Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * background writeback - scan btree for dirty data and write it to the backing
4 * device
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10#include "bcache.h"
11#include "btree.h"
12#include "debug.h"
13#include "writeback.h"
14
15#include <linux/delay.h>
16#include <linux/kthread.h>
17#include <linux/sched/clock.h>
18#include <trace/events/bcache.h>
19
20/* Rate limiting */
21static uint64_t __calc_target_rate(struct cached_dev *dc)
22{
23 struct cache_set *c = dc->disk.c;
24
25 /*
26 * This is the size of the cache, minus the amount used for
27 * flash-only devices
28 */
29 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
30 bcache_flash_devs_sectors_dirty(c);
31
32 /*
33 * Unfortunately there is no control of global dirty data. If the
34 * user states that they want 10% dirty data in the cache, and has,
35 * e.g., 5 backing volumes of equal size, we try and ensure each
36 * backing volume uses about 2% of the cache for dirty data.
37 */
38 uint32_t bdev_share =
39 div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
40 c->cached_dev_sectors);
41
42 uint64_t cache_dirty_target =
43 div_u64(cache_sectors * dc->writeback_percent, 100);
44
45 /* Ensure each backing dev gets at least one dirty share */
46 if (bdev_share < 1)
47 bdev_share = 1;
48
49 return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
50}
51
52static void __update_writeback_rate(struct cached_dev *dc)
53{
54 /*
55 * PI controller:
56 * Figures out the amount that should be written per second.
57 *
58 * First, the error (number of sectors that are dirty beyond our
59 * target) is calculated. The error is accumulated (numerically
60 * integrated).
61 *
62 * Then, the proportional value and integral value are scaled
63 * based on configured values. These are stored as inverses to
64 * avoid fixed point math and to make configuration easy-- e.g.
65 * the default value of 40 for writeback_rate_p_term_inverse
66 * attempts to write at a rate that would retire all the dirty
67 * blocks in 40 seconds.
68 *
69 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
70 * of the error is accumulated in the integral term per second.
71 * This acts as a slow, long-term average that is not subject to
72 * variations in usage like the p term.
73 */
74 int64_t target = __calc_target_rate(dc);
75 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
76 int64_t error = dirty - target;
77 int64_t proportional_scaled =
78 div_s64(error, dc->writeback_rate_p_term_inverse);
79 int64_t integral_scaled;
80 uint32_t new_rate;
81
82 if ((error < 0 && dc->writeback_rate_integral > 0) ||
83 (error > 0 && time_before64(local_clock(),
84 dc->writeback_rate.next + NSEC_PER_MSEC))) {
85 /*
86 * Only decrease the integral term if it's more than
87 * zero. Only increase the integral term if the device
88 * is keeping up. (Don't wind up the integral
89 * ineffectively in either case).
90 *
91 * It's necessary to scale this by
92 * writeback_rate_update_seconds to keep the integral
93 * term dimensioned properly.
94 */
95 dc->writeback_rate_integral += error *
96 dc->writeback_rate_update_seconds;
97 }
98
99 integral_scaled = div_s64(dc->writeback_rate_integral,
100 dc->writeback_rate_i_term_inverse);
101
102 new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
103 dc->writeback_rate_minimum, NSEC_PER_SEC);
104
105 dc->writeback_rate_proportional = proportional_scaled;
106 dc->writeback_rate_integral_scaled = integral_scaled;
107 dc->writeback_rate_change = new_rate - dc->writeback_rate.rate;
108 dc->writeback_rate.rate = new_rate;
109 dc->writeback_rate_target = target;
110}
111
112static void update_writeback_rate(struct work_struct *work)
113{
114 struct cached_dev *dc = container_of(to_delayed_work(work),
115 struct cached_dev,
116 writeback_rate_update);
117 struct cache_set *c = dc->disk.c;
118
119 /*
120 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
121 * cancel_delayed_work_sync().
122 */
123 set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
124 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
125 smp_mb();
126
127 /*
128 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
129 * check it here too.
