at v4.17 26 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_CGROUP_H 3#define _LINUX_CGROUP_H 4/* 5 * cgroup interface 6 * 7 * Copyright (C) 2003 BULL SA 8 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 9 * 10 */ 11 12#include <linux/sched.h> 13#include <linux/cpumask.h> 14#include <linux/nodemask.h> 15#include <linux/rculist.h> 16#include <linux/cgroupstats.h> 17#include <linux/fs.h> 18#include <linux/seq_file.h> 19#include <linux/kernfs.h> 20#include <linux/jump_label.h> 21#include <linux/types.h> 22#include <linux/ns_common.h> 23#include <linux/nsproxy.h> 24#include <linux/user_namespace.h> 25#include <linux/refcount.h> 26#include <linux/kernel_stat.h> 27 28#include <linux/cgroup-defs.h> 29 30#ifdef CONFIG_CGROUPS 31 32/* 33 * All weight knobs on the default hierarhcy should use the following min, 34 * default and max values. The default value is the logarithmic center of 35 * MIN and MAX and allows 100x to be expressed in both directions. 36 */ 37#define CGROUP_WEIGHT_MIN 1 38#define CGROUP_WEIGHT_DFL 100 39#define CGROUP_WEIGHT_MAX 10000 40 41/* walk only threadgroup leaders */ 42#define CSS_TASK_ITER_PROCS (1U << 0) 43/* walk all threaded css_sets in the domain */ 44#define CSS_TASK_ITER_THREADED (1U << 1) 45 46/* a css_task_iter should be treated as an opaque object */ 47struct css_task_iter { 48 struct cgroup_subsys *ss; 49 unsigned int flags; 50 51 struct list_head *cset_pos; 52 struct list_head *cset_head; 53 54 struct list_head *tcset_pos; 55 struct list_head *tcset_head; 56 57 struct list_head *task_pos; 58 struct list_head *tasks_head; 59 struct list_head *mg_tasks_head; 60 61 struct css_set *cur_cset; 62 struct css_set *cur_dcset; 63 struct task_struct *cur_task; 64 struct list_head iters_node; /* css_set->task_iters */ 65}; 66 67extern struct cgroup_root cgrp_dfl_root; 68extern struct css_set init_css_set; 69 70#define SUBSYS(_x) extern struct cgroup_subsys _x ## _cgrp_subsys; 71#include <linux/cgroup_subsys.h> 72#undef SUBSYS 73 74#define SUBSYS(_x) \ 75 extern struct static_key_true _x ## _cgrp_subsys_enabled_key; \ 76 extern struct static_key_true _x ## _cgrp_subsys_on_dfl_key; 77#include <linux/cgroup_subsys.h> 78#undef SUBSYS 79 80/** 81 * cgroup_subsys_enabled - fast test on whether a subsys is enabled 82 * @ss: subsystem in question 83 */ 84#define cgroup_subsys_enabled(ss) \ 85 static_branch_likely(&ss ## _enabled_key) 86 87/** 88 * cgroup_subsys_on_dfl - fast test on whether a subsys is on default hierarchy 89 * @ss: subsystem in question 90 */ 91#define cgroup_subsys_on_dfl(ss) \ 92 static_branch_likely(&ss ## _on_dfl_key) 93 94bool css_has_online_children(struct cgroup_subsys_state *css); 95struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss); 96struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgroup, 97 struct cgroup_subsys *ss); 98struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 99 struct cgroup_subsys *ss); 100 101struct cgroup *cgroup_get_from_path(const char *path); 102struct cgroup *cgroup_get_from_fd(int fd); 103 104int cgroup_attach_task_all(struct task_struct *from, struct task_struct *); 105int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from); 106 107int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts); 108int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts); 109int cgroup_rm_cftypes(struct cftype *cfts); 110void cgroup_file_notify(struct cgroup_file *cfile); 111 112int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen); 113int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry); 114int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 115 struct pid *pid, struct task_struct *tsk); 116 117void cgroup_fork(struct task_struct *p); 118extern int cgroup_can_fork(struct task_struct *p); 119extern void cgroup_cancel_fork(struct task_struct *p); 120extern void cgroup_post_fork(struct task_struct *p); 121void cgroup_exit(struct task_struct *p); 122void cgroup_free(struct task_struct *p); 123 124int cgroup_init_early(void); 125int cgroup_init(void); 126 127/* 128 * Iteration helpers and macros. 