at v4.16 963 lines 26 kB view raw
1/* 2 * Copyright (C) 2012 ARM Ltd. 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 */ 18 19#include <linux/cpu.h> 20#include <linux/kvm.h> 21#include <linux/kvm_host.h> 22#include <linux/interrupt.h> 23#include <linux/irq.h> 24#include <linux/uaccess.h> 25 26#include <clocksource/arm_arch_timer.h> 27#include <asm/arch_timer.h> 28#include <asm/kvm_hyp.h> 29 30#include <kvm/arm_vgic.h> 31#include <kvm/arm_arch_timer.h> 32 33#include "trace.h" 34 35static struct timecounter *timecounter; 36static unsigned int host_vtimer_irq; 37static u32 host_vtimer_irq_flags; 38 39static DEFINE_STATIC_KEY_FALSE(has_gic_active_state); 40 41static const struct kvm_irq_level default_ptimer_irq = { 42 .irq = 30, 43 .level = 1, 44}; 45 46static const struct kvm_irq_level default_vtimer_irq = { 47 .irq = 27, 48 .level = 1, 49}; 50 51static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx); 52static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, 53 struct arch_timer_context *timer_ctx); 54static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx); 55 56u64 kvm_phys_timer_read(void) 57{ 58 return timecounter->cc->read(timecounter->cc); 59} 60 61static inline bool userspace_irqchip(struct kvm *kvm) 62{ 63 return static_branch_unlikely(&userspace_irqchip_in_use) && 64 unlikely(!irqchip_in_kernel(kvm)); 65} 66 67static void soft_timer_start(struct hrtimer *hrt, u64 ns) 68{ 69 hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns), 70 HRTIMER_MODE_ABS); 71} 72 73static void soft_timer_cancel(struct hrtimer *hrt, struct work_struct *work) 74{ 75 hrtimer_cancel(hrt); 76 if (work) 77 cancel_work_sync(work); 78} 79 80static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id) 81{ 82 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id; 83 struct arch_timer_context *vtimer; 84 85 /* 86 * We may see a timer interrupt after vcpu_put() has been called which 87 * sets the CPU's vcpu pointer to NULL, because even though the timer 88 * has been disabled in vtimer_save_state(), the hardware interrupt 89 * signal may not have been retired from the interrupt controller yet. 90 */ 91 if (!vcpu) 92 return IRQ_HANDLED; 93 94 vtimer = vcpu_vtimer(vcpu); 95 if (kvm_timer_should_fire(vtimer)) 96 kvm_timer_update_irq(vcpu, true, vtimer); 97 98 if (userspace_irqchip(vcpu->kvm) && 99 !static_branch_unlikely(&has_gic_active_state)) 100 disable_percpu_irq(host_vtimer_irq); 101 102 return IRQ_HANDLED; 103} 104 105/* 106 * Work function for handling the backup timer that we schedule when a vcpu is 107 * no longer running, but had a timer programmed to fire in the future. 108 */ 109static void kvm_timer_inject_irq_work(struct work_struct *work) 110{ 111 struct kvm_vcpu *vcpu; 112 113 vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired); 114 115 /* 116 * If the vcpu is blocked we want to wake it up so that it will see 117 * the timer has expired when entering the guest. 118 */ 119 kvm_vcpu_wake_up(vcpu); 120} 121 122static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx) 123{ 124 u64 cval, now; 125 126 cval = timer_ctx->cnt_cval; 127 now = kvm_phys_timer_read() - timer_ctx->cntvoff; 128 129 if (now < cval) { 130 u64 ns; 131 132 ns = cyclecounter_cyc2ns(timecounter->cc, 133 cval - now, 134 timecounter->mask, 135 &timecounter->frac); 136 return ns; 137 } 138 139 return 0; 140} 141 142static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx) 143{ 144 return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) && 145 (timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE); 146} 147 148/* 149 * Returns the earliest expiration time in ns among guest timers. 