Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <linux/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/sched/mm.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <linux/bpf.h>
99#include <linux/bpf_trace.h>
100#include <net/net_namespace.h>
101#include <net/sock.h>
102#include <net/busy_poll.h>
103#include <linux/rtnetlink.h>
104#include <linux/stat.h>
105#include <net/dst.h>
106#include <net/dst_metadata.h>
107#include <net/pkt_sched.h>
108#include <net/pkt_cls.h>
109#include <net/checksum.h>
110#include <net/xfrm.h>
111#include <linux/highmem.h>
112#include <linux/init.h>
113#include <linux/module.h>
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
117#include <net/iw_handler.h>
118#include <asm/current.h>
119#include <linux/audit.h>
120#include <linux/dmaengine.h>
121#include <linux/err.h>
122#include <linux/ctype.h>
123#include <linux/if_arp.h>
124#include <linux/if_vlan.h>
125#include <linux/ip.h>
126#include <net/ip.h>
127#include <net/mpls.h>
128#include <linux/ipv6.h>
129#include <linux/in.h>
130#include <linux/jhash.h>
131#include <linux/random.h>
132#include <trace/events/napi.h>
133#include <trace/events/net.h>
134#include <trace/events/skb.h>
135#include <linux/pci.h>
136#include <linux/inetdevice.h>
137#include <linux/cpu_rmap.h>
138#include <linux/static_key.h>
139#include <linux/hashtable.h>
140#include <linux/vmalloc.h>
141#include <linux/if_macvlan.h>
142#include <linux/errqueue.h>
143#include <linux/hrtimer.h>
144#include <linux/netfilter_ingress.h>
145#include <linux/crash_dump.h>
146#include <linux/sctp.h>
147#include <net/udp_tunnel.h>
148#include <linux/net_namespace.h>
149
150#include "net-sysfs.h"
151
152/* Instead of increasing this, you should create a hash table. */
153#define MAX_GRO_SKBS 8
154
155/* This should be increased if a protocol with a bigger head is added. */
156#define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158static DEFINE_SPINLOCK(ptype_lock);
159static DEFINE_SPINLOCK(offload_lock);
160struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161struct list_head ptype_all __read_mostly; /* Taps */
162static struct list_head offload_base __read_mostly;
163
164static int netif_rx_internal(struct sk_buff *skb);
165static int call_netdevice_notifiers_info(unsigned long val,
166 struct netdev_notifier_info *info);
167static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169/*
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
172 *
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
188DEFINE_RWLOCK(dev_base_lock);
189EXPORT_SYMBOL(dev_base_lock);
190
191static DEFINE_MUTEX(ifalias_mutex);
192
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
196static unsigned int napi_gen_id = NR_CPUS;
197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199static seqcount_t devnet_rename_seq;
200
201static inline void dev_base_seq_inc(struct net *net)
202{
203 while (++net->dev_base_seq == 0)
204 ;
205}
206
207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208{
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212}
213
214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215{
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217}
218
219static inline void rps_lock(struct softnet_data *sd)
220{
221#ifdef CONFIG_RPS
222 spin_lock(&sd->input_pkt_queue.lock);
223#endif
224}
225
226static inline void rps_unlock(struct softnet_data *sd)
227{
228#ifdef CONFIG_RPS
229 spin_unlock(&sd->input_pkt_queue.lock);
230#endif
231}
232
233/* Device list insertion */
234static void list_netdevice(struct net_device *dev)
235{
236 struct net *net = dev_net(dev);
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
245 write_unlock_bh(&dev_base_lock);
246
247 dev_base_seq_inc(net);
248}
249
250/* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
252 */
253static void unlist_netdevice(struct net_device *dev)
254{
255 ASSERT_RTNL();
256
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
259 list_del_rcu(&dev->dev_list);
260 hlist_del_rcu(&dev->name_hlist);
261 hlist_del_rcu(&dev->index_hlist);
262 write_unlock_bh(&dev_base_lock);
263
264 dev_base_seq_inc(dev_net(dev));
265}
266
267/*
268 * Our notifier list
269 */
270
271static RAW_NOTIFIER_HEAD(netdev_chain);
272
273/*
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
276 */
277
278DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281#ifdef CONFIG_LOCKDEP
282/*
283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284 * according to dev->type
285 */
286static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324{
325 int i;
326
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
332}
333
334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
336{
337 int i;
338
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
342}
343
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345{
346 int i;
347
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
352}
353#else
354static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
356{
357}
358static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359{
360}
361#endif
362
363/*******************************************************************************
364 *
365 * Protocol management and registration routines
366 *
367 *******************************************************************************/
368
369
370/*
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
374 *
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
384 */
385
386static inline struct list_head *ptype_head(const struct packet_type *pt)
387{
388 if (pt->type == htons(ETH_P_ALL))
389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 else
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393}
394
395/**
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
398 *
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
402 *
403 * This call does not sleep therefore it can not
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
406 */
407
408void dev_add_pack(struct packet_type *pt)
409{
410 struct list_head *head = ptype_head(pt);
411
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
415}
416EXPORT_SYMBOL(dev_add_pack);
417
418/**
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
430 */
431void __dev_remove_pack(struct packet_type *pt)
432{
433 struct list_head *head = ptype_head(pt);
434 struct packet_type *pt1;
435
436 spin_lock(&ptype_lock);
437
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
442 }
443 }
444
445 pr_warn("dev_remove_pack: %p not found\n", pt);
446out:
447 spin_unlock(&ptype_lock);
448}
449EXPORT_SYMBOL(__dev_remove_pack);
450
451/**
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
459 *
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
462 */
463void dev_remove_pack(struct packet_type *pt)
464{
465 __dev_remove_pack(pt);
466
467 synchronize_net();
468}
469EXPORT_SYMBOL(dev_remove_pack);
470
471
472/**
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
475 *
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
479 *
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
483 */
484void dev_add_offload(struct packet_offload *po)
485{
486 struct packet_offload *elem;
487
488 spin_lock(&offload_lock);
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
492 }
493 list_add_rcu(&po->list, elem->list.prev);
494 spin_unlock(&offload_lock);
495}
496EXPORT_SYMBOL(dev_add_offload);
497
498/**
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
510 */
511static void __dev_remove_offload(struct packet_offload *po)
512{
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
515
516 spin_lock(&offload_lock);
517
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
522 }
523 }
524
525 pr_warn("dev_remove_offload: %p not found\n", po);
526out:
527 spin_unlock(&offload_lock);
528}
529
530/**
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
533 *
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
538 *
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
541 */
542void dev_remove_offload(struct packet_offload *po)
543{
544 __dev_remove_offload(po);
545
546 synchronize_net();
547}
548EXPORT_SYMBOL(dev_remove_offload);
549
550/******************************************************************************
551 *
552 * Device Boot-time Settings Routines
553 *
554 ******************************************************************************/
555
556/* Boot time configuration table */
557static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559/**
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
563 *
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
567 */
568static int netdev_boot_setup_add(char *name, struct ifmap *map)
569{
570 struct netdev_boot_setup *s;
571 int i;
572
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
577 strlcpy(s[i].name, name, IFNAMSIZ);
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
580 }
581 }
582
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584}
585
586/**
587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
589 *
590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
594 */
595int netdev_boot_setup_check(struct net_device *dev)
596{
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
599
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 !strcmp(dev->name, s[i].name)) {
603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
607 return 1;
608 }
609 }
610 return 0;
611}
612EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615/**
616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
619 *
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
624 */
625unsigned long netdev_boot_base(const char *prefix, int unit)
626{
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
630
631 sprintf(name, "%s%d", prefix, unit);
632
633 /*
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
636 */
637 if (__dev_get_by_name(&init_net, name))
638 return 1;
639
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
644}
645
646/*
647 * Saves at boot time configured settings for any netdevice.
648 */
649int __init netdev_boot_setup(char *str)
650{
651 int ints[5];
652 struct ifmap map;
653
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
657
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
668
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
671}
672
673__setup("netdev=", netdev_boot_setup);
674
675/*******************************************************************************
676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
680
681/**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
689int dev_get_iflink(const struct net_device *dev)
690{
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
694 return dev->ifindex;
695}
696EXPORT_SYMBOL(dev_get_iflink);
697
698/**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
707int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708{
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721}
722EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724/**
725 * __dev_get_by_name - find a device by its name
726 * @net: the applicable net namespace
727 * @name: name to find
728 *
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
734 */
735
736struct net_device *__dev_get_by_name(struct net *net, const char *name)
737{
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
740
741 hlist_for_each_entry(dev, head, name_hlist)
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
744
745 return NULL;
746}
747EXPORT_SYMBOL(__dev_get_by_name);
748
749/**
750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
753 *
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
759 */
760
761struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762{
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
765
766 hlist_for_each_entry_rcu(dev, head, name_hlist)
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774/**
775 * dev_get_by_name - find a device by its name
776 * @net: the applicable net namespace
777 * @name: name to find
778 *
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
784 */
785
786struct net_device *dev_get_by_name(struct net *net, const char *name)
787{
788 struct net_device *dev;
789
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
792 if (dev)
793 dev_hold(dev);
794 rcu_read_unlock();
795 return dev;
796}
797EXPORT_SYMBOL(dev_get_by_name);
798
799/**
800 * __dev_get_by_index - find a device by its ifindex
801 * @net: the applicable net namespace
802 * @ifindex: index of device
803 *
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
809 */
810
811struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812{
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
815
816 hlist_for_each_entry(dev, head, index_hlist)
817 if (dev->ifindex == ifindex)
818 return dev;
819
820 return NULL;
821}
822EXPORT_SYMBOL(__dev_get_by_index);
823
824/**
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
833 */
834
835struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836{
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
839
840 hlist_for_each_entry_rcu(dev, head, index_hlist)
841 if (dev->ifindex == ifindex)
842 return dev;
843
844 return NULL;
845}
846EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849/**
850 * dev_get_by_index - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
858 */
859
860struct net_device *dev_get_by_index(struct net *net, int ifindex)
861{
862 struct net_device *dev;
863
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
866 if (dev)
867 dev_hold(dev);
868 rcu_read_unlock();
869 return dev;
870}
871EXPORT_SYMBOL(dev_get_by_index);
872
873/**
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
876 *
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
881 */
882
883struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884{
885 struct napi_struct *napi;
886
887 WARN_ON_ONCE(!rcu_read_lock_held());
888
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
891
892 napi = napi_by_id(napi_id);
893
894 return napi ? napi->dev : NULL;
895}
896EXPORT_SYMBOL(dev_get_by_napi_id);
897
898/**
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
903 *
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
907 */
908int netdev_get_name(struct net *net, char *name, int ifindex)
909{
910 struct net_device *dev;
911 unsigned int seq;
912
913retry:
914 seq = raw_seqcount_begin(&devnet_rename_seq);
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 rcu_read_unlock();
919 return -ENODEV;
920 }
921
922 strcpy(name, dev->name);
923 rcu_read_unlock();
924 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 cond_resched();
926 goto retry;
927 }
928
929 return 0;
930}
931
932/**
933 * dev_getbyhwaddr_rcu - find a device by its hardware address
934 * @net: the applicable net namespace
935 * @type: media type of device
936 * @ha: hardware address
937 *
938 * Search for an interface by MAC address. Returns NULL if the device
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941 * The returned device has not had its ref count increased
942 * and the caller must therefore be careful about locking
943 *
944 */
945
946struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 const char *ha)
948{
949 struct net_device *dev;
950
951 for_each_netdev_rcu(net, dev)
952 if (dev->type == type &&
953 !memcmp(dev->dev_addr, ha, dev->addr_len))
954 return dev;
955
956 return NULL;
957}
958EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959
960struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961{
962 struct net_device *dev;
963
964 ASSERT_RTNL();
965 for_each_netdev(net, dev)
966 if (dev->type == type)
967 return dev;
968
969 return NULL;
970}
971EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
973struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974{
975 struct net_device *dev, *ret = NULL;
976
977 rcu_read_lock();
978 for_each_netdev_rcu(net, dev)
979 if (dev->type == type) {
980 dev_hold(dev);
981 ret = dev;
982 break;
983 }
984 rcu_read_unlock();
985 return ret;
986}
987EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989/**
990 * __dev_get_by_flags - find any device with given flags
991 * @net: the applicable net namespace
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
994 *
995 * Search for any interface with the given flags. Returns NULL if a device
996 * is not found or a pointer to the device. Must be called inside
997 * rtnl_lock(), and result refcount is unchanged.