130 */
131 if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
132 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
133 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
134 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
135 smp_mb();
136 return;
137 }
138
139 down_read(&dc->writeback_lock);
140
141 if (atomic_read(&dc->has_dirty) &&
142 dc->writeback_percent)
143 __update_writeback_rate(dc);
144
145 up_read(&dc->writeback_lock);
146
147 /*
148 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
149 * check it here too.
150 */
151 if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
152 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
153 schedule_delayed_work(&dc->writeback_rate_update,
154 dc->writeback_rate_update_seconds * HZ);
155 }
156
157 /*
158 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
159 * cancel_delayed_work_sync().
160 */
161 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
162 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
163 smp_mb();
164}
165
166static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
167{
168 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
169 !dc->writeback_percent)
170 return 0;
171
172 return bch_next_delay(&dc->writeback_rate, sectors);
173}
174
175struct dirty_io {
176 struct closure cl;
177 struct cached_dev *dc;
178 uint16_t sequence;
179 struct bio bio;
180};
181
182static void dirty_init(struct keybuf_key *w)
183{
184 struct dirty_io *io = w->private;
185 struct bio *bio = &io->bio;
186
187 bio_init(bio, bio->bi_inline_vecs,
188 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
189 if (!io->dc->writeback_percent)
190 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
191
192 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
193 bio->bi_private = w;
194 bch_bio_map(bio, NULL);
195}
196
197static void dirty_io_destructor(struct closure *cl)
198{
199 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
200 kfree(io);
201}
202
203static void write_dirty_finish(struct closure *cl)
204{
205 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
206 struct keybuf_key *w = io->bio.bi_private;
207 struct cached_dev *dc = io->dc;
208
209 bio_free_pages(&io->bio);
210
211 /* This is kind of a dumb way of signalling errors. */
212 if (KEY_DIRTY(&w->key)) {
213 int ret;
214 unsigned i;
215 struct keylist keys;
216
217 bch_keylist_init(&keys);
218
219 bkey_copy(keys.top, &w->key);
220 SET_KEY_DIRTY(keys.top, false);
221 bch_keylist_push(&keys);
222
223 for (i = 0; i < KEY_PTRS(&w->key); i++)
224 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
225
226 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
227
228 if (ret)
229 trace_bcache_writeback_collision(&w->key);
230
231 atomic_long_inc(ret
232 ? &dc->disk.c->writeback_keys_failed
233 : &dc->disk.c->writeback_keys_done);
234 }
235
236 bch_keybuf_del(&dc->writeback_keys, w);
237 up(&dc->in_flight);
238
239 closure_return_with_destructor(cl, dirty_io_destructor);
240}
241
242static void dirty_endio(struct bio *bio)
243{
244 struct keybuf_key *w = bio->bi_private;
245 struct dirty_io *io = w->private;
246
247 if (bio->bi_status)
248 SET_KEY_DIRTY(&w->key, false);
249
250 closure_put(&io->cl);
251}
252
253static void write_dirty(struct closure *cl)
254{
255 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
256 struct keybuf_key *w = io->bio.bi_private;
257 struct cached_dev *dc = io->dc;
258
259 uint16_t next_sequence;
260
261 if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
262 /* Not our turn to write; wait for a write to complete */
263 closure_wait(&dc->writeback_ordering_wait, cl);
264
265 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
266 /*
267 * Edge case-- it happened in indeterminate order
268 * relative to when we were added to wait list..
269 */
270 closure_wake_up(&dc->writeback_ordering_wait);
271 }
272
273 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
274 return;
275 }
276
277 next_sequence = io->sequence + 1;
278
279 /*
280 * IO errors are signalled using the dirty bit on the key.
281 * If we failed to read, we should not attempt to write to the
282 * backing device. Instead, immediately go to write_dirty_finish
283 * to clean up.