150 * Note that it will return 0 if none of timers can fire. 151 */ 152static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu) 153{ 154 u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX; 155 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 156 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 157 158 if (kvm_timer_irq_can_fire(vtimer)) 159 min_virt = kvm_timer_compute_delta(vtimer); 160 161 if (kvm_timer_irq_can_fire(ptimer)) 162 min_phys = kvm_timer_compute_delta(ptimer); 163 164 /* If none of timers can fire, then return 0 */ 165 if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX)) 166 return 0; 167 168 return min(min_virt, min_phys); 169} 170 171static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt) 172{ 173 struct arch_timer_cpu *timer; 174 struct kvm_vcpu *vcpu; 175 u64 ns; 176 177 timer = container_of(hrt, struct arch_timer_cpu, bg_timer); 178 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu); 179 180 /* 181 * Check that the timer has really expired from the guest's 182 * PoV (NTP on the host may have forced it to expire 183 * early). If we should have slept longer, restart it. 184 */ 185 ns = kvm_timer_earliest_exp(vcpu); 186 if (unlikely(ns)) { 187 hrtimer_forward_now(hrt, ns_to_ktime(ns)); 188 return HRTIMER_RESTART; 189 } 190 191 schedule_work(&timer->expired); 192 return HRTIMER_NORESTART; 193} 194 195static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt) 196{ 197 struct arch_timer_context *ptimer; 198 struct arch_timer_cpu *timer; 199 struct kvm_vcpu *vcpu; 200 u64 ns; 201 202 timer = container_of(hrt, struct arch_timer_cpu, phys_timer); 203 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu); 204 ptimer = vcpu_ptimer(vcpu); 205 206 /* 207 * Check that the timer has really expired from the guest's 208 * PoV (NTP on the host may have forced it to expire 209 * early). If not ready, schedule for a later time. 210 */ 211 ns = kvm_timer_compute_delta(ptimer); 212 if (unlikely(ns)) { 213 hrtimer_forward_now(hrt, ns_to_ktime(ns)); 214 return HRTIMER_RESTART; 215 } 216 217 kvm_timer_update_irq(vcpu, true, ptimer); 218 return HRTIMER_NORESTART; 219} 220 221static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx) 222{ 223 u64 cval, now; 224 225 if (timer_ctx->loaded) { 226 u32 cnt_ctl; 227 228 /* Only the virtual timer can be loaded so far */ 229 cnt_ctl = read_sysreg_el0(cntv_ctl); 230 return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) && 231 (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) && 232 !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK); 233 } 234 235 if (!kvm_timer_irq_can_fire(timer_ctx)) 236 return false; 237 238 cval = timer_ctx->cnt_cval; 239 now = kvm_phys_timer_read() - timer_ctx->cntvoff; 240 241 return cval <= now; 242} 243 244bool kvm_timer_is_pending(struct kvm_vcpu *vcpu) 245{ 246 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 247 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 248 249 if (kvm_timer_should_fire(vtimer)) 250 return true; 251 252 return kvm_timer_should_fire(ptimer); 253} 254 255/* 256 * Reflect the timer output level into the kvm_run structure 257 */ 258void kvm_timer_update_run(struct kvm_vcpu *vcpu) 259{ 260 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 261 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 262 struct kvm_sync_regs *regs = &vcpu->run->s.regs; 263 264 /* Populate the device bitmap with the timer states */ 265 regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER | 266 KVM_ARM_DEV_EL1_PTIMER); 267 if (kvm_timer_should_fire(vtimer)) 268 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER; 269 if (kvm_timer_should_fire(ptimer)) 270 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER; 271} 272 273static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, 274 struct arch_timer_context *timer_ctx) 275{ 276 int ret; 277 278 timer_ctx->irq.level = new_level; 279 trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq, 280 timer_ctx->irq.level); 281 282 if (!userspace_irqchip(vcpu->kvm)) { 283 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id, 284 timer_ctx->irq.irq, 285 timer_ctx->irq.level, 286 timer_ctx); 287 WARN_ON(ret); 288 } 289} 290 291/* Schedule the background timer for the emulated timer. */ 292static void phys_timer_emulate(struct kvm_vcpu *vcpu) 293{ 294 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 295 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 296 297 /* 298 * If the timer can fire now we have just raised the IRQ line and we 299 * don't need to have a soft timer scheduled for the future. If the 300 * timer cannot fire at all, then we also don't need a soft timer. 