998 */
999
1000struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 unsigned short mask)
1002{
1003 struct net_device *dev, *ret;
1004
1005 ASSERT_RTNL();
1006
1007 ret = NULL;
1008 for_each_netdev(net, dev) {
1009 if (((dev->flags ^ if_flags) & mask) == 0) {
1010 ret = dev;
1011 break;
1012 }
1013 }
1014 return ret;
1015}
1016EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018/**
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1021 *
1022 * Network device names need to be valid file names to
1023 * to allow sysfs to work. We also disallow any kind of
1024 * whitespace.
1025 */
1026bool dev_valid_name(const char *name)
1027{
1028 if (*name == '\0')
1029 return false;
1030 if (strlen(name) >= IFNAMSIZ)
1031 return false;
1032 if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 return false;
1034
1035 while (*name) {
1036 if (*name == '/' || *name == ':' || isspace(*name))
1037 return false;
1038 name++;
1039 }
1040 return true;
1041}
1042EXPORT_SYMBOL(dev_valid_name);
1043
1044/**
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1047 * @name: name format string
1048 * @buf: scratch buffer and result name string
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060{
1061 int i = 0;
1062 const char *p;
1063 const int max_netdevices = 8*PAGE_SIZE;
1064 unsigned long *inuse;
1065 struct net_device *d;
1066
1067 if (!dev_valid_name(name))
1068 return -EINVAL;
1069
1070 p = strchr(name, '%');
1071 if (p) {
1072 /*
1073 * Verify the string as this thing may have come from
1074 * the user. There must be either one "%d" and no other "%"
1075 * characters.
1076 */
1077 if (p[1] != 'd' || strchr(p + 2, '%'))
1078 return -EINVAL;
1079
1080 /* Use one page as a bit array of possible slots */
1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 if (!inuse)
1083 return -ENOMEM;
1084
1085 for_each_netdev(net, d) {
1086 if (!sscanf(d->name, name, &i))
1087 continue;
1088 if (i < 0 || i >= max_netdevices)
1089 continue;
1090
1091 /* avoid cases where sscanf is not exact inverse of printf */
1092 snprintf(buf, IFNAMSIZ, name, i);
1093 if (!strncmp(buf, d->name, IFNAMSIZ))
1094 set_bit(i, inuse);
1095 }
1096
1097 i = find_first_zero_bit(inuse, max_netdevices);
1098 free_page((unsigned long) inuse);
1099 }
1100
1101 snprintf(buf, IFNAMSIZ, name, i);
1102 if (!__dev_get_by_name(net, buf))
1103 return i;
1104
1105 /* It is possible to run out of possible slots
1106 * when the name is long and there isn't enough space left
1107 * for the digits, or if all bits are used.
1108 */
1109 return -ENFILE;
1110}
1111
1112static int dev_alloc_name_ns(struct net *net,
1113 struct net_device *dev,
1114 const char *name)
1115{
1116 char buf[IFNAMSIZ];
1117 int ret;
1118
1119 BUG_ON(!net);
1120 ret = __dev_alloc_name(net, name, buf);
1121 if (ret >= 0)
1122 strlcpy(dev->name, buf, IFNAMSIZ);
1123 return ret;
1124}
1125
1126/**
1127 * dev_alloc_name - allocate a name for a device
1128 * @dev: device
1129 * @name: name format string
1130 *
1131 * Passed a format string - eg "lt%d" it will try and find a suitable
1132 * id. It scans list of devices to build up a free map, then chooses
1133 * the first empty slot. The caller must hold the dev_base or rtnl lock
1134 * while allocating the name and adding the device in order to avoid
1135 * duplicates.
1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 * Returns the number of the unit assigned or a negative errno code.
1138 */
1139
1140int dev_alloc_name(struct net_device *dev, const char *name)
1141{
1142 return dev_alloc_name_ns(dev_net(dev), dev, name);
1143}
1144EXPORT_SYMBOL(dev_alloc_name);
1145
1146int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 const char *name)
1148{
1149 BUG_ON(!net);
1150
1151 if (!dev_valid_name(name))
1152 return -EINVAL;
1153
1154 if (strchr(name, '%'))
1155 return dev_alloc_name_ns(net, dev, name);
1156 else if (__dev_get_by_name(net, name))
1157 return -EEXIST;
1158 else if (dev->name != name)
1159 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161 return 0;
1162}
1163EXPORT_SYMBOL(dev_get_valid_name);
1164
1165/**
1166 * dev_change_name - change name of a device
1167 * @dev: device
1168 * @newname: name (or format string) must be at least IFNAMSIZ
1169 *
1170 * Change name of a device, can pass format strings "eth%d".
1171 * for wildcarding.
1172 */
1173int dev_change_name(struct net_device *dev, const char *newname)
1174{
1175 unsigned char old_assign_type;
1176 char oldname[IFNAMSIZ];
1177 int err = 0;
1178 int ret;
1179 struct net *net;
1180
1181 ASSERT_RTNL();
1182 BUG_ON(!dev_net(dev));
1183
1184 net = dev_net(dev);
1185 if (dev->flags & IFF_UP)
1186 return -EBUSY;
1187
1188 write_seqcount_begin(&devnet_rename_seq);
1189
1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 write_seqcount_end(&devnet_rename_seq);
1192 return 0;
1193 }
1194
1195 memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197 err = dev_get_valid_name(net, dev, newname);
1198 if (err < 0) {
1199 write_seqcount_end(&devnet_rename_seq);
1200 return err;
1201 }
1202
1203 if (oldname[0] && !strchr(oldname, '%'))
1204 netdev_info(dev, "renamed from %s\n", oldname);
1205
1206 old_assign_type = dev->name_assign_type;
1207 dev->name_assign_type = NET_NAME_RENAMED;
1208
1209rollback:
1210 ret = device_rename(&dev->dev, dev->name);
1211 if (ret) {
1212 memcpy(dev->name, oldname, IFNAMSIZ);
1213 dev->name_assign_type = old_assign_type;
1214 write_seqcount_end(&devnet_rename_seq);
1215 return ret;
1216 }
1217
1218 write_seqcount_end(&devnet_rename_seq);
1219
1220 netdev_adjacent_rename_links(dev, oldname);
1221
1222 write_lock_bh(&dev_base_lock);
1223 hlist_del_rcu(&dev->name_hlist);
1224 write_unlock_bh(&dev_base_lock);
1225
1226 synchronize_rcu();
1227
1228 write_lock_bh(&dev_base_lock);
1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 write_unlock_bh(&dev_base_lock);
1231
1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 ret = notifier_to_errno(ret);
1234
1235 if (ret) {
1236 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237 if (err >= 0) {
1238 err = ret;
1239 write_seqcount_begin(&devnet_rename_seq);
1240 memcpy(dev->name, oldname, IFNAMSIZ);
1241 memcpy(oldname, newname, IFNAMSIZ);
1242 dev->name_assign_type = old_assign_type;
1243 old_assign_type = NET_NAME_RENAMED;
1244 goto rollback;
1245 } else {
1246 pr_err("%s: name change rollback failed: %d\n",
1247 dev->name, ret);
1248 }
1249 }
1250
1251 return err;
1252}
1253
1254/**
1255 * dev_set_alias - change ifalias of a device
1256 * @dev: device
1257 * @alias: name up to IFALIASZ
1258 * @len: limit of bytes to copy from info
1259 *
1260 * Set ifalias for a device,
1261 */
1262int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263{
1264 struct dev_ifalias *new_alias = NULL;
1265
1266 if (len >= IFALIASZ)
1267 return -EINVAL;
1268
1269 if (len) {
1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 if (!new_alias)
1272 return -ENOMEM;
1273
1274 memcpy(new_alias->ifalias, alias, len);
1275 new_alias->ifalias[len] = 0;
1276 }
1277
1278 mutex_lock(&ifalias_mutex);
1279 rcu_swap_protected(dev->ifalias, new_alias,
1280 mutex_is_locked(&ifalias_mutex));
1281 mutex_unlock(&ifalias_mutex);
1282
1283 if (new_alias)
1284 kfree_rcu(new_alias, rcuhead);
1285
1286 return len;
1287}
1288
1289/**
1290 * dev_get_alias - get ifalias of a device
1291 * @dev: device
1292 * @name: buffer to store name of ifalias
1293 * @len: size of buffer
1294 *
1295 * get ifalias for a device. Caller must make sure dev cannot go
1296 * away, e.g. rcu read lock or own a reference count to device.
1297 */
1298int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299{
1300 const struct dev_ifalias *alias;
1301 int ret = 0;
1302
1303 rcu_read_lock();
1304 alias = rcu_dereference(dev->ifalias);
1305 if (alias)
1306 ret = snprintf(name, len, "%s", alias->ifalias);
1307 rcu_read_unlock();
1308
1309 return ret;
1310}
1311
1312/**
1313 * netdev_features_change - device changes features
1314 * @dev: device to cause notification
1315 *
1316 * Called to indicate a device has changed features.
1317 */
1318void netdev_features_change(struct net_device *dev)
1319{
1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321}
1322EXPORT_SYMBOL(netdev_features_change);
1323
1324/**
1325 * netdev_state_change - device changes state
1326 * @dev: device to cause notification
1327 *
1328 * Called to indicate a device has changed state. This function calls
1329 * the notifier chains for netdev_chain and sends a NEWLINK message
1330 * to the routing socket.
1331 */
1332void netdev_state_change(struct net_device *dev)
1333{
1334 if (dev->flags & IFF_UP) {
1335 struct netdev_notifier_change_info change_info = {
1336 .info.dev = dev,
1337 };
1338
1339 call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 &change_info.info);
1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342 }
1343}
1344EXPORT_SYMBOL(netdev_state_change);
1345
1346/**
1347 * netdev_notify_peers - notify network peers about existence of @dev
1348 * @dev: network device
1349 *
1350 * Generate traffic such that interested network peers are aware of
1351 * @dev, such as by generating a gratuitous ARP. This may be used when
1352 * a device wants to inform the rest of the network about some sort of
1353 * reconfiguration such as a failover event or virtual machine
1354 * migration.