284 */
285 if (KEY_DIRTY(&w->key)) {
286 dirty_init(w);
287 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
288 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
289 bio_set_dev(&io->bio, io->dc->bdev);
290 io->bio.bi_end_io = dirty_endio;
291
292 /* I/O request sent to backing device */
293 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
294 }
295
296 atomic_set(&dc->writeback_sequence_next, next_sequence);
297 closure_wake_up(&dc->writeback_ordering_wait);
298
299 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
300}
301
302static void read_dirty_endio(struct bio *bio)
303{
304 struct keybuf_key *w = bio->bi_private;
305 struct dirty_io *io = w->private;
306
307 /* is_read = 1 */
308 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
309 bio->bi_status, 1,
310 "reading dirty data from cache");
311
312 dirty_endio(bio);
313}
314
315static void read_dirty_submit(struct closure *cl)
316{
317 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
318
319 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
320
321 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
322}
323
324static void read_dirty(struct cached_dev *dc)
325{
326 unsigned delay = 0;
327 struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
328 size_t size;
329 int nk, i;
330 struct dirty_io *io;
331 struct closure cl;
332 uint16_t sequence = 0;
333
334 BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
335 atomic_set(&dc->writeback_sequence_next, sequence);
336 closure_init_stack(&cl);
337
338 /*
339 * XXX: if we error, background writeback just spins. Should use some
340 * mempools.
341 */
342
343 next = bch_keybuf_next(&dc->writeback_keys);
344
345 while (!kthread_should_stop() &&
346 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
347 next) {
348 size = 0;
349 nk = 0;
350
351 do {
352 BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
353
354 /*
355 * Don't combine too many operations, even if they
356 * are all small.
357 */
358 if (nk >= MAX_WRITEBACKS_IN_PASS)
359 break;
360
361 /*
362 * If the current operation is very large, don't
363 * further combine operations.
364 */
365 if (size >= MAX_WRITESIZE_IN_PASS)
366 break;
367
368 /*
369 * Operations are only eligible to be combined
370 * if they are contiguous.
371 *
372 * TODO: add a heuristic willing to fire a
373 * certain amount of non-contiguous IO per pass,
374 * so that we can benefit from backing device
375 * command queueing.
376 */
377 if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
378 &START_KEY(&next->key)))
379 break;
380
381 size += KEY_SIZE(&next->key);
382 keys[nk++] = next;
383 } while ((next = bch_keybuf_next(&dc->writeback_keys)));
384
385 /* Now we have gathered a set of 1..5 keys to write back. */
386 for (i = 0; i < nk; i++) {
387 w = keys[i];
388
389 io = kzalloc(sizeof(struct dirty_io) +
390 sizeof(struct bio_vec) *
391 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
392 GFP_KERNEL);
393 if (!io)
394 goto err;
395
396 w->private = io;
397 io->dc = dc;
398 io->sequence = sequence++;
399
400 dirty_init(w);
401 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
402 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
403 bio_set_dev(&io->bio,
404 PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
405 io->bio.bi_end_io = read_dirty_endio;
406
407 if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
408 goto err_free;
409
410 trace_bcache_writeback(&w->key);
411
412 down(&dc->in_flight);
413
414 /* We've acquired a semaphore for the maximum
415 * simultaneous number of writebacks; from here
416 * everything happens asynchronously.
417 */
418 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
419 }
420
421 delay = writeback_delay(dc, size);
422
423 /* If the control system would wait for at least half a
424 * second, and there's been no reqs hitting the backing disk
425 * for awhile: use an alternate mode where we have at most
426 * one contiguous set of writebacks in flight at a time. If
427 * someone wants to do IO it will be quick, as it will only
428 * have to contend with one operation in flight, and we'll
429 * be round-tripping data to the backing disk as quickly as
430 * it can accept it.
431 */
432 if (delay >= HZ / 2) {
433 /* 3 means at least 1.5 seconds, up to 7.5 if we
434 * have slowed way down.
