODE, NULL);
1463 if (!data)
1464 goto nodata;
1465 size = SKB_WITH_OVERHEAD(ksize(data));
1466
1467 /* Copy only real data... and, alas, header. This should be
1468 * optimized for the cases when header is void.
1469 */
1470 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1471
1472 memcpy((struct skb_shared_info *)(data + size),
1473 skb_shinfo(skb),
1474 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1475
1476 /*
1477 * if shinfo is shared we must drop the old head gracefully, but if it
1478 * is not we can just drop the old head and let the existing refcount
1479 * be since all we did is relocate the values
1480 */
1481 if (skb_cloned(skb)) {
1482 if (skb_orphan_frags(skb, gfp_mask))
1483 goto nofrags;
1484 if (skb_zcopy(skb))
1485 refcount_inc(&skb_uarg(skb)->refcnt);
1486 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1487 skb_frag_ref(skb, i);
1488
1489 if (skb_has_frag_list(skb))
1490 skb_clone_fraglist(skb);
1491
1492 skb_release_data(skb);
1493 } else {
1494 skb_free_head(skb);
1495 }
1496 off = (data + nhead) - skb->head;
1497
1498 skb->head = data;
1499 skb->head_frag = 0;
1500 skb->data += off;
1501#ifdef NET_SKBUFF_DATA_USES_OFFSET
1502 skb->end = size;
1503 off = nhead;
1504#else
1505 skb->end = skb->head + size;
1506#endif
1507 skb->tail += off;
1508 skb_headers_offset_update(skb, nhead);
1509 skb->cloned = 0;
1510 skb->hdr_len = 0;
1511 skb->nohdr = 0;
1512 atomic_set(&skb_shinfo(skb)->dataref, 1);
1513
1514 skb_metadata_clear(skb);
1515
1516 /* It is not generally safe to change skb->truesize.
1517 * For the moment, we really care of rx path, or
1518 * when skb is orphaned (not attached to a socket).
1519 */
1520 if (!skb->sk || skb->destructor == sock_edemux)
1521 skb->truesize += size - osize;
1522
1523 return 0;
1524
1525nofrags:
1526 kfree(data);
1527nodata:
1528 return -ENOMEM;
1529}
1530EXPORT_SYMBOL(pskb_expand_head);
1531
1532/* Make private copy of skb with writable head and some headroom */
1533
1534struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1535{
1536 struct sk_buff *skb2;
1537 int delta = headroom - skb_headroom(skb);
1538
1539 if (delta <= 0)
1540 skb2 = pskb_copy(skb, GFP_ATOMIC);
1541 else {
1542 skb2 = skb_clone(skb, GFP_ATOMIC);
1543 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1544 GFP_ATOMIC)) {
1545 kfree_skb(skb2);
1546 skb2 = NULL;
1547 }
1548 }
1549 return skb2;
1550}
1551EXPORT_SYMBOL(skb_realloc_headroom);
1552
1553/**
1554 * skb_copy_expand - copy and expand sk_buff
1555 * @skb: buffer to copy
1556 * @newheadroom: new free bytes at head
1557 * @newtailroom: new free bytes at tail
1558 * @gfp_mask: allocation priority
1559 *
1560 * Make a copy of both an &sk_buff and its data and while doing so
1561 * allocate additional space.
1562 *
1563 * This is used when the caller wishes to modify the data and needs a
1564 * private copy of the data to alter as well as more space for new fields.
1565 * Returns %NULL on failure or the pointer to the buffer
1566 * on success. The returned buffer has a reference count of 1.
1567 *
1568 * You must pass %GFP_ATOMIC as the allocation priority if this function
1569 * is called from an interrupt.
1570 */
1571struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1572 int newheadroom, int newtailroom,
1573 gfp_t gfp_mask)
1574{
1575 /*
1576 * Allocate the copy buffer
1577 */
1578 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1579 gfp_mask, skb_alloc_rx_flag(skb),
1580 NUMA_NO_NODE);
1581 int oldheadroom = skb_headroom(skb);
1582 int head_copy_len, head_copy_off;
1583
1584 if (!n)
1585 return NULL;
1586
1587 skb_reserve(n, newheadroom);
1588
1589 /* Set the tail pointer and length */
1590 skb_put(n, skb->len);
1591
1592 head_copy_len = oldheadroom;
1593 head_copy_off = 0;
1594 if (newheadroom <= head_copy_len)
1595 head_copy_len = newheadroom;
1596 else
1597 head_copy_off = newheadroom - head_copy_len;
1598
1599 /* Copy the linear header and data. */
1600 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1601 skb->len + head_copy_len));
1602
1603 skb_copy_header(n, skb);
1604
1605 skb_headers_offset_update(n, newheadroom - oldheadroom);
1606
1607 return n;
1608}
1609EXPORT_SYMBOL(skb_copy_expand);
1610
1611/**
1612 * __skb_pad - zero pad the tail of an skb
1613 * @skb: buffer to pad
1614 * @pad: space to pad
1615 * @free_on_error: free buffer on error
1616 *
1617 * Ensure that a buffer is followed by a padding area that is zero
1618 * filled. Used by network drivers which may DMA or transfer data
1619 * beyond the buffer end onto the wire.
1620 *
1621 * May return error in out of memory cases. The skb is freed on error
1622 * if @free_on_error is true.
1623 */
1624
1625int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1626{
1627 int err;
1628 int ntail;
1629
1630 /* If the skbuff is non linear tailroom is always zero.. */
1631 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1632 memset(skb->data+skb->len, 0, pad);
1633 return 0;
1634 }
1635
1636 ntail = skb->data_len + pad - (skb->end - skb->tail);
1637 if (likely(skb_cloned(skb) || ntail > 0)) {
1638 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1639 if (unlikely(err))
1640 goto free_skb;
1641 }
1642
1643 /* FIXME: The use of this function with non-linear skb's really needs
1644 * to be audited.
1645 */
1646 err = skb_linearize(skb);
1647 if (unlikely(err))
1648 goto free_skb;
1649
1650 memset(skb->data + skb->len, 0, pad);
1651 return 0;
1652
1653free_skb:
1654 if (free_on_error)
1655 kfree_skb(skb);
1656 return err;
1657}
1658EXPORT_SYMBOL(__skb_pad);
1659
1660/**
1661 * pskb_put - add data to the tail of a potentially fragmented buffer
1662 * @skb: start of the buffer to use
1663 * @tail: tail fragment of the buffer to use
1664 * @len: amount of data to add
1665 *
1666 * This function extends the used data area of the potentially
1667 * fragmented buffer. @tail must be the last fragment of @skb -- or
1668 * @skb itself. If this would exceed the total buffer size the kernel
1669 * will panic. A pointer to the first byte of the extra data is
1670 * returned.
1671 */
1672
1673void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1674{
1675 if (tail != skb) {
1676 skb->data_len += len;
1677 skb->len += len;
1678 }
1679 return skb_put(tail, len);
1680}
1681EXPORT_SYMBOL_GPL(pskb_put);
1682
1683/**
1684 * skb_put - add data to a buffer
1685 * @skb: buffer to use
1686 * @len: amount of data to add
1687 *
1688 * This function extends the used data area of the buffer. If this would
1689 * exceed the total buffer size the kernel will panic. A pointer to the
1690 * first byte of the extra data is returned.
1691 */
1692void *skb_put(struct sk_buff *skb, unsigned int len)
1693{
1694 void *tmp = skb_tail_pointer(skb);
1695 SKB_LINEAR_ASSERT(skb);
1696 skb->tail += len;
1697 skb->len += len;
1698 if (unlikely(skb->tail > skb->end))
1699 skb_over_panic(skb, len, __builtin_return_address(0));
1700 return tmp;
1701}
1702EXPORT_SYMBOL(skb_put);
1703
1704/**
1705 * skb_push - add data to the start of a buffer
1706 * @skb: buffer to use
1707 * @len: amount of data to add
1708 *
1709 * This function extends the used data area of the buffer at the buffer
1710 * start. If this would exceed the total buffer headroom the kernel will
1711 * panic. A pointer to the first byte of the extra data is returned.
1712 */
1713void *skb_push(struct sk_buff *skb, unsigned int len)
1714{
1715 skb->data -= len;
1716 skb->len += len;
1717 if (unlikely(skb->data<skb->head))
1718 skb_under_panic(skb, len, __builtin_return_address(0));
1719 return skb->data;
1720}
1721EXPORT_SYMBOL(skb_push);
1722
1723/**
1724 * skb_pull - remove data from the start of a buffer
1725 * @skb: buffer to use
1726 * @len: amount of data to remove
1727 *
1728 * This function removes data from the start of a buffer, returning
1729 * the memory to the headroom. A pointer to the next data in the buffer
1730 * is returned. Once the data has been pulled future pushes will overwrite
1731 * the old data.
1732 */
1733void *skb_pull(struct sk_buff *skb, unsigned int len)
1734{
1735 return skb_pull_inline(skb, len);
1736}
1737EXPORT_SYMBOL(skb_pull);
1738
1739/**
1740 * skb_trim - remove end from a buffer
1741 * @skb: buffer to alter
1742 * @len: new length
1743 *
1744 * Cut the length of a buffer down by removing data from the tail. If
1745 * the buffer is already under the length specified it is not modified.
1746 * The skb must be linear.
1747 */
1748void skb_trim(struct sk_buff *skb, unsigned int len)
1749{
1750 if (skb->len > len)
1751 __skb_trim(skb, len);
1752}
1753EXPORT_SYMBOL(skb_trim);
1754
1755/* Trims skb to length len. It can change skb pointers.
1756 */
1757
1758int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1759{
1760 struct sk_buff **fragp;
1761 struct sk_buff *frag;
1762 int offset = skb_headlen(skb);
1763 int nfrags = skb_shinfo(skb)->nr_frags;
1764 int i;
1765 int err;
1766
1767 if (skb_cloned(skb) &&
1768 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1769 return err;
1770
1771 i = 0;
1772 if (offset >= len)
1773 goto drop_pages;
1774
1775 for (; i < nfrags; i++) {
1776 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1777
1778 if (end < len) {
1779 offset = end;
1780 continue;
1781 }
1782
1783 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1784
1785drop_pages:
1786 skb_shinfo(skb)->nr_frags = i;
1787
1788 for (; i < nfrags; i++)
1789 skb_frag_unref(skb, i);
1790
1791 if (skb_has_frag_list(skb))
1792 skb_drop_fraglist(skb);
1793 goto done;
1794 }
1795
1796 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1797 fragp = &frag->next) {
1798 int end = offset + frag->len;
1799
1800 if (skb_shared(frag)) {
1801 struct sk_buff *nfrag;
1802
1803 nfrag = skb_clone(frag, GFP_ATOMIC);
1804 if (unlikely(!nfrag))
1805 return -ENOMEM;
1806
1807 nfrag->next = frag->next;
1808 consume_skb(frag);
1809 frag = nfrag;
1810 *fragp = frag;
1811 }
1812
1813 if (end < len) {
1814 offset = end;
1815 continue;
1816 }
1817
1818 if (end > len &&
1819 unlikely((err = pskb_trim(frag, len - offset))))
1820 return err;
1821
1822 if (frag->next)
1823 skb_drop_list(&frag->next);
1824 break;
1825 }
1826
1827done:
1828 if (len > skb_headlen(skb)) {
1829 skb->data_len -= skb->len - len;
1830 skb->len = len;
1831 } else {
1832 skb->len = len;
1833 skb->data_len = 0;
1834 skb_set_tail_pointer(skb, len);
1835 }
1836
1837 if (!skb->sk || skb->destructor == sock_edemux)
1838 skb_condense(skb);
1839 return 0;
1840}
1841EXPORT_SYMBOL(___pskb_trim);
1842
1843/* Note : use pskb_trim_rcsum() instead of calling this directly
1844 */
1845int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1846{
1847 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1848 int delta = skb->len - len;
1849
1850 skb->csum = csum_sub(skb->csum,
1851 skb_checksum(skb, len, delta, 0));
1852 }
1853 return __pskb_trim(skb, len);
1854}
1855EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1856
1857/**
1858 * __pskb_pull_tail - advance tail of skb header
1859 * @skb: buffer to reallocate
1860 * @delta: number of bytes to advance tail
1861 *
1862 * The function makes a sense only on a fragmented &sk_buff,
1863 * it expands header moving its tail forward and copying necessary
1864 * data from fragmented part.
1865 *
1866 * &sk_buff MUST have reference count of 1.
1867 *
1868 * Returns %NULL (and &sk_buff does not change) if pull failed
1869 * or value of new tail of skb in the case of success.
1870 *
1871 * All the pointers pointing into skb header may change and must be
1872 * reloaded after call to this function.
1873 */
1874
1875/* Moves tail of skb head forward, copying data from fragmented part,
1876 * when it is necessary.
1877 * 1. It may fail due to malloc failure.
1878 * 2. It may change skb pointers.
1879 *
1880 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1881 */
1882void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1883{
1884 /* If skb has not enough free space at tail, get new one
1885 * plus 128 bytes for future expansions. If we have enough
1886 * room at tail, reallocate without expansion only if skb is cloned.
1887 */
1888 int i, k, eat = (skb->tail + delta) - skb->end;
1889
1890 if (eat > 0 || skb_cloned(skb)) {
1891 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1892 GFP_ATOMIC))
1893 return NULL;
1894 }
1895
1896 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1897 skb_tail_pointer(skb), delta));
1898
1899 /* Optimization: no fragments, no reasons to preestimate
1900 * size of pulled pages. Superb.
1901 */
1902 if (!skb_has_frag_list(skb))
1903 goto pull_pages;
1904
1905 /* Estimate size of pulled pages. */
1906 eat = delta;
1907 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1908 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1909
1910 if (size >= eat)
1911 goto pull_pages;
1912 eat -= size;
1913 }
1914
1915 /* If we need update frag list, we are in troubles.
1916 * Certainly, it is possible to add an offset to skb data,
1917 * but taking into account that pulling is expected to
1918 * be very rare operation, it is worth to fight against
1919 * further bloating skb head and crucify ourselves here instead.