129 */ 130 131struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 132 struct cgroup_subsys_state *parent); 133struct cgroup_subsys_state *css_next_descendant_pre(struct cgroup_subsys_state *pos, 134 struct cgroup_subsys_state *css); 135struct cgroup_subsys_state *css_rightmost_descendant(struct cgroup_subsys_state *pos); 136struct cgroup_subsys_state *css_next_descendant_post(struct cgroup_subsys_state *pos, 137 struct cgroup_subsys_state *css); 138 139struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 140 struct cgroup_subsys_state **dst_cssp); 141struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 142 struct cgroup_subsys_state **dst_cssp); 143 144void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 145 struct css_task_iter *it); 146struct task_struct *css_task_iter_next(struct css_task_iter *it); 147void css_task_iter_end(struct css_task_iter *it); 148 149/** 150 * css_for_each_child - iterate through children of a css 151 * @pos: the css * to use as the loop cursor 152 * @parent: css whose children to walk 153 * 154 * Walk @parent's children. Must be called under rcu_read_lock(). 155 * 156 * If a subsystem synchronizes ->css_online() and the start of iteration, a 157 * css which finished ->css_online() is guaranteed to be visible in the 158 * future iterations and will stay visible until the last reference is put. 159 * A css which hasn't finished ->css_online() or already finished 160 * ->css_offline() may show up during traversal. It's each subsystem's 161 * responsibility to synchronize against on/offlining. 162 * 163 * It is allowed to temporarily drop RCU read lock during iteration. The 164 * caller is responsible for ensuring that @pos remains accessible until 165 * the start of the next iteration by, for example, bumping the css refcnt. 166 */ 167#define css_for_each_child(pos, parent) \ 168 for ((pos) = css_next_child(NULL, (parent)); (pos); \ 169 (pos) = css_next_child((pos), (parent))) 170 171/** 172 * css_for_each_descendant_pre - pre-order walk of a css's descendants 173 * @pos: the css * to use as the loop cursor 174 * @root: css whose descendants to walk 175 * 176 * Walk @root's descendants. @root is included in the iteration and the 177 * first node to be visited. Must be called under rcu_read_lock(). 178 * 179 * If a subsystem synchronizes ->css_online() and the start of iteration, a 180 * css which finished ->css_online() is guaranteed to be visible in the 181 * future iterations and will stay visible until the last reference is put. 182 * A css which hasn't finished ->css_online() or already finished 183 * ->css_offline() may show up during traversal. It's each subsystem's 184 * responsibility to synchronize against on/offlining. 185 * 186 * For example, the following guarantees that a descendant can't escape 187 * state updates of its ancestors. 188 * 189 * my_online(@css) 190 * { 191 * Lock @css's parent and @css; 192 * Inherit state from the parent; 193 * Unlock both. 194 * } 195 * 196 * my_update_state(@css) 197 * { 198 * css_for_each_descendant_pre(@pos, @css) { 199 * Lock @pos; 200 * if (@pos == @css) 201 * Update @css's state; 202 * else 203 * Verify @pos is alive and inherit state from its parent; 204 * Unlock @pos; 205 * } 206 * } 207 * 208 * As long as the inheriting step, including checking the parent state, is 209 * enclosed inside @pos locking, double-locking the parent isn't necessary 210 * while inheriting. The state update to the parent is guaranteed to be 211 * visible by walking order and, as long as inheriting operations to the 212 * same @pos are atomic to each other, multiple updates racing each other 213 * still result in the correct state. It's guaranateed that at least one 214 * inheritance happens for any css after the latest update to its parent. 