435 */
436 if (atomic_inc_return(&dc->backing_idle) >= 3) {
437 /* Wait for current I/Os to finish */
438 closure_sync(&cl);
439 /* And immediately launch a new set. */
440 delay = 0;
441 }
442 }
443
444 while (!kthread_should_stop() &&
445 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
446 delay) {
447 schedule_timeout_interruptible(delay);
448 delay = writeback_delay(dc, 0);
449 }
450 }
451
452 if (0) {
453err_free:
454 kfree(w->private);
455err:
456 bch_keybuf_del(&dc->writeback_keys, w);
457 }
458
459 /*
460 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
461 * freed) before refilling again
462 */
463 closure_sync(&cl);
464}
465
466/* Scan for dirty data */
467
468void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
469 uint64_t offset, int nr_sectors)
470{
471 struct bcache_device *d = c->devices[inode];
472 unsigned stripe_offset, stripe, sectors_dirty;
473
474 if (!d)
475 return;
476
477 stripe = offset_to_stripe(d, offset);
478 stripe_offset = offset & (d->stripe_size - 1);
479
480 while (nr_sectors) {
481 int s = min_t(unsigned, abs(nr_sectors),
482 d->stripe_size - stripe_offset);
483
484 if (nr_sectors < 0)
485 s = -s;
486
487 if (stripe >= d->nr_stripes)
488 return;
489
490 sectors_dirty = atomic_add_return(s,
491 d->stripe_sectors_dirty + stripe);
492 if (sectors_dirty == d->stripe_size)
493 set_bit(stripe, d->full_dirty_stripes);
494 else
495 clear_bit(stripe, d->full_dirty_stripes);
496
497 nr_sectors -= s;
498 stripe_offset = 0;
499 stripe++;
500 }
501}
502
503static bool dirty_pred(struct keybuf *buf, struct bkey *k)
504{
505 struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
506
507 BUG_ON(KEY_INODE(k) != dc->disk.id);
508
509 return KEY_DIRTY(k);
510}
511
512static void refill_full_stripes(struct cached_dev *dc)
513{
514 struct keybuf *buf = &dc->writeback_keys;
515 unsigned start_stripe, stripe, next_stripe;
516 bool wrapped = false;
517
518 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
519
520 if (stripe >= dc->disk.nr_stripes)
521 stripe = 0;
522
523 start_stripe = stripe;
524
525 while (1) {
526 stripe = find_next_bit(dc->disk.full_dirty_stripes,
527 dc->disk.nr_stripes, stripe);
528
529 if (stripe == dc->disk.nr_stripes)
530 goto next;
531
532 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
533 dc->disk.nr_stripes, stripe);
534
535 buf->last_scanned = KEY(dc->disk.id,
536 stripe * dc->disk.stripe_size, 0);
537
538 bch_refill_keybuf(dc->disk.c, buf,
539 &KEY(dc->disk.id,
540 next_stripe * dc->disk.stripe_size, 0),
541 dirty_pred);
542
543 if (array_freelist_empty(&buf->freelist))
544 return;
545
546 stripe = next_stripe;
547next:
548 if (wrapped && stripe > start_stripe)
549 return;
550
551 if (stripe == dc->disk.nr_stripes) {
552 stripe = 0;
553 wrapped = true;
554 }
555 }
556}
557
558/*
559 * Returns true if we scanned the entire disk
560 */
561static bool refill_dirty(struct cached_dev *dc)
562{
563 struct keybuf *buf = &dc->writeback_keys;
564 struct bkey start = KEY(dc->disk.id, 0, 0);
565 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
566 struct bkey start_pos;
567
568 /*
569 * make sure keybuf pos is inside the range for this disk - at bringup
570 * we might not be attached yet so this disk's inode nr isn't
571 * initialized then
572 */
573 if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
574 bkey_cmp(&buf->last_scanned, &end) > 0)
575 buf->last_scanned = start;
576
577 if (dc->partial_stripes_expensive) {
578 refill_full_stripes(dc);
579 if (array_freelist_empty(&buf->freelist))
580 return false;
581 }
582
583 start_pos = buf->last_scanned;
584 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
585
586 if (bkey_cmp(&buf->last_scanned, &end) < 0)
587 return false;
588
589 /*
590 * If we get to the end start scanning again from the beginning, and
591 * only scan up to where we initially started scanning from:
592 */
593 buf->last_scanned = start;
594 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
595
596 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
597}
598
599static int bch_writeback_thread(void *arg)
600{
601 struct cached_dev *dc = arg;
602 struct cache_set *c = dc->disk.c;
603 bool searched_full_index;
604
605 bch_ratelimit_reset(&dc->writeback_rate);
606
607 while (!kthread_should_stop() &&
608 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
609 down_write(&dc->writeback_lock);
610 set_current_state(TASK_INTERRUPTIBLE);
611 /*
612 * If the bache device is detaching, skip here and continue
613 * to perform writeback. Otherwise, if no dirty data on cache,
614 * or there is dirty data on cache but writeback is disabled,
615 * the writeback thread should sleep here and wait for others
616 * to wake up it.