1355 */
1356void netdev_notify_peers(struct net_device *dev)
1357{
1358 rtnl_lock();
1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 rtnl_unlock();
1362}
1363EXPORT_SYMBOL(netdev_notify_peers);
1364
1365static int __dev_open(struct net_device *dev)
1366{
1367 const struct net_device_ops *ops = dev->netdev_ops;
1368 int ret;
1369
1370 ASSERT_RTNL();
1371
1372 if (!netif_device_present(dev))
1373 return -ENODEV;
1374
1375 /* Block netpoll from trying to do any rx path servicing.
1376 * If we don't do this there is a chance ndo_poll_controller
1377 * or ndo_poll may be running while we open the device
1378 */
1379 netpoll_poll_disable(dev);
1380
1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 ret = notifier_to_errno(ret);
1383 if (ret)
1384 return ret;
1385
1386 set_bit(__LINK_STATE_START, &dev->state);
1387
1388 if (ops->ndo_validate_addr)
1389 ret = ops->ndo_validate_addr(dev);
1390
1391 if (!ret && ops->ndo_open)
1392 ret = ops->ndo_open(dev);
1393
1394 netpoll_poll_enable(dev);
1395
1396 if (ret)
1397 clear_bit(__LINK_STATE_START, &dev->state);
1398 else {
1399 dev->flags |= IFF_UP;
1400 dev_set_rx_mode(dev);
1401 dev_activate(dev);
1402 add_device_randomness(dev->dev_addr, dev->addr_len);
1403 }
1404
1405 return ret;
1406}
1407
1408/**
1409 * dev_open - prepare an interface for use.
1410 * @dev: device to open
1411 *
1412 * Takes a device from down to up state. The device's private open
1413 * function is invoked and then the multicast lists are loaded. Finally
1414 * the device is moved into the up state and a %NETDEV_UP message is
1415 * sent to the netdev notifier chain.
1416 *
1417 * Calling this function on an active interface is a nop. On a failure
1418 * a negative errno code is returned.
1419 */
1420int dev_open(struct net_device *dev)
1421{
1422 int ret;
1423
1424 if (dev->flags & IFF_UP)
1425 return 0;
1426
1427 ret = __dev_open(dev);
1428 if (ret < 0)
1429 return ret;
1430
1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434 return ret;
1435}
1436EXPORT_SYMBOL(dev_open);
1437
1438static void __dev_close_many(struct list_head *head)
1439{
1440 struct net_device *dev;
1441
1442 ASSERT_RTNL();
1443 might_sleep();
1444
1445 list_for_each_entry(dev, head, close_list) {
1446 /* Temporarily disable netpoll until the interface is down */
1447 netpoll_poll_disable(dev);
1448
1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450
1451 clear_bit(__LINK_STATE_START, &dev->state);
1452
1453 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454 * can be even on different cpu. So just clear netif_running().
1455 *
1456 * dev->stop() will invoke napi_disable() on all of it's
1457 * napi_struct instances on this device.
1458 */
1459 smp_mb__after_atomic(); /* Commit netif_running(). */
1460 }
1461
1462 dev_deactivate_many(head);
1463
1464 list_for_each_entry(dev, head, close_list) {
1465 const struct net_device_ops *ops = dev->netdev_ops;
1466
1467 /*
1468 * Call the device specific close. This cannot fail.
1469 * Only if device is UP
1470 *
1471 * We allow it to be called even after a DETACH hot-plug
1472 * event.
1473 */
1474 if (ops->ndo_stop)
1475 ops->ndo_stop(dev);
1476
1477 dev->flags &= ~IFF_UP;
1478 netpoll_poll_enable(dev);
1479 }
1480}
1481
1482static void __dev_close(struct net_device *dev)
1483{
1484 LIST_HEAD(single);
1485
1486 list_add(&dev->close_list, &single);
1487 __dev_close_many(&single);
1488 list_del(&single);
1489}
1490
1491void dev_close_many(struct list_head *head, bool unlink)
1492{
1493 struct net_device *dev, *tmp;
1494
1495 /* Remove the devices that don't need to be closed */
1496 list_for_each_entry_safe(dev, tmp, head, close_list)
1497 if (!(dev->flags & IFF_UP))
1498 list_del_init(&dev->close_list);
1499
1500 __dev_close_many(head);
1501
1502 list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 if (unlink)
1506 list_del_init(&dev->close_list);
1507 }
1508}
1509EXPORT_SYMBOL(dev_close_many);
1510
1511/**
1512 * dev_close - shutdown an interface.
1513 * @dev: device to shutdown
1514 *
1515 * This function moves an active device into down state. A
1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518 * chain.
1519 */
1520void dev_close(struct net_device *dev)
1521{
1522 if (dev->flags & IFF_UP) {
1523 LIST_HEAD(single);
1524
1525 list_add(&dev->close_list, &single);
1526 dev_close_many(&single, true);
1527 list_del(&single);
1528 }
1529}
1530EXPORT_SYMBOL(dev_close);
1531
1532
1533/**
1534 * dev_disable_lro - disable Large Receive Offload on a device
1535 * @dev: device
1536 *
1537 * Disable Large Receive Offload (LRO) on a net device. Must be
1538 * called under RTNL. This is needed if received packets may be
1539 * forwarded to another interface.
1540 */
1541void dev_disable_lro(struct net_device *dev)
1542{
1543 struct net_device *lower_dev;
1544 struct list_head *iter;
1545
1546 dev->wanted_features &= ~NETIF_F_LRO;
1547 netdev_update_features(dev);
1548
1549 if (unlikely(dev->features & NETIF_F_LRO))
1550 netdev_WARN(dev, "failed to disable LRO!\n");
1551
1552 netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 dev_disable_lro(lower_dev);
1554}
1555EXPORT_SYMBOL(dev_disable_lro);
1556
1557/**
1558 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559 * @dev: device
1560 *
1561 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1562 * called under RTNL. This is needed if Generic XDP is installed on
1563 * the device.
1564 */
1565static void dev_disable_gro_hw(struct net_device *dev)
1566{
1567 dev->wanted_features &= ~NETIF_F_GRO_HW;
1568 netdev_update_features(dev);
1569
1570 if (unlikely(dev->features & NETIF_F_GRO_HW))
1571 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572}
1573
1574static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1575 struct net_device *dev)
1576{
1577 struct netdev_notifier_info info = {
1578 .dev = dev,
1579 };
1580
1581 return nb->notifier_call(nb, val, &info);
1582}
1583
1584static int dev_boot_phase = 1;
1585
1586/**
1587 * register_netdevice_notifier - register a network notifier block
1588 * @nb: notifier
1589 *
1590 * Register a notifier to be called when network device events occur.
1591 * The notifier passed is linked into the kernel structures and must
1592 * not be reused until it has been unregistered. A negative errno code
1593 * is returned on a failure.
1594 *
1595 * When registered all registration and up events are replayed
1596 * to the new notifier to allow device to have a race free
1597 * view of the network device list.
1598 */
1599
1600int register_netdevice_notifier(struct notifier_block *nb)
1601{
1602 struct net_device *dev;
1603 struct net_device *last;
1604 struct net *net;
1605 int err;
1606
1607 rtnl_lock();
1608 err = raw_notifier_chain_register(&netdev_chain, nb);
1609 if (err)
1610 goto unlock;
1611 if (dev_boot_phase)
1612 goto unlock;
1613 for_each_net(net) {
1614 for_each_netdev(net, dev) {
1615 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1616 err = notifier_to_errno(err);
1617 if (err)
1618 goto rollback;
1619
1620 if (!(dev->flags & IFF_UP))
1621 continue;
1622
1623 call_netdevice_notifier(nb, NETDEV_UP, dev);
1624 }
1625 }
1626
1627unlock:
1628 rtnl_unlock();
1629 return err;
1630
1631rollback:
1632 last = dev;
1633 for_each_net(net) {
1634 for_each_netdev(net, dev) {
1635 if (dev == last)
1636 goto outroll;
1637
1638 if (dev->flags & IFF_UP) {
1639 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1640 dev);
1641 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1642 }
1643 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1644 }
1645 }
1646
1647outroll:
1648 raw_notifier_chain_unregister(&netdev_chain, nb);
1649 goto unlock;
1650}
1651EXPORT_SYMBOL(register_netdevice_notifier);
1652
1653/**
1654 * unregister_netdevice_notifier - unregister a network notifier block
1655 * @nb: notifier
1656 *
1657 * Unregister a notifier previously registered by
1658 * register_netdevice_notifier(). The notifier is unlinked into the
1659 * kernel structures and may then be reused. A negative errno code
1660 * is returned on a failure.
1661 *
1662 * After unregistering unregister and down device events are synthesized
1663 * for all devices on the device list to the removed notifier to remove
1664 * the need for special case cleanup code.
1665 */
1666
1667int unregister_netdevice_notifier(struct notifier_block *nb)
1668{
1669 struct net_device *dev;
1670 struct net *net;
1671 int err;
1672
1673 rtnl_lock();
1674 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1675 if (err)
1676 goto unlock;
1677
1678 for_each_net(net) {
1679 for_each_netdev(net, dev) {
1680 if (dev->flags & IFF_UP) {
1681 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1682 dev);
1683 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1684 }
1685 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1686 }
1687 }
1688unlock:
1689 rtnl_unlock();
1690 return err;
1691}
1692EXPORT_SYMBOL(unregister_netdevice_notifier);
1693
1694/**
1695 * call_netdevice_notifiers_info - call all network notifier blocks
1696 * @val: value passed unmodified to notifier function
1697 * @info: notifier information data
1698 *
1699 * Call all network notifier blocks. Parameters and return value
1700 * are as for raw_notifier_call_chain().
1701 */
1702
1703static int call_netdevice_notifiers_info(unsigned long val,
1704 struct netdev_notifier_info *info)
1705{
1706 ASSERT_RTNL();
1707 return raw_notifier_call_chain(&netdev_chain, val, info);
1708}
1709
1710/**
1711 * call_netdevice_notifiers - call all network notifier blocks
1712 * @val: value passed unmodified to notifier function
1713 * @dev: net_device pointer passed unmodified to notifier function
1714 *
1715 * Call all network notifier blocks. Parameters and return value
1716 * are as for raw_notifier_call_chain().
