Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_TYPES_H
3#define _LINUX_MM_TYPES_H
4
5#include <linux/mm_types_task.h>
6
7#include <linux/auxvec.h>
8#include <linux/list.h>
9#include <linux/spinlock.h>
10#include <linux/rbtree.h>
11#include <linux/rwsem.h>
12#include <linux/completion.h>
13#include <linux/cpumask.h>
14#include <linux/uprobes.h>
15#include <linux/page-flags-layout.h>
16#include <linux/workqueue.h>
17
18#include <asm/mmu.h>
19
20#ifndef AT_VECTOR_SIZE_ARCH
21#define AT_VECTOR_SIZE_ARCH 0
22#endif
23#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
24
25typedef int vm_fault_t;
26
27struct address_space;
28struct mem_cgroup;
29struct hmm;
30
31/*
32 * Each physical page in the system has a struct page associated with
33 * it to keep track of whatever it is we are using the page for at the
34 * moment. Note that we have no way to track which tasks are using
35 * a page, though if it is a pagecache page, rmap structures can tell us
36 * who is mapping it. If you allocate the page using alloc_pages(), you
37 * can use some of the space in struct page for your own purposes.
38 *
39 * Pages that were once in the page cache may be found under the RCU lock
40 * even after they have been recycled to a different purpose. The page
41 * cache reads and writes some of the fields in struct page to pin the
42 * page before checking that it's still in the page cache. It is vital
43 * that all users of struct page:
44 * 1. Use the first word as PageFlags.
45 * 2. Clear or preserve bit 0 of page->compound_head. It is used as
46 * PageTail for compound pages, and the page cache must not see false
47 * positives. Some users put a pointer here (guaranteed to be at least
48 * 4-byte aligned), other users avoid using the field altogether.
49 * 3. page->_refcount must either not be used, or must be used in such a
50 * way that other CPUs temporarily incrementing and then decrementing the
51 * refcount does not cause problems. On receiving the page from
52 * alloc_pages(), the refcount will be positive.
53 * 4. Either preserve page->_mapcount or restore it to -1 before freeing it.
54 *
55 * If you allocate pages of order > 0, you can use the fields in the struct
56 * page associated with each page, but bear in mind that the pages may have
57 * been inserted individually into the page cache, so you must use the above
58 * four fields in a compatible way for each struct page.
59 *
60 * SLUB uses cmpxchg_double() to atomically update its freelist and
61 * counters. That requires that freelist & counters be adjacent and
62 * double-word aligned. We align all struct pages to double-word
63 * boundaries, and ensure that 'freelist' is aligned within the
64 * struct.
65 */
66#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
67#define _struct_page_alignment __aligned(2 * sizeof(unsigned long))
68#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
69#define _slub_counter_t unsigned long
70#else
71#define _slub_counter_t unsigned int
72#endif
73#else /* !CONFIG_HAVE_ALIGNED_STRUCT_PAGE */
74#define _struct_page_alignment
75#define _slub_counter_t unsigned int
76#endif /* !CONFIG_HAVE_ALIGNED_STRUCT_PAGE */
77
78struct page {
79 /* First double word block */
80 unsigned long flags; /* Atomic flags, some possibly
81 * updated asynchronously */
82 union {
83 /* See page-flags.h for the definition of PAGE_MAPPING_FLAGS */
84 struct address_space *mapping;
85
86 void *s_mem; /* slab first object */
87 atomic_t compound_mapcount; /* first tail page */
88 /* page_deferred_list().next -- second tail page */
89 };
90
91 /* Second double word */
92 union {
93 pgoff_t index; /* Our offset within mapping. */
94 void *freelist; /* sl[aou]b first free object */
95 /* page_deferred_list().prev -- second tail page */
96 };
97
98 union {
99 _slub_counter_t counters;
100 unsigned int active; /* SLAB */
101 struct { /* SLUB */
102 unsigned inuse:16;
103 unsigned objects:15;
104 unsigned frozen:1;
105 };
106 int units; /* SLOB */
107
108 struct { /* Page cache */
109 /*
110 * Count of ptes mapped in mms, to show when
111 * page is mapped & limit reverse map searches.
112 *
113 * Extra information about page type may be
114 * stored here for pages that are never mapped,
115 * in which case the value MUST BE <= -2.
116 * See page-flags.h for more details.