1920 * Pure masohism, indeed. 8)8)
1921 */
1922 if (eat) {
1923 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1924 struct sk_buff *clone = NULL;
1925 struct sk_buff *insp = NULL;
1926
1927 do {
1928 BUG_ON(!list);
1929
1930 if (list->len <= eat) {
1931 /* Eaten as whole. */
1932 eat -= list->len;
1933 list = list->next;
1934 insp = list;
1935 } else {
1936 /* Eaten partially. */
1937
1938 if (skb_shared(list)) {
1939 /* Sucks! We need to fork list. :-( */
1940 clone = skb_clone(list, GFP_ATOMIC);
1941 if (!clone)
1942 return NULL;
1943 insp = list->next;
1944 list = clone;
1945 } else {
1946 /* This may be pulled without
1947 * problems. */
1948 insp = list;
1949 }
1950 if (!pskb_pull(list, eat)) {
1951 kfree_skb(clone);
1952 return NULL;
1953 }
1954 break;
1955 }
1956 } while (eat);
1957
1958 /* Free pulled out fragments. */
1959 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1960 skb_shinfo(skb)->frag_list = list->next;
1961 kfree_skb(list);
1962 }
1963 /* And insert new clone at head. */
1964 if (clone) {
1965 clone->next = list;
1966 skb_shinfo(skb)->frag_list = clone;
1967 }
1968 }
1969 /* Success! Now we may commit changes to skb data. */
1970
1971pull_pages:
1972 eat = delta;
1973 k = 0;
1974 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1975 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1976
1977 if (size <= eat) {
1978 skb_frag_unref(skb, i);
1979 eat -= size;
1980 } else {
1981 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1982 if (eat) {
1983 skb_shinfo(skb)->frags[k].page_offset += eat;
1984 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1985 if (!i)
1986 goto end;
1987 eat = 0;
1988 }
1989 k++;
1990 }
1991 }
1992 skb_shinfo(skb)->nr_frags = k;
1993
1994end:
1995 skb->tail += delta;
1996 skb->data_len -= delta;
1997
1998 if (!skb->data_len)
1999 skb_zcopy_clear(skb, false);
2000
2001 return skb_tail_pointer(skb);
2002}
2003EXPORT_SYMBOL(__pskb_pull_tail);
2004
2005/**
2006 * skb_copy_bits - copy bits from skb to kernel buffer
2007 * @skb: source skb
2008 * @offset: offset in source
2009 * @to: destination buffer
2010 * @len: number of bytes to copy
2011 *
2012 * Copy the specified number of bytes from the source skb to the
2013 * destination buffer.
2014 *
2015 * CAUTION ! :
2016 * If its prototype is ever changed,
2017 * check arch/{*}/net/{*}.S files,
2018 * since it is called from BPF assembly code.
2019 */
2020int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2021{
2022 int start = skb_headlen(skb);
2023 struct sk_buff *frag_iter;
2024 int i, copy;
2025
2026 if (offset > (int)skb->len - len)
2027 goto fault;
2028
2029 /* Copy header. */
2030 if ((copy = start - offset) > 0) {
2031 if (copy > len)
2032 copy = len;
2033 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2034 if ((len -= copy) == 0)
2035 return 0;
2036 offset += copy;
2037 to += copy;
2038 }
2039
2040 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2041 int end;
2042 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2043
2044 WARN_ON(start > offset + len);
2045
2046 end = start + skb_frag_size(f);
2047 if ((copy = end - offset) > 0) {
2048 u32 p_off, p_len, copied;
2049 struct page *p;
2050 u8 *vaddr;
2051
2052 if (copy > len)
2053 copy = len;
2054
2055 skb_frag_foreach_page(f,
2056 f->page_offset + offset - start,
2057 copy, p, p_off, p_len, copied) {
2058 vaddr = kmap_atomic(p);
2059 memcpy(to + copied, vaddr + p_off, p_len);
2060 kunmap_atomic(vaddr);
2061 }
2062
2063 if ((len -= copy) == 0)
2064 return 0;
2065 offset += copy;
2066 to += copy;
2067 }
2068 start = end;
2069 }
2070
2071 skb_walk_frags(skb, frag_iter) {
2072 int end;
2073
2074 WARN_ON(start > offset + len);
2075
2076 end = start + frag_iter->len;
2077 if ((copy = end - offset) > 0) {
2078 if (copy > len)
2079 copy = len;
2080 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2081 goto fault;
2082 if ((len -= copy) == 0)
2083 return 0;
2084 offset += copy;
2085 to += copy;
2086 }
2087 start = end;
2088 }
2089
2090 if (!len)
2091 return 0;
2092
2093fault:
2094 return -EFAULT;
2095}
2096EXPORT_SYMBOL(skb_copy_bits);
2097
2098/*
2099 * Callback from splice_to_pipe(), if we need to release some pages
2100 * at the end of the spd in case we error'ed out in filling the pipe.
2101 */
2102static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2103{
2104 put_page(spd->pages[i]);
2105}
2106
2107static struct page *linear_to_page(struct page *page, unsigned int *len,
2108 unsigned int *offset,
2109 struct sock *sk)
2110{
2111 struct page_frag *pfrag = sk_page_frag(sk);
2112
2113 if (!sk_page_frag_refill(sk, pfrag))
2114 return NULL;
2115
2116 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2117
2118 memcpy(page_address(pfrag->page) + pfrag->offset,
2119 page_address(page) + *offset, *len);
2120 *offset = pfrag->offset;
2121 pfrag->offset += *len;
2122
2123 return pfrag->page;
2124}
2125
2126static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2127 struct page *page,
2128 unsigned int offset)
2129{
2130 return spd->nr_pages &&
2131 spd->pages[spd->nr_pages - 1] == page &&
2132 (spd->partial[spd->nr_pages - 1].offset +
2133 spd->partial[spd->nr_pages - 1].len == offset);
2134}
2135
2136/*
2137 * Fill page/offset/length into spd, if it can hold more pages.
2138 */
2139static bool spd_fill_page(struct splice_pipe_desc *spd,
2140 struct pipe_inode_info *pipe, struct page *page,
2141 unsigned int *len, unsigned int offset,
2142 bool linear,
2143 struct sock *sk)
2144{
2145 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2146 return true;
2147
2148 if (linear) {
2149 page = linear_to_page(page, len, &offset, sk);
2150 if (!page)
2151 return true;
2152 }
2153 if (spd_can_coalesce(spd, page, offset)) {
2154 spd->partial[spd->nr_pages - 1].len += *len;
2155 return false;
2156 }
2157 get_page(page);
2158 spd->pages[spd->nr_pages] = page;
2159 spd->partial[spd->nr_pages].len = *len;
2160 spd->partial[spd->nr_pages].offset = offset;
2161 spd->nr_pages++;
2162
2163 return false;
2164}
2165
2166static bool __splice_segment(struct page *page, unsigned int poff,
2167 unsigned int plen, unsigned int *off,
2168 unsigned int *len,
2169 struct splice_pipe_desc *spd, bool linear,
2170 struct sock *sk,
2171 struct pipe_inode_info *pipe)
2172{
2173 if (!*len)
2174 return true;
2175
2176 /* skip this segment if already processed */
2177 if (*off >= plen) {
2178 *off -= plen;
2179 return false;
2180 }
2181
2182 /* ignore any bits we already processed */
2183 poff += *off;
2184 plen -= *off;
2185 *off = 0;
2186
2187 do {
2188 unsigned int flen = min(*len, plen);
2189
2190 if (spd_fill_page(spd, pipe, page, &flen, poff,
2191 linear, sk))
2192 return true;
2193 poff += flen;
2194 plen -= flen;
2195 *len -= flen;
2196 } while (*len && plen);
2197
2198 return false;
2199}
2200
2201/*
2202 * Map linear and fragment data from the skb to spd. It reports true if the
2203 * pipe is full or if we already spliced the requested length.
2204 */
2205static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2206 unsigned int *offset, unsigned int *len,
2207 struct splice_pipe_desc *spd, struct sock *sk)
2208{
2209 int seg;
2210 struct sk_buff *iter;
2211
2212 /* map the linear part :
2213 * If skb->head_frag is set, this 'linear' part is backed by a
2214 * fragment, and if the head is not shared with any clones then
2215 * we can avoid a copy since we own the head portion of this page.
2216 */
2217 if (__splice_segment(virt_to_page(skb->data),
2218 (unsigned long) skb->data & (PAGE_SIZE - 1),
2219 skb_headlen(skb),
2220 offset, len, spd,
2221 skb_head_is_locked(skb),
2222 sk, pipe))
2223 return true;
2224
2225 /*
2226 * then map the fragments
2227 */
2228 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2229 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2230
2231 if (__splice_segment(skb_frag_page(f),
2232 f->page_offset, skb_frag_size(f),
2233 offset, len, spd, false, sk, pipe))
2234 return true;
2235 }
2236
2237 skb_walk_frags(skb, iter) {
2238 if (*offset >= iter->len) {
2239 *offset -= iter->len;
2240 continue;
2241 }
2242 /* __skb_splice_bits() only fails if the output has no room
2243 * left, so no point in going over the frag_list for the error
2244 * case.
2245 */
2246 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2247 return true;
2248 }
2249
2250 return false;
2251}
2252
2253/*
2254 * Map data from the skb to a pipe. Should handle both the linear part,
2255 * the fragments, and the frag list.
2256 */
2257int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2258 struct pipe_inode_info *pipe, unsigned int tlen,
2259 unsigned int flags)
2260{
2261 struct partial_page partial[MAX_SKB_FRAGS];
2262 struct page *pages[MAX_SKB_FRAGS];
2263 struct splice_pipe_desc spd = {
2264 .pages = pages,
2265 .partial = partial,
2266 .nr_pages_max = MAX_SKB_FRAGS,
2267 .ops = &nosteal_pipe_buf_ops,
2268 .spd_release = sock_spd_release,
2269 };
2270 int ret = 0;
2271
2272 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2273
2274 if (spd.nr_pages)
2275 ret = splice_to_pipe(pipe, &spd);
2276
2277 return ret;
2278}
2279EXPORT_SYMBOL_GPL(skb_splice_bits);
2280
2281/* Send skb data on a socket. Socket must be locked. */
2282int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2283 int len)
2284{
2285 unsigned int orig_len = len;
2286 struct sk_buff *head = skb;
2287 unsigned short fragidx;
2288 int slen, ret;
2289
2290do_frag_list:
2291
2292 /* Deal with head data */
2293 while (offset < skb_headlen(skb) && len) {
2294 struct kvec kv;
2295 struct msghdr msg;
2296
2297 slen = min_t(int, len, skb_headlen(skb) - offset);
2298 kv.iov_base = skb->data + offset;
2299 kv.iov_len = slen;
2300 memset(&msg, 0, sizeof(msg));
2301
2302 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2303 if (ret <= 0)
2304 goto error;
2305
2306 offset += ret;
2307 len -= ret;
2308 }
2309
2310 /* All the data was skb head? */
2311 if (!len)
2312 goto out;
2313
2314 /* Make offset relative to start of frags */
2315 offset -= skb_headlen(skb);
2316
2317 /* Find where we are in frag list */
2318 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2319 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2320
2321 if (offset < frag->size)
2322 break;
2323
2324 offset -= frag->size;
2325 }
2326
2327 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2328 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2329
2330 slen = min_t(size_t, len, frag->size - offset);
2331
2332 while (slen) {
2333 ret = kernel_sendpage_locked(sk, frag->page.p,
2334 frag->page_offset + offset,
2335 slen, MSG_DONTWAIT);
2336 if (ret <= 0)
2337 goto error;
2338
2339 len -= ret;
2340 offset += ret;
2341 slen -= ret;
2342 }
2343
2344 offset = 0;
2345 }
2346
2347 if (len) {
2348 /* Process any frag lists */
2349
2350 if (skb == head) {
2351 if (skb_has_frag_list(skb)) {
2352 skb = skb_shinfo(skb)->frag_list;
2353 goto do_frag_list;
2354 }
2355 } else if (skb->next) {
2356 skb = skb->next;
2357 goto do_frag_list;
2358 }
2359 }
2360
2361out:
2362 return orig_len - len;
2363
2364error:
2365 return orig_len == len ? ret : orig_len - len;
2366}
2367EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2368
2369/* Send skb data on a socket. */
2370int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2371{
2372 int ret = 0;
2373
2374 lock_sock(sk);
2375 ret = skb_send_sock_locked(sk, skb, offset, len);
2376 release_sock(sk);
2377
2378 return ret;
2379}
2380EXPORT_SYMBOL_GPL(skb_send_sock);
2381
2382/**
2383 * skb_store_bits - store bits from kernel buffer to skb
2384 * @skb: destination buffer
2385 * @offset: offset in destination
2386 * @from: source buffer
2387 * @len: number of bytes to copy
2388 *
2389 * Copy the specified number of bytes from the source buffer to the
2390 * destination skb. This function handles all the messy bits of
2391 * traversing fragment lists and such.