1717 */
1718
1719int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1720{
1721 struct netdev_notifier_info info = {
1722 .dev = dev,
1723 };
1724
1725 return call_netdevice_notifiers_info(val, &info);
1726}
1727EXPORT_SYMBOL(call_netdevice_notifiers);
1728
1729#ifdef CONFIG_NET_INGRESS
1730static struct static_key ingress_needed __read_mostly;
1731
1732void net_inc_ingress_queue(void)
1733{
1734 static_key_slow_inc(&ingress_needed);
1735}
1736EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1737
1738void net_dec_ingress_queue(void)
1739{
1740 static_key_slow_dec(&ingress_needed);
1741}
1742EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1743#endif
1744
1745#ifdef CONFIG_NET_EGRESS
1746static struct static_key egress_needed __read_mostly;
1747
1748void net_inc_egress_queue(void)
1749{
1750 static_key_slow_inc(&egress_needed);
1751}
1752EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1753
1754void net_dec_egress_queue(void)
1755{
1756 static_key_slow_dec(&egress_needed);
1757}
1758EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1759#endif
1760
1761static struct static_key netstamp_needed __read_mostly;
1762#ifdef HAVE_JUMP_LABEL
1763static atomic_t netstamp_needed_deferred;
1764static atomic_t netstamp_wanted;
1765static void netstamp_clear(struct work_struct *work)
1766{
1767 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1768 int wanted;
1769
1770 wanted = atomic_add_return(deferred, &netstamp_wanted);
1771 if (wanted > 0)
1772 static_key_enable(&netstamp_needed);
1773 else
1774 static_key_disable(&netstamp_needed);
1775}
1776static DECLARE_WORK(netstamp_work, netstamp_clear);
1777#endif
1778
1779void net_enable_timestamp(void)
1780{
1781#ifdef HAVE_JUMP_LABEL
1782 int wanted;
1783
1784 while (1) {
1785 wanted = atomic_read(&netstamp_wanted);
1786 if (wanted <= 0)
1787 break;
1788 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1789 return;
1790 }
1791 atomic_inc(&netstamp_needed_deferred);
1792 schedule_work(&netstamp_work);
1793#else
1794 static_key_slow_inc(&netstamp_needed);
1795#endif
1796}
1797EXPORT_SYMBOL(net_enable_timestamp);
1798
1799void net_disable_timestamp(void)
1800{
1801#ifdef HAVE_JUMP_LABEL
1802 int wanted;
1803
1804 while (1) {
1805 wanted = atomic_read(&netstamp_wanted);
1806 if (wanted <= 1)
1807 break;
1808 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1809 return;
1810 }
1811 atomic_dec(&netstamp_needed_deferred);
1812 schedule_work(&netstamp_work);
1813#else
1814 static_key_slow_dec(&netstamp_needed);
1815#endif
1816}
1817EXPORT_SYMBOL(net_disable_timestamp);
1818
1819static inline void net_timestamp_set(struct sk_buff *skb)
1820{
1821 skb->tstamp = 0;
1822 if (static_key_false(&netstamp_needed))
1823 __net_timestamp(skb);
1824}
1825
1826#define net_timestamp_check(COND, SKB) \
1827 if (static_key_false(&netstamp_needed)) { \
1828 if ((COND) && !(SKB)->tstamp) \
1829 __net_timestamp(SKB); \
1830 } \
1831
1832bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1833{
1834 unsigned int len;
1835
1836 if (!(dev->flags & IFF_UP))
1837 return false;
1838
1839 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1840 if (skb->len <= len)
1841 return true;
1842
1843 /* if TSO is enabled, we don't care about the length as the packet
1844 * could be forwarded without being segmented before
1845 */
1846 if (skb_is_gso(skb))
1847 return true;
1848
1849 return false;
1850}
1851EXPORT_SYMBOL_GPL(is_skb_forwardable);
1852
1853int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1854{
1855 int ret = ____dev_forward_skb(dev, skb);
1856
1857 if (likely(!ret)) {
1858 skb->protocol = eth_type_trans(skb, dev);
1859 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1860 }
1861
1862 return ret;
1863}
1864EXPORT_SYMBOL_GPL(__dev_forward_skb);
1865
1866/**
1867 * dev_forward_skb - loopback an skb to another netif
1868 *
1869 * @dev: destination network device
1870 * @skb: buffer to forward
1871 *
1872 * return values:
1873 * NET_RX_SUCCESS (no congestion)
1874 * NET_RX_DROP (packet was dropped, but freed)
1875 *
1876 * dev_forward_skb can be used for injecting an skb from the
1877 * start_xmit function of one device into the receive queue
1878 * of another device.
1879 *
1880 * The receiving device may be in another namespace, so
1881 * we have to clear all information in the skb that could
1882 * impact namespace isolation.
1883 */
1884int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1885{
1886 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1887}
1888EXPORT_SYMBOL_GPL(dev_forward_skb);
1889
1890static inline int deliver_skb(struct sk_buff *skb,
1891 struct packet_type *pt_prev,
1892 struct net_device *orig_dev)
1893{
1894 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1895 return -ENOMEM;
1896 refcount_inc(&skb->users);
1897 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1898}
1899
1900static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1901 struct packet_type **pt,
1902 struct net_device *orig_dev,
1903 __be16 type,
1904 struct list_head *ptype_list)
1905{
1906 struct packet_type *ptype, *pt_prev = *pt;
1907
1908 list_for_each_entry_rcu(ptype, ptype_list, list) {
1909 if (ptype->type != type)
1910 continue;
1911 if (pt_prev)
1912 deliver_skb(skb, pt_prev, orig_dev);
1913 pt_prev = ptype;
1914 }
1915 *pt = pt_prev;
1916}
1917
1918static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1919{
1920 if (!ptype->af_packet_priv || !skb->sk)
1921 return false;
1922
1923 if (ptype->id_match)
1924 return ptype->id_match(ptype, skb->sk);
1925 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1926 return true;
1927
1928 return false;
1929}
1930
1931/*
1932 * Support routine. Sends outgoing frames to any network
1933 * taps currently in use.
1934 */
1935
1936void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1937{
1938 struct packet_type *ptype;
1939 struct sk_buff *skb2 = NULL;
1940 struct packet_type *pt_prev = NULL;
1941 struct list_head *ptype_list = &ptype_all;
1942
1943 rcu_read_lock();
1944again:
1945 list_for_each_entry_rcu(ptype, ptype_list, list) {
1946 /* Never send packets back to the socket
1947 * they originated from - MvS (miquels@drinkel.ow.org)
1948 */
1949 if (skb_loop_sk(ptype, skb))
1950 continue;
1951
1952 if (pt_prev) {
1953 deliver_skb(skb2, pt_prev, skb->dev);
1954 pt_prev = ptype;
1955 continue;
1956 }
1957
1958 /* need to clone skb, done only once */
1959 skb2 = skb_clone(skb, GFP_ATOMIC);
1960 if (!skb2)
1961 goto out_unlock;
1962
1963 net_timestamp_set(skb2);
1964
1965 /* skb->nh should be correctly
1966 * set by sender, so that the second statement is
1967 * just protection against buggy protocols.
1968 */
1969 skb_reset_mac_header(skb2);
1970
1971 if (skb_network_header(skb2) < skb2->data ||
1972 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1973 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1974 ntohs(skb2->protocol),
1975 dev->name);
1976 skb_reset_network_header(skb2);
1977 }
1978
1979 skb2->transport_header = skb2->network_header;
1980 skb2->pkt_type = PACKET_OUTGOING;
1981 pt_prev = ptype;
1982 }
1983
1984 if (ptype_list == &ptype_all) {
1985 ptype_list = &dev->ptype_all;
1986 goto again;
1987 }
1988out_unlock:
1989 if (pt_prev) {
1990 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1991 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1992 else
1993 kfree_skb(skb2);
1994 }
1995 rcu_read_unlock();
1996}
1997EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1998
1999/**
2000 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2001 * @dev: Network device
2002 * @txq: number of queues available
2003 *
2004 * If real_num_tx_queues is changed the tc mappings may no longer be
2005 * valid. To resolve this verify the tc mapping remains valid and if
2006 * not NULL the mapping. With no priorities mapping to this
2007 * offset/count pair it will no longer be used. In the worst case TC0
2008 * is invalid nothing can be done so disable priority mappings. If is
2009 * expected that drivers will fix this mapping if they can before
2010 * calling netif_set_real_num_tx_queues.
2011 */
2012static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2013{
2014 int i;
2015 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2016
2017 /* If TC0 is invalidated disable TC mapping */
2018 if (tc->offset + tc->count > txq) {
2019 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2020 dev->num_tc = 0;
2021 return;
2022 }
2023
2024 /* Invalidated prio to tc mappings set to TC0 */
2025 for (i = 1; i < TC_BITMASK + 1; i++) {
2026 int q = netdev_get_prio_tc_map(dev, i);
2027
2028 tc = &dev->tc_to_txq[q];
2029 if (tc->offset + tc->count > txq) {
2030 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2031 i, q);
2032 netdev_set_prio_tc_map(dev, i, 0);
2033 }
2034 }
2035}
2036
2037int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2038{
2039 if (dev->num_tc) {
2040 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2041 int i;
2042
2043 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2044 if ((txq - tc->offset) < tc->count)
2045 return i;
2046 }
2047
2048 return -1;
2049 }
2050
2051 return 0;
2052}
2053EXPORT_SYMBOL(netdev_txq_to_tc);
2054
2055#ifdef CONFIG_XPS
2056static DEFINE_MUTEX(xps_map_mutex);
2057#define xmap_dereference(P) \
2058 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2059
2060static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2061 int tci, u16 index)
2062{
2063 struct xps_map *map = NULL;
2064 int pos;
2065
2066 if (dev_maps)
2067 map = xmap_dereference(dev_maps->cpu_map[tci]);
2068 if (!map)
2069 return false;
2070
2071 for (pos = map->len; pos--;) {
2072 if (map->queues[pos] != index)
2073 continue;
2074
2075 if (map->len > 1) {
2076 map->queues[pos] = map->queues[--map->len];
2077 break;
2078 }
2079
2080 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2081 kfree_rcu(map, rcu);
2082 return false;
2083 }
2084
2085 return true;
2086}
2087
2088static bool remove_xps_queue_cpu(struct net_device *dev,
2089 struct xps_dev_maps *dev_maps,
2090 int cpu, u16 offset, u16 count)
2091{
2092 int num_tc = dev->num_tc ? : 1;
2093 bool active = false;
2094 int tci;
2095
2096 for (tci = cpu * num_tc; num_tc--; tci++) {
2097 int i, j;
2098
2099 for (i = count, j = offset; i--; j++) {
2100 if (!remove_xps_queue(dev_maps, cpu, j))
2101 break;
2102 }
2103
2104 active |= i < 0;
2105 }
2106
2107 return active;
2108}
2109
2110static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2111 u16 count)
2112{
2113 struct xps_dev_maps *dev_maps;
2114 int cpu, i;
2115 bool active = false;
2116
2117 mutex_lock(&xps_map_mutex);
2118 dev_maps = xmap_dereference(dev->xps_maps);
2119
2120 if (!dev_maps)
2121 goto out_no_maps;
2122
2123 for_each_possible_cpu(cpu)
2124 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2125 offset, count);
2126
2127 if (!active) {
2128 RCU_INIT_POINTER(dev->xps_maps, NULL);
2129 kfree_rcu(dev_maps, rcu);
2130 }
2131
2132 for (i = offset + (count - 1); count--; i--)
2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2134 NUMA_NO_NODE);
2135
2136out_no_maps:
2137 mutex_unlock(&xps_map_mutex);
2138}
2139
2140static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2141{
2142 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2143}
2144
2145static struct xps_map *expand_xps_map(struct xps_map *map,
2146 int cpu, u16 index)
2147{
2148 struct xps_map *new_map;
2149 int alloc_len = XPS_MIN_MAP_ALLOC;
2150 int i, pos;
2151
2152 for (pos = 0; map && pos < map->len; pos++) {
2153 if (map->queues[pos] != index)
2154 continue;
2155 return map;
2156 }
2157
2158 /* Need to add queue to this CPU's existing map */
2159 if (map) {
2160 if (pos < map->alloc_len)
2161 return map;
2162
2163 alloc_len = map->alloc_len * 2;
2164 }
2165
2166 /* Need to allocate new map to store queue on this CPU's map */
2167 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2168 cpu_to_node(cpu));
2169 if (!new_map)
2170 return NULL;
2171
2172 for (i = 0; i < pos; i++)
2173 new_map->queues[i] = map->queues[i];
2174 new_map->alloc_len = alloc_len;
2175 new_map->len = pos;
2176
2177 return new_map;
2178}
2179
2180int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2181 u16 index)
2182{
2183 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2184 int i, cpu, tci, numa_node_id = -2;
2185 int maps_sz, num_tc = 1, tc = 0;
2186 struct xps_map *map, *new_map;
2187 bool active = false;
2188
2189 if (dev->num_tc) {
2190 num_tc = dev->num_tc;
2191 tc = netdev_txq_to_tc(dev, index);
2192 if (tc < 0)
2193 return -EINVAL;
2194 }
2195
2196 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2197 if (maps_sz < L1_CACHE_BYTES)
2198 maps_sz = L1_CACHE_BYTES;
2199
2200 mutex_lock(&xps_map_mutex);
2201
2202 dev_maps = xmap_dereference(dev->xps_maps);
2203
2204 /* allocate memory for queue storage */
2205 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2206 if (!new_dev_maps)
2207 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2208 if (!new_dev_maps) {
2209 mutex_unlock(&xps_map_mutex);
2210 return -ENOMEM;
2211 }
2212
2213 tci = cpu * num_tc + tc;
2214 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2215 NULL;
2216
2217 map = expand_xps_map(map, cpu, index);
2218 if (!map)
2219 goto error;
2220
2221 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2222 }
2223
2224 if (!new_dev_maps)
2225 goto out_no_new_maps;
2226
2227 for_each_possible_cpu(cpu) {
2228 /* copy maps belonging to foreign traffic classes */
2229 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2230 /* fill in the new device map from the old device map */
2231 map = xmap_dereference(dev_maps->cpu_map[tci]);
2232 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2233 }
2234
2235 /* We need to explicitly update tci as prevous loop
2236 * could break out early if dev_maps is NULL.