301 */ 302 if (kvm_timer_should_fire(ptimer) || !kvm_timer_irq_can_fire(ptimer)) { 303 soft_timer_cancel(&timer->phys_timer, NULL); 304 return; 305 } 306 307 soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(ptimer)); 308} 309 310/* 311 * Check if there was a change in the timer state, so that we should either 312 * raise or lower the line level to the GIC or schedule a background timer to 313 * emulate the physical timer. 314 */ 315static void kvm_timer_update_state(struct kvm_vcpu *vcpu) 316{ 317 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 318 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 319 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 320 bool level; 321 322 if (unlikely(!timer->enabled)) 323 return; 324 325 /* 326 * The vtimer virtual interrupt is a 'mapped' interrupt, meaning part 327 * of its lifecycle is offloaded to the hardware, and we therefore may 328 * not have lowered the irq.level value before having to signal a new 329 * interrupt, but have to signal an interrupt every time the level is 330 * asserted. 331 */ 332 level = kvm_timer_should_fire(vtimer); 333 kvm_timer_update_irq(vcpu, level, vtimer); 334 335 if (kvm_timer_should_fire(ptimer) != ptimer->irq.level) 336 kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer); 337 338 phys_timer_emulate(vcpu); 339} 340 341static void vtimer_save_state(struct kvm_vcpu *vcpu) 342{ 343 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 344 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 345 unsigned long flags; 346 347 local_irq_save(flags); 348 349 if (!vtimer->loaded) 350 goto out; 351 352 if (timer->enabled) { 353 vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl); 354 vtimer->cnt_cval = read_sysreg_el0(cntv_cval); 355 } 356 357 /* Disable the virtual timer */ 358 write_sysreg_el0(0, cntv_ctl); 359 isb(); 360 361 vtimer->loaded = false; 362out: 363 local_irq_restore(flags); 364} 365 366/* 367 * Schedule the background timer before calling kvm_vcpu_block, so that this 368 * thread is removed from its waitqueue and made runnable when there's a timer 369 * interrupt to handle. 370 */ 371void kvm_timer_schedule(struct kvm_vcpu *vcpu) 372{ 373 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 374 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 375 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 376 377 vtimer_save_state(vcpu); 378 379 /* 380 * No need to schedule a background timer if any guest timer has 381 * already expired, because kvm_vcpu_block will return before putting 382 * the thread to sleep. 383 */ 384 if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer)) 385 return; 386 387 /* 388 * If both timers are not capable of raising interrupts (disabled or 389 * masked), then there's no more work for us to do. 390 */ 391 if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer)) 392 return; 393 394 /* 395 * The guest timers have not yet expired, schedule a background timer. 396 * Set the earliest expiration time among the guest timers. 