215 * 216 * If checking parent's state requires locking the parent, each inheriting 217 * iteration should lock and unlock both @pos->parent and @pos. 218 * 219 * Alternatively, a subsystem may choose to use a single global lock to 220 * synchronize ->css_online() and ->css_offline() against tree-walking 221 * operations. 222 * 223 * It is allowed to temporarily drop RCU read lock during iteration. The 224 * caller is responsible for ensuring that @pos remains accessible until 225 * the start of the next iteration by, for example, bumping the css refcnt. 226 */ 227#define css_for_each_descendant_pre(pos, css) \ 228 for ((pos) = css_next_descendant_pre(NULL, (css)); (pos); \ 229 (pos) = css_next_descendant_pre((pos), (css))) 230 231/** 232 * css_for_each_descendant_post - post-order walk of a css's descendants 233 * @pos: the css * to use as the loop cursor 234 * @css: css whose descendants to walk 235 * 236 * Similar to css_for_each_descendant_pre() but performs post-order 237 * traversal instead. @root is included in the iteration and the last 238 * node to be visited. 239 * 240 * If a subsystem synchronizes ->css_online() and the start of iteration, a 241 * css which finished ->css_online() is guaranteed to be visible in the 242 * future iterations and will stay visible until the last reference is put. 243 * A css which hasn't finished ->css_online() or already finished 244 * ->css_offline() may show up during traversal. It's each subsystem's 245 * responsibility to synchronize against on/offlining. 246 * 247 * Note that the walk visibility guarantee example described in pre-order 248 * walk doesn't apply the same to post-order walks. 249 */ 250#define css_for_each_descendant_post(pos, css) \ 251 for ((pos) = css_next_descendant_post(NULL, (css)); (pos); \ 252 (pos) = css_next_descendant_post((pos), (css))) 253 254/** 255 * cgroup_taskset_for_each - iterate cgroup_taskset 256 * @task: the loop cursor 257 * @dst_css: the destination css 258 * @tset: taskset to iterate 259 * 260 * @tset may contain multiple tasks and they may belong to multiple 261 * processes. 262 * 263 * On the v2 hierarchy, there may be tasks from multiple processes and they 264 * may not share the source or destination csses. 265 * 266 * On traditional hierarchies, when there are multiple tasks in @tset, if a 267 * task of a process is in @tset, all tasks of the process are in @tset. 268 * Also, all are guaranteed to share the same source and destination csses. 269 * 270 * Iteration is not in any specific order. 271 */ 272#define cgroup_taskset_for_each(task, dst_css, tset) \ 273 for ((task) = cgroup_taskset_first((tset), &(dst_css)); \ 274 (task); \ 275 (task) = cgroup_taskset_next((tset), &(dst_css))) 276 277/** 278 * cgroup_taskset_for_each_leader - iterate group leaders in a cgroup_taskset 279 * @leader: the loop cursor 280 * @dst_css: the destination css 281 * @tset: taskset to iterate 282 * 283 * Iterate threadgroup leaders of @tset. For single-task migrations, @tset 284 * may not contain any. 285 */ 286#define cgroup_taskset_for_each_leader(leader, dst_css, tset) \ 287 for ((leader) = cgroup_taskset_first((tset), &(dst_css)); \ 288 (leader); \ 289 (leader) = cgroup_taskset_next((tset), &(dst_css))) \ 290 if ((leader) != (leader)->group_leader) \ 291 ; \ 292 else 293 294/* 295 * Inline functions. 296 */ 297 298/** 299 * css_get - obtain a reference on the specified css 300 * @css: target css 301 * 302 * The caller must already have a reference. 303 */ 304static inline void css_get(struct cgroup_subsys_state *css) 305{ 306 if (!(css->flags & CSS_NO_REF)) 307 percpu_ref_get(&css->refcnt); 308} 309 310/** 311 * css_get_many - obtain references on the specified css 312 * @css: target css 313 * @n: number of references to get 314 * 315 * The caller must already have a reference. 316 */ 317static inline void css_get_many(struct cgroup_subsys_state *css, unsigned int n) 318{ 319 if (!