2237 */
2238 tci = cpu * num_tc + tc;
2239
2240 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2241 /* add queue to CPU maps */
2242 int pos = 0;
2243
2244 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2245 while ((pos < map->len) && (map->queues[pos] != index))
2246 pos++;
2247
2248 if (pos == map->len)
2249 map->queues[map->len++] = index;
2250#ifdef CONFIG_NUMA
2251 if (numa_node_id == -2)
2252 numa_node_id = cpu_to_node(cpu);
2253 else if (numa_node_id != cpu_to_node(cpu))
2254 numa_node_id = -1;
2255#endif
2256 } else if (dev_maps) {
2257 /* fill in the new device map from the old device map */
2258 map = xmap_dereference(dev_maps->cpu_map[tci]);
2259 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2260 }
2261
2262 /* copy maps belonging to foreign traffic classes */
2263 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2264 /* fill in the new device map from the old device map */
2265 map = xmap_dereference(dev_maps->cpu_map[tci]);
2266 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2267 }
2268 }
2269
2270 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2271
2272 /* Cleanup old maps */
2273 if (!dev_maps)
2274 goto out_no_old_maps;
2275
2276 for_each_possible_cpu(cpu) {
2277 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2278 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2279 map = xmap_dereference(dev_maps->cpu_map[tci]);
2280 if (map && map != new_map)
2281 kfree_rcu(map, rcu);
2282 }
2283 }
2284
2285 kfree_rcu(dev_maps, rcu);
2286
2287out_no_old_maps:
2288 dev_maps = new_dev_maps;
2289 active = true;
2290
2291out_no_new_maps:
2292 /* update Tx queue numa node */
2293 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2294 (numa_node_id >= 0) ? numa_node_id :
2295 NUMA_NO_NODE);
2296
2297 if (!dev_maps)
2298 goto out_no_maps;
2299
2300 /* removes queue from unused CPUs */
2301 for_each_possible_cpu(cpu) {
2302 for (i = tc, tci = cpu * num_tc; i--; tci++)
2303 active |= remove_xps_queue(dev_maps, tci, index);
2304 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2305 active |= remove_xps_queue(dev_maps, tci, index);
2306 for (i = num_tc - tc, tci++; --i; tci++)
2307 active |= remove_xps_queue(dev_maps, tci, index);
2308 }
2309
2310 /* free map if not active */
2311 if (!active) {
2312 RCU_INIT_POINTER(dev->xps_maps, NULL);
2313 kfree_rcu(dev_maps, rcu);
2314 }
2315
2316out_no_maps:
2317 mutex_unlock(&xps_map_mutex);
2318
2319 return 0;
2320error:
2321 /* remove any maps that we added */
2322 for_each_possible_cpu(cpu) {
2323 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2324 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2325 map = dev_maps ?
2326 xmap_dereference(dev_maps->cpu_map[tci]) :
2327 NULL;
2328 if (new_map && new_map != map)
2329 kfree(new_map);
2330 }
2331 }
2332
2333 mutex_unlock(&xps_map_mutex);
2334
2335 kfree(new_dev_maps);
2336 return -ENOMEM;
2337}
2338EXPORT_SYMBOL(netif_set_xps_queue);
2339
2340#endif
2341void netdev_reset_tc(struct net_device *dev)
2342{
2343#ifdef CONFIG_XPS
2344 netif_reset_xps_queues_gt(dev, 0);
2345#endif
2346 dev->num_tc = 0;
2347 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2348 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2349}
2350EXPORT_SYMBOL(netdev_reset_tc);
2351
2352int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2353{
2354 if (tc >= dev->num_tc)
2355 return -EINVAL;
2356
2357#ifdef CONFIG_XPS
2358 netif_reset_xps_queues(dev, offset, count);
2359#endif
2360 dev->tc_to_txq[tc].count = count;
2361 dev->tc_to_txq[tc].offset = offset;
2362 return 0;
2363}
2364EXPORT_SYMBOL(netdev_set_tc_queue);
2365
2366int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2367{
2368 if (num_tc > TC_MAX_QUEUE)
2369 return -EINVAL;
2370
2371#ifdef CONFIG_XPS
2372 netif_reset_xps_queues_gt(dev, 0);
2373#endif
2374 dev->num_tc = num_tc;
2375 return 0;
2376}
2377EXPORT_SYMBOL(netdev_set_num_tc);
2378
2379/*
2380 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2381 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2382 */
2383int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2384{
2385 bool disabling;
2386 int rc;
2387
2388 disabling = txq < dev->real_num_tx_queues;
2389
2390 if (txq < 1 || txq > dev->num_tx_queues)
2391 return -EINVAL;
2392
2393 if (dev->reg_state == NETREG_REGISTERED ||
2394 dev->reg_state == NETREG_UNREGISTERING) {
2395 ASSERT_RTNL();
2396
2397 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2398 txq);
2399 if (rc)
2400 return rc;
2401
2402 if (dev->num_tc)
2403 netif_setup_tc(dev, txq);
2404
2405 dev->real_num_tx_queues = txq;
2406
2407 if (disabling) {
2408 synchronize_net();
2409 qdisc_reset_all_tx_gt(dev, txq);
2410#ifdef CONFIG_XPS
2411 netif_reset_xps_queues_gt(dev, txq);
2412#endif
2413 }
2414 } else {
2415 dev->real_num_tx_queues = txq;
2416 }
2417
2418 return 0;
2419}
2420EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2421
2422#ifdef CONFIG_SYSFS
2423/**
2424 * netif_set_real_num_rx_queues - set actual number of RX queues used
2425 * @dev: Network device
2426 * @rxq: Actual number of RX queues
2427 *
2428 * This must be called either with the rtnl_lock held or before
2429 * registration of the net device. Returns 0 on success, or a
2430 * negative error code. If called before registration, it always
2431 * succeeds.
2432 */
2433int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2434{
2435 int rc;
2436
2437 if (rxq < 1 || rxq > dev->num_rx_queues)
2438 return -EINVAL;
2439
2440 if (dev->reg_state == NETREG_REGISTERED) {
2441 ASSERT_RTNL();
2442
2443 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2444 rxq);
2445 if (rc)
2446 return rc;
2447 }
2448
2449 dev->real_num_rx_queues = rxq;
2450 return 0;
2451}
2452EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2453#endif
2454
2455/**
2456 * netif_get_num_default_rss_queues - default number of RSS queues
2457 *
2458 * This routine should set an upper limit on the number of RSS queues
2459 * used by default by multiqueue devices.
2460 */
2461int netif_get_num_default_rss_queues(void)
2462{
2463 return is_kdump_kernel() ?
2464 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2465}
2466EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2467
2468static void __netif_reschedule(struct Qdisc *q)
2469{
2470 struct softnet_data *sd;
2471 unsigned long flags;
2472
2473 local_irq_save(flags);
2474 sd = this_cpu_ptr(&softnet_data);
2475 q->next_sched = NULL;
2476 *sd->output_queue_tailp = q;
2477 sd->output_queue_tailp = &q->next_sched;
2478 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2479 local_irq_restore(flags);
2480}
2481
2482void __netif_schedule(struct Qdisc *q)
2483{
2484 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2485 __netif_reschedule(q);
2486}
2487EXPORT_SYMBOL(__netif_schedule);
2488
2489struct dev_kfree_skb_cb {
2490 enum skb_free_reason reason;
2491};
2492
2493static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2494{
2495 return (struct dev_kfree_skb_cb *)skb->cb;
2496}
2497
2498void netif_schedule_queue(struct netdev_queue *txq)
2499{
2500 rcu_read_lock();
2501 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2502 struct Qdisc *q = rcu_dereference(txq->qdisc);
2503
2504 __netif_schedule(q);
2505 }
2506 rcu_read_unlock();
2507}
2508EXPORT_SYMBOL(netif_schedule_queue);
2509
2510void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2511{
2512 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2513 struct Qdisc *q;
2514
2515 rcu_read_lock();
2516 q = rcu_dereference(dev_queue->qdisc);
2517 __netif_schedule(q);
2518 rcu_read_unlock();
2519 }
2520}
2521EXPORT_SYMBOL(netif_tx_wake_queue);
2522
2523void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2524{
2525 unsigned long flags;
2526
2527 if (unlikely(!skb))
2528 return;
2529
2530 if (likely(refcount_read(&skb->users) == 1)) {
2531 smp_rmb();
2532 refcount_set(&skb->users, 0);
2533 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2534 return;
2535 }
2536 get_kfree_skb_cb(skb)->reason = reason;
2537 local_irq_save(flags);
2538 skb->next = __this_cpu_read(softnet_data.completion_queue);
2539 __this_cpu_write(softnet_data.completion_queue, skb);
2540 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2541 local_irq_restore(flags);
2542}
2543EXPORT_SYMBOL(__dev_kfree_skb_irq);
2544
2545void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2546{
2547 if (in_irq() || irqs_disabled())
2548 __dev_kfree_skb_irq(skb, reason);
2549 else
2550 dev_kfree_skb(skb);
2551}
2552EXPORT_SYMBOL(__dev_kfree_skb_any);
2553
2554
2555/**
2556 * netif_device_detach - mark device as removed
2557 * @dev: network device
2558 *
2559 * Mark device as removed from system and therefore no longer available.