2392 */
2393
2394int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2395{
2396 int start = skb_headlen(skb);
2397 struct sk_buff *frag_iter;
2398 int i, copy;
2399
2400 if (offset > (int)skb->len - len)
2401 goto fault;
2402
2403 if ((copy = start - offset) > 0) {
2404 if (copy > len)
2405 copy = len;
2406 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2407 if ((len -= copy) == 0)
2408 return 0;
2409 offset += copy;
2410 from += copy;
2411 }
2412
2413 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2414 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2415 int end;
2416
2417 WARN_ON(start > offset + len);
2418
2419 end = start + skb_frag_size(frag);
2420 if ((copy = end - offset) > 0) {
2421 u32 p_off, p_len, copied;
2422 struct page *p;
2423 u8 *vaddr;
2424
2425 if (copy > len)
2426 copy = len;
2427
2428 skb_frag_foreach_page(frag,
2429 frag->page_offset + offset - start,
2430 copy, p, p_off, p_len, copied) {
2431 vaddr = kmap_atomic(p);
2432 memcpy(vaddr + p_off, from + copied, p_len);
2433 kunmap_atomic(vaddr);
2434 }
2435
2436 if ((len -= copy) == 0)
2437 return 0;
2438 offset += copy;
2439 from += copy;
2440 }
2441 start = end;
2442 }
2443
2444 skb_walk_frags(skb, frag_iter) {
2445 int end;
2446
2447 WARN_ON(start > offset + len);
2448
2449 end = start + frag_iter->len;
2450 if ((copy = end - offset) > 0) {
2451 if (copy > len)
2452 copy = len;
2453 if (skb_store_bits(frag_iter, offset - start,
2454 from, copy))
2455 goto fault;
2456 if ((len -= copy) == 0)
2457 return 0;
2458 offset += copy;
2459 from += copy;
2460 }
2461 start = end;
2462 }
2463 if (!len)
2464 return 0;
2465
2466fault:
2467 return -EFAULT;
2468}
2469EXPORT_SYMBOL(skb_store_bits);
2470
2471/* Checksum skb data. */
2472__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2473 __wsum csum, const struct skb_checksum_ops *ops)
2474{
2475 int start = skb_headlen(skb);
2476 int i, copy = start - offset;
2477 struct sk_buff *frag_iter;
2478 int pos = 0;
2479
2480 /* Checksum header. */
2481 if (copy > 0) {
2482 if (copy > len)
2483 copy = len;
2484 csum = ops->update(skb->data + offset, copy, csum);
2485 if ((len -= copy) == 0)
2486 return csum;
2487 offset += copy;
2488 pos = copy;
2489 }
2490
2491 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2492 int end;
2493 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2494
2495 WARN_ON(start > offset + len);
2496
2497 end = start + skb_frag_size(frag);
2498 if ((copy = end - offset) > 0) {
2499 u32 p_off, p_len, copied;
2500 struct page *p;
2501 __wsum csum2;
2502 u8 *vaddr;
2503
2504 if (copy > len)
2505 copy = len;
2506
2507 skb_frag_foreach_page(frag,
2508 frag->page_offset + offset - start,
2509 copy, p, p_off, p_len, copied) {
2510 vaddr = kmap_atomic(p);
2511 csum2 = ops->update(vaddr + p_off, p_len, 0);
2512 kunmap_atomic(vaddr);
2513 csum = ops->combine(csum, csum2, pos, p_len);
2514 pos += p_len;
2515 }
2516
2517 if (!(len -= copy))
2518 return csum;
2519 offset += copy;
2520 }
2521 start = end;
2522 }
2523
2524 skb_walk_frags(skb, frag_iter) {
2525 int end;
2526
2527 WARN_ON(start > offset + len);
2528
2529 end = start + frag_iter->len;
2530 if ((copy = end - offset) > 0) {
2531 __wsum csum2;
2532 if (copy > len)
2533 copy = len;
2534 csum2 = __skb_checksum(frag_iter, offset - start,
2535 copy, 0, ops);
2536 csum = ops->combine(csum, csum2, pos, copy);
2537 if ((len -= copy) == 0)
2538 return csum;
2539 offset += copy;
2540 pos += copy;
2541 }
2542 start = end;
2543 }
2544 BUG_ON(len);
2545
2546 return csum;
2547}
2548EXPORT_SYMBOL(__skb_checksum);
2549
2550__wsum skb_checksum(const struct sk_buff *skb, int offset,
2551 int len, __wsum csum)
2552{
2553 const struct skb_checksum_ops ops = {
2554 .update = csum_partial_ext,
2555 .combine = csum_block_add_ext,
2556 };
2557
2558 return __skb_checksum(skb, offset, len, csum, &ops);
2559}
2560EXPORT_SYMBOL(skb_checksum);
2561
2562/* Both of above in one bottle. */
2563
2564__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2565 u8 *to, int len, __wsum csum)
2566{
2567 int start = skb_headlen(skb);
2568 int i, copy = start - offset;
2569 struct sk_buff *frag_iter;
2570 int pos = 0;
2571
2572 /* Copy header. */
2573 if (copy > 0) {
2574 if (copy > len)
2575 copy = len;
2576 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2577 copy, csum);
2578 if ((len -= copy) == 0)
2579 return csum;
2580 offset += copy;
2581 to += copy;
2582 pos = copy;
2583 }
2584
2585 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2586 int end;
2587
2588 WARN_ON(start > offset + len);
2589
2590 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2591 if ((copy = end - offset) > 0) {
2592 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2593 u32 p_off, p_len, copied;
2594 struct page *p;
2595 __wsum csum2;
2596 u8 *vaddr;
2597
2598 if (copy > len)
2599 copy = len;
2600
2601 skb_frag_foreach_page(frag,
2602 frag->page_offset + offset - start,
2603 copy, p, p_off, p_len, copied) {
2604 vaddr = kmap_atomic(p);
2605 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2606 to + copied,
2607 p_len, 0);
2608 kunmap_atomic(vaddr);
2609 csum = csum_block_add(csum, csum2, pos);
2610 pos += p_len;
2611 }
2612
2613 if (!(len -= copy))
2614 return csum;
2615 offset += copy;
2616 to += copy;
2617 }
2618 start = end;
2619 }
2620
2621 skb_walk_frags(skb, frag_iter) {
2622 __wsum csum2;
2623 int end;
2624
2625 WARN_ON(start > offset + len);
2626
2627 end = start + frag_iter->len;
2628 if ((copy = end - offset) > 0) {
2629 if (copy > len)
2630 copy = len;
2631 csum2 = skb_copy_and_csum_bits(frag_iter,
2632 offset - start,
2633 to, copy, 0);
2634 csum = csum_block_add(csum, csum2, pos);
2635 if ((len -= copy) == 0)
2636 return csum;
2637 offset += copy;
2638 to += copy;
2639 pos += copy;
2640 }
2641 start = end;
2642 }
2643 BUG_ON(len);
2644 return csum;
2645}
2646EXPORT_SYMBOL(skb_copy_and_csum_bits);
2647
2648static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2649{
2650 net_warn_ratelimited(
2651 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2652 __func__);
2653 return 0;
2654}
2655
2656static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2657 int offset, int len)
2658{
2659 net_warn_ratelimited(
2660 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2661 __func__);
2662 return 0;
2663}
2664
2665static const struct skb_checksum_ops default_crc32c_ops = {
2666 .update = warn_crc32c_csum_update,
2667 .combine = warn_crc32c_csum_combine,
2668};
2669
2670const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2671 &default_crc32c_ops;
2672EXPORT_SYMBOL(crc32c_csum_stub);
2673
2674 /**
2675 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2676 * @from: source buffer
2677 *
2678 * Calculates the amount of linear headroom needed in the 'to' skb passed
2679 * into skb_zerocopy().
2680 */
2681unsigned int
2682skb_zerocopy_headlen(const struct sk_buff *from)
2683{
2684 unsigned int hlen = 0;
2685
2686 if (!from->head_frag ||
2687 skb_headlen(from) < L1_CACHE_BYTES ||
2688 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2689 hlen = skb_headlen(from);
2690
2691 if (skb_has_frag_list(from))
2692 hlen = from->len;
2693
2694 return hlen;
2695}
2696EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2697
2698/**
2699 * skb_zerocopy - Zero copy skb to skb
2700 * @to: destination buffer
2701 * @from: source buffer
2702 * @len: number of bytes to copy from source buffer
2703 * @hlen: size of linear headroom in destination buffer
2704 *
2705 * Copies up to `len` bytes from `from` to `to` by creating references
2706 * to the frags in the source buffer.
2707 *
2708 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2709 * headroom in the `to` buffer.
2710 *
2711 * Return value:
2712 * 0: everything is OK
2713 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2714 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2715 */
2716int
2717skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2718{
2719 int i, j = 0;
2720 int plen = 0; /* length of skb->head fragment */
2721 int ret;
2722 struct page *page;
2723 unsigned int offset;
2724
2725 BUG_ON(!from->head_frag && !hlen);
2726
2727 /* dont bother with small payloads */
2728 if (len <= skb_tailroom(to))
2729 return skb_copy_bits(from, 0, skb_put(to, len), len);
2730
2731 if (hlen) {
2732 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2733 if (unlikely(ret))
2734 return ret;
2735 len -= hlen;
2736 } else {
2737 plen = min_t(int, skb_headlen(from), len);
2738 if (plen) {
2739 page = virt_to_head_page(from->head);
2740 offset = from->data - (unsigned char *)page_address(page);
2741 __skb_fill_page_desc(to, 0, page, offset, plen);
2742 get_page(page);
2743 j = 1;
2744 len -= plen;
2745 }
2746 }
2747
2748 to->truesize += len + plen;
2749 to->len += len + plen;
2750 to->data_len += len + plen;
2751
2752 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2753 skb_tx_error(from);
2754 return -ENOMEM;
2755 }
2756 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2757
2758 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2759 if (!len)
2760 break;
2761 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2762 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2763 len -= skb_shinfo(to)->frags[j].size;
2764 skb_frag_ref(to, j);
2765 j++;
2766 }
2767 skb_shinfo(to)->nr_frags = j;
2768
2769 return 0;
2770}
2771EXPORT_SYMBOL_GPL(skb_zerocopy);
2772
2773void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2774{
2775 __wsum csum;
2776 long csstart;
2777
2778 if (skb->ip_summed == CHECKSUM_PARTIAL)
2779 csstart = skb_checksum_start_offset(skb);
2780 else
2781 csstart = skb_headlen(skb);
2782
2783 BUG_ON(csstart > skb_headlen(skb));
2784
2785 skb_copy_from_linear_data(skb, to, csstart);
2786
2787 csum = 0;
2788 if (csstart != skb->len)
2789 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2790 skb->len - csstart, 0);
2791
2792 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2793 long csstuff = csstart + skb->csum_offset;
2794
2795 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2796 }
2797}
2798EXPORT_SYMBOL(skb_copy_and_csum_dev);
2799
2800/**
2801 * skb_dequeue - remove from the head of the queue
2802 * @list: list to dequeue from
2803 *
2804 * Remove the head of the list. The list lock is taken so the function
2805 * may be used safely with other locking list functions. The head item is
2806 * returned or %NULL if the list is empty.
2807 */
2808
2809struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2810{
2811 unsigned long flags;
2812 struct sk_buff *result;
2813
2814 spin_lock_irqsave(&list->lock, flags);
2815 result = __skb_dequeue(list);
2816 spin_unlock_irqrestore(&list->lock, flags);
2817 return result;
2818}
2819EXPORT_SYMBOL(skb_dequeue);
2820
2821/**
2822 * skb_dequeue_tail - remove from the tail of the queue
2823 * @list: list to dequeue from
2824 *
2825 * Remove the tail of the list. The list lock is taken so the function
2826 * may be used safely with other locking list functions. The tail item is
2827 * returned or %NULL if the list is empty.
2828 */
2829struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2830{
2831 unsigned long flags;
2832 struct sk_buff *result;
2833
2834 spin_lock_irqsave(&list->lock, flags);
2835 result = __skb_dequeue_tail(list);
2836 spin_unlock_irqrestore(&list->lock, flags);
2837 return result;
2838}
2839EXPORT_SYMBOL(skb_dequeue_tail);
2840
2841/**
2842 * skb_queue_purge - empty a list
2843 * @list: list to empty
2844 *
2845 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2846 * the list and one reference dropped. This function takes the list
2847 * lock and is atomic with respect to other list locking functions.
2848 */
2849void skb_queue_purge(struct sk_buff_head *list)
2850{
2851 struct sk_buff *skb;
2852 while ((skb = skb_dequeue(list)) != NULL)
2853 kfree_skb(skb);
2854}
2855EXPORT_SYMBOL(skb_queue_purge);
2856
2857/**
2858 * skb_rbtree_purge - empty a skb rbtree
2859 * @root: root of the rbtree to empty
2860 *
2861 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2862 * the list and one reference dropped. This function does not take
2863 * any lock. Synchronization should be handled by the caller (e.g., TCP
2864 * out-of-order queue is protected by the socket lock).
2865 */
2866void skb_rbtree_purge(struct rb_root *root)
2867{
2868 struct rb_node *p = rb_first(root);
2869
2870 while (p) {
2871 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2872
2873 p = rb_next(p);
2874 rb_erase(&skb->rbnode, root);
2875 kfree_skb(skb);
2876 }
2877}
2878
2879/**
2880 * skb_queue_head - queue a buffer at the list head
2881 * @list: list to use
2882 * @newsk: buffer to queue
2883 *
2884 * Queue a buffer at the start of the list. This function takes the
2885 * list lock and can be used safely with other locking &sk_buff functions
2886 * safely.
2887 *
2888 * A buffer cannot be placed on two lists at the same time.
2889 */
2890void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2891{
2892 unsigned long flags;
2893
2894 spin_lock_irqsave(&list->lock, flags);
2895 __skb_queue_head(list, newsk);
2896 spin_unlock_irqrestore(&list->lock, flags);
2897}
2898EXPORT_SYMBOL(skb_queue_head);
2899
2900/**
2901 * skb_queue_tail - queue a buffer at the list tail
2902 * @list: list to use
2903 * @newsk: buffer to queue
2904 *
2905 * Queue a buffer at the tail of the list. This function takes the
2906 * list lock and can be used safely with other locking &sk_buff functions
2907 * safely.
2908 *
2909 * A buffer cannot be placed on two lists at the same time.
2910 */
2911void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2912{
2913 unsigned long flags;
2914
2915 spin_lock_irqsave(&list->lock, flags);
2916 __skb_queue_tail(list, newsk);
2917 spin_unlock_irqrestore(&list->lock, flags);
2918}
2919EXPORT_SYMBOL(skb_queue_tail);
2920
2921/**
2922 * skb_unlink - remove a buffer from a list
2923 * @skb: buffer to remove
2924 * @list: list to use
2925 *
2926 * Remove a packet from a list. The list locks are taken and this
2927 * function is atomic with respect to other list locked calls
2928 *
2929 * You must know what list the SKB is on.
2930 */
2931void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2932{
2933 unsigned long flags;
2934
2935 spin_lock_irqsave(&list->lock, flags);
2936 __skb_unlink(skb, list);
2937 spin_unlock_irqrestore(&list->lock, flags);
2938}
2939EXPORT_SYMBOL(skb_unlink);
2940
2941/**
2942 * skb_append - append a buffer
2943 * @old: buffer to insert after
2944 * @newsk: buffer to insert
2945 * @list: list to use
2946 *
2947 * Place a packet after a given packet in a list. The list locks are taken
2948 * and this function is atomic with respect to other list locked calls.
2949 * A buffer cannot be placed on two lists at the same time.
2950 */
2951void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2952{
2953 unsigned long flags;
2954
2955 spin_lock_irqsave(&list->lock, flags);
2956 __skb_queue_after(list, old, newsk);
2957 spin_unlock_irqrestore(&list->lock, flags);
2958}
2959EXPORT_SYMBOL(skb_append);
2960
2961/**
2962 * skb_insert - insert a buffer
2963 * @old: buffer to insert before
2964 * @newsk: buffer to insert
2965 * @list: list to use
2966 *
2967 * Place a packet before a given packet in a list. The list locks are
2968 * taken and this function is atomic with respect to other list locked
2969 * calls.
2970 *
2971 * A buffer cannot be placed on two lists at the same time.
2972 */
2973void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2974{
2975 unsigned long flags;
2976
2977 spin_lock_irqsave(&list->lock, flags);
2978 __skb_insert(newsk, old->prev, old, list);
2979 spin_unlock_irqrestore(&list->lock, flags);
2980}
2981EXPORT_SYMBOL(skb_insert);
2982
2983static inline void skb_split_inside_header(struct sk_buff *skb,
2984 struct sk_buff* skb1,
2985 const u32 len, const int pos)
2986{
2987 int i;
2988
2989 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2990 pos - len);
2991 /* And move data appendix as is. */
2992 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2993 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2994
2995 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2996 skb_shinfo(skb)->nr_frags = 0;
2997 skb1->data_len = skb->data_len;
2998 skb1->len += skb1->data_len;
2999 skb->data_len = 0;
3000 skb->len = len;
3001 skb_set_tail_pointer(skb, len);
3002}
3003
3004static inline void skb_split_no_header(struct sk_buff *skb,
3005 struct sk_buff* skb1,
3006 const u32 len, int pos)
3007{
3008 int i, k = 0;
3009 const int nfrags = skb_shinfo(skb)->nr_frags;
3010
3011 skb_shinfo(skb)->nr_frags = 0;
3012 skb1->len = skb1->data_len = skb->len - len;
3013 skb->len = len;
3014 skb->data_len = len - pos;
3015
3016 for (i = 0; i < nfrags; i++) {
3017 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3018
3019 if (pos + size > len) {
3020 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3021
3022 if (pos < len) {
3023 /* Split frag.
3024 * We have two variants in this case:
3025 * 1. Move all the frag to the second
3026 * part, if it is possible. F.e.
3027 * this approach is mandatory for TUX,
3028 * where splitting is expensive.
3029 * 2. Split is accurately. We make this.