(css->flags & CSS_NO_REF)) 320 percpu_ref_get_many(&css->refcnt, n); 321} 322 323/** 324 * css_tryget - try to obtain a reference on the specified css 325 * @css: target css 326 * 327 * Obtain a reference on @css unless it already has reached zero and is 328 * being released. This function doesn't care whether @css is on or 329 * offline. The caller naturally needs to ensure that @css is accessible 330 * but doesn't have to be holding a reference on it - IOW, RCU protected 331 * access is good enough for this function. Returns %true if a reference 332 * count was successfully obtained; %false otherwise. 333 */ 334static inline bool css_tryget(struct cgroup_subsys_state *css) 335{ 336 if (!(css->flags & CSS_NO_REF)) 337 return percpu_ref_tryget(&css->refcnt); 338 return true; 339} 340 341/** 342 * css_tryget_online - try to obtain a reference on the specified css if online 343 * @css: target css 344 * 345 * Obtain a reference on @css if it's online. The caller naturally needs 346 * to ensure that @css is accessible but doesn't have to be holding a 347 * reference on it - IOW, RCU protected access is good enough for this 348 * function. Returns %true if a reference count was successfully obtained; 349 * %false otherwise. 350 */ 351static inline bool css_tryget_online(struct cgroup_subsys_state *css) 352{ 353 if (!(css->flags & CSS_NO_REF)) 354 return percpu_ref_tryget_live(&css->refcnt); 355 return true; 356} 357 358/** 359 * css_is_dying - test whether the specified css is dying 360 * @css: target css 361 * 362 * Test whether @css is in the process of offlining or already offline. In 363 * most cases, ->css_online() and ->css_offline() callbacks should be 364 * enough; however, the actual offline operations are RCU delayed and this 365 * test returns %true also when @css is scheduled to be offlined. 366 * 367 * This is useful, for example, when the use case requires synchronous 368 * behavior with respect to cgroup removal. cgroup removal schedules css 369 * offlining but the css can seem alive while the operation is being 370 * delayed. If the delay affects user visible semantics, this test can be 371 * used to resolve the situation. 372 */ 373static inline bool css_is_dying(struct cgroup_subsys_state *css) 374{ 375 return !(css->flags & CSS_NO_REF) && percpu_ref_is_dying(&css->refcnt); 376} 377 378/** 379 * css_put - put a css reference 380 * @css: target css 381 * 382 * Put a reference obtained via css_get() and css_tryget_online(). 383 */ 384static inline void css_put(struct cgroup_subsys_state *css) 385{ 386 if (!(css->flags & CSS_NO_REF)) 387 percpu_ref_put(&css->refcnt); 388} 389 390/** 391 * css_put_many - put css references 392 * @css: target css 393 * @n: number of references to put 394 * 395 * Put references obtained via css_get() and css_tryget_online(). 396 */ 397static inline void css_put_many(struct cgroup_subsys_state *css, unsigned int n) 398{ 399 if (!(css->flags & CSS_NO_REF)) 400 percpu_ref_put_many(&css->refcnt, n); 401} 402 403static inline void cgroup_get(struct cgroup *cgrp) 404{ 405 css_get(&cgrp->self); 406} 407 408static inline bool cgroup_tryget(struct cgroup *cgrp) 409{ 410 return css_tryget(&cgrp->self); 411} 412 413static inline void cgroup_put(struct cgroup *cgrp) 414{ 415 css_put(&cgrp->self); 416} 417 418/** 419 * task_css_set_check - obtain a task's css_set with extra access conditions 420 * @task: the task to obtain css_set for 421 * @__c: extra condition expression to be passed to rcu_dereference_check() 422 * 423 * A task's css_set is RCU protected, initialized and exited while holding 424 * task_lock(), and can only be modified while holding both cgroup_mutex 425 * and task_lock() while the task is alive. This macro verifies that the 426 * caller is inside proper critical section and returns @task's css_set. 427 * 428 * The caller can also specify additional allowed conditions via @__c, such 429 * as locks used during the cgroup_subsys::attach() methods. 