2560 */
2561void netif_device_detach(struct net_device *dev)
2562{
2563 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2564 netif_running(dev)) {
2565 netif_tx_stop_all_queues(dev);
2566 }
2567}
2568EXPORT_SYMBOL(netif_device_detach);
2569
2570/**
2571 * netif_device_attach - mark device as attached
2572 * @dev: network device
2573 *
2574 * Mark device as attached from system and restart if needed.
2575 */
2576void netif_device_attach(struct net_device *dev)
2577{
2578 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2579 netif_running(dev)) {
2580 netif_tx_wake_all_queues(dev);
2581 __netdev_watchdog_up(dev);
2582 }
2583}
2584EXPORT_SYMBOL(netif_device_attach);
2585
2586/*
2587 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2588 * to be used as a distribution range.
2589 */
2590u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2591 unsigned int num_tx_queues)
2592{
2593 u32 hash;
2594 u16 qoffset = 0;
2595 u16 qcount = num_tx_queues;
2596
2597 if (skb_rx_queue_recorded(skb)) {
2598 hash = skb_get_rx_queue(skb);
2599 while (unlikely(hash >= num_tx_queues))
2600 hash -= num_tx_queues;
2601 return hash;
2602 }
2603
2604 if (dev->num_tc) {
2605 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2606
2607 qoffset = dev->tc_to_txq[tc].offset;
2608 qcount = dev->tc_to_txq[tc].count;
2609 }
2610
2611 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2612}
2613EXPORT_SYMBOL(__skb_tx_hash);
2614
2615static void skb_warn_bad_offload(const struct sk_buff *skb)
2616{
2617 static const netdev_features_t null_features;
2618 struct net_device *dev = skb->dev;
2619 const char *name = "";
2620
2621 if (!net_ratelimit())
2622 return;
2623
2624 if (dev) {
2625 if (dev->dev.parent)
2626 name = dev_driver_string(dev->dev.parent);
2627 else
2628 name = netdev_name(dev);
2629 }
2630 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2631 "gso_type=%d ip_summed=%d\n",
2632 name, dev ? &dev->features : &null_features,
2633 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2634 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2635 skb_shinfo(skb)->gso_type, skb->ip_summed);
2636}
2637
2638/*
2639 * Invalidate hardware checksum when packet is to be mangled, and
2640 * complete checksum manually on outgoing path.
2641 */
2642int skb_checksum_help(struct sk_buff *skb)
2643{
2644 __wsum csum;
2645 int ret = 0, offset;
2646
2647 if (skb->ip_summed == CHECKSUM_COMPLETE)
2648 goto out_set_summed;
2649
2650 if (unlikely(skb_shinfo(skb)->gso_size)) {
2651 skb_warn_bad_offload(skb);
2652 return -EINVAL;
2653 }
2654
2655 /* Before computing a checksum, we should make sure no frag could
2656 * be modified by an external entity : checksum could be wrong.
2657 */
2658 if (skb_has_shared_frag(skb)) {
2659 ret = __skb_linearize(skb);
2660 if (ret)
2661 goto out;
2662 }
2663
2664 offset = skb_checksum_start_offset(skb);
2665 BUG_ON(offset >= skb_headlen(skb));
2666 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2667
2668 offset += skb->csum_offset;
2669 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2670
2671 if (skb_cloned(skb) &&
2672 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2673 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2674 if (ret)
2675 goto out;
2676 }
2677
2678 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2679out_set_summed:
2680 skb->ip_summed = CHECKSUM_NONE;
2681out:
2682 return ret;
2683}
2684EXPORT_SYMBOL(skb_checksum_help);
2685
2686int skb_crc32c_csum_help(struct sk_buff *skb)
2687{
2688 __le32 crc32c_csum;
2689 int ret = 0, offset, start;
2690
2691 if (skb->ip_summed != CHECKSUM_PARTIAL)
2692 goto out;
2693
2694 if (unlikely(skb_is_gso(skb)))
2695 goto out;
2696
2697 /* Before computing a checksum, we should make sure no frag could
2698 * be modified by an external entity : checksum could be wrong.
2699 */
2700 if (unlikely(skb_has_shared_frag(skb))) {
2701 ret = __skb_linearize(skb);
2702 if (ret)
2703 goto out;
2704 }
2705 start = skb_checksum_start_offset(skb);
2706 offset = start + offsetof(struct sctphdr, checksum);
2707 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2708 ret = -EINVAL;
2709 goto out;
2710 }
2711 if (skb_cloned(skb) &&
2712 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2713 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2714 if (ret)
2715 goto out;
2716 }
2717 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2718 skb->len - start, ~(__u32)0,
2719 crc32c_csum_stub));
2720 *(__le32 *)(skb->data + offset) = crc32c_csum;
2721 skb->ip_summed = CHECKSUM_NONE;
2722 skb->csum_not_inet = 0;
2723out:
2724 return ret;
2725}
2726
2727__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2728{
2729 __be16 type = skb->protocol;
2730
2731 /* Tunnel gso handlers can set protocol to ethernet. */
2732 if (type == htons(ETH_P_TEB)) {
2733 struct ethhdr *eth;
2734
2735 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2736 return 0;
2737
2738 eth = (struct ethhdr *)skb->data;
2739 type = eth->h_proto;
2740 }
2741
2742 return __vlan_get_protocol(skb, type, depth);
2743}
2744
2745/**
2746 * skb_mac_gso_segment - mac layer segmentation handler.
2747 * @skb: buffer to segment
2748 * @features: features for the output path (see dev->features)
2749 */
2750struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2751 netdev_features_t features)
2752{
2753 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2754 struct packet_offload *ptype;
2755 int vlan_depth = skb->mac_len;
2756 __be16 type = skb_network_protocol(skb, &vlan_depth);
2757
2758 if (unlikely(!type))
2759 return ERR_PTR(-EINVAL);
2760
2761 __skb_pull(skb, vlan_depth);
2762
2763 rcu_read_lock();
2764 list_for_each_entry_rcu(ptype, &offload_base, list) {
2765 if (ptype->type == type && ptype->callbacks.gso_segment) {
2766 segs = ptype->callbacks.gso_segment(skb, features);
2767 break;
2768 }
2769 }
2770 rcu_read_unlock();
2771
2772 __skb_push(skb, skb->data - skb_mac_header(skb));
2773
2774 return segs;
2775}
2776EXPORT_SYMBOL(skb_mac_gso_segment);
2777
2778
2779/* openvswitch calls this on rx path, so we need a different check.
2780 */
2781static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2782{
2783 if (tx_path)
2784 return skb->ip_summed != CHECKSUM_PARTIAL &&
2785 skb->ip_summed != CHECKSUM_UNNECESSARY;
2786
2787 return skb->ip_summed == CHECKSUM_NONE;
2788}
2789
2790/**
2791 * __skb_gso_segment - Perform segmentation on skb.
2792 * @skb: buffer to segment
2793 * @features: features for the output path (see dev->features)
2794 * @tx_path: whether it is called in TX path
2795 *
2796 * This function segments the given skb and returns a list of segments.
2797 *
2798 * It may return NULL if the skb requires no segmentation. This is
2799 * only possible when GSO is used for verifying header integrity.
2800 *
2801 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2802 */
2803struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2804 netdev_features_t features, bool tx_path)
2805{
2806 struct sk_buff *segs;
2807
2808 if (unlikely(skb_needs_check(skb, tx_path))) {
2809 int err;
2810
2811 /* We're going to init ->check field in TCP or UDP header */
2812 err = skb_cow_head(skb, 0);
2813 if (err < 0)
2814 return ERR_PTR(err);
2815 }
2816
2817 /* Only report GSO partial support if it will enable us to
2818 * support segmentation on this frame without needing additional
2819 * work.
2820 */
2821 if (features & NETIF_F_GSO_PARTIAL) {
2822 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2823 struct net_device *dev = skb->dev;
2824
2825 partial_features |= dev->features & dev->gso_partial_features;
2826 if (!skb_gso_ok(skb, features | partial_features))
2827 features &= ~NETIF_F_GSO_PARTIAL;
2828 }
2829
2830 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2831 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2832
2833 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2834 SKB_GSO_CB(skb)->encap_level = 0;
2835
2836 skb_reset_mac_header(skb);
2837 skb_reset_mac_len(skb);
2838
2839 segs = skb_mac_gso_segment(skb, features);
2840
2841 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2842 skb_warn_bad_offload(skb);
2843
2844 return segs;
2845}
2846EXPORT_SYMBOL(__skb_gso_segment);
2847
2848/* Take action when hardware reception checksum errors are detected. */
2849#ifdef CONFIG_BUG
2850void netdev_rx_csum_fault(struct net_device *dev)
2851{
2852 if (net_ratelimit()) {
2853 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2854 dump_stack();
2855 }
2856}
2857EXPORT_SYMBOL(netdev_rx_csum_fault);
2858#endif
2859
2860/* Actually, we should eliminate this check as soon as we know, that:
2861 * 1. IOMMU is present and allows to map all the memory.
2862 * 2. No high memory really exists on this machine.
2863 */
2864
2865static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2866{
2867#ifdef CONFIG_HIGHMEM
2868 int i;
2869
2870 if (!(dev->features & NETIF_F_HIGHDMA)) {
2871 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2872 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2873
2874 if (PageHighMem(skb_frag_page(frag)))
2875 return 1;
2876 }
2877 }
2878
2879 if (PCI_DMA_BUS_IS_PHYS) {
2880 struct device *pdev = dev->dev.parent;
2881
2882 if (!pdev)
2883 return 0;
2884 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2885 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2886 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2887
2888 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2889 return 1;
2890 }
2891 }
2892#endif
2893 return 0;
2894}
2895
2896/* If MPLS offload request, verify we are testing hardware MPLS features
2897 * instead of standard features for the netdev.
2898 */
2899#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2900static netdev_features_t net_mpls_features(struct sk_buff *skb,
2901 netdev_features_t features,
2902 __be16 type)
2903{
2904 if (eth_p_mpls(type))
2905 features &= skb->dev->mpls_features;
2906
2907 return features;
2908}
2909#else
2910static netdev_features_t net_mpls_features(struct sk_buff *skb,
2911 netdev_features_t features,
2912 __be16 type)
2913{
2914 return features;
2915}
2916#endif
2917
2918static netdev_features_t harmonize_features(struct sk_buff *skb,
2919 netdev_features_t features)
2920{
2921 int tmp;
2922 __be16 type;
2923
2924 type = skb_network_protocol(skb, &tmp);
2925 features = net_mpls_features(skb, features, type);
2926
2927 if (skb->ip_summed != CHECKSUM_NONE &&
2928 !can_checksum_protocol(features, type)) {
2929 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2930 }
2931 if (illegal_highdma(skb->dev, skb))
2932 features &= ~NETIF_F_SG;
2933
2934 return features;
2935}
2936
2937netdev_features_t passthru_features_check(struct sk_buff *skb,
2938 struct net_device *dev,
2939 netdev_features_t features)
2940{
2941 return features;
2942}
2943EXPORT_SYMBOL(passthru_features_check);
2944
2945static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2946 struct net_device *dev,
2947 netdev_features_t features)
2948{
2949 return vlan_features_check(skb, features);
2950}
2951
2952static netdev_features_t gso_features_check(const struct sk_buff *skb,
2953 struct net_device *dev,
2954 netdev_features_t features)
2955{
2956 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2957
2958 if (gso_segs > dev->gso_max_segs)
2959 return features & ~NETIF_F_GSO_MASK;
2960
2961 /* Support for GSO partial features requires software
2962 * intervention before we can actually process the packets
2963 * so we need to strip support for any partial features now
2964 * and we can pull them back in after we have partially
2965 * segmented the frame.