3030 */
3031 skb_frag_ref(skb, i);
3032 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3033 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3034 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3035 skb_shinfo(skb)->nr_frags++;
3036 }
3037 k++;
3038 } else
3039 skb_shinfo(skb)->nr_frags++;
3040 pos += size;
3041 }
3042 skb_shinfo(skb1)->nr_frags = k;
3043}
3044
3045/**
3046 * skb_split - Split fragmented skb to two parts at length len.
3047 * @skb: the buffer to split
3048 * @skb1: the buffer to receive the second part
3049 * @len: new length for skb
3050 */
3051void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3052{
3053 int pos = skb_headlen(skb);
3054
3055 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3056 SKBTX_SHARED_FRAG;
3057 skb_zerocopy_clone(skb1, skb, 0);
3058 if (len < pos) /* Split line is inside header. */
3059 skb_split_inside_header(skb, skb1, len, pos);
3060 else /* Second chunk has no header, nothing to copy. */
3061 skb_split_no_header(skb, skb1, len, pos);
3062}
3063EXPORT_SYMBOL(skb_split);
3064
3065/* Shifting from/to a cloned skb is a no-go.
3066 *
3067 * Caller cannot keep skb_shinfo related pointers past calling here!
3068 */
3069static int skb_prepare_for_shift(struct sk_buff *skb)
3070{
3071 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3072}
3073
3074/**
3075 * skb_shift - Shifts paged data partially from skb to another
3076 * @tgt: buffer into which tail data gets added
3077 * @skb: buffer from which the paged data comes from
3078 * @shiftlen: shift up to this many bytes
3079 *
3080 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3081 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3082 * It's up to caller to free skb if everything was shifted.
3083 *
3084 * If @tgt runs out of frags, the whole operation is aborted.
3085 *
3086 * Skb cannot include anything else but paged data while tgt is allowed
3087 * to have non-paged data as well.
3088 *
3089 * TODO: full sized shift could be optimized but that would need
3090 * specialized skb free'er to handle frags without up-to-date nr_frags.
3091 */
3092int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3093{
3094 int from, to, merge, todo;
3095 struct skb_frag_struct *fragfrom, *fragto;
3096
3097 BUG_ON(shiftlen > skb->len);
3098
3099 if (skb_headlen(skb))
3100 return 0;
3101 if (skb_zcopy(tgt) || skb_zcopy(skb))
3102 return 0;
3103
3104 todo = shiftlen;
3105 from = 0;
3106 to = skb_shinfo(tgt)->nr_frags;
3107 fragfrom = &skb_shinfo(skb)->frags[from];
3108
3109 /* Actual merge is delayed until the point when we know we can
3110 * commit all, so that we don't have to undo partial changes
3111 */
3112 if (!to ||
3113 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3114 fragfrom->page_offset)) {
3115 merge = -1;
3116 } else {
3117 merge = to - 1;
3118
3119 todo -= skb_frag_size(fragfrom);
3120 if (todo < 0) {
3121 if (skb_prepare_for_shift(skb) ||
3122 skb_prepare_for_shift(tgt))
3123 return 0;
3124
3125 /* All previous frag pointers might be stale! */
3126 fragfrom = &skb_shinfo(skb)->frags[from];
3127 fragto = &skb_shinfo(tgt)->frags[merge];
3128
3129 skb_frag_size_add(fragto, shiftlen);
3130 skb_frag_size_sub(fragfrom, shiftlen);
3131 fragfrom->page_offset += shiftlen;
3132
3133 goto onlymerged;
3134 }
3135
3136 from++;
3137 }
3138
3139 /* Skip full, not-fitting skb to avoid expensive operations */
3140 if ((shiftlen == skb->len) &&
3141 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3142 return 0;
3143
3144 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3145 return 0;
3146
3147 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3148 if (to == MAX_SKB_FRAGS)
3149 return 0;
3150
3151 fragfrom = &skb_shinfo(skb)->frags[from];
3152 fragto = &skb_shinfo(tgt)->frags[to];
3153
3154 if (todo >= skb_frag_size(fragfrom)) {
3155 *fragto = *fragfrom;
3156 todo -= skb_frag_size(fragfrom);
3157 from++;
3158 to++;
3159
3160 } else {
3161 __skb_frag_ref(fragfrom);
3162 fragto->page = fragfrom->page;
3163 fragto->page_offset = fragfrom->page_offset;
3164 skb_frag_size_set(fragto, todo);
3165
3166 fragfrom->page_offset += todo;
3167 skb_frag_size_sub(fragfrom, todo);
3168 todo = 0;
3169
3170 to++;
3171 break;
3172 }
3173 }
3174
3175 /* Ready to "commit" this state change to tgt */
3176 skb_shinfo(tgt)->nr_frags = to;
3177
3178 if (merge >= 0) {
3179 fragfrom = &skb_shinfo(skb)->frags[0];
3180 fragto = &skb_shinfo(tgt)->frags[merge];
3181
3182 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3183 __skb_frag_unref(fragfrom);
3184 }
3185
3186 /* Reposition in the original skb */
3187 to = 0;
3188 while (from < skb_shinfo(skb)->nr_frags)
3189 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3190 skb_shinfo(skb)->nr_frags = to;
3191
3192 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3193
3194onlymerged:
3195 /* Most likely the tgt won't ever need its checksum anymore, skb on
3196 * the other hand might need it if it needs to be resent
3197 */
3198 tgt->ip_summed = CHECKSUM_PARTIAL;
3199 skb->ip_summed = CHECKSUM_PARTIAL;
3200
3201 /* Yak, is it really working this way? Some helper please? */
3202 skb->len -= shiftlen;
3203 skb->data_len -= shiftlen;
3204 skb->truesize -= shiftlen;
3205 tgt->len += shiftlen;
3206 tgt->data_len += shiftlen;
3207 tgt->truesize += shiftlen;
3208
3209 return shiftlen;
3210}
3211
3212/**
3213 * skb_prepare_seq_read - Prepare a sequential read of skb data
3214 * @skb: the buffer to read
3215 * @from: lower offset of data to be read
3216 * @to: upper offset of data to be read
3217 * @st: state variable
3218 *
3219 * Initializes the specified state variable. Must be called before
3220 * invoking skb_seq_read() for the first time.
3221 */
3222void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3223 unsigned int to, struct skb_seq_state *st)
3224{
3225 st->lower_offset = from;
3226 st->upper_offset = to;
3227 st->root_skb = st->cur_skb = skb;
3228 st->frag_idx = st->stepped_offset = 0;
3229 st->frag_data = NULL;
3230}
3231EXPORT_SYMBOL(skb_prepare_seq_read);
3232
3233/**
3234 * skb_seq_read - Sequentially read skb data
3235 * @consumed: number of bytes consumed by the caller so far
3236 * @data: destination pointer for data to be returned
3237 * @st: state variable
3238 *
3239 * Reads a block of skb data at @consumed relative to the
3240 * lower offset specified to skb_prepare_seq_read(). Assigns
3241 * the head of the data block to @data and returns the length
3242 * of the block or 0 if the end of the skb data or the upper
3243 * offset has been reached.
3244 *
3245 * The caller is not required to consume all of the data
3246 * returned, i.e. @consumed is typically set to the number
3247 * of bytes already consumed and the next call to
3248 * skb_seq_read() will return the remaining part of the block.
3249 *
3250 * Note 1: The size of each block of data returned can be arbitrary,
3251 * this limitation is the cost for zerocopy sequential
3252 * reads of potentially non linear data.
3253 *
3254 * Note 2: Fragment lists within fragments are not implemented
3255 * at the moment, state->root_skb could be replaced with
3256 * a stack for this purpose.
3257 */
3258unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3259 struct skb_seq_state *st)
3260{
3261 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3262 skb_frag_t *frag;
3263
3264 if (unlikely(abs_offset >= st->upper_offset)) {
3265 if (st->frag_data) {
3266 kunmap_atomic(st->frag_data);
3267 st->frag_data = NULL;
3268 }
3269 return 0;
3270 }
3271
3272next_skb:
3273 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3274
3275 if (abs_offset < block_limit && !st->frag_data) {
3276 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3277 return block_limit - abs_offset;
3278 }
3279
3280 if (st->frag_idx == 0 && !st->frag_data)
3281 st->stepped_offset += skb_headlen(st->cur_skb);
3282
3283 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3284 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3285 block_limit = skb_frag_size(frag) + st->stepped_offset;
3286
3287 if (abs_offset < block_limit) {
3288 if (!st->frag_data)
3289 st->frag_data = kmap_atomic(skb_frag_page(frag));
3290
3291 *data = (u8 *) st->frag_data + frag->page_offset +
3292 (abs_offset - st->stepped_offset);
3293
3294 return block_limit - abs_offset;
3295 }
3296
3297 if (st->frag_data) {
3298 kunmap_atomic(st->frag_data);
3299 st->frag_data = NULL;
3300 }
3301
3302 st->frag_idx++;
3303 st->stepped_offset += skb_frag_size(frag);
3304 }
3305
3306 if (st->frag_data) {
3307 kunmap_atomic(st->frag_data);
3308 st->frag_data = NULL;
3309 }
3310
3311 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3312 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3313 st->frag_idx = 0;
3314 goto next_skb;
3315 } else if (st->cur_skb->next) {
3316 st->cur_skb = st->cur_skb->next;
3317 st->frag_idx = 0;
3318 goto next_skb;
3319 }
3320
3321 return 0;
3322}
3323EXPORT_SYMBOL(skb_seq_read);
3324
3325/**
3326 * skb_abort_seq_read - Abort a sequential read of skb data
3327 * @st: state variable
3328 *
3329 * Must be called if skb_seq_read() was not called until it
3330 * returned 0.
3331 */
3332void skb_abort_seq_read(struct skb_seq_state *st)
3333{
3334 if (st->frag_data)
3335 kunmap_atomic(st->frag_data);
3336}
3337EXPORT_SYMBOL(skb_abort_seq_read);
3338
3339#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3340
3341static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3342 struct ts_config *conf,
3343 struct ts_state *state)
3344{
3345 return skb_seq_read(offset, text, TS_SKB_CB(state));
3346}
3347
3348static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3349{
3350 skb_abort_seq_read(TS_SKB_CB(state));
3351}
3352
3353/**
3354 * skb_find_text - Find a text pattern in skb data
3355 * @skb: the buffer to look in
3356 * @from: search offset
3357 * @to: search limit
3358 * @config: textsearch configuration
3359 *
3360 * Finds a pattern in the skb data according to the specified
3361 * textsearch configuration. Use textsearch_next() to retrieve
3362 * subsequent occurrences of the pattern. Returns the offset
3363 * to the first occurrence or UINT_MAX if no match was found.
3364 */
3365unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3366 unsigned int to, struct ts_config *config)
3367{
3368 struct ts_state state;
3369 unsigned int ret;
3370
3371 config->get_next_block = skb_ts_get_next_block;
3372 config->finish = skb_ts_finish;
3373
3374 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3375
3376 ret = textsearch_find(config, &state);
3377 return (ret <= to - from ? ret : UINT_MAX);
3378}
3379EXPORT_SYMBOL(skb_find_text);
3380
3381/**
3382 * skb_append_datato_frags - append the user data to a skb
3383 * @sk: sock structure
3384 * @skb: skb structure to be appended with user data.
3385 * @getfrag: call back function to be used for getting the user data
3386 * @from: pointer to user message iov
3387 * @length: length of the iov message
3388 *
3389 * Description: This procedure append the user data in the fragment part
3390 * of the skb if any page alloc fails user this procedure returns -ENOMEM
3391 */
3392int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3393 int (*getfrag)(void *from, char *to, int offset,
3394 int len, int odd, struct sk_buff *skb),
3395 void *from, int length)
3396{
3397 int frg_cnt = skb_shinfo(skb)->nr_frags;
3398 int copy;
3399 int offset = 0;
3400 int ret;
3401 struct page_frag *pfrag = ¤t->task_frag;
3402
3403 do {
3404 /* Return error if we don't have space for new frag */
3405 if (frg_cnt >= MAX_SKB_FRAGS)
3406 return -EMSGSIZE;
3407
3408 if (!sk_page_frag_refill(sk, pfrag))
3409 return -ENOMEM;
3410
3411 /* copy the user data to page */
3412 copy = min_t(int, length, pfrag->size - pfrag->offset);
3413
3414 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3415 offset, copy, 0, skb);
3416 if (ret < 0)
3417 return -EFAULT;
3418
3419 /* copy was successful so update the size parameters */
3420 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3421 copy);
3422 frg_cnt++;
3423 pfrag->offset += copy;
3424 get_page(pfrag->page);
3425
3426 skb->truesize += copy;
3427 refcount_add(copy, &sk->sk_wmem_alloc);
3428 skb->len += copy;
3429 skb->data_len += copy;
3430 offset += copy;
3431 length -= copy;
3432
3433 } while (length > 0);
3434
3435 return 0;
3436}
3437EXPORT_SYMBOL(skb_append_datato_frags);
3438
3439int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3440 int offset, size_t size)
3441{
3442 int i = skb_shinfo(skb)->nr_frags;
3443
3444 if (skb_can_coalesce(skb, i, page, offset)) {
3445 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3446 } else if (i < MAX_SKB_FRAGS) {
3447 get_page(page);
3448 skb_fill_page_desc(skb, i, page, offset, size);
3449 } else {
3450 return -EMSGSIZE;
3451 }
3452
3453 return 0;
3454}
3455EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3456
3457/**
3458 * skb_pull_rcsum - pull skb and update receive checksum
3459 * @skb: buffer to update
3460 * @len: length of data pulled
3461 *
3462 * This function performs an skb_pull on the packet and updates
3463 * the CHECKSUM_COMPLETE checksum. It should be used on
3464 * receive path processing instead of skb_pull unless you know
3465 * that the checksum difference is zero (e.g., a valid IP header)
3466 * or you are setting ip_summed to CHECKSUM_NONE.
3467 */
3468void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3469{
3470 unsigned char *data = skb->data;
3471
3472 BUG_ON(len > skb->len);
3473 __skb_pull(skb, len);
3474 skb_postpull_rcsum(skb, data, len);
3475 return skb->data;
3476}
3477EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3478
3479static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3480{
3481 skb_frag_t head_frag;
3482 struct page *page;
3483
3484 page = virt_to_head_page(frag_skb->head);
3485 head_frag.page.p = page;
3486 head_frag.page_offset = frag_skb->data -
3487 (unsigned char *)page_address(page);
3488 head_frag.size = skb_headlen(frag_skb);
3489 return head_frag;
3490}
3491
3492/**
3493 * skb_segment - Perform protocol segmentation on skb.
3494 * @head_skb: buffer to segment
3495 * @features: features for the output path (see dev->features)
3496 *
3497 * This function performs segmentation on the given skb. It returns
3498 * a pointer to the first in a list of new skbs for the segments.
3499 * In case of error it returns ERR_PTR(err).