397 */ 398 soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu)); 399} 400 401static void vtimer_restore_state(struct kvm_vcpu *vcpu) 402{ 403 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 404 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 405 unsigned long flags; 406 407 local_irq_save(flags); 408 409 if (vtimer->loaded) 410 goto out; 411 412 if (timer->enabled) { 413 write_sysreg_el0(vtimer->cnt_cval, cntv_cval); 414 isb(); 415 write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl); 416 } 417 418 vtimer->loaded = true; 419out: 420 local_irq_restore(flags); 421} 422 423void kvm_timer_unschedule(struct kvm_vcpu *vcpu) 424{ 425 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 426 427 vtimer_restore_state(vcpu); 428 429 soft_timer_cancel(&timer->bg_timer, &timer->expired); 430} 431 432static void set_cntvoff(u64 cntvoff) 433{ 434 u32 low = lower_32_bits(cntvoff); 435 u32 high = upper_32_bits(cntvoff); 436 437 /* 438 * Since kvm_call_hyp doesn't fully support the ARM PCS especially on 439 * 32-bit systems, but rather passes register by register shifted one 440 * place (we put the function address in r0/x0), we cannot simply pass 441 * a 64-bit value as an argument, but have to split the value in two 442 * 32-bit halves. 443 */ 444 kvm_call_hyp(__kvm_timer_set_cntvoff, low, high); 445} 446 447static inline void set_vtimer_irq_phys_active(struct kvm_vcpu *vcpu, bool active) 448{ 449 int r; 450 r = irq_set_irqchip_state(host_vtimer_irq, IRQCHIP_STATE_ACTIVE, active); 451 WARN_ON(r); 452} 453 454static void kvm_timer_vcpu_load_gic(struct kvm_vcpu *vcpu) 455{ 456 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 457 bool phys_active; 458 459 if (irqchip_in_kernel(vcpu->kvm)) 460 phys_active = kvm_vgic_map_is_active(vcpu, vtimer->irq.irq); 461 else 462 phys_active = vtimer->irq.level; 463 set_vtimer_irq_phys_active(vcpu, phys_active); 464} 465 466static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu) 467{ 468 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 469 470 /* 471 * When using a userspace irqchip with the architected timers and a 472 * host interrupt controller that doesn't support an active state, we 473 * must still prevent continuously exiting from the guest, and 474 * therefore mask the physical interrupt by disabling it on the host 475 * interrupt controller when the virtual level is high, such that the 476 * guest can make forward progress. Once we detect the output level 477 * being de-asserted, we unmask the interrupt again so that we exit 478 * from the guest when the timer fires. 479 */ 480 if (vtimer->irq.level) 481 disable_percpu_irq(host_vtimer_irq); 482 else 483 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); 484} 485 486void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu) 487{ 488 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 489 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 490 491 if (unlikely(!timer->enabled)) 492 return; 493 494 if (static_branch_likely(&has_gic_active_state)) 495 kvm_timer_vcpu_load_gic(vcpu); 496 else 497 kvm_timer_vcpu_load_nogic(vcpu); 498 499 set_cntvoff(vtimer->cntvoff); 500 501 vtimer_restore_state(vcpu); 502 503 /* Set the background timer for the physical timer emulation. */ 504 phys_timer_emulate(vcpu); 505} 506 507bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu) 508{ 509 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 510 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 511 struct kvm_sync_regs *sregs = &vcpu->run->s.regs; 512 bool vlevel, plevel; 513 514 if (likely(irqchip_in_kernel(vcpu->kvm))) 515 return false; 516 517 vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER; 518 plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER; 519 520 return kvm_timer_should_fire(vtimer) != vlevel || 521 kvm_timer_should_fire(ptimer) != plevel; 522} 523 524void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu) 525{ 526 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 527 528 if (unlikely(!timer->enabled)) 529 return; 530 531 vtimer_save_state(vcpu); 532 533 /* 534 * Cancel the physical timer emulation, because the only case where we 535 * need it after a vcpu_put is in the context of a sleeping VCPU, and 536 * in that case we already factor in the deadline for the physical 537 * timer when scheduling the bg_timer. 538 * 539 * In any case, we re-schedule the hrtimer for the physical timer when 540 * coming back to the VCPU thread in kvm_timer_vcpu_load(). 