2966 */
2967 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2968 features &= ~dev->gso_partial_features;
2969
2970 /* Make sure to clear the IPv4 ID mangling feature if the
2971 * IPv4 header has the potential to be fragmented.
2972 */
2973 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2974 struct iphdr *iph = skb->encapsulation ?
2975 inner_ip_hdr(skb) : ip_hdr(skb);
2976
2977 if (!(iph->frag_off & htons(IP_DF)))
2978 features &= ~NETIF_F_TSO_MANGLEID;
2979 }
2980
2981 return features;
2982}
2983
2984netdev_features_t netif_skb_features(struct sk_buff *skb)
2985{
2986 struct net_device *dev = skb->dev;
2987 netdev_features_t features = dev->features;
2988
2989 if (skb_is_gso(skb))
2990 features = gso_features_check(skb, dev, features);
2991
2992 /* If encapsulation offload request, verify we are testing
2993 * hardware encapsulation features instead of standard
2994 * features for the netdev
2995 */
2996 if (skb->encapsulation)
2997 features &= dev->hw_enc_features;
2998
2999 if (skb_vlan_tagged(skb))
3000 features = netdev_intersect_features(features,
3001 dev->vlan_features |
3002 NETIF_F_HW_VLAN_CTAG_TX |
3003 NETIF_F_HW_VLAN_STAG_TX);
3004
3005 if (dev->netdev_ops->ndo_features_check)
3006 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3007 features);
3008 else
3009 features &= dflt_features_check(skb, dev, features);
3010
3011 return harmonize_features(skb, features);
3012}
3013EXPORT_SYMBOL(netif_skb_features);
3014
3015static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3016 struct netdev_queue *txq, bool more)
3017{
3018 unsigned int len;
3019 int rc;
3020
3021 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3022 dev_queue_xmit_nit(skb, dev);
3023
3024 len = skb->len;
3025 trace_net_dev_start_xmit(skb, dev);
3026 rc = netdev_start_xmit(skb, dev, txq, more);
3027 trace_net_dev_xmit(skb, rc, dev, len);
3028
3029 return rc;
3030}
3031
3032struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3033 struct netdev_queue *txq, int *ret)
3034{
3035 struct sk_buff *skb = first;
3036 int rc = NETDEV_TX_OK;
3037
3038 while (skb) {
3039 struct sk_buff *next = skb->next;
3040
3041 skb->next = NULL;
3042 rc = xmit_one(skb, dev, txq, next != NULL);
3043 if (unlikely(!dev_xmit_complete(rc))) {
3044 skb->next = next;
3045 goto out;
3046 }
3047
3048 skb = next;
3049 if (netif_xmit_stopped(txq) && skb) {
3050 rc = NETDEV_TX_BUSY;
3051 break;
3052 }
3053 }
3054
3055out:
3056 *ret = rc;
3057 return skb;
3058}
3059
3060static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3061 netdev_features_t features)
3062{
3063 if (skb_vlan_tag_present(skb) &&
3064 !vlan_hw_offload_capable(features, skb->vlan_proto))
3065 skb = __vlan_hwaccel_push_inside(skb);
3066 return skb;
3067}
3068
3069int skb_csum_hwoffload_help(struct sk_buff *skb,
3070 const netdev_features_t features)
3071{
3072 if (unlikely(skb->csum_not_inet))
3073 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3074 skb_crc32c_csum_help(skb);
3075
3076 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3077}
3078EXPORT_SYMBOL(skb_csum_hwoffload_help);
3079
3080static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3081{
3082 netdev_features_t features;
3083
3084 features = netif_skb_features(skb);
3085 skb = validate_xmit_vlan(skb, features);
3086 if (unlikely(!skb))
3087 goto out_null;
3088
3089 if (netif_needs_gso(skb, features)) {
3090 struct sk_buff *segs;
3091
3092 segs = skb_gso_segment(skb, features);
3093 if (IS_ERR(segs)) {
3094 goto out_kfree_skb;
3095 } else if (segs) {
3096 consume_skb(skb);
3097 skb = segs;
3098 }
3099 } else {
3100 if (skb_needs_linearize(skb, features) &&
3101 __skb_linearize(skb))
3102 goto out_kfree_skb;
3103
3104 /* If packet is not checksummed and device does not
3105 * support checksumming for this protocol, complete
3106 * checksumming here.
3107 */
3108 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3109 if (skb->encapsulation)
3110 skb_set_inner_transport_header(skb,
3111 skb_checksum_start_offset(skb));
3112 else
3113 skb_set_transport_header(skb,
3114 skb_checksum_start_offset(skb));
3115 if (skb_csum_hwoffload_help(skb, features))
3116 goto out_kfree_skb;
3117 }
3118 }
3119
3120 skb = validate_xmit_xfrm(skb, features, again);
3121
3122 return skb;
3123
3124out_kfree_skb:
3125 kfree_skb(skb);
3126out_null:
3127 atomic_long_inc(&dev->tx_dropped);
3128 return NULL;
3129}
3130
3131struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3132{
3133 struct sk_buff *next, *head = NULL, *tail;
3134
3135 for (; skb != NULL; skb = next) {
3136 next = skb->next;
3137 skb->next = NULL;
3138
3139 /* in case skb wont be segmented, point to itself */
3140 skb->prev = skb;
3141
3142 skb = validate_xmit_skb(skb, dev, again);
3143 if (!skb)
3144 continue;
3145
3146 if (!head)
3147 head = skb;
3148 else
3149 tail->next = skb;
3150 /* If skb was segmented, skb->prev points to
3151 * the last segment. If not, it still contains skb.
3152 */
3153 tail = skb->prev;
3154 }
3155 return head;
3156}
3157EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3158
3159static void qdisc_pkt_len_init(struct sk_buff *skb)
3160{
3161 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3162
3163 qdisc_skb_cb(skb)->pkt_len = skb->len;
3164
3165 /* To get more precise estimation of bytes sent on wire,
3166 * we add to pkt_len the headers size of all segments
3167 */
3168 if (shinfo->gso_size) {
3169 unsigned int hdr_len;
3170 u16 gso_segs = shinfo->gso_segs;
3171
3172 /* mac layer + network layer */
3173 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3174
3175 /* + transport layer */
3176 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3177 const struct tcphdr *th;
3178 struct tcphdr _tcphdr;
3179
3180 th = skb_header_pointer(skb, skb_transport_offset(skb),
3181 sizeof(_tcphdr), &_tcphdr);
3182 if (likely(th))
3183 hdr_len += __tcp_hdrlen(th);
3184 } else {
3185 struct udphdr _udphdr;
3186
3187 if (skb_header_pointer(skb, skb_transport_offset(skb),
3188 sizeof(_udphdr), &_udphdr))
3189 hdr_len += sizeof(struct udphdr);
3190 }
3191
3192 if (shinfo->gso_type & SKB_GSO_DODGY)
3193 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3194 shinfo->gso_size);
3195
3196 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3197 }
3198}
3199
3200static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3201 struct net_device *dev,
3202 struct netdev_queue *txq)
3203{
3204 spinlock_t *root_lock = qdisc_lock(q);
3205 struct sk_buff *to_free = NULL;
3206 bool contended;
3207 int rc;
3208
3209 qdisc_calculate_pkt_len(skb, q);
3210
3211 if (q->flags & TCQ_F_NOLOCK) {
3212 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3213 __qdisc_drop(skb, &to_free);
3214 rc = NET_XMIT_DROP;
3215 } else {
3216 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3217 __qdisc_run(q);
3218 }
3219
3220 if (unlikely(to_free))
3221 kfree_skb_list(to_free);
3222 return rc;
3223 }
3224
3225 /*
3226 * Heuristic to force contended enqueues to serialize on a
3227 * separate lock before trying to get qdisc main lock.
3228 * This permits qdisc->running owner to get the lock more
3229 * often and dequeue packets faster.
3230 */
3231 contended = qdisc_is_running(q);
3232 if (unlikely(contended))
3233 spin_lock(&q->busylock);
3234
3235 spin_lock(root_lock);
3236 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3237 __qdisc_drop(skb, &to_free);
3238 rc = NET_XMIT_DROP;
3239 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3240 qdisc_run_begin(q)) {
3241 /*
3242 * This is a work-conserving queue; there are no old skbs
3243 * waiting to be sent out; and the qdisc is not running -
3244 * xmit the skb directly.