117 */
118 atomic_t _mapcount;
119
120 /*
121 * Usage count, *USE WRAPPER FUNCTION* when manual
122 * accounting. See page_ref.h
123 */
124 atomic_t _refcount;
125 };
126 };
127
128 /*
129 * WARNING: bit 0 of the first word encode PageTail(). That means
130 * the rest users of the storage space MUST NOT use the bit to
131 * avoid collision and false-positive PageTail().
132 */
133 union {
134 struct list_head lru; /* Pageout list, eg. active_list
135 * protected by zone_lru_lock !
136 * Can be used as a generic list
137 * by the page owner.
138 */
139 struct dev_pagemap *pgmap; /* ZONE_DEVICE pages are never on an
140 * lru or handled by a slab
141 * allocator, this points to the
142 * hosting device page map.
143 */
144 struct { /* slub per cpu partial pages */
145 struct page *next; /* Next partial slab */
146#ifdef CONFIG_64BIT
147 int pages; /* Nr of partial slabs left */
148 int pobjects; /* Approximate # of objects */
149#else
150 short int pages;
151 short int pobjects;
152#endif
153 };
154
155 struct rcu_head rcu_head; /* Used by SLAB
156 * when destroying via RCU
157 */
158 /* Tail pages of compound page */
159 struct {
160 unsigned long compound_head; /* If bit zero is set */
161
162 /* First tail page only */
163 unsigned char compound_dtor;
164 unsigned char compound_order;
165 /* two/six bytes available here */
166 };
167
168#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
169 struct {
170 unsigned long __pad; /* do not overlay pmd_huge_pte
171 * with compound_head to avoid
172 * possible bit 0 collision.
173 */
174 pgtable_t pmd_huge_pte; /* protected by page->ptl */
175 };
176#endif
177 };
178
179 union {
180 /*
181 * Mapping-private opaque data:
182 * Usually used for buffer_heads if PagePrivate
183 * Used for swp_entry_t if PageSwapCache
184 * Indicates order in the buddy system if PageBuddy
185 */
186 unsigned long private;
187#if USE_SPLIT_PTE_PTLOCKS
188#if ALLOC_SPLIT_PTLOCKS
189 spinlock_t *ptl;
190#else
191 spinlock_t ptl;
192#endif
193#endif
194 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */
195 };
196
197#ifdef CONFIG_MEMCG
198 struct mem_cgroup *mem_cgroup;
199#endif
200
201 /*
202 * On machines where all RAM is mapped into kernel address space,
203 * we can simply calculate the virtual address. On machines with
204 * highmem some memory is mapped into kernel virtual memory
205 * dynamically, so we need a place to store that address.
206 * Note that this field could be 16 bits on x86 ... ;)
207 *
208 * Architectures with slow multiplication can define
209 * WANT_PAGE_VIRTUAL in asm/page.h
210 */
211#if defined(WANT_PAGE_VIRTUAL)
212 void *virtual; /* Kernel virtual address (NULL if
213 not kmapped, ie. highmem) */
214#endif /* WANT_PAGE_VIRTUAL */
215
216#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
217 int _last_cpupid;
218#endif
219} _struct_page_alignment;
220
221#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK)
222#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE)
223
224struct page_frag_cache {
225 void * va;
226#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
227 __u16 offset;
228 __u16 size;
229#else
230 __u32 offset;
231#endif
232 /* we maintain a pagecount bias, so that we dont dirty cache line
233 * containing page->_refcount every time we allocate a fragment.
234 */
235 unsigned int pagecnt_bias;
236 bool pfmemalloc;
237};
238
239typedef unsigned long vm_flags_t;
240
241/*
242 * A region containing a mapping of a non-memory backed file under NOMMU
243 * conditions. These are held in a global tree and are pinned by the VMAs that
244 * map parts of them.