541 */ 542 soft_timer_cancel(&timer->phys_timer, NULL); 543 544 /* 545 * The kernel may decide to run userspace after calling vcpu_put, so 546 * we reset cntvoff to 0 to ensure a consistent read between user 547 * accesses to the virtual counter and kernel access to the physical 548 * counter. 549 */ 550 set_cntvoff(0); 551} 552 553/* 554 * With a userspace irqchip we have to check if the guest de-asserted the 555 * timer and if so, unmask the timer irq signal on the host interrupt 556 * controller to ensure that we see future timer signals. 557 */ 558static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu) 559{ 560 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 561 562 if (!kvm_timer_should_fire(vtimer)) { 563 kvm_timer_update_irq(vcpu, false, vtimer); 564 if (static_branch_likely(&has_gic_active_state)) 565 set_vtimer_irq_phys_active(vcpu, false); 566 else 567 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); 568 } 569} 570 571void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu) 572{ 573 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 574 575 if (unlikely(!timer->enabled)) 576 return; 577 578 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 579 unmask_vtimer_irq_user(vcpu); 580} 581 582int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu) 583{ 584 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 585 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 586 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 587 588 /* 589 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8 590 * and to 0 for ARMv7. We provide an implementation that always 591 * resets the timer to be disabled and unmasked and is compliant with 592 * the ARMv7 architecture. 593 */ 594 vtimer->cnt_ctl = 0; 595 ptimer->cnt_ctl = 0; 596 kvm_timer_update_state(vcpu); 597 598 if (timer->enabled && irqchip_in_kernel(vcpu->kvm)) 599 kvm_vgic_reset_mapped_irq(vcpu, vtimer->irq.irq); 600 601 return 0; 602} 603 604/* Make the updates of cntvoff for all vtimer contexts atomic */ 605static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff) 606{ 607 int i; 608 struct kvm *kvm = vcpu->kvm; 609 struct kvm_vcpu *tmp; 610 611 mutex_lock(&kvm->lock); 612 kvm_for_each_vcpu(i, tmp, kvm) 613 vcpu_vtimer(tmp)->cntvoff = cntvoff; 614 615 /* 616 * When called from the vcpu create path, the CPU being created is not 617 * included in the loop above, so we just set it here as well. 618 */ 619 vcpu_vtimer(vcpu)->cntvoff = cntvoff; 620 mutex_unlock(&kvm->lock); 621} 622 623void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu) 624{ 625 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 626 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 627 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 628 629 /* Synchronize cntvoff across all vtimers of a VM. */ 630 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read()); 631 vcpu_ptimer(vcpu)->cntvoff = 0; 632 633 INIT_WORK(&timer->expired, kvm_timer_inject_irq_work); 634 hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 635 timer->bg_timer.function = kvm_bg_timer_expire; 636 637 hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 638 timer->phys_timer.function = kvm_phys_timer_expire; 639 640 vtimer->irq.irq = default_vtimer_irq.irq; 641 ptimer->irq.irq = default_ptimer_irq.irq; 642} 643 644static void kvm_timer_init_interrupt(void *info) 645{ 646 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); 647} 648 649int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value) 650{ 651 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 652 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 653 654 switch (regid) { 655 case KVM_REG_ARM_TIMER_CTL: 656 vtimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT; 657 break; 658 case KVM_REG_ARM_TIMER_CNT: 659 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value); 660 break; 661 case KVM_REG_ARM_TIMER_CVAL: 662 vtimer->cnt_cval = value; 663 break; 664 case KVM_REG_ARM_PTIMER_CTL: 665 ptimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT; 666 break; 667 case KVM_REG_ARM_PTIMER_CVAL: 668 ptimer->cnt_cval = value; 669 break; 670 671 default: 672 return -1; 673 } 674 675 kvm_timer_update_state(vcpu); 676 return 0; 677} 678 679static u64 read_timer_ctl(struct arch_timer_context *timer) 680{ 681 /* 682 * Set ISTATUS bit if it's expired. 