Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * include/asm-xtensa/pgtable.h
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * Copyright (C) 2001 - 2013 Tensilica Inc.
9 */
10
11#ifndef _XTENSA_PGTABLE_H
12#define _XTENSA_PGTABLE_H
13
14#define __ARCH_USE_5LEVEL_HACK
15#include <asm/page.h>
16#include <asm/kmem_layout.h>
17#include <asm-generic/pgtable-nopmd.h>
18
19/*
20 * We only use two ring levels, user and kernel space.
21 */
22
23#ifdef CONFIG_MMU
24#define USER_RING 1 /* user ring level */
25#else
26#define USER_RING 0
27#endif
28#define KERNEL_RING 0 /* kernel ring level */
29
30/*
31 * The Xtensa architecture port of Linux has a two-level page table system,
32 * i.e. the logical three-level Linux page table layout is folded.
33 * Each task has the following memory page tables:
34 *
35 * PGD table (page directory), ie. 3rd-level page table:
36 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
37 * (Architectures that don't have the PMD folded point to the PMD tables)
38 *
39 * The pointer to the PGD table for a given task can be retrieved from
40 * the task structure (struct task_struct*) t, e.g. current():
41 * (t->mm ? t->mm : t->active_mm)->pgd
42 *
43 * PMD tables (page middle-directory), ie. 2nd-level page tables:
44 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
45 *
46 * PTE tables (page table entry), ie. 1st-level page tables:
47 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
48 * invalid_pte_table for absent mappings.
49 *
50 * The individual pages are 4 kB big with special pages for the empty_zero_page.
51 */
52
53#define PGDIR_SHIFT 22
54#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
55#define PGDIR_MASK (~(PGDIR_SIZE-1))
56
57/*
58 * Entries per page directory level: we use two-level, so
59 * we don't really have any PMD directory physically.
60 */
61#define PTRS_PER_PTE 1024
62#define PTRS_PER_PTE_SHIFT 10
63#define PTRS_PER_PGD 1024
64#define PGD_ORDER 0
65#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
66#define FIRST_USER_ADDRESS 0UL
67#define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
68
69/*
70 * Virtual memory area. We keep a distance to other memory regions to be
71 * on the safe side. We also use this area for cache aliasing.
72 */
73#define VMALLOC_START (XCHAL_KSEG_CACHED_VADDR - 0x10000000)
74#define VMALLOC_END (VMALLOC_START + 0x07FEFFFF)
75#define TLBTEMP_BASE_1 (VMALLOC_END + 1)
76#define TLBTEMP_BASE_2 (TLBTEMP_BASE_1 + DCACHE_WAY_SIZE)
77#if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE
78#define TLBTEMP_SIZE (2 * DCACHE_WAY_SIZE)
79#else
80#define TLBTEMP_SIZE ICACHE_WAY_SIZE
81#endif
82
83/*
84 * For the Xtensa architecture, the PTE layout is as follows:
85 *
86 * 31------12 11 10-9 8-6 5-4 3-2 1-0
87 * +-----------------------------------------+
88 * | | Software | HARDWARE |
89 * | PPN | ADW | RI |Attribute|
90 * +-----------------------------------------+
91 * pte_none | MBZ | 01 | 11 | 00 |
92 * +-----------------------------------------+
93 * present | PPN | 0 | 00 | ADW | RI | CA | wx |
94 * +- - - - - - - - - - - - - - - - - - - - -+
95 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 11 | 11 |
96 * +-----------------------------------------+
97 * swap | index | type | 01 | 11 | 00 |
98 * +-----------------------------------------+
99 *
100 * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE)
101 * +-----------------------------------------+
102 * present | PPN | 0 | 00 | ADW | RI | CA | w1 |
103 * +-----------------------------------------+
104 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 01 | 00 |
105 * +-----------------------------------------+
106 *
107 * Legend:
108 * PPN Physical Page Number
109 * ADW software: accessed (young) / dirty / writable
110 * RI ring (0=privileged, 1=user, 2 and 3 are unused)
111 * CA cache attribute: 00 bypass, 01 writeback, 10 writethrough
112 * (11 is invalid and used to mark pages that are not present)
113 * w page is writable (hw)
114 * x page is executable (hw)
115 * index swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB)
116 * (note that the index is always non-zero)
117 * type swap type (5 bits -> 32 types)
118 *
119 * Notes:
120 * - (PROT_NONE) is a special case of 'present' but causes an exception for
121 * any access (read, write, and execute).
122 * - 'multihit-exception' has the highest priority of all MMU exceptions,
123 * so the ring must be set to 'RING_USER' even for 'non-present' pages.
124 * - on older hardware, the exectuable flag was not supported and
125 * used as a 'valid' flag, so it needs to be always set.
126 * - we need to keep track of certain flags in software (dirty and young)
127 * to do this, we use write exceptions and have a separate software w-flag.