3500 */
3501struct sk_buff *skb_segment(struct sk_buff *head_skb,
3502 netdev_features_t features)
3503{
3504 struct sk_buff *segs = NULL;
3505 struct sk_buff *tail = NULL;
3506 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3507 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3508 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3509 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3510 struct sk_buff *frag_skb = head_skb;
3511 unsigned int offset = doffset;
3512 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3513 unsigned int partial_segs = 0;
3514 unsigned int headroom;
3515 unsigned int len = head_skb->len;
3516 __be16 proto;
3517 bool csum, sg;
3518 int nfrags = skb_shinfo(head_skb)->nr_frags;
3519 int err = -ENOMEM;
3520 int i = 0;
3521 int pos;
3522 int dummy;
3523
3524 __skb_push(head_skb, doffset);
3525 proto = skb_network_protocol(head_skb, &dummy);
3526 if (unlikely(!proto))
3527 return ERR_PTR(-EINVAL);
3528
3529 sg = !!(features & NETIF_F_SG);
3530 csum = !!can_checksum_protocol(features, proto);
3531
3532 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3533 if (!(features & NETIF_F_GSO_PARTIAL)) {
3534 struct sk_buff *iter;
3535 unsigned int frag_len;
3536
3537 if (!list_skb ||
3538 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3539 goto normal;
3540
3541 /* If we get here then all the required
3542 * GSO features except frag_list are supported.
3543 * Try to split the SKB to multiple GSO SKBs
3544 * with no frag_list.
3545 * Currently we can do that only when the buffers don't
3546 * have a linear part and all the buffers except
3547 * the last are of the same length.
3548 */
3549 frag_len = list_skb->len;
3550 skb_walk_frags(head_skb, iter) {
3551 if (frag_len != iter->len && iter->next)
3552 goto normal;
3553 if (skb_headlen(iter) && !iter->head_frag)
3554 goto normal;
3555
3556 len -= iter->len;
3557 }
3558
3559 if (len != frag_len)
3560 goto normal;
3561 }
3562
3563 /* GSO partial only requires that we trim off any excess that
3564 * doesn't fit into an MSS sized block, so take care of that
3565 * now.
3566 */
3567 partial_segs = len / mss;
3568 if (partial_segs > 1)
3569 mss *= partial_segs;
3570 else
3571 partial_segs = 0;
3572 }
3573
3574normal:
3575 headroom = skb_headroom(head_skb);
3576 pos = skb_headlen(head_skb);
3577
3578 do {
3579 struct sk_buff *nskb;
3580 skb_frag_t *nskb_frag;
3581 int hsize;
3582 int size;
3583
3584 if (unlikely(mss == GSO_BY_FRAGS)) {
3585 len = list_skb->len;
3586 } else {
3587 len = head_skb->len - offset;
3588 if (len > mss)
3589 len = mss;
3590 }
3591
3592 hsize = skb_headlen(head_skb) - offset;
3593 if (hsize < 0)
3594 hsize = 0;
3595 if (hsize > len || !sg)
3596 hsize = len;
3597
3598 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3599 (skb_headlen(list_skb) == len || sg)) {
3600 BUG_ON(skb_headlen(list_skb) > len);
3601
3602 i = 0;
3603 nfrags = skb_shinfo(list_skb)->nr_frags;
3604 frag = skb_shinfo(list_skb)->frags;
3605 frag_skb = list_skb;
3606 pos += skb_headlen(list_skb);
3607
3608 while (pos < offset + len) {
3609 BUG_ON(i >= nfrags);
3610
3611 size = skb_frag_size(frag);
3612 if (pos + size > offset + len)
3613 break;
3614
3615 i++;
3616 pos += size;
3617 frag++;
3618 }
3619
3620 nskb = skb_clone(list_skb, GFP_ATOMIC);
3621 list_skb = list_skb->next;
3622
3623 if (unlikely(!nskb))
3624 goto err;
3625
3626 if (unlikely(pskb_trim(nskb, len))) {
3627 kfree_skb(nskb);
3628 goto err;
3629 }
3630
3631 hsize = skb_end_offset(nskb);
3632 if (skb_cow_head(nskb, doffset + headroom)) {
3633 kfree_skb(nskb);
3634 goto err;
3635 }
3636
3637 nskb->truesize += skb_end_offset(nskb) - hsize;
3638 skb_release_head_state(nskb);
3639 __skb_push(nskb, doffset);
3640 } else {
3641 nskb = __alloc_skb(hsize + doffset + headroom,
3642 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3643 NUMA_NO_NODE);
3644
3645 if (unlikely(!nskb))
3646 goto err;
3647
3648 skb_reserve(nskb, headroom);
3649 __skb_put(nskb, doffset);
3650 }
3651
3652 if (segs)
3653 tail->next = nskb;
3654 else
3655 segs = nskb;
3656 tail = nskb;
3657
3658 __copy_skb_header(nskb, head_skb);
3659
3660 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3661 skb_reset_mac_len(nskb);
3662
3663 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3664 nskb->data - tnl_hlen,
3665 doffset + tnl_hlen);
3666
3667 if (nskb->len == len + doffset)
3668 goto perform_csum_check;
3669
3670 if (!sg) {
3671 if (!nskb->remcsum_offload)
3672 nskb->ip_summed = CHECKSUM_NONE;
3673 SKB_GSO_CB(nskb)->csum =
3674 skb_copy_and_csum_bits(head_skb, offset,
3675 skb_put(nskb, len),
3676 len, 0);
3677 SKB_GSO_CB(nskb)->csum_start =
3678 skb_headroom(nskb) + doffset;
3679 continue;
3680 }
3681
3682 nskb_frag = skb_shinfo(nskb)->frags;
3683
3684 skb_copy_from_linear_data_offset(head_skb, offset,
3685 skb_put(nskb, hsize), hsize);
3686
3687 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3688 SKBTX_SHARED_FRAG;
3689
3690 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3691 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3692 goto err;
3693
3694 while (pos < offset + len) {
3695 if (i >= nfrags) {
3696 i = 0;
3697 nfrags = skb_shinfo(list_skb)->nr_frags;
3698 frag = skb_shinfo(list_skb)->frags;
3699 frag_skb = list_skb;
3700 if (!skb_headlen(list_skb)) {
3701 BUG_ON(!nfrags);
3702 } else {
3703 BUG_ON(!list_skb->head_frag);
3704
3705 /* to make room for head_frag. */
3706 i--;
3707 frag--;
3708 }
3709 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3710 skb_zerocopy_clone(nskb, frag_skb,
3711 GFP_ATOMIC))
3712 goto err;
3713
3714 list_skb = list_skb->next;
3715 }
3716
3717 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3718 MAX_SKB_FRAGS)) {
3719 net_warn_ratelimited(
3720 "skb_segment: too many frags: %u %u\n",
3721 pos, mss);
3722 goto err;
3723 }
3724
3725 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3726 __skb_frag_ref(nskb_frag);
3727 size = skb_frag_size(nskb_frag);
3728
3729 if (pos < offset) {
3730 nskb_frag->page_offset += offset - pos;
3731 skb_frag_size_sub(nskb_frag, offset - pos);
3732 }
3733
3734 skb_shinfo(nskb)->nr_frags++;
3735
3736 if (pos + size <= offset + len) {
3737 i++;
3738 frag++;
3739 pos += size;
3740 } else {
3741 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3742 goto skip_fraglist;
3743 }
3744
3745 nskb_frag++;
3746 }
3747
3748skip_fraglist:
3749 nskb->data_len = len - hsize;
3750 nskb->len += nskb->data_len;
3751 nskb->truesize += nskb->data_len;
3752
3753perform_csum_check:
3754 if (!csum) {
3755 if (skb_has_shared_frag(nskb)) {
3756 err = __skb_linearize(nskb);
3757 if (err)
3758 goto err;
3759 }
3760 if (!nskb->remcsum_offload)
3761 nskb->ip_summed = CHECKSUM_NONE;
3762 SKB_GSO_CB(nskb)->csum =
3763 skb_checksum(nskb, doffset,
3764 nskb->len - doffset, 0);
3765 SKB_GSO_CB(nskb)->csum_start =
3766 skb_headroom(nskb) + doffset;
3767 }
3768 } while ((offset += len) < head_skb->len);
3769
3770 /* Some callers want to get the end of the list.
3771 * Put it in segs->prev to avoid walking the list.
3772 * (see validate_xmit_skb_list() for example)
3773 */
3774 segs->prev = tail;
3775
3776 if (partial_segs) {
3777 struct sk_buff *iter;
3778 int type = skb_shinfo(head_skb)->gso_type;
3779 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3780
3781 /* Update type to add partial and then remove dodgy if set */
3782 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3783 type &= ~SKB_GSO_DODGY;
3784
3785 /* Update GSO info and prepare to start updating headers on
3786 * our way back down the stack of protocols.
3787 */
3788 for (iter = segs; iter; iter = iter->next) {
3789 skb_shinfo(iter)->gso_size = gso_size;
3790 skb_shinfo(iter)->gso_segs = partial_segs;
3791 skb_shinfo(iter)->gso_type = type;
3792 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3793 }
3794
3795 if (tail->len - doffset <= gso_size)
3796 skb_shinfo(tail)->gso_size = 0;
3797 else if (tail != segs)
3798 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3799 }
3800
3801 /* Following permits correct backpressure, for protocols
3802 * using skb_set_owner_w().
3803 * Idea is to tranfert ownership from head_skb to last segment.
3804 */
3805 if (head_skb->destructor == sock_wfree) {
3806 swap(tail->truesize, head_skb->truesize);
3807 swap(tail->destructor, head_skb->destructor);
3808 swap(tail->sk, head_skb->sk);
3809 }
3810 return segs;
3811
3812err:
3813 kfree_skb_list(segs);
3814 return ERR_PTR(err);
3815}
3816EXPORT_SYMBOL_GPL(skb_segment);
3817
3818int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3819{
3820 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3821 unsigned int offset = skb_gro_offset(skb);
3822 unsigned int headlen = skb_headlen(skb);
3823 unsigned int len = skb_gro_len(skb);
3824 struct sk_buff *lp, *p = *head;
3825 unsigned int delta_truesize;
3826
3827 if (unlikely(p->len + len >= 65536))
3828 return -E2BIG;
3829
3830 lp = NAPI_GRO_CB(p)->last;
3831 pinfo = skb_shinfo(lp);
3832
3833 if (headlen <= offset) {
3834 skb_frag_t *frag;
3835 skb_frag_t *frag2;
3836 int i = skbinfo->nr_frags;
3837 int nr_frags = pinfo->nr_frags + i;
3838
3839 if (nr_frags > MAX_SKB_FRAGS)
3840 goto merge;
3841
3842 offset -= headlen;
3843 pinfo->nr_frags = nr_frags;
3844 skbinfo->nr_frags = 0;
3845
3846 frag = pinfo->frags + nr_frags;
3847 frag2 = skbinfo->frags + i;
3848 do {
3849 *--frag = *--frag2;
3850 } while (--i);
3851
3852 frag->page_offset += offset;
3853 skb_frag_size_sub(frag, offset);
3854
3855 /* all fragments truesize : remove (head size + sk_buff) */
3856 delta_truesize = skb->truesize -
3857 SKB_TRUESIZE(skb_end_offset(skb));
3858
3859 skb->truesize -= skb->data_len;
3860 skb->len -= skb->data_len;
3861 skb->data_len = 0;
3862
3863 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3864 goto done;
3865 } else if (skb->head_frag) {
3866 int nr_frags = pinfo->nr_frags;
3867 skb_frag_t *frag = pinfo->frags + nr_frags;
3868 struct page *page = virt_to_head_page(skb->head);
3869 unsigned int first_size = headlen - offset;
3870 unsigned int first_offset;
3871
3872 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3873 goto merge;
3874
3875 first_offset = skb->data -
3876 (unsigned char *)page_address(page) +
3877 offset;
3878
3879 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3880
3881 frag->page.p = page;
3882 frag->page_offset = first_offset;
3883 skb_frag_size_set(frag, first_size);
3884
3885 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3886 /* We dont need to clear skbinfo->nr_frags here */
3887
3888 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3889 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3890 goto done;
3891 }
3892
3893merge:
3894 delta_truesize = skb->truesize;
3895 if (offset > headlen) {
3896 unsigned int eat = offset - headlen;
3897
3898 skbinfo->frags[0].page_offset += eat;
3899 skb_frag_size_sub(&skbinfo->frags[0], eat);
3900 skb->data_len -= eat;
3901 skb->len -= eat;
3902 offset = headlen;
3903 }
3904
3905 __skb_pull(skb, offset);
3906
3907 if (NAPI_GRO_CB(p)->last == p)
3908 skb_shinfo(p)->frag_list = skb;
3909 else
3910 NAPI_GRO_CB(p)->last->next = skb;
3911 NAPI_GRO_CB(p)->last = skb;
3912 __skb_header_release(skb);
3913 lp = p;
3914
3915done:
3916 NAPI_GRO_CB(p)->count++;
3917 p->data_len += len;
3918 p->truesize += delta_truesize;
3919 p->len += len;
3920 if (lp != p) {
3921 lp->data_len += len;
3922 lp->truesize += delta_truesize;
3923 lp->len += len;
3924 }
3925 NAPI_GRO_CB(skb)->same_flow = 1;
3926 return 0;
3927}
3928EXPORT_SYMBOL_GPL(skb_gro_receive);
3929
3930void __init skb_init(void)
3931{
3932 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3933 sizeof(struct sk_buff),
3934 0,
3935 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3936 offsetof(struct sk_buff, cb),
3937 sizeof_field(struct sk_buff, cb),
3938 NULL);
3939 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3940 sizeof(struct sk_buff_fclones),
3941 0,
3942 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3943 NULL);
3944}
3945
3946static int
3947__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3948 unsigned int recursion_level)
3949{
3950 int start = skb_headlen(skb);
3951 int i, copy = start - offset;
3952 struct sk_buff *frag_iter;
3953 int elt = 0;
3954
3955 if (unlikely(recursion_level >= 24))
3956 return -EMSGSIZE;
3957
3958 if (copy > 0) {
3959 if (copy > len)
3960 copy = len;
3961 sg_set_buf(sg, skb->data + offset, copy);
3962 elt++;
3963 if ((len -= copy) == 0)
3964 return elt;
3965 offset += copy;
3966 }
3967
3968 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3969 int end;
3970
3971 WARN_ON(start > offset + len);
3972
3973 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3974 if ((copy = end - offset) > 0) {
3975 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3976 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3977 return -EMSGSIZE;
3978
3979 if (copy > len)
3980 copy = len;
3981 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3982 frag->page_offset+offset-start);
3983 elt++;
3984 if (!(len -= copy))
3985 return elt;
3986 offset += copy;
3987 }
3988 start = end;
3989 }
3990
3991 skb_walk_frags(skb, frag_iter) {
3992 int end, ret;
3993
3994 WARN_ON(start > offset + len);
3995
3996 end = start + frag_iter->len;
3997 if ((copy = end - offset) > 0) {
3998 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3999 return -EMSGSIZE;
4000
4001 if (copy > len)
4002 copy = len;
4003 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4004 copy, recursion_level + 1);
4005 if (unlikely(ret < 0))
4006 return ret;
4007 elt += ret;
4008 if ((len -= copy) == 0)
4009 return elt;
4010 offset += copy;
4011 }
4012 start = end;
4013 }
4014 BUG_ON(len);
4015 return elt;
4016}
4017
4018/**
4019 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4020 * @skb: Socket buffer containing the buffers to be mapped
4021 * @sg: The scatter-gather list to map into
4022 * @offset: The offset into the buffer's contents to start mapping
4023 * @len: Length of buffer space to be mapped
4024 *
4025 * Fill the specified scatter-gather list with mappings/pointers into a
4026 * region of the buffer space attached to a socket buffer. Returns either
4027 * the number of scatterlist items used, or -EMSGSIZE if the contents
4028 * could not fit.