683 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is 684 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit 685 * regardless of ENABLE bit for our implementation convenience. 686 */ 687 if (!kvm_timer_compute_delta(timer)) 688 return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT; 689 else 690 return timer->cnt_ctl; 691} 692 693u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid) 694{ 695 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 696 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 697 698 switch (regid) { 699 case KVM_REG_ARM_TIMER_CTL: 700 return read_timer_ctl(vtimer); 701 case KVM_REG_ARM_TIMER_CNT: 702 return kvm_phys_timer_read() - vtimer->cntvoff; 703 case KVM_REG_ARM_TIMER_CVAL: 704 return vtimer->cnt_cval; 705 case KVM_REG_ARM_PTIMER_CTL: 706 return read_timer_ctl(ptimer); 707 case KVM_REG_ARM_PTIMER_CVAL: 708 return ptimer->cnt_cval; 709 case KVM_REG_ARM_PTIMER_CNT: 710 return kvm_phys_timer_read(); 711 } 712 return (u64)-1; 713} 714 715static int kvm_timer_starting_cpu(unsigned int cpu) 716{ 717 kvm_timer_init_interrupt(NULL); 718 return 0; 719} 720 721static int kvm_timer_dying_cpu(unsigned int cpu) 722{ 723 disable_percpu_irq(host_vtimer_irq); 724 return 0; 725} 726 727int kvm_timer_hyp_init(bool has_gic) 728{ 729 struct arch_timer_kvm_info *info; 730 int err; 731 732 info = arch_timer_get_kvm_info(); 733 timecounter = &info->timecounter; 734 735 if (!timecounter->cc) { 736 kvm_err("kvm_arch_timer: uninitialized timecounter\n"); 737 return -ENODEV; 738 } 739 740 if (info->virtual_irq <= 0) { 741 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n", 742 info->virtual_irq); 743 return -ENODEV; 744 } 745 host_vtimer_irq = info->virtual_irq; 746 747 host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq); 748 if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH && 749 host_vtimer_irq_flags != IRQF_TRIGGER_LOW) { 750 kvm_err("Invalid trigger for IRQ%d, assuming level low\n", 751 host_vtimer_irq); 752 host_vtimer_irq_flags = IRQF_TRIGGER_LOW; 753 } 754 755 err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler, 756 "kvm guest timer", kvm_get_running_vcpus()); 757 if (err) { 758 kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n", 759 host_vtimer_irq, err); 760 return err; 761 } 762 763 if (has_gic) { 764 err = irq_set_vcpu_affinity(host_vtimer_irq, 765 kvm_get_running_vcpus()); 766 if (err) { 767 kvm_err("kvm_arch_timer: error setting vcpu affinity\n"); 768 goto out_free_irq; 769 } 770 771 static_branch_enable(&has_gic_active_state); 772 } 773 774 kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq); 775 776 cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING, 777 "kvm/arm/timer:starting", kvm_timer_starting_cpu, 778 kvm_timer_dying_cpu); 779 return 0; 780out_free_irq: 781 free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus()); 782 return err; 783} 784 785void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu) 786{ 787 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 788 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 789 790 soft_timer_cancel(&timer->bg_timer, &timer->expired); 791 soft_timer_cancel(&timer->phys_timer, NULL); 792 kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq); 793} 794 795static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu) 796{ 797 int vtimer_irq, ptimer_irq; 798 int i, ret; 799 800 vtimer_irq = vcpu_vtimer(vcpu)->irq.irq; 801 ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu)); 802 if (ret) 803 return false; 804 805 ptimer_irq = vcpu_ptimer(vcpu)->irq.irq; 806 ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu)); 807 if (ret) 808 return false; 809 810 