430 */ 431#ifdef CONFIG_PROVE_RCU 432extern struct mutex cgroup_mutex; 433extern spinlock_t css_set_lock; 434#define task_css_set_check(task, __c) \ 435 rcu_dereference_check((task)->cgroups, \ 436 lockdep_is_held(&cgroup_mutex) || \ 437 lockdep_is_held(&css_set_lock) || \ 438 ((task)->flags & PF_EXITING) || (__c)) 439#else 440#define task_css_set_check(task, __c) \ 441 rcu_dereference((task)->cgroups) 442#endif 443 444/** 445 * task_css_check - obtain css for (task, subsys) w/ extra access conds 446 * @task: the target task 447 * @subsys_id: the target subsystem ID 448 * @__c: extra condition expression to be passed to rcu_dereference_check() 449 * 450 * Return the cgroup_subsys_state for the (@task, @subsys_id) pair. The 451 * synchronization rules are the same as task_css_set_check(). 452 */ 453#define task_css_check(task, subsys_id, __c) \ 454 task_css_set_check((task), (__c))->subsys[(subsys_id)] 455 456/** 457 * task_css_set - obtain a task's css_set 458 * @task: the task to obtain css_set for 459 * 460 * See task_css_set_check(). 461 */ 462static inline struct css_set *task_css_set(struct task_struct *task) 463{ 464 return task_css_set_check(task, false); 465} 466 467/** 468 * task_css - obtain css for (task, subsys) 469 * @task: the target task 470 * @subsys_id: the target subsystem ID 471 * 472 * See task_css_check(). 473 */ 474static inline struct cgroup_subsys_state *task_css(struct task_struct *task, 475 int subsys_id) 476{ 477 return task_css_check(task, subsys_id, false); 478} 479 480/** 481 * task_get_css - find and get the css for (task, subsys) 482 * @task: the target task 483 * @subsys_id: the target subsystem ID 484 * 485 * Find the css for the (@task, @subsys_id) combination, increment a 486 * reference on and return it. This function is guaranteed to return a 487 * valid css. 488 */ 489static inline struct cgroup_subsys_state * 490task_get_css(struct task_struct *task, int subsys_id) 491{ 492 struct cgroup_subsys_state *css; 493 494 rcu_read_lock(); 495 while (true) { 496 css = task_css(task, subsys_id); 497 if (likely(css_tryget_online(css))) 498 break; 499 cpu_relax(); 500 } 501 rcu_read_unlock(); 502 return css; 503} 504 505/** 506 * task_css_is_root - test whether a task belongs to the root css 507 * @task: the target task 508 * @subsys_id: the target subsystem ID 509 * 510 * Test whether @task belongs to the root css on the specified subsystem. 511 * May be invoked in any context. 512 */ 513static inline bool task_css_is_root(struct task_struct *task, int subsys_id) 514{ 515 return task_css_check(task, subsys_id, true) == 516 init_css_set.subsys[subsys_id]; 517} 518 519static inline struct cgroup *task_cgroup(struct task_struct *task, 520 int subsys_id) 521{ 522 return task_css(task, subsys_id)->cgroup; 523} 524 525static inline struct cgroup *task_dfl_cgroup(struct task_struct *task) 526{ 527 return task_css_set(task)->dfl_cgrp; 528} 529 530static inline struct cgroup *cgroup_parent(struct cgroup *cgrp) 531{ 532 struct cgroup_subsys_state *parent_css = cgrp->self.parent; 533 534 if (parent_css) 535 return container_of(parent_css, struct cgroup, self); 536 return NULL; 537} 538 539/** 540 * cgroup_is_descendant - test ancestry 541 * @cgrp: the cgroup to be tested 542 * @ancestor: possible ancestor of @cgrp 543 * 544 * Test whether @cgrp is a descendant of @ancestor. It also returns %true 545 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp 546 * and @ancestor are accessible. 547 */ 548static inline bool cgroup_is_descendant(struct cgroup *cgrp, 549 struct cgroup *ancestor) 550{ 551 if (cgrp->root != ancestor->root || cgrp->level < ancestor->level) 552 return false; 553 return cgrp->ancestor_ids[ancestor->level] == ancestor->id; 554} 555 556/** 557 * task_under_cgroup_hierarchy - test task's membership of cgroup ancestry 558 * @task: the task to be tested 559 * @ancestor: possible ancestor of @task's cgroup 560 * 561 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. 562 * It follows all the same rules as cgroup_is_descendant, and only applies 563 * to the default hierarchy. 