128 * - attribute value 1101 (and 1111 on T1050 and earlier) is reserved
129 */
130
131#define _PAGE_ATTRIB_MASK 0xf
132
133#define _PAGE_HW_EXEC (1<<0) /* hardware: page is executable */
134#define _PAGE_HW_WRITE (1<<1) /* hardware: page is writable */
135
136#define _PAGE_CA_BYPASS (0<<2) /* bypass, non-speculative */
137#define _PAGE_CA_WB (1<<2) /* write-back */
138#define _PAGE_CA_WT (2<<2) /* write-through */
139#define _PAGE_CA_MASK (3<<2)
140#define _PAGE_CA_INVALID (3<<2)
141
142/* We use invalid attribute values to distinguish special pte entries */
143#if XCHAL_HW_VERSION_MAJOR < 2000
144#define _PAGE_HW_VALID 0x01 /* older HW needed this bit set */
145#define _PAGE_NONE 0x04
146#else
147#define _PAGE_HW_VALID 0x00
148#define _PAGE_NONE 0x0f
149#endif
150
151#define _PAGE_USER (1<<4) /* user access (ring=1) */
152
153/* Software */
154#define _PAGE_WRITABLE_BIT 6
155#define _PAGE_WRITABLE (1<<6) /* software: page writable */
156#define _PAGE_DIRTY (1<<7) /* software: page dirty */
157#define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */
158
159#ifdef CONFIG_MMU
160
161#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
162#define _PAGE_PRESENT (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED)
163
164#define PAGE_NONE __pgprot(_PAGE_NONE | _PAGE_USER)
165#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER)
166#define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
167#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER)
168#define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
169#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE)
170#define PAGE_SHARED_EXEC \
171 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC)
172#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE)
173#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT)
174#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC)
175
176#if (DCACHE_WAY_SIZE > PAGE_SIZE)
177# define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS)
178#else
179# define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB)
180#endif
181
182#else /* no mmu */
183
184# define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
185# define PAGE_NONE __pgprot(0)
186# define PAGE_SHARED __pgprot(0)
187# define PAGE_COPY __pgprot(0)
188# define PAGE_READONLY __pgprot(0)
189# define PAGE_KERNEL __pgprot(0)
190
191#endif
192
193/*
194 * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
195 * the MMU can't do page protection for execute, and considers that the same as
196 * read. Also, write permissions may imply read permissions.
197 * What follows is the closest we can get by reasonable means..
198 * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
199 */
200#define __P000 PAGE_NONE /* private --- */
201#define __P001 PAGE_READONLY /* private --r */
202#define __P010 PAGE_COPY /* private -w- */
203#define __P011 PAGE_COPY /* private -wr */
204#define __P100 PAGE_READONLY_EXEC /* private x-- */
205#define __P101 PAGE_READONLY_EXEC /* private x-r */
206#define __P110 PAGE_COPY_EXEC /* private xw- */
207#define __P111 PAGE_COPY_EXEC /* private xwr */
208
209#define __S000 PAGE_NONE /* shared --- */
210#define __S001 PAGE_READONLY /* shared --r */
211#define __S010 PAGE_SHARED /* shared -w- */
212#define __S011 PAGE_SHARED /* shared -wr */
213#define __S100 PAGE_READONLY_EXEC /* shared x-- */
214#define __S101 PAGE_READONLY_EXEC /* shared x-r */
215#define __S110 PAGE_SHARED_EXEC /* shared xw- */
216#define __S111 PAGE_SHARED_EXEC /* shared xwr */
217
218#ifndef __ASSEMBLY__
219
220#define pte_ERROR(e) \
221 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
222#define pgd_ERROR(e) \
223 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
224
225extern unsigned long empty_zero_page[1024];
226
227#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
228
229#ifdef CONFIG_MMU
230extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
231extern void paging_init(void);
232#else
233# define swapper_pg_dir NULL
234static inline void paging_init(void) { }
235#endif
236static inline void pgtable_cache_init(void) { }
237
238/*
239 * The pmd contains the kernel virtual address of the pte page.
240 */
241#define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
242#define pmd_page(pmd) virt_to_page(pmd_val(pmd))
243
244/*
245 * pte status.