245 */
246struct vm_region {
247 struct rb_node vm_rb; /* link in global region tree */
248 vm_flags_t vm_flags; /* VMA vm_flags */
249 unsigned long vm_start; /* start address of region */
250 unsigned long vm_end; /* region initialised to here */
251 unsigned long vm_top; /* region allocated to here */
252 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
253 struct file *vm_file; /* the backing file or NULL */
254
255 int vm_usage; /* region usage count (access under nommu_region_sem) */
256 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
257 * this region */
258};
259
260#ifdef CONFIG_USERFAULTFD
261#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
262struct vm_userfaultfd_ctx {
263 struct userfaultfd_ctx *ctx;
264};
265#else /* CONFIG_USERFAULTFD */
266#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
267struct vm_userfaultfd_ctx {};
268#endif /* CONFIG_USERFAULTFD */
269
270/*
271 * This struct defines a memory VMM memory area. There is one of these
272 * per VM-area/task. A VM area is any part of the process virtual memory
273 * space that has a special rule for the page-fault handlers (ie a shared
274 * library, the executable area etc).
275 */
276struct vm_area_struct {
277 /* The first cache line has the info for VMA tree walking. */
278
279 unsigned long vm_start; /* Our start address within vm_mm. */
280 unsigned long vm_end; /* The first byte after our end address
281 within vm_mm. */
282
283 /* linked list of VM areas per task, sorted by address */
284 struct vm_area_struct *vm_next, *vm_prev;
285
286 struct rb_node vm_rb;
287
288 /*
289 * Largest free memory gap in bytes to the left of this VMA.
290 * Either between this VMA and vma->vm_prev, or between one of the
291 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
292 * get_unmapped_area find a free area of the right size.
293 */
294 unsigned long rb_subtree_gap;
295
296 /* Second cache line starts here. */
297
298 struct mm_struct *vm_mm; /* The address space we belong to. */
299 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
300 unsigned long vm_flags; /* Flags, see mm.h. */
301
302 /*
303 * For areas with an address space and backing store,
304 * linkage into the address_space->i_mmap interval tree.
305 */
306 struct {
307 struct rb_node rb;
308 unsigned long rb_subtree_last;
309 } shared;
310
311 /*
312 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
313 * list, after a COW of one of the file pages. A MAP_SHARED vma
314 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
315 * or brk vma (with NULL file) can only be in an anon_vma list.
316 */
317 struct list_head anon_vma_chain; /* Serialized by mmap_sem &
318 * page_table_lock */
319 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
320
321 /* Function pointers to deal with this struct. */
322 const struct vm_operations_struct *vm_ops;
323
324 /* Information about our backing store: */
325 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
326 units */
327 struct file * vm_file; /* File we map to (can be NULL). */
328 void * vm_private_data; /* was vm_pte (shared mem) */
329
330 atomic_long_t swap_readahead_info;
331#ifndef CONFIG_MMU
332 struct vm_region *vm_region; /* NOMMU mapping region */
333#endif
334#ifdef CONFIG_NUMA
335 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
336#endif
337 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
338} __randomize_layout;
339
340struct core_thread {
341 struct task_struct *task;
342 struct core_thread *next;
343};
344
345struct core_state {
346 atomic_t nr_threads;
347 struct core_thread dumper;
348 struct completion startup;
349};
350
351struct kioctx_table;
352struct mm_struct {
353 struct vm_area_struct *mmap; /* list of VMAs */
354 struct rb_root mm_rb;
355 u32 vmacache_seqnum; /* per-thread vmacache */
356#ifdef CONFIG_MMU
357 unsigned long (*get_unmapped_area) (struct file *filp,
358 unsigned long addr, unsigned long len,
359 unsigned long pgoff, unsigned long flags);
360#endif
361 unsigned long mmap_base; /* base of mmap area */
362 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
363#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
364 /* Base adresses for compatible mmap() */
365 unsigned long mmap_compat_base;
366 unsigned long mmap_compat_legacy_base;
367#endif
368 unsigned long task_size; /* size of task vm space */
369 unsigned long highest_vm_end; /* highest vma end address */
370 pgd_t * pgd;
371
372 /**
373 * @mm_users: The number of users including userspace.
374 *
375 * Use mmget()/mmget_not_zero()/mmput() to modify. When this drops
376 * to 0 (i.e. when the task exits and there are no other temporary
377 * reference holders), we also release a reference on @mm_count
378 * (which may then free the &struct mm_struct if @mm_count also
379 * drops to 0).
380 */
381 atomic_t mm_users;
382
383 /**
384 * @mm_count: The number of references to &struct mm_struct
385 * (@mm_users count as 1).
386 *
387 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
388 * &struct mm_struct is freed.