564 */ 565static inline bool task_under_cgroup_hierarchy(struct task_struct *task, 566 struct cgroup *ancestor) 567{ 568 struct css_set *cset = task_css_set(task); 569 570 return cgroup_is_descendant(cset->dfl_cgrp, ancestor); 571} 572 573/* no synchronization, the result can only be used as a hint */ 574static inline bool cgroup_is_populated(struct cgroup *cgrp) 575{ 576 return cgrp->nr_populated_csets + cgrp->nr_populated_domain_children + 577 cgrp->nr_populated_threaded_children; 578} 579 580/* returns ino associated with a cgroup */ 581static inline ino_t cgroup_ino(struct cgroup *cgrp) 582{ 583 return cgrp->kn->id.ino; 584} 585 586/* cft/css accessors for cftype->write() operation */ 587static inline struct cftype *of_cft(struct kernfs_open_file *of) 588{ 589 return of->kn->priv; 590} 591 592struct cgroup_subsys_state *of_css(struct kernfs_open_file *of); 593 594/* cft/css accessors for cftype->seq_*() operations */ 595static inline struct cftype *seq_cft(struct seq_file *seq) 596{ 597 return of_cft(seq->private); 598} 599 600static inline struct cgroup_subsys_state *seq_css(struct seq_file *seq) 601{ 602 return of_css(seq->private); 603} 604 605/* 606 * Name / path handling functions. All are thin wrappers around the kernfs 607 * counterparts and can be called under any context. 608 */ 609 610static inline int cgroup_name(struct cgroup *cgrp, char *buf, size_t buflen) 611{ 612 return kernfs_name(cgrp->kn, buf, buflen); 613} 614 615static inline int cgroup_path(struct cgroup *cgrp, char *buf, size_t buflen) 616{ 617 return kernfs_path(cgrp->kn, buf, buflen); 618} 619 620static inline void pr_cont_cgroup_name(struct cgroup *cgrp) 621{ 622 pr_cont_kernfs_name(cgrp->kn); 623} 624 625static inline void pr_cont_cgroup_path(struct cgroup *cgrp) 626{ 627 pr_cont_kernfs_path(cgrp->kn); 628} 629 630static inline void cgroup_init_kthreadd(void) 631{ 632 /* 633 * kthreadd is inherited by all kthreads, keep it in the root so 634 * that the new kthreads are guaranteed to stay in the root until 635 * initialization is finished. 636 */ 637 current->no_cgroup_migration = 1; 638} 639 640static inline void cgroup_kthread_ready(void) 641{ 642 /* 643 * This kthread finished initialization. The creator should have 644 * set PF_NO_SETAFFINITY if this kthread should stay in the root. 645 */ 646 current->no_cgroup_migration = 0; 647} 648 649static inline union kernfs_node_id *cgroup_get_kernfs_id(struct cgroup *cgrp) 650{ 651 return &cgrp->kn->id; 652} 653 654void cgroup_path_from_kernfs_id(const union kernfs_node_id *id, 655 char *buf, size_t buflen); 656#else /* !CONFIG_CGROUPS */ 657 658struct cgroup_subsys_state; 659struct cgroup; 660 661static inline void css_put(struct cgroup_subsys_state *css) {} 662static inline int cgroup_attach_task_all(struct task_struct *from, 663 struct task_struct *t) { return 0; } 664static inline int cgroupstats_build(struct cgroupstats *stats, 665 struct dentry *dentry) { return -EINVAL; } 666 667static inline void cgroup_fork(struct task_struct *p) {} 668static inline int cgroup_can_fork(struct task_struct *p) { return 0; } 669static inline void cgroup_cancel_fork(struct task_struct *p) {} 670static inline void cgroup_post_fork(struct task_struct *p) {} 671static inline void cgroup_exit(struct task_struct *p) {} 672static inline void cgroup_free(struct task_struct *p) {} 673 674static inline int cgroup_init_early(void) { return 0; } 675static inline int cgroup_init(void) { return 0; } 676static inline void cgroup_init_kthreadd(void) {} 677static inline void cgroup_kthread_ready(void) {} 678static inline union kernfs_node_id *cgroup_get_kernfs_id(struct cgroup *cgrp) 679{ 680 return NULL; 681} 682 683static inline bool task_under_cgroup_hierarchy(struct task_struct *task, 684 struct cgroup *ancestor) 685{ 686 return true; 687} 688 689static inline void cgroup_path_from_kernfs_id(const union kernfs_node_id *id, 690 char *buf, size_t buflen) {} 691#endif /* !CONFIG_CGROUPS */ 692 693/* 694 * Basic resource stats. 