4029 */
4030int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4031{
4032 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4033
4034 if (nsg <= 0)
4035 return nsg;
4036
4037 sg_mark_end(&sg[nsg - 1]);
4038
4039 return nsg;
4040}
4041EXPORT_SYMBOL_GPL(skb_to_sgvec);
4042
4043/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4044 * sglist without mark the sg which contain last skb data as the end.
4045 * So the caller can mannipulate sg list as will when padding new data after
4046 * the first call without calling sg_unmark_end to expend sg list.
4047 *
4048 * Scenario to use skb_to_sgvec_nomark:
4049 * 1. sg_init_table
4050 * 2. skb_to_sgvec_nomark(payload1)
4051 * 3. skb_to_sgvec_nomark(payload2)
4052 *
4053 * This is equivalent to:
4054 * 1. sg_init_table
4055 * 2. skb_to_sgvec(payload1)
4056 * 3. sg_unmark_end
4057 * 4. skb_to_sgvec(payload2)
4058 *
4059 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4060 * is more preferable.
4061 */
4062int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4063 int offset, int len)
4064{
4065 return __skb_to_sgvec(skb, sg, offset, len, 0);
4066}
4067EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4068
4069
4070
4071/**
4072 * skb_cow_data - Check that a socket buffer's data buffers are writable
4073 * @skb: The socket buffer to check.
4074 * @tailbits: Amount of trailing space to be added
4075 * @trailer: Returned pointer to the skb where the @tailbits space begins
4076 *
4077 * Make sure that the data buffers attached to a socket buffer are
4078 * writable. If they are not, private copies are made of the data buffers
4079 * and the socket buffer is set to use these instead.
4080 *
4081 * If @tailbits is given, make sure that there is space to write @tailbits
4082 * bytes of data beyond current end of socket buffer. @trailer will be
4083 * set to point to the skb in which this space begins.
4084 *
4085 * The number of scatterlist elements required to completely map the
4086 * COW'd and extended socket buffer will be returned.
4087 */
4088int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4089{
4090 int copyflag;
4091 int elt;
4092 struct sk_buff *skb1, **skb_p;
4093
4094 /* If skb is cloned or its head is paged, reallocate
4095 * head pulling out all the pages (pages are considered not writable
4096 * at the moment even if they are anonymous).
4097 */
4098 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4099 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4100 return -ENOMEM;
4101
4102 /* Easy case. Most of packets will go this way. */
4103 if (!skb_has_frag_list(skb)) {
4104 /* A little of trouble, not enough of space for trailer.
4105 * This should not happen, when stack is tuned to generate
4106 * good frames. OK, on miss we reallocate and reserve even more
4107 * space, 128 bytes is fair. */
4108
4109 if (skb_tailroom(skb) < tailbits &&
4110 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4111 return -ENOMEM;
4112
4113 /* Voila! */
4114 *trailer = skb;
4115 return 1;
4116 }
4117
4118 /* Misery. We are in troubles, going to mincer fragments... */
4119
4120 elt = 1;
4121 skb_p = &skb_shinfo(skb)->frag_list;
4122 copyflag = 0;
4123
4124 while ((skb1 = *skb_p) != NULL) {
4125 int ntail = 0;
4126
4127 /* The fragment is partially pulled by someone,
4128 * this can happen on input. Copy it and everything
4129 * after it. */
4130
4131 if (skb_shared(skb1))
4132 copyflag = 1;
4133
4134 /* If the skb is the last, worry about trailer. */
4135
4136 if (skb1->next == NULL && tailbits) {
4137 if (skb_shinfo(skb1)->nr_frags ||
4138 skb_has_frag_list(skb1) ||
4139 skb_tailroom(skb1) < tailbits)
4140 ntail = tailbits + 128;
4141 }
4142
4143 if (copyflag ||
4144 skb_cloned(skb1) ||
4145 ntail ||
4146 skb_shinfo(skb1)->nr_frags ||
4147 skb_has_frag_list(skb1)) {
4148 struct sk_buff *skb2;
4149
4150 /* Fuck, we are miserable poor guys... */
4151 if (ntail == 0)
4152 skb2 = skb_copy(skb1, GFP_ATOMIC);
4153 else
4154 skb2 = skb_copy_expand(skb1,
4155 skb_headroom(skb1),
4156 ntail,
4157 GFP_ATOMIC);
4158 if (unlikely(skb2 == NULL))
4159 return -ENOMEM;
4160
4161 if (skb1->sk)
4162 skb_set_owner_w(skb2, skb1->sk);
4163
4164 /* Looking around. Are we still alive?
4165 * OK, link new skb, drop old one */
4166
4167 skb2->next = skb1->next;
4168 *skb_p = skb2;
4169 kfree_skb(skb1);
4170 skb1 = skb2;
4171 }
4172 elt++;
4173 *trailer = skb1;
4174 skb_p = &skb1->next;
4175 }
4176
4177 return elt;
4178}
4179EXPORT_SYMBOL_GPL(skb_cow_data);
4180
4181static void sock_rmem_free(struct sk_buff *skb)
4182{
4183 struct sock *sk = skb->sk;
4184
4185 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4186}
4187
4188static void skb_set_err_queue(struct sk_buff *skb)
4189{
4190 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4191 * So, it is safe to (mis)use it to mark skbs on the error queue.
4192 */
4193 skb->pkt_type = PACKET_OUTGOING;
4194 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4195}
4196
4197/*
4198 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4199 */
4200int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4201{
4202 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4203 (unsigned int)sk->sk_rcvbuf)
4204 return -ENOMEM;
4205
4206 skb_orphan(skb);
4207 skb->sk = sk;
4208 skb->destructor = sock_rmem_free;
4209 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4210 skb_set_err_queue(skb);
4211
4212 /* before exiting rcu section, make sure dst is refcounted */
4213 skb_dst_force(skb);
4214
4215 skb_queue_tail(&sk->sk_error_queue, skb);
4216 if (!sock_flag(sk, SOCK_DEAD))
4217 sk->sk_error_report(sk);
4218 return 0;
4219}
4220EXPORT_SYMBOL(sock_queue_err_skb);
4221
4222static bool is_icmp_err_skb(const struct sk_buff *skb)
4223{
4224 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4225 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4226}
4227
4228struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4229{
4230 struct sk_buff_head *q = &sk->sk_error_queue;
4231 struct sk_buff *skb, *skb_next = NULL;
4232 bool icmp_next = false;
4233 unsigned long flags;
4234
4235 spin_lock_irqsave(&q->lock, flags);
4236 skb = __skb_dequeue(q);
4237 if (skb && (skb_next = skb_peek(q))) {
4238 icmp_next = is_icmp_err_skb(skb_next);
4239 if (icmp_next)
4240 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4241 }
4242 spin_unlock_irqrestore(&q->lock, flags);
4243
4244 if (is_icmp_err_skb(skb) && !icmp_next)
4245 sk->sk_err = 0;
4246
4247 if (skb_next)
4248 sk->sk_error_report(sk);
4249
4250 return skb;
4251}
4252EXPORT_SYMBOL(sock_dequeue_err_skb);
4253
4254/**
4255 * skb_clone_sk - create clone of skb, and take reference to socket
4256 * @skb: the skb to clone
4257 *
4258 * This function creates a clone of a buffer that holds a reference on
4259 * sk_refcnt. Buffers created via this function are meant to be
4260 * returned using sock_queue_err_skb, or free via kfree_skb.
4261 *
4262 * When passing buffers allocated with this function to sock_queue_err_skb
4263 * it is necessary to wrap the call with sock_hold/sock_put in order to
4264 * prevent the socket from being released prior to being enqueued on
4265 * the sk_error_queue.
4266 */
4267struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4268{
4269 struct sock *sk = skb->sk;
4270 struct sk_buff *clone;
4271
4272 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4273 return NULL;
4274
4275 clone = skb_clone(skb, GFP_ATOMIC);
4276 if (!clone) {
4277 sock_put(sk);
4278 return NULL;
4279 }
4280
4281 clone->sk = sk;
4282 clone->destructor = sock_efree;
4283
4284 return clone;
4285}
4286EXPORT_SYMBOL(skb_clone_sk);
4287
4288static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4289 struct sock *sk,
4290 int tstype,
4291 bool opt_stats)
4292{
4293 struct sock_exterr_skb *serr;
4294 int err;
4295
4296 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4297
4298 serr = SKB_EXT_ERR(skb);
4299 memset(serr, 0, sizeof(*serr));
4300 serr->ee.ee_errno = ENOMSG;
4301 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4302 serr->ee.ee_info = tstype;
4303 serr->opt_stats = opt_stats;
4304 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4305 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4306 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4307 if (sk->sk_protocol == IPPROTO_TCP &&
4308 sk->sk_type == SOCK_STREAM)
4309 serr->ee.ee_data -= sk->sk_tskey;
4310 }
4311
4312 err = sock_queue_err_skb(sk, skb);
4313
4314 if (err)
4315 kfree_skb(skb);
4316}
4317
4318static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4319{
4320 bool ret;
4321
4322 if (likely(sysctl_tstamp_allow_data || tsonly))
4323 return true;
4324
4325 read_lock_bh(&sk->sk_callback_lock);
4326 ret = sk->sk_socket && sk->sk_socket->file &&
4327 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4328 read_unlock_bh(&sk->sk_callback_lock);
4329 return ret;
4330}
4331
4332void skb_complete_tx_timestamp(struct sk_buff *skb,
4333 struct skb_shared_hwtstamps *hwtstamps)
4334{
4335 struct sock *sk = skb->sk;
4336
4337 if (!skb_may_tx_timestamp(sk, false))
4338 goto err;
4339
4340 /* Take a reference to prevent skb_orphan() from freeing the socket,
4341 * but only if the socket refcount is not zero.
4342 */
4343 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4344 *skb_hwtstamps(skb) = *hwtstamps;
4345 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4346 sock_put(sk);
4347 return;
4348 }
4349
4350err:
4351 kfree_skb(skb);
4352}
4353EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4354
4355void __skb_tstamp_tx(struct sk_buff *orig_skb,
4356 struct skb_shared_hwtstamps *hwtstamps,
4357 struct sock *sk, int tstype)
4358{
4359 struct sk_buff *skb;
4360 bool tsonly, opt_stats = false;
4361
4362 if (!sk)
4363 return;
4364
4365 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4366 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4367 return;
4368
4369 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4370 if (!skb_may_tx_timestamp(sk, tsonly))
4371 return;
4372
4373 if (tsonly) {
4374#ifdef CONFIG_INET
4375 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4376 sk->sk_protocol == IPPROTO_TCP &&
4377 sk->sk_type == SOCK_STREAM) {
4378 skb = tcp_get_timestamping_opt_stats(sk);
4379 opt_stats = true;
4380 } else
4381#endif
4382 skb = alloc_skb(0, GFP_ATOMIC);
4383 } else {
4384 skb = skb_clone(orig_skb, GFP_ATOMIC);
4385 }
4386 if (!skb)
4387 return;
4388
4389 if (tsonly) {
4390 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4391 SKBTX_ANY_TSTAMP;
4392 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4393 }
4394
4395 if (hwtstamps)
4396 *skb_hwtstamps(skb) = *hwtstamps;
4397 else
4398 skb->tstamp = ktime_get_real();
4399
4400 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4401}
4402EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4403
4404void skb_tstamp_tx(struct sk_buff *orig_skb,
4405 struct skb_shared_hwtstamps *hwtstamps)
4406{
4407 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4408 SCM_TSTAMP_SND);
4409}
4410EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4411
4412void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4413{
4414 struct sock *sk = skb->sk;
4415 struct sock_exterr_skb *serr;
4416 int err = 1;
4417
4418 skb->wifi_acked_valid = 1;
4419 skb->wifi_acked = acked;
4420
4421 serr = SKB_EXT_ERR(skb);
4422 memset(serr, 0, sizeof(*serr));
4423 serr->ee.ee_errno = ENOMSG;
4424 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4425
4426 /* Take a reference to prevent skb_orphan() from freeing the socket,
4427 * but only if the socket refcount is not zero.
4428 */
4429 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4430 err = sock_queue_err_skb(sk, skb);
4431 sock_put(sk);
4432 }
4433 if (err)
4434 kfree_skb(skb);
4435}
4436EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4437
4438/**
4439 * skb_partial_csum_set - set up and verify partial csum values for packet
4440 * @skb: the skb to set
4441 * @start: the number of bytes after skb->data to start checksumming.
4442 * @off: the offset from start to place the checksum.
4443 *
4444 * For untrusted partially-checksummed packets, we need to make sure the values
4445 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4446 *
4447 * This function checks and sets those values and skb->ip_summed: if this
4448 * returns false you should drop the packet.
4449 */
4450bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4451{
4452 if (unlikely(start > skb_headlen(skb)) ||
4453 unlikely((int)start + off > skb_headlen(skb) - 2)) {
4454 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4455 start, off, skb_headlen(skb));
4456 return false;
4457 }
4458 skb->ip_summed = CHECKSUM_PARTIAL;
4459 skb->csum_start = skb_headroom(skb) + start;
4460 skb->csum_offset = off;
4461 skb_set_transport_header(skb, start);
4462 return true;
4463}
4464EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4465
4466static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4467 unsigned int max)
4468{
4469 if (skb_headlen(skb) >= len)
4470 return 0;
4471
4472 /* If we need to pullup then pullup to the max, so we
4473 * won't need to do it again.
4474 */
4475 if (max > skb->len)
4476 max = skb->len;
4477
4478 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4479 return -ENOMEM;
4480
4481 if (skb_headlen(skb) < len)
4482 return -EPROTO;
4483
4484 return 0;
4485}
4486
4487#define MAX_TCP_HDR_LEN (15 * 4)
4488
4489static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4490 typeof(IPPROTO_IP) proto,
4491 unsigned int off)
4492{
4493 switch (proto) {
4494 int err;
4495
4496 case IPPROTO_TCP:
4497 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4498 off + MAX_TCP_HDR_LEN);
4499 if (!err && !skb_partial_csum_set(skb, off,
4500 offsetof(struct tcphdr,
4501 check)))
4502 err = -EPROTO;
4503 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4504
4505 case IPPROTO_UDP:
4506 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4507 off + sizeof(struct udphdr));
4508 if (!err && !skb_partial_csum_set(skb, off,
4509 offsetof(struct udphdr,
4510 check)))
4511 err = -EPROTO;
4512 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4513 }
4514
4515 return ERR_PTR(-EPROTO);
4516}
4517
4518/* This value should be large enough to cover a tagged ethernet header plus
4519 * maximally sized IP and TCP or UDP headers.