389 */
390 atomic_t mm_count;
391
392#ifdef CONFIG_MMU
393 atomic_long_t pgtables_bytes; /* PTE page table pages */
394#endif
395 int map_count; /* number of VMAs */
396
397 spinlock_t page_table_lock; /* Protects page tables and some counters */
398 struct rw_semaphore mmap_sem;
399
400 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
401 * together off init_mm.mmlist, and are protected
402 * by mmlist_lock
403 */
404
405
406 unsigned long hiwater_rss; /* High-watermark of RSS usage */
407 unsigned long hiwater_vm; /* High-water virtual memory usage */
408
409 unsigned long total_vm; /* Total pages mapped */
410 unsigned long locked_vm; /* Pages that have PG_mlocked set */
411 unsigned long pinned_vm; /* Refcount permanently increased */
412 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
413 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
414 unsigned long stack_vm; /* VM_STACK */
415 unsigned long def_flags;
416 unsigned long start_code, end_code, start_data, end_data;
417 unsigned long start_brk, brk, start_stack;
418 unsigned long arg_start, arg_end, env_start, env_end;
419
420 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
421
422 /*
423 * Special counters, in some configurations protected by the
424 * page_table_lock, in other configurations by being atomic.
425 */
426 struct mm_rss_stat rss_stat;
427
428 struct linux_binfmt *binfmt;
429
430 cpumask_var_t cpu_vm_mask_var;
431
432 /* Architecture-specific MM context */
433 mm_context_t context;
434
435 unsigned long flags; /* Must use atomic bitops to access the bits */
436
437 struct core_state *core_state; /* coredumping support */
438#ifdef CONFIG_MEMBARRIER
439 atomic_t membarrier_state;
440#endif
441#ifdef CONFIG_AIO
442 spinlock_t ioctx_lock;
443 struct kioctx_table __rcu *ioctx_table;
444#endif
445#ifdef CONFIG_MEMCG
446 /*
447 * "owner" points to a task that is regarded as the canonical
448 * user/owner of this mm. All of the following must be true in
449 * order for it to be changed:
450 *
451 * current == mm->owner
452 * current->mm != mm
453 * new_owner->mm == mm
454 * new_owner->alloc_lock is held
455 */
456 struct task_struct __rcu *owner;
457#endif
458 struct user_namespace *user_ns;
459
460 /* store ref to file /proc/<pid>/exe symlink points to */
461 struct file __rcu *exe_file;
462#ifdef CONFIG_MMU_NOTIFIER
463 struct mmu_notifier_mm *mmu_notifier_mm;
464#endif
465#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
466 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
467#endif
468#ifdef CONFIG_CPUMASK_OFFSTACK
469 struct cpumask cpumask_allocation;
470#endif
471#ifdef CONFIG_NUMA_BALANCING
472 /*
473 * numa_next_scan is the next time that the PTEs will be marked
474 * pte_numa. NUMA hinting faults will gather statistics and migrate
475 * pages to new nodes if necessary.
476 */
477 unsigned long numa_next_scan;
478
479 /* Restart point for scanning and setting pte_numa */
480 unsigned long numa_scan_offset;
481
482 /* numa_scan_seq prevents two threads setting pte_numa */
483 int numa_scan_seq;
484#endif
485 /*
486 * An operation with batched TLB flushing is going on. Anything that
487 * can move process memory needs to flush the TLB when moving a
488 * PROT_NONE or PROT_NUMA mapped page.
489 */
490 atomic_t tlb_flush_pending;
491#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
492 /* See flush_tlb_batched_pending() */
493 bool tlb_flush_batched;
494#endif
495 struct uprobes_state uprobes_state;
496#ifdef CONFIG_HUGETLB_PAGE
497 atomic_long_t hugetlb_usage;
498#endif
499 struct work_struct async_put_work;
500
501#if IS_ENABLED(CONFIG_HMM)
502 /* HMM needs to track a few things per mm */
503 struct hmm *hmm;
504#endif
505} __randomize_layout;
506
507extern struct mm_struct init_mm;
508
509static inline void mm_init_cpumask(struct mm_struct *mm)
510{
511#ifdef CONFIG_CPUMASK_OFFSTACK
512 mm->cpu_vm_mask_var = &mm->cpumask_allocation;
513#endif
514 cpumask_clear(mm->cpu_vm_mask_var);
515}
516
517/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
518static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
519{
520 return mm->cpu_vm_mask_var;
521}
522
523struct mmu_gather;
524extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
525 unsigned long start, unsigned long end);
526extern void tlb_finish_mmu(struct mmu_gather *tlb,
527 unsigned long start, unsigned long end);
528
529static inline void init_tlb_flush_pending(struct mm_struct *mm)
530{
531 atomic_set(&mm->tlb_flush_pending, 0);
532}
533
534static inline void inc_tlb_flush_pending(struct mm_struct *mm)
535{
536 atomic_inc(&mm->tlb_flush_pending);
537 /*
538 * The only time this value is relevant is when there are indeed pages
539 * to flush. And we'll only flush pages after changing them, which
540 * requires the PTL.