246 */
247# define pte_none(pte) (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER))
248#if XCHAL_HW_VERSION_MAJOR < 2000
249# define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)
250#else
251# define pte_present(pte) \
252 (((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) \
253 || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE))
254#endif
255#define pte_clear(mm,addr,ptep) \
256 do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0)
257
258#define pmd_none(pmd) (!pmd_val(pmd))
259#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
260#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
261#define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0)
262
263static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; }
264static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
265static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
266static inline int pte_special(pte_t pte) { return 0; }
267
268static inline pte_t pte_wrprotect(pte_t pte)
269 { pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; }
270static inline pte_t pte_mkclean(pte_t pte)
271 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; }
272static inline pte_t pte_mkold(pte_t pte)
273 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
274static inline pte_t pte_mkdirty(pte_t pte)
275 { pte_val(pte) |= _PAGE_DIRTY; return pte; }
276static inline pte_t pte_mkyoung(pte_t pte)
277 { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
278static inline pte_t pte_mkwrite(pte_t pte)
279 { pte_val(pte) |= _PAGE_WRITABLE; return pte; }
280static inline pte_t pte_mkspecial(pte_t pte)
281 { return pte; }
282
283#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) & ~_PAGE_CA_MASK))
284
285/*
286 * Conversion functions: convert a page and protection to a page entry,
287 * and a page entry and page directory to the page they refer to.
288 */
289
290#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
291#define pte_same(a,b) (pte_val(a) == pte_val(b))
292#define pte_page(x) pfn_to_page(pte_pfn(x))
293#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
294#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
295
296static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
297{
298 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
299}
300
301/*
302 * Certain architectures need to do special things when pte's
303 * within a page table are directly modified. Thus, the following
304 * hook is made available.
305 */
306static inline void update_pte(pte_t *ptep, pte_t pteval)
307{
308 *ptep = pteval;
309#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
310 __asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep));
311#endif
312
313}
314
315struct mm_struct;
316
317static inline void
318set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
319{
320 update_pte(ptep, pteval);
321}
322
323static inline void set_pte(pte_t *ptep, pte_t pteval)
324{
325 update_pte(ptep, pteval);
326}
327
328static inline void
329set_pmd(pmd_t *pmdp, pmd_t pmdval)
330{
331 *pmdp = pmdval;
332}
333
334struct vm_area_struct;
335
336static inline int
337ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
338 pte_t *ptep)
339{
340 pte_t pte = *ptep;
341 if (!pte_young(pte))
342 return 0;
343 update_pte(ptep, pte_mkold(pte));
344 return 1;
345}
346
347static inline pte_t
348ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
349{
350 pte_t pte = *ptep;
351 pte_clear(mm, addr, ptep);
352 return pte;
353}
354
355static inline void
356ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
357{
358 pte_t pte = *ptep;
359 update_pte(ptep, pte_wrprotect(pte));
360}
361
362/* to find an entry in a kernel page-table-directory */
363#define pgd_offset_k(address) pgd_offset(&init_mm, address)
364
365/* to find an entry in a page-table-directory */
366#define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address))
367
368#define pgd_index(address) ((address) >> PGDIR_SHIFT)
369
370/* Find an entry in the second-level page table.. */
371#define pmd_offset(dir,address) ((pmd_t*)(dir))
372
373/* Find an entry in the third-level page table.. */
374#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
375#define pte_offset_kernel(dir,addr) \
376 ((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr))
377#define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr))
378#define pte_unmap(pte) do { } while (0)
379
380
381/*
382 * Encode and decode a swap and file entry.
383 */
384#define SWP_TYPE_BITS 5
385#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS)
386
387#define __swp_type(entry) (((entry).val >> 6) & 0x1f)
388#define __swp_offset(entry) ((entry).val >> 11)
389#define __swp_entry(type,offs) \
390 ((swp_entry_t){((type) << 6) | ((offs) << 11) | \
391 _PAGE_CA_INVALID | _PAGE_USER})
392#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
393#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
394
395#endif /* !defined (__ASSEMBLY__) */
396
397
398#ifdef __ASSEMBLY__
399
400/* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
401 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
402 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
403 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
404 *
405 * Note: We require an additional temporary register which can be the same as
406 * the register that holds the address.
407 *
408 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
409 *
410 */
411#define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
412#define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
413
414#define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \
415 _PGD_INDEX(tmp, adr); \
416 addx4 mm, tmp, mm
417
418#define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \
419 srli pmd, pmd, PAGE_SHIFT; \
420 slli pmd, pmd, PAGE_SHIFT; \
421 addx4 pmd, tmp, pmd
422
423#else
424
425#define kern_addr_valid(addr) (1)
426
427extern void update_mmu_cache(struct vm_area_struct * vma,
428 unsigned long address, pte_t *ptep);
429
430typedef pte_t *pte_addr_t;
431
432#endif /* !defined (__ASSEMBLY__) */
433
434#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
435#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
436#define __HAVE_ARCH_PTEP_SET_WRPROTECT
437#define __HAVE_ARCH_PTEP_MKDIRTY
438#define __HAVE_ARCH_PTE_SAME
439/* We provide our own get_unmapped_area to cope with
440 * SHM area cache aliasing for userland.
441 */
442#define HAVE_ARCH_UNMAPPED_AREA
443
444#include <asm-generic/pgtable.h>
445
446#endif /* _XTENSA_PGTABLE_H */