4520 */
4521#define MAX_IP_HDR_LEN 128
4522
4523static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4524{
4525 unsigned int off;
4526 bool fragment;
4527 __sum16 *csum;
4528 int err;
4529
4530 fragment = false;
4531
4532 err = skb_maybe_pull_tail(skb,
4533 sizeof(struct iphdr),
4534 MAX_IP_HDR_LEN);
4535 if (err < 0)
4536 goto out;
4537
4538 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4539 fragment = true;
4540
4541 off = ip_hdrlen(skb);
4542
4543 err = -EPROTO;
4544
4545 if (fragment)
4546 goto out;
4547
4548 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4549 if (IS_ERR(csum))
4550 return PTR_ERR(csum);
4551
4552 if (recalculate)
4553 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4554 ip_hdr(skb)->daddr,
4555 skb->len - off,
4556 ip_hdr(skb)->protocol, 0);
4557 err = 0;
4558
4559out:
4560 return err;
4561}
4562
4563/* This value should be large enough to cover a tagged ethernet header plus
4564 * an IPv6 header, all options, and a maximal TCP or UDP header.
4565 */
4566#define MAX_IPV6_HDR_LEN 256
4567
4568#define OPT_HDR(type, skb, off) \
4569 (type *)(skb_network_header(skb) + (off))
4570
4571static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4572{
4573 int err;
4574 u8 nexthdr;
4575 unsigned int off;
4576 unsigned int len;
4577 bool fragment;
4578 bool done;
4579 __sum16 *csum;
4580
4581 fragment = false;
4582 done = false;
4583
4584 off = sizeof(struct ipv6hdr);
4585
4586 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4587 if (err < 0)
4588 goto out;
4589
4590 nexthdr = ipv6_hdr(skb)->nexthdr;
4591
4592 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4593 while (off <= len && !done) {
4594 switch (nexthdr) {
4595 case IPPROTO_DSTOPTS:
4596 case IPPROTO_HOPOPTS:
4597 case IPPROTO_ROUTING: {
4598 struct ipv6_opt_hdr *hp;
4599
4600 err = skb_maybe_pull_tail(skb,
4601 off +
4602 sizeof(struct ipv6_opt_hdr),
4603 MAX_IPV6_HDR_LEN);
4604 if (err < 0)
4605 goto out;
4606
4607 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4608 nexthdr = hp->nexthdr;
4609 off += ipv6_optlen(hp);
4610 break;
4611 }
4612 case IPPROTO_AH: {
4613 struct ip_auth_hdr *hp;
4614
4615 err = skb_maybe_pull_tail(skb,
4616 off +
4617 sizeof(struct ip_auth_hdr),
4618 MAX_IPV6_HDR_LEN);
4619 if (err < 0)
4620 goto out;
4621
4622 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4623 nexthdr = hp->nexthdr;
4624 off += ipv6_authlen(hp);
4625 break;
4626 }
4627 case IPPROTO_FRAGMENT: {
4628 struct frag_hdr *hp;
4629
4630 err = skb_maybe_pull_tail(skb,
4631 off +
4632 sizeof(struct frag_hdr),
4633 MAX_IPV6_HDR_LEN);
4634 if (err < 0)
4635 goto out;
4636
4637 hp = OPT_HDR(struct frag_hdr, skb, off);
4638
4639 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4640 fragment = true;
4641
4642 nexthdr = hp->nexthdr;
4643 off += sizeof(struct frag_hdr);
4644 break;
4645 }
4646 default:
4647 done = true;
4648 break;
4649 }
4650 }
4651
4652 err = -EPROTO;
4653
4654 if (!done || fragment)
4655 goto out;
4656
4657 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4658 if (IS_ERR(csum))
4659 return PTR_ERR(csum);
4660
4661 if (recalculate)
4662 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4663 &ipv6_hdr(skb)->daddr,
4664 skb->len - off, nexthdr, 0);
4665 err = 0;
4666
4667out:
4668 return err;
4669}
4670
4671/**
4672 * skb_checksum_setup - set up partial checksum offset
4673 * @skb: the skb to set up
4674 * @recalculate: if true the pseudo-header checksum will be recalculated
4675 */
4676int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4677{
4678 int err;
4679
4680 switch (skb->protocol) {
4681 case htons(ETH_P_IP):
4682 err = skb_checksum_setup_ipv4(skb, recalculate);
4683 break;
4684
4685 case htons(ETH_P_IPV6):
4686 err = skb_checksum_setup_ipv6(skb, recalculate);
4687 break;
4688
4689 default:
4690 err = -EPROTO;
4691 break;
4692 }
4693
4694 return err;
4695}
4696EXPORT_SYMBOL(skb_checksum_setup);
4697
4698/**
4699 * skb_checksum_maybe_trim - maybe trims the given skb
4700 * @skb: the skb to check
4701 * @transport_len: the data length beyond the network header
4702 *
4703 * Checks whether the given skb has data beyond the given transport length.
4704 * If so, returns a cloned skb trimmed to this transport length.
4705 * Otherwise returns the provided skb. Returns NULL in error cases
4706 * (e.g. transport_len exceeds skb length or out-of-memory).
4707 *
4708 * Caller needs to set the skb transport header and free any returned skb if it
4709 * differs from the provided skb.
4710 */
4711static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4712 unsigned int transport_len)
4713{
4714 struct sk_buff *skb_chk;
4715 unsigned int len = skb_transport_offset(skb) + transport_len;
4716 int ret;
4717
4718 if (skb->len < len)
4719 return NULL;
4720 else if (skb->len == len)
4721 return skb;
4722
4723 skb_chk = skb_clone(skb, GFP_ATOMIC);
4724 if (!skb_chk)
4725 return NULL;
4726
4727 ret = pskb_trim_rcsum(skb_chk, len);
4728 if (ret) {
4729 kfree_skb(skb_chk);
4730 return NULL;
4731 }
4732
4733 return skb_chk;
4734}
4735
4736/**
4737 * skb_checksum_trimmed - validate checksum of an skb
4738 * @skb: the skb to check
4739 * @transport_len: the data length beyond the network header
4740 * @skb_chkf: checksum function to use
4741 *
4742 * Applies the given checksum function skb_chkf to the provided skb.
4743 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4744 *
4745 * If the skb has data beyond the given transport length, then a
4746 * trimmed & cloned skb is checked and returned.
4747 *
4748 * Caller needs to set the skb transport header and free any returned skb if it
4749 * differs from the provided skb.
4750 */
4751struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4752 unsigned int transport_len,
4753 __sum16(*skb_chkf)(struct sk_buff *skb))
4754{
4755 struct sk_buff *skb_chk;
4756 unsigned int offset = skb_transport_offset(skb);
4757 __sum16 ret;
4758
4759 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4760 if (!skb_chk)
4761 goto err;
4762
4763 if (!pskb_may_pull(skb_chk, offset))
4764 goto err;
4765
4766 skb_pull_rcsum(skb_chk, offset);
4767 ret = skb_chkf(skb_chk);
4768 skb_push_rcsum(skb_chk, offset);
4769
4770 if (ret)
4771 goto err;
4772
4773 return skb_chk;
4774
4775err:
4776 if (skb_chk && skb_chk != skb)
4777 kfree_skb(skb_chk);
4778
4779 return NULL;
4780
4781}
4782EXPORT_SYMBOL(skb_checksum_trimmed);
4783
4784void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4785{
4786 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4787 skb->dev->name);
4788}
4789EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4790
4791void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4792{
4793 if (head_stolen) {
4794 skb_release_head_state(skb);
4795 kmem_cache_free(skbuff_head_cache, skb);
4796 } else {
4797 __kfree_skb(skb);
4798 }
4799}
4800EXPORT_SYMBOL(kfree_skb_partial);
4801
4802/**
4803 * skb_try_coalesce - try to merge skb to prior one
4804 * @to: prior buffer
4805 * @from: buffer to add
4806 * @fragstolen: pointer to boolean
4807 * @delta_truesize: how much more was allocated than was requested
4808 */
4809bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4810 bool *fragstolen, int *delta_truesize)
4811{
4812 struct skb_shared_info *to_shinfo, *from_shinfo;
4813 int i, delta, len = from->len;
4814
4815 *fragstolen = false;
4816
4817 if (skb_cloned(to))
4818 return false;
4819
4820 if (len <= skb_tailroom(to)) {
4821 if (len)
4822 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4823 *delta_truesize = 0;
4824 return true;
4825 }
4826
4827 to_shinfo = skb_shinfo(to);
4828 from_shinfo = skb_shinfo(from);
4829 if (to_shinfo->frag_list || from_shinfo->frag_list)
4830 return false;
4831 if (skb_zcopy(to) || skb_zcopy(from))
4832 return false;
4833
4834 if (skb_headlen(from) != 0) {
4835 struct page *page;
4836 unsigned int offset;
4837
4838 if (to_shinfo->nr_frags +
4839 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4840 return false;
4841
4842 if (skb_head_is_locked(from))
4843 return false;
4844
4845 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4846
4847 page = virt_to_head_page(from->head);
4848 offset = from->data - (unsigned char *)page_address(page);
4849
4850 skb_fill_page_desc(to, to_shinfo->nr_frags,
4851 page, offset, skb_headlen(from));
4852 *fragstolen = true;
4853 } else {
4854 if (to_shinfo->nr_frags +
4855 from_shinfo->nr_frags > MAX_SKB_FRAGS)
4856 return false;
4857
4858 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4859 }
4860
4861 WARN_ON_ONCE(delta < len);
4862
4863 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4864 from_shinfo->frags,
4865 from_shinfo->nr_frags * sizeof(skb_frag_t));
4866 to_shinfo->nr_frags += from_shinfo->nr_frags;
4867
4868 if (!skb_cloned(from))
4869 from_shinfo->nr_frags = 0;
4870
4871 /* if the skb is not cloned this does nothing
4872 * since we set nr_frags to 0.
4873 */
4874 for (i = 0; i < from_shinfo->nr_frags; i++)
4875 __skb_frag_ref(&from_shinfo->frags[i]);
4876
4877 to->truesize += delta;
4878 to->len += len;
4879 to->data_len += len;
4880
4881 *delta_truesize = delta;
4882 return true;
4883}
4884EXPORT_SYMBOL(skb_try_coalesce);
4885
4886/**
4887 * skb_scrub_packet - scrub an skb
4888 *
4889 * @skb: buffer to clean
4890 * @xnet: packet is crossing netns
4891 *
4892 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4893 * into/from a tunnel. Some information have to be cleared during these
4894 * operations.
4895 * skb_scrub_packet can also be used to clean a skb before injecting it in
4896 * another namespace (@xnet == true). We have to clear all information in the
4897 * skb that could impact namespace isolation.
4898 */
4899void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4900{
4901 skb->tstamp = 0;
4902 skb->pkt_type = PACKET_HOST;
4903 skb->skb_iif = 0;
4904 skb->ignore_df = 0;
4905 skb_dst_drop(skb);
4906 secpath_reset(skb);
4907 nf_reset(skb);
4908 nf_reset_trace(skb);
4909
4910 if (!xnet)
4911 return;
4912
4913 ipvs_reset(skb);
4914 skb_orphan(skb);
4915 skb->mark = 0;
4916}
4917EXPORT_SYMBOL_GPL(skb_scrub_packet);
4918
4919/**
4920 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4921 *
4922 * @skb: GSO skb
4923 *
4924 * skb_gso_transport_seglen is used to determine the real size of the
4925 * individual segments, including Layer4 headers (TCP/UDP).
4926 *
4927 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4928 */
4929static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4930{
4931 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4932 unsigned int thlen = 0;
4933
4934 if (skb->encapsulation) {
4935 thlen = skb_inner_transport_header(skb) -
4936 skb_transport_header(skb);
4937
4938 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4939 thlen += inner_tcp_hdrlen(skb);
4940 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4941 thlen = tcp_hdrlen(skb);
4942 } else if (unlikely(skb_is_gso_sctp(skb))) {
4943 thlen = sizeof(struct sctphdr);
4944 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4945 thlen = sizeof(struct udphdr);
4946 }
4947 /* UFO sets gso_size to the size of the fragmentation
4948 * payload, i.e. the size of the L4 (UDP) header is already
4949 * accounted for.
4950 */
4951 return thlen + shinfo->gso_size;
4952}
4953
4954/**
4955 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4956 *
4957 * @skb: GSO skb
4958 *
4959 * skb_gso_network_seglen is used to determine the real size of the
4960 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4961 *
4962 * The MAC/L2 header is not accounted for.
4963 */
4964static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4965{
4966 unsigned int hdr_len = skb_transport_header(skb) -
4967 skb_network_header(skb);
4968
4969 return hdr_len + skb_gso_transport_seglen(skb);
4970}
4971
4972/**
4973 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4974 *
4975 * @skb: GSO skb
4976 *
4977 * skb_gso_mac_seglen is used to determine the real size of the
4978 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4979 * headers (TCP/UDP).
4980 */
4981static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4982{
4983 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4984
4985 return hdr_len + skb_gso_transport_seglen(skb);
4986}
4987
4988/**
4989 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4990 *
4991 * There are a couple of instances where we have a GSO skb, and we
4992 * want to determine what size it would be after it is segmented.
4993 *
4994 * We might want to check:
4995 * - L3+L4+payload size (e.g. IP forwarding)
4996 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
4997 *
4998 * This is a helper to do that correctly considering GSO_BY_FRAGS.
4999 *
5000 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5001 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5002 *
5003 * @max_len: The maximum permissible length.
5004 *
5005 * Returns true if the segmented length <= max length.
5006 */
5007static inline bool skb_gso_size_check(const struct sk_buff *skb,
5008 unsigned int seg_len,
5009 unsigned int max_len) {
5010 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5011 const struct sk_buff *iter;
5012
5013 if (shinfo->gso_size != GSO_BY_FRAGS)
5014 return seg_len <= max_len;
5015
5016 /* Undo this so we can re-use header sizes */
5017 seg_len -= GSO_BY_FRAGS;
5018
5019 skb_walk_frags(skb, iter) {
5020 if (seg_len + skb_headlen(iter) > max_len)
5021 return false;
5022 }
5023
5024 return true;
5025}
5026
5027/**
5028 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5029 *
5030 * @skb: GSO skb
5031 * @mtu: MTU to validate against
5032 *
5033 * skb_gso_validate_network_len validates if a given skb will fit a
5034 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5035 * payload.
5036 */
5037bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5038{
5039 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5040}
5041EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5042
5043/**
5044 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5045 *
5046 * @skb: GSO skb
5047 * @len: length to validate against
5048 *
5049 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5050 * length once split, including L2, L3 and L4 headers and the payload.