541 *
542 * So the ordering here is:
543 *
544 * atomic_inc(&mm->tlb_flush_pending);
545 * spin_lock(&ptl);
546 * ...
547 * set_pte_at();
548 * spin_unlock(&ptl);
549 *
550 * spin_lock(&ptl)
551 * mm_tlb_flush_pending();
552 * ....
553 * spin_unlock(&ptl);
554 *
555 * flush_tlb_range();
556 * atomic_dec(&mm->tlb_flush_pending);
557 *
558 * Where the increment if constrained by the PTL unlock, it thus
559 * ensures that the increment is visible if the PTE modification is
560 * visible. After all, if there is no PTE modification, nobody cares
561 * about TLB flushes either.
562 *
563 * This very much relies on users (mm_tlb_flush_pending() and
564 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
565 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
566 * locks (PPC) the unlock of one doesn't order against the lock of
567 * another PTL.
568 *
569 * The decrement is ordered by the flush_tlb_range(), such that
570 * mm_tlb_flush_pending() will not return false unless all flushes have
571 * completed.
572 */
573}
574
575static inline void dec_tlb_flush_pending(struct mm_struct *mm)
576{
577 /*
578 * See inc_tlb_flush_pending().
579 *
580 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
581 * not order against TLB invalidate completion, which is what we need.
582 *
583 * Therefore we must rely on tlb_flush_*() to guarantee order.
584 */
585 atomic_dec(&mm->tlb_flush_pending);
586}
587
588static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
589{
590 /*
591 * Must be called after having acquired the PTL; orders against that
592 * PTLs release and therefore ensures that if we observe the modified
593 * PTE we must also observe the increment from inc_tlb_flush_pending().
594 *
595 * That is, it only guarantees to return true if there is a flush
596 * pending for _this_ PTL.
597 */
598 return atomic_read(&mm->tlb_flush_pending);
599}
600
601static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
602{
603 /*
604 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
605 * for which there is a TLB flush pending in order to guarantee
606 * we've seen both that PTE modification and the increment.
607 *
608 * (no requirement on actually still holding the PTL, that is irrelevant)
609 */
610 return atomic_read(&mm->tlb_flush_pending) > 1;
611}
612
613struct vm_fault;
614
615struct vm_special_mapping {
616 const char *name; /* The name, e.g. "[vdso]". */
617
618 /*
619 * If .fault is not provided, this points to a
620 * NULL-terminated array of pages that back the special mapping.
621 *
622 * This must not be NULL unless .fault is provided.
623 */
624 struct page **pages;
625
626 /*
627 * If non-NULL, then this is called to resolve page faults
628 * on the special mapping. If used, .pages is not checked.
629 */
630 int (*fault)(const struct vm_special_mapping *sm,
631 struct vm_area_struct *vma,
632 struct vm_fault *vmf);
633
634 int (*mremap)(const struct vm_special_mapping *sm,
635 struct vm_area_struct *new_vma);
636};
637
638enum tlb_flush_reason {
639 TLB_FLUSH_ON_TASK_SWITCH,
640 TLB_REMOTE_SHOOTDOWN,
641 TLB_LOCAL_SHOOTDOWN,
642 TLB_LOCAL_MM_SHOOTDOWN,
643 TLB_REMOTE_SEND_IPI,
644 NR_TLB_FLUSH_REASONS,
645};
646
647 /*
648 * A swap entry has to fit into a "unsigned long", as the entry is hidden
649 * in the "index" field of the swapper address space.
650 */
651typedef struct {
652 unsigned long val;
653} swp_entry_t;
654
655#endif /* _LINUX_MM_TYPES_H */