695 */ 696#ifdef CONFIG_CGROUPS 697 698#ifdef CONFIG_CGROUP_CPUACCT 699void cpuacct_charge(struct task_struct *tsk, u64 cputime); 700void cpuacct_account_field(struct task_struct *tsk, int index, u64 val); 701#else 702static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} 703static inline void cpuacct_account_field(struct task_struct *tsk, int index, 704 u64 val) {} 705#endif 706 707void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec); 708void __cgroup_account_cputime_field(struct cgroup *cgrp, 709 enum cpu_usage_stat index, u64 delta_exec); 710 711static inline void cgroup_account_cputime(struct task_struct *task, 712 u64 delta_exec) 713{ 714 struct cgroup *cgrp; 715 716 cpuacct_charge(task, delta_exec); 717 718 rcu_read_lock(); 719 cgrp = task_dfl_cgroup(task); 720 if (cgroup_parent(cgrp)) 721 __cgroup_account_cputime(cgrp, delta_exec); 722 rcu_read_unlock(); 723} 724 725static inline void cgroup_account_cputime_field(struct task_struct *task, 726 enum cpu_usage_stat index, 727 u64 delta_exec) 728{ 729 struct cgroup *cgrp; 730 731 cpuacct_account_field(task, index, delta_exec); 732 733 rcu_read_lock(); 734 cgrp = task_dfl_cgroup(task); 735 if (cgroup_parent(cgrp)) 736 __cgroup_account_cputime_field(cgrp, index, delta_exec); 737 rcu_read_unlock(); 738} 739 740#else /* CONFIG_CGROUPS */ 741 742static inline void cgroup_account_cputime(struct task_struct *task, 743 u64 delta_exec) {} 744static inline void cgroup_account_cputime_field(struct task_struct *task, 745 enum cpu_usage_stat index, 746 u64 delta_exec) {} 747 748#endif /* CONFIG_CGROUPS */ 749 750/* 751 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 752 * definition in cgroup-defs.h. 753 */ 754#ifdef CONFIG_SOCK_CGROUP_DATA 755 756#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 757extern spinlock_t cgroup_sk_update_lock; 758#endif 759 760void cgroup_sk_alloc_disable(void); 761void cgroup_sk_alloc(struct sock_cgroup_data *skcd); 762void cgroup_sk_free(struct sock_cgroup_data *skcd); 763 764static inline struct cgroup *sock_cgroup_ptr(struct sock_cgroup_data *skcd) 765{ 766#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 767 unsigned long v; 768 769 /* 770 * @skcd->val is 64bit but the following is safe on 32bit too as we 771 * just need the lower ulong to be written and read atomically. 772 */ 773 v = READ_ONCE(skcd->val); 774 775 if (v & 1) 776 return &cgrp_dfl_root.cgrp; 777 778 return (struct cgroup *)(unsigned long)v ?: &cgrp_dfl_root.cgrp; 779#else 780 return (struct cgroup *)(unsigned long)skcd->val; 781#endif 782} 783 784#else /* CONFIG_CGROUP_DATA */ 785 786static inline void cgroup_sk_alloc(struct sock_cgroup_data *skcd) {} 787static inline void cgroup_sk_free(struct sock_cgroup_data *skcd) {} 788 789#endif /* CONFIG_CGROUP_DATA */ 790 791struct cgroup_namespace { 792 refcount_t count; 793 struct ns_common ns; 794 struct user_namespace *user_ns; 795 struct ucounts *ucounts; 796 struct css_set *root_cset; 797}; 798 799extern struct cgroup_namespace init_cgroup_ns; 800 801#ifdef CONFIG_CGROUPS 802 803void free_cgroup_ns(struct cgroup_namespace *ns); 804 805struct cgroup_namespace *copy_cgroup_ns(unsigned long flags, 806 struct user_namespace *user_ns, 807 struct cgroup_namespace *old_ns); 808 809int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 810 struct cgroup_namespace *ns); 811 812#else /* !CONFIG_CGROUPS */ 813 814static inline void free_cgroup_ns(struct cgroup_namespace *ns) { } 815static inline struct cgroup_namespace * 816copy_cgroup_ns(unsigned long flags, struct user_namespace *user_ns, 817 struct cgroup_namespace *old_ns) 818{ 819 return old_ns; 820} 821 822#endif /* !CONFIG_CGROUPS */ 823 824static inline void get_cgroup_ns(struct cgroup_namespace *ns) 825{ 826 if (ns) 827 refcount_inc(&ns->count); 828} 829 830static inline void put_cgroup_ns(struct cgroup_namespace *ns) 831{ 832 if (ns && refcount_dec_and_test(&ns->count)) 833 free_cgroup_ns(ns); 834} 835 836#endif /* _LINUX_CGROUP_H */