kvm_for_each_vcpu(i, vcpu, vcpu->kvm) { 811 if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq || 812 vcpu_ptimer(vcpu)->irq.irq != ptimer_irq) 813 return false; 814 } 815 816 return true; 817} 818 819bool kvm_arch_timer_get_input_level(int vintid) 820{ 821 struct kvm_vcpu *vcpu = kvm_arm_get_running_vcpu(); 822 struct arch_timer_context *timer; 823 824 if (vintid == vcpu_vtimer(vcpu)->irq.irq) 825 timer = vcpu_vtimer(vcpu); 826 else 827 BUG(); /* We only map the vtimer so far */ 828 829 return kvm_timer_should_fire(timer); 830} 831 832int kvm_timer_enable(struct kvm_vcpu *vcpu) 833{ 834 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 835 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 836 int ret; 837 838 if (timer->enabled) 839 return 0; 840 841 /* Without a VGIC we do not map virtual IRQs to physical IRQs */ 842 if (!irqchip_in_kernel(vcpu->kvm)) 843 goto no_vgic; 844 845 if (!vgic_initialized(vcpu->kvm)) 846 return -ENODEV; 847 848 if (!timer_irqs_are_valid(vcpu)) { 849 kvm_debug("incorrectly configured timer irqs\n"); 850 return -EINVAL; 851 } 852 853 ret = kvm_vgic_map_phys_irq(vcpu, host_vtimer_irq, vtimer->irq.irq, 854 kvm_arch_timer_get_input_level); 855 if (ret) 856 return ret; 857 858no_vgic: 859 preempt_disable(); 860 timer->enabled = 1; 861 kvm_timer_vcpu_load(vcpu); 862 preempt_enable(); 863 864 return 0; 865} 866 867/* 868 * On VHE system, we only need to configure trap on physical timer and counter 869 * accesses in EL0 and EL1 once, not for every world switch. 870 * The host kernel runs at EL2 with HCR_EL2.TGE == 1, 871 * and this makes those bits have no effect for the host kernel execution. 872 */ 873void kvm_timer_init_vhe(void) 874{ 875 /* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */ 876 u32 cnthctl_shift = 10; 877 u64 val; 878 879 /* 880 * Disallow physical timer access for the guest. 881 * Physical counter access is allowed. 882 */ 883 val = read_sysreg(cnthctl_el2); 884 val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift); 885 val |= (CNTHCTL_EL1PCTEN << cnthctl_shift); 886 write_sysreg(val, cnthctl_el2); 887} 888 889static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq) 890{ 891 struct kvm_vcpu *vcpu; 892 int i; 893 894 kvm_for_each_vcpu(i, vcpu, kvm) { 895 vcpu_vtimer(vcpu)->irq.irq = vtimer_irq; 896 vcpu_ptimer(vcpu)->irq.irq = ptimer_irq; 897 } 898} 899 900int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) 901{ 902 int __user *uaddr = (int __user *)(long)attr->addr; 903 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 904 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 905 int irq; 906 907 if (!irqchip_in_kernel(vcpu->kvm)) 908 return -EINVAL; 909 910 if (get_user(irq, uaddr)) 911 return -EFAULT; 912 913 if (!(irq_is_ppi(irq))) 914 return -EINVAL; 915 916 if (vcpu->arch.timer_cpu.enabled) 917 return -EBUSY; 918 919 switch (attr->attr) { 920 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: 921 set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq); 922 break; 923 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: 924 set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq); 925 break; 926 default: 927 return -ENXIO; 928 } 929 930 return 0; 931} 932 933int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) 934{ 935 int __user *uaddr = (int __user *)(long)attr->addr; 936 struct arch_timer_context *timer; 937 int irq; 938 939 switch (attr->attr) { 940 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: 941 timer = vcpu_vtimer(vcpu); 942 break; 943 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: 944 timer = vcpu_ptimer(vcpu); 945 break; 946 default: 947 return -ENXIO; 948 } 949 950 irq = timer->irq.irq; 951 return put_user(irq, uaddr); 952} 953 954int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) 955{ 956 switch (attr->attr) { 957 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: 958 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: 959 return 0; 960 } 961 962 return -ENXIO; 963}