617 */
618 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
619 (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
620 up_write(&dc->writeback_lock);
621
622 if (kthread_should_stop() ||
623 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
624 set_current_state(TASK_RUNNING);
625 break;
626 }
627
628 schedule();
629 continue;
630 }
631 set_current_state(TASK_RUNNING);
632
633 searched_full_index = refill_dirty(dc);
634
635 if (searched_full_index &&
636 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
637 atomic_set(&dc->has_dirty, 0);
638 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
639 bch_write_bdev_super(dc, NULL);
640 /*
641 * If bcache device is detaching via sysfs interface,
642 * writeback thread should stop after there is no dirty
643 * data on cache. BCACHE_DEV_DETACHING flag is set in
644 * bch_cached_dev_detach().
645 */
646 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
647 break;
648 }
649
650 up_write(&dc->writeback_lock);
651
652 read_dirty(dc);
653
654 if (searched_full_index) {
655 unsigned delay = dc->writeback_delay * HZ;
656
657 while (delay &&
658 !kthread_should_stop() &&
659 !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
660 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
661 delay = schedule_timeout_interruptible(delay);
662
663 bch_ratelimit_reset(&dc->writeback_rate);
664 }
665 }
666
667 cached_dev_put(dc);
668 wait_for_kthread_stop();
669
670 return 0;
671}
672
673/* Init */
674
675struct sectors_dirty_init {
676 struct btree_op op;
677 unsigned inode;
678};
679
680static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
681 struct bkey *k)
682{
683 struct sectors_dirty_init *op = container_of(_op,
684 struct sectors_dirty_init, op);
685 if (KEY_INODE(k) > op->inode)
686 return MAP_DONE;
687
688 if (KEY_DIRTY(k))
689 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
690 KEY_START(k), KEY_SIZE(k));
691
692 return MAP_CONTINUE;
693}
694
695void bch_sectors_dirty_init(struct bcache_device *d)
696{
697 struct sectors_dirty_init op;
698
699 bch_btree_op_init(&op.op, -1);
700 op.inode = d->id;
701
702 bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0),
703 sectors_dirty_init_fn, 0);
704}
705
706void bch_cached_dev_writeback_init(struct cached_dev *dc)
707{
708 sema_init(&dc->in_flight, 64);
709 init_rwsem(&dc->writeback_lock);
710 bch_keybuf_init(&dc->writeback_keys);
711
712 dc->writeback_metadata = true;
713 dc->writeback_running = true;
714 dc->writeback_percent = 10;
715 dc->writeback_delay = 30;
716 dc->writeback_rate.rate = 1024;
717 dc->writeback_rate_minimum = 8;
718
719 dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
720 dc->writeback_rate_p_term_inverse = 40;
721 dc->writeback_rate_i_term_inverse = 10000;
722
723 WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
724 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
725}
726
727int bch_cached_dev_writeback_start(struct cached_dev *dc)
728{
729 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
730 WQ_MEM_RECLAIM, 0);
731 if (!dc->writeback_write_wq)
732 return -ENOMEM;
733
734 cached_dev_get(dc);
735 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
736 "bcache_writeback");
737 if (IS_ERR(dc->writeback_thread)) {
738 cached_dev_put(dc);
739 return PTR_ERR(dc->writeback_thread);
740 }
741
742 WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
743 schedule_delayed_work(&dc->writeback_rate_update,
744 dc->writeback_rate_update_seconds * HZ);
745
746 bch_writeback_queue(dc);
747
748 return 0;
749}