5051 */
5052bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5053{
5054 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5055}
5056EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5057
5058static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5059{
5060 int mac_len;
5061
5062 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5063 kfree_skb(skb);
5064 return NULL;
5065 }
5066
5067 mac_len = skb->data - skb_mac_header(skb);
5068 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5069 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5070 mac_len - VLAN_HLEN - ETH_TLEN);
5071 }
5072 skb->mac_header += VLAN_HLEN;
5073 return skb;
5074}
5075
5076struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5077{
5078 struct vlan_hdr *vhdr;
5079 u16 vlan_tci;
5080
5081 if (unlikely(skb_vlan_tag_present(skb))) {
5082 /* vlan_tci is already set-up so leave this for another time */
5083 return skb;
5084 }
5085
5086 skb = skb_share_check(skb, GFP_ATOMIC);
5087 if (unlikely(!skb))
5088 goto err_free;
5089
5090 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5091 goto err_free;
5092
5093 vhdr = (struct vlan_hdr *)skb->data;
5094 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5095 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5096
5097 skb_pull_rcsum(skb, VLAN_HLEN);
5098 vlan_set_encap_proto(skb, vhdr);
5099
5100 skb = skb_reorder_vlan_header(skb);
5101 if (unlikely(!skb))
5102 goto err_free;
5103
5104 skb_reset_network_header(skb);
5105 skb_reset_transport_header(skb);
5106 skb_reset_mac_len(skb);
5107
5108 return skb;
5109
5110err_free:
5111 kfree_skb(skb);
5112 return NULL;
5113}
5114EXPORT_SYMBOL(skb_vlan_untag);
5115
5116int skb_ensure_writable(struct sk_buff *skb, int write_len)
5117{
5118 if (!pskb_may_pull(skb, write_len))
5119 return -ENOMEM;
5120
5121 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5122 return 0;
5123
5124 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5125}
5126EXPORT_SYMBOL(skb_ensure_writable);
5127
5128/* remove VLAN header from packet and update csum accordingly.
5129 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5130 */
5131int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5132{
5133 struct vlan_hdr *vhdr;
5134 int offset = skb->data - skb_mac_header(skb);
5135 int err;
5136
5137 if (WARN_ONCE(offset,
5138 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5139 offset)) {
5140 return -EINVAL;
5141 }
5142
5143 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5144 if (unlikely(err))
5145 return err;
5146
5147 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5148
5149 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5150 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5151
5152 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5153 __skb_pull(skb, VLAN_HLEN);
5154
5155 vlan_set_encap_proto(skb, vhdr);
5156 skb->mac_header += VLAN_HLEN;
5157
5158 if (skb_network_offset(skb) < ETH_HLEN)
5159 skb_set_network_header(skb, ETH_HLEN);
5160
5161 skb_reset_mac_len(skb);
5162
5163 return err;
5164}
5165EXPORT_SYMBOL(__skb_vlan_pop);
5166
5167/* Pop a vlan tag either from hwaccel or from payload.
5168 * Expects skb->data at mac header.
5169 */
5170int skb_vlan_pop(struct sk_buff *skb)
5171{
5172 u16 vlan_tci;
5173 __be16 vlan_proto;
5174 int err;
5175
5176 if (likely(skb_vlan_tag_present(skb))) {
5177 skb->vlan_tci = 0;
5178 } else {
5179 if (unlikely(!eth_type_vlan(skb->protocol)))
5180 return 0;
5181
5182 err = __skb_vlan_pop(skb, &vlan_tci);
5183 if (err)
5184 return err;
5185 }
5186 /* move next vlan tag to hw accel tag */
5187 if (likely(!eth_type_vlan(skb->protocol)))
5188 return 0;
5189
5190 vlan_proto = skb->protocol;
5191 err = __skb_vlan_pop(skb, &vlan_tci);
5192 if (unlikely(err))
5193 return err;
5194
5195 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5196 return 0;
5197}
5198EXPORT_SYMBOL(skb_vlan_pop);
5199
5200/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5201 * Expects skb->data at mac header.
5202 */
5203int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5204{
5205 if (skb_vlan_tag_present(skb)) {
5206 int offset = skb->data - skb_mac_header(skb);
5207 int err;
5208
5209 if (WARN_ONCE(offset,
5210 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5211 offset)) {
5212 return -EINVAL;
5213 }
5214
5215 err = __vlan_insert_tag(skb, skb->vlan_proto,
5216 skb_vlan_tag_get(skb));
5217 if (err)
5218 return err;
5219
5220 skb->protocol = skb->vlan_proto;
5221 skb->mac_len += VLAN_HLEN;
5222
5223 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5224 }
5225 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5226 return 0;
5227}
5228EXPORT_SYMBOL(skb_vlan_push);
5229
5230/**
5231 * alloc_skb_with_frags - allocate skb with page frags
5232 *
5233 * @header_len: size of linear part
5234 * @data_len: needed length in frags
5235 * @max_page_order: max page order desired.
5236 * @errcode: pointer to error code if any
5237 * @gfp_mask: allocation mask
5238 *
5239 * This can be used to allocate a paged skb, given a maximal order for frags.
5240 */
5241struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5242 unsigned long data_len,
5243 int max_page_order,
5244 int *errcode,
5245 gfp_t gfp_mask)
5246{
5247 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5248 unsigned long chunk;
5249 struct sk_buff *skb;
5250 struct page *page;
5251 gfp_t gfp_head;
5252 int i;
5253
5254 *errcode = -EMSGSIZE;
5255 /* Note this test could be relaxed, if we succeed to allocate
5256 * high order pages...
5257 */
5258 if (npages > MAX_SKB_FRAGS)
5259 return NULL;
5260
5261 gfp_head = gfp_mask;
5262 if (gfp_head & __GFP_DIRECT_RECLAIM)
5263 gfp_head |= __GFP_RETRY_MAYFAIL;
5264
5265 *errcode = -ENOBUFS;
5266 skb = alloc_skb(header_len, gfp_head);
5267 if (!skb)
5268 return NULL;
5269
5270 skb->truesize += npages << PAGE_SHIFT;
5271
5272 for (i = 0; npages > 0; i++) {
5273 int order = max_page_order;
5274
5275 while (order) {
5276 if (npages >= 1 << order) {
5277 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5278 __GFP_COMP |
5279 __GFP_NOWARN |
5280 __GFP_NORETRY,
5281 order);
5282 if (page)
5283 goto fill_page;
5284 /* Do not retry other high order allocations */
5285 order = 1;
5286 max_page_order = 0;
5287 }
5288 order--;
5289 }
5290 page = alloc_page(gfp_mask);
5291 if (!page)
5292 goto failure;
5293fill_page:
5294 chunk = min_t(unsigned long, data_len,
5295 PAGE_SIZE << order);
5296 skb_fill_page_desc(skb, i, page, 0, chunk);
5297 data_len -= chunk;
5298 npages -= 1 << order;
5299 }
5300 return skb;
5301
5302failure:
5303 kfree_skb(skb);
5304 return NULL;
5305}
5306EXPORT_SYMBOL(alloc_skb_with_frags);
5307
5308/* carve out the first off bytes from skb when off < headlen */
5309static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5310 const int headlen, gfp_t gfp_mask)
5311{
5312 int i;
5313 int size = skb_end_offset(skb);
5314 int new_hlen = headlen - off;
5315 u8 *data;
5316
5317 size = SKB_DATA_ALIGN(size);
5318
5319 if (skb_pfmemalloc(skb))
5320 gfp_mask |= __GFP_MEMALLOC;
5321 data = kmalloc_reserve(size +
5322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5323 gfp_mask, NUMA_NO_NODE, NULL);
5324 if (!data)
5325 return -ENOMEM;
5326
5327 size = SKB_WITH_OVERHEAD(ksize(data));
5328
5329 /* Copy real data, and all frags */
5330 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5331 skb->len -= off;
5332
5333 memcpy((struct skb_shared_info *)(data + size),
5334 skb_shinfo(skb),
5335 offsetof(struct skb_shared_info,
5336 frags[skb_shinfo(skb)->nr_frags]));
5337 if (skb_cloned(skb)) {
5338 /* drop the old head gracefully */
5339 if (skb_orphan_frags(skb, gfp_mask)) {
5340 kfree(data);
5341 return -ENOMEM;
5342 }
5343 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5344 skb_frag_ref(skb, i);
5345 if (skb_has_frag_list(skb))
5346 skb_clone_fraglist(skb);
5347 skb_release_data(skb);
5348 } else {
5349 /* we can reuse existing recount- all we did was
5350 * relocate values
5351 */
5352 skb_free_head(skb);
5353 }
5354
5355 skb->head = data;
5356 skb->data = data;
5357 skb->head_frag = 0;
5358#ifdef NET_SKBUFF_DATA_USES_OFFSET
5359 skb->end = size;
5360#else
5361 skb->end = skb->head + size;
5362#endif
5363 skb_set_tail_pointer(skb, skb_headlen(skb));
5364 skb_headers_offset_update(skb, 0);
5365 skb->cloned = 0;
5366 skb->hdr_len = 0;
5367 skb->nohdr = 0;
5368 atomic_set(&skb_shinfo(skb)->dataref, 1);
5369
5370 return 0;
5371}
5372
5373static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5374
5375/* carve out the first eat bytes from skb's frag_list. May recurse into
5376 * pskb_carve()
5377 */
5378static int pskb_carve_frag_list(struct sk_buff *skb,
5379 struct skb_shared_info *shinfo, int eat,
5380 gfp_t gfp_mask)
5381{
5382 struct sk_buff *list = shinfo->frag_list;
5383 struct sk_buff *clone = NULL;
5384 struct sk_buff *insp = NULL;
5385
5386 do {
5387 if (!list) {
5388 pr_err("Not enough bytes to eat. Want %d\n", eat);
5389 return -EFAULT;
5390 }
5391 if (list->len <= eat) {
5392 /* Eaten as whole. */
5393 eat -= list->len;
5394 list = list->next;
5395 insp = list;
5396 } else {
5397 /* Eaten partially. */
5398 if (skb_shared(list)) {
5399 clone = skb_clone(list, gfp_mask);
5400 if (!clone)
5401 return -ENOMEM;
5402 insp = list->next;
5403 list = clone;
5404 } else {
5405 /* This may be pulled without problems. */
5406 insp = list;
5407 }
5408 if (pskb_carve(list, eat, gfp_mask) < 0) {
5409 kfree_skb(clone);
5410 return -ENOMEM;
5411 }
5412 break;
5413 }
5414 } while (eat);
5415
5416 /* Free pulled out fragments. */
5417 while ((list = shinfo->frag_list) != insp) {
5418 shinfo->frag_list = list->next;
5419 kfree_skb(list);
5420 }
5421 /* And insert new clone at head. */
5422 if (clone) {
5423 clone->next = list;
5424 shinfo->frag_list = clone;
5425 }
5426 return 0;
5427}
5428
5429/* carve off first len bytes from skb. Split line (off) is in the
5430 * non-linear part of skb
5431 */
5432static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5433 int pos, gfp_t gfp_mask)
5434{
5435 int i, k = 0;
5436 int size = skb_end_offset(skb);
5437 u8 *data;
5438 const int nfrags = skb_shinfo(skb)->nr_frags;
5439 struct skb_shared_info *shinfo;
5440
5441 size = SKB_DATA_ALIGN(size);
5442
5443 if (skb_pfmemalloc(skb))
5444 gfp_mask |= __GFP_MEMALLOC;
5445 data = kmalloc_reserve(size +
5446 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5447 gfp_mask, NUMA_NO_NODE, NULL);
5448 if (!data)
5449 return -ENOMEM;
5450
5451 size = SKB_WITH_OVERHEAD(ksize(data));
5452
5453 memcpy((struct skb_shared_info *)(data + size),
5454 skb_shinfo(skb), offsetof(struct skb_shared_info,
5455 frags[skb_shinfo(skb)->nr_frags]));
5456 if (skb_orphan_frags(skb, gfp_mask)) {
5457 kfree(data);
5458 return -ENOMEM;
5459 }
5460 shinfo = (struct skb_shared_info *)(data + size);
5461 for (i = 0; i < nfrags; i++) {
5462 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5463
5464 if (pos + fsize > off) {
5465 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5466
5467 if (pos < off) {
5468 /* Split frag.
5469 * We have two variants in this case:
5470 * 1. Move all the frag to the second
5471 * part, if it is possible. F.e.
5472 * this approach is mandatory for TUX,
5473 * where splitting is expensive.
5474 * 2. Split is accurately. We make this.
5475 */
5476 shinfo->frags[0].page_offset += off - pos;
5477 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5478 }
5479 skb_frag_ref(skb, i);
5480 k++;
5481 }
5482 pos += fsize;
5483 }
5484 shinfo->nr_frags = k;
5485 if (skb_has_frag_list(skb))
5486 skb_clone_fraglist(skb);
5487
5488 if (k == 0) {
5489 /* split line is in frag list */
5490 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5491 }
5492 skb_release_data(skb);
5493
5494 skb->head = data;
5495 skb->head_frag = 0;
5496 skb->data = data;
5497#ifdef NET_SKBUFF_DATA_USES_OFFSET
5498 skb->end = size;
5499#else
5500 skb->end = skb->head + size;
5501#endif
5502 skb_reset_tail_pointer(skb);
5503 skb_headers_offset_update(skb, 0);
5504 skb->cloned = 0;
5505 skb->hdr_len = 0;
5506 skb->nohdr = 0;
5507 skb->len -= off;
5508 skb->data_len = skb->len;
5509 atomic_set(&skb_shinfo(skb)->dataref, 1);
5510 return 0;
5511}
5512
5513/* remove len bytes from the beginning of the skb */
5514static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5515{
5516 int headlen = skb_headlen(skb);
5517
5518 if (len < headlen)
5519 return pskb_carve_inside_header(skb, len, headlen, gfp);
5520 else
5521 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5522}
5523
5524/* Extract to_copy bytes starting at off from skb, and return this in
5525 * a new skb
5526 */
5527struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5528 int to_copy, gfp_t gfp)
5529{
5530 struct sk_buff *clone = skb_clone(skb, gfp);
5531
5532 if (!clone)
5533 return NULL;
5534
5535 if (pskb_carve(clone, off, gfp) < 0 ||
5536 pskb_trim(clone, to_copy)) {
5537 kfree_skb(clone);
5538 return NULL;
5539 }
5540 return clone;
5541}
5542EXPORT_SYMBOL(pskb_extract);
5543
5544/**
5545 * skb_condense - try to get rid of fragments/frag_list if possible
5546 * @skb: buffer
5547 *
5548 * Can be used to save memory before skb is added to a busy queue.
5549 * If packet has bytes in frags and enough tail room in skb->head,
5550 * pull all of them, so that we can free the frags right now and adjust
5551 * truesize.
5552 * Notes:
5553 * We do not reallocate skb->head thus can not fail.
5554 * Caller must re-evaluate skb->truesize if needed.
5555 */
5556void skb_condense(struct sk_buff *skb)
5557{
5558 if (skb->data_len) {
5559 if (skb->data_len > skb->end - skb->tail ||
5560 skb_cloned(skb))
5561 return;
5562
5563 /* Nice, we can free page frag(s) right now */
5564 __pskb_pull_tail(skb, skb->data_len);
5565 }
5566 /* At this point, skb->truesize might be over estimated,
5567 * because skb had a fragment, and fragments do not tell
5568 * their truesize.
5569 * When we pulled its content into skb->head, fragment
5570 * was freed, but __pskb_pull_tail() could not possibly
5571 * adjust skb->truesize, not knowing the frag truesize.
5572 */
5573 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5574}