3245 */
3246
3247 qdisc_bstats_update(q, skb);
3248
3249 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3250 if (unlikely(contended)) {
3251 spin_unlock(&q->busylock);
3252 contended = false;
3253 }
3254 __qdisc_run(q);
3255 }
3256
3257 qdisc_run_end(q);
3258 rc = NET_XMIT_SUCCESS;
3259 } else {
3260 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3261 if (qdisc_run_begin(q)) {
3262 if (unlikely(contended)) {
3263 spin_unlock(&q->busylock);
3264 contended = false;
3265 }
3266 __qdisc_run(q);
3267 qdisc_run_end(q);
3268 }
3269 }
3270 spin_unlock(root_lock);
3271 if (unlikely(to_free))
3272 kfree_skb_list(to_free);
3273 if (unlikely(contended))
3274 spin_unlock(&q->busylock);
3275 return rc;
3276}
3277
3278#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3279static void skb_update_prio(struct sk_buff *skb)
3280{
3281 const struct netprio_map *map;
3282 const struct sock *sk;
3283 unsigned int prioidx;
3284
3285 if (skb->priority)
3286 return;
3287 map = rcu_dereference_bh(skb->dev->priomap);
3288 if (!map)
3289 return;
3290 sk = skb_to_full_sk(skb);
3291 if (!sk)
3292 return;
3293
3294 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3295
3296 if (prioidx < map->priomap_len)
3297 skb->priority = map->priomap[prioidx];
3298}
3299#else
3300#define skb_update_prio(skb)
3301#endif
3302
3303DEFINE_PER_CPU(int, xmit_recursion);
3304EXPORT_SYMBOL(xmit_recursion);
3305
3306/**
3307 * dev_loopback_xmit - loop back @skb
3308 * @net: network namespace this loopback is happening in
3309 * @sk: sk needed to be a netfilter okfn
3310 * @skb: buffer to transmit
3311 */
3312int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3313{
3314 skb_reset_mac_header(skb);
3315 __skb_pull(skb, skb_network_offset(skb));
3316 skb->pkt_type = PACKET_LOOPBACK;
3317 skb->ip_summed = CHECKSUM_UNNECESSARY;
3318 WARN_ON(!skb_dst(skb));
3319 skb_dst_force(skb);
3320 netif_rx_ni(skb);
3321 return 0;
3322}
3323EXPORT_SYMBOL(dev_loopback_xmit);
3324
3325#ifdef CONFIG_NET_EGRESS
3326static struct sk_buff *
3327sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3328{
3329 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3330 struct tcf_result cl_res;
3331
3332 if (!miniq)
3333 return skb;
3334
3335 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3336 mini_qdisc_bstats_cpu_update(miniq, skb);
3337
3338 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3339 case TC_ACT_OK:
3340 case TC_ACT_RECLASSIFY:
3341 skb->tc_index = TC_H_MIN(cl_res.classid);
3342 break;
3343 case TC_ACT_SHOT:
3344 mini_qdisc_qstats_cpu_drop(miniq);
3345 *ret = NET_XMIT_DROP;
3346 kfree_skb(skb);
3347 return NULL;
3348 case TC_ACT_STOLEN:
3349 case TC_ACT_QUEUED:
3350 case TC_ACT_TRAP:
3351 *ret = NET_XMIT_SUCCESS;
3352 consume_skb(skb);
3353 return NULL;
3354 case TC_ACT_REDIRECT:
3355 /* No need to push/pop skb's mac_header here on egress! */
3356 skb_do_redirect(skb);
3357 *ret = NET_XMIT_SUCCESS;
3358 return NULL;
3359 default:
3360 break;
3361 }
3362
3363 return skb;
3364}
3365#endif /* CONFIG_NET_EGRESS */
3366
3367static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3368{
3369#ifdef CONFIG_XPS
3370 struct xps_dev_maps *dev_maps;
3371 struct xps_map *map;
3372 int queue_index = -1;
3373
3374 rcu_read_lock();
3375 dev_maps = rcu_dereference(dev->xps_maps);
3376 if (dev_maps) {
3377 unsigned int tci = skb->sender_cpu - 1;
3378
3379 if (dev->num_tc) {
3380 tci *= dev->num_tc;
3381 tci += netdev_get_prio_tc_map(dev, skb->priority);
3382 }
3383
3384 map = rcu_dereference(dev_maps->cpu_map[tci]);
3385 if (map) {
3386 if (map->len == 1)
3387 queue_index = map->queues[0];
3388 else
3389 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3390 map->len)];
3391 if (unlikely(queue_index >= dev->real_num_tx_queues))
3392 queue_index = -1;
3393 }
3394 }
3395 rcu_read_unlock();
3396
3397 return queue_index;
3398#else
3399 return -1;
3400#endif
3401}
3402
3403static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3404{
3405 struct sock *sk = skb->sk;
3406 int queue_index = sk_tx_queue_get(sk);
3407
3408 if (queue_index < 0 || skb->ooo_okay ||
3409 queue_index >= dev->real_num_tx_queues) {
3410 int new_index = get_xps_queue(dev, skb);
3411
3412 if (new_index < 0)
3413 new_index = skb_tx_hash(dev, skb);
3414
3415 if (queue_index != new_index && sk &&
3416 sk_fullsock(sk) &&
3417 rcu_access_pointer(sk->sk_dst_cache))
3418 sk_tx_queue_set(sk, new_index);
3419
3420 queue_index = new_index;
3421 }
3422
3423 return queue_index;
3424}
3425
3426struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3427 struct sk_buff *skb,
3428 void *accel_priv)
3429{
3430 int queue_index = 0;
3431
3432#ifdef CONFIG_XPS
3433 u32 sender_cpu = skb->sender_cpu - 1;
3434
3435 if (sender_cpu >= (u32)NR_CPUS)
3436 skb->sender_cpu = raw_smp_processor_id() + 1;
3437#endif
3438
3439 if (dev->real_num_tx_queues != 1) {
3440 const struct net_device_ops *ops = dev->netdev_ops;
3441
3442 if (ops->ndo_select_queue)
3443 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3444 __netdev_pick_tx);
3445 else
3446 queue_index = __netdev_pick_tx(dev, skb);
3447
3448 queue_index = netdev_cap_txqueue(dev, queue_index);
3449 }
3450
3451 skb_set_queue_mapping(skb, queue_index);
3452 return netdev_get_tx_queue(dev, queue_index);
3453}
3454
3455/**
3456 * __dev_queue_xmit - transmit a buffer
3457 * @skb: buffer to transmit
3458 * @accel_priv: private data used for L2 forwarding offload
3459 *
3460 * Queue a buffer for transmission to a network device. The caller must
3461 * have set the device and priority and built the buffer before calling
3462 * this function. The function can be called from an interrupt.
3463 *
3464 * A negative errno code is returned on a failure. A success does not
3465 * guarantee the frame will be transmitted as it may be dropped due
3466 * to congestion or traffic shaping.
3467 *
3468 * -----------------------------------------------------------------------------------
3469 * I notice this method can also return errors from the queue disciplines,
3470 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3471 * be positive.
3472 *
3473 * Regardless of the return value, the skb is consumed, so it is currently
3474 * difficult to retry a send to this method. (You can bump the ref count
3475 * before sending to hold a reference for retry if you are careful.)
3476 *
3477 * When calling this method, interrupts MUST be enabled. This is because
3478 * the BH enable code must have IRQs enabled so that it will not deadlock.
3479 * --BLG
3480 */
3481static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3482{
3483 struct net_device *dev = skb->dev;
3484 struct netdev_queue *txq;
3485 struct Qdisc *q;
3486 int rc = -ENOMEM;
3487 bool again = false;
3488
3489 skb_reset_mac_header(skb);
3490
3491 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3492 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3493
3494 /* Disable soft irqs for various locks below. Also
3495 * stops preemption for RCU.
3496 */
3497 rcu_read_lock_bh();
3498
3499 skb_update_prio(skb);
3500
3501 qdisc_pkt_len_init(skb);
3502#ifdef CONFIG_NET_CLS_ACT
3503 skb->tc_at_ingress = 0;
3504# ifdef CONFIG_NET_EGRESS
3505 if (static_key_false(&egress_needed)) {
3506 skb = sch_handle_egress(skb, &rc, dev);
3507 if (!skb)
3508 goto out;
3509 }
3510# endif
3511#endif
3512 /* If device/qdisc don't need skb->dst, release it right now while
3513 * its hot in this cpu cache.
3514 */
3515 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3516 skb_dst_drop(skb);
3517 else
3518 skb_dst_force(skb);
3519
3520 txq = netdev_pick_tx(dev, skb, accel_priv);
3521 q = rcu_dereference_bh(txq->qdisc);
3522
3523 trace_net_dev_queue(skb);
3524 if (q->enqueue) {
3525 rc = __dev_xmit_skb(skb, q, dev, txq);
3526 goto out;
3527 }
3528
3529 /* The device has no queue. Common case for software devices:
3530 * loopback, all the sorts of tunnels...
3531
3532 * Really, it is unlikely that netif_tx_lock protection is necessary
3533 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3534 * counters.)
3535 * However, it is possible, that they rely on protection
3536 * made by us here.
3537
3538 * Check this and shot the lock. It is not prone from deadlocks.
3539 *Either shot noqueue qdisc, it is even simpler 8)
3540 */
3541 if (dev->flags & IFF_UP) {
3542 int cpu = smp_processor_id(); /* ok because BHs are off */
3543
3544 if (txq->xmit_lock_owner != cpu) {
3545 if (unlikely(__this_cpu_read(xmit_recursion) >
3546 XMIT_RECURSION_LIMIT))
3547 goto recursion_alert;
3548
3549 skb = validate_xmit_skb(skb, dev, &again);
3550 if (!skb)
3551 goto out;
3552
3553 HARD_TX_LOCK(dev, txq, cpu);
3554
3555 if (!netif_xmit_stopped(txq)) {
3556 __this_cpu_inc(xmit_recursion);
3557 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3558 __this_cpu_dec(xmit_recursion);
3559 if (dev_xmit_complete(rc)) {
3560 HARD_TX_UNLOCK(dev, txq);
3561 goto out;
3562 }
3563 }
3564 HARD_TX_UNLOCK(dev, txq);
3565 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3566 dev->name);
3567 } else {
3568 /* Recursion is detected! It is possible,
3569 * unfortunately
3570 */
3571recursion_alert:
3572 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3573 dev->name);
3574 }
3575 }
3576
3577 rc = -ENETDOWN;
3578 rcu_read_unlock_bh();
3579
3580 atomic_long_inc(&dev->tx_dropped);
3581 kfree_skb_list(skb);
3582 return rc;
3583out:
3584 rcu_read_unlock_bh();
3585 return rc;
3586}
3587
3588int dev_queue_xmit(struct sk_buff *skb)
3589{
3590 return __dev_queue_xmit(skb, NULL);
3591}
3592EXPORT_SYMBOL(dev_queue_xmit);
3593
3594int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3595{
3596 return __dev_queue_xmit(skb, accel_priv);
3597}
3598EXPORT_SYMBOL(dev_queue_xmit_accel);
3599
3600
3601/*************************************************************************
3602 * Receiver routines
3603 *************************************************************************/
3604
3605int netdev_max_backlog __read_mostly = 1000;
3606EXPORT_SYMBOL(netdev_max_backlog);
3607
3608int netdev_tstamp_prequeue __read_mostly = 1;
3609int netdev_budget __read_mostly = 300;
3610unsigned int __read_mostly netdev_budget_usecs = 2000;
3611int weight_p __read_mostly = 64; /* old backlog weight */
3612int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3613int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3614int dev_rx_weight __read_mostly = 64;
3615int dev_tx_weight __read_mostly = 64;
3616
3617/* Called with irq disabled */
3618static inline void ____napi_schedule(struct softnet_data *sd,
3619 struct napi_struct *napi)
3620{
3621 list_add_tail(&napi->poll_list, &sd->poll_list);
3622 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3623}
3624
3625#ifdef CONFIG_RPS
3626
3627/* One global table that all flow-based protocols share. */
3628struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3629EXPORT_SYMBOL(rps_sock_flow_table);
3630u32 rps_cpu_mask __read_mostly;
3631EXPORT_SYMBOL(rps_cpu_mask);
3632
3633struct static_key rps_needed __read_mostly;
3634EXPORT_SYMBOL(rps_needed);
3635struct static_key rfs_needed __read_mostly;
3636EXPORT_SYMBOL(rfs_needed);
3637
3638static struct rps_dev_flow *
3639set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3640 struct rps_dev_flow *rflow, u16 next_cpu)
3641{
3642 if (next_cpu < nr_cpu_ids) {
3643#ifdef CONFIG_RFS_ACCEL
3644 struct netdev_rx_queue *rxqueue;
3645 struct rps_dev_flow_table *flow_table;
3646 struct rps_dev_flow *old_rflow;
3647 u32 flow_id;
3648 u16 rxq_index;
3649 int rc;
3650
3651 /* Should we steer this flow to a different hardware queue? */
3652 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3653 !(dev->features & NETIF_F_NTUPLE))
3654 goto out;
3655 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3656 if (rxq_index == skb_get_rx_queue(skb))
3657 goto out;
3658
3659 rxqueue = dev->_rx + rxq_index;
3660 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3661 if (!flow_table)
3662 goto out;
3663 flow_id = skb_get_hash(skb) & flow_table->mask;
3664 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3665 rxq_index, flow_id);
3666 if (rc < 0)
3667 goto out;
3668 old_rflow = rflow;
3669 rflow = &flow_table->flows[flow_id];
3670 rflow->filter = rc;
3671 if (old_rflow->filter == rflow->filter)
3672 old_rflow->filter = RPS_NO_FILTER;
3673 out:
3674#endif
3675 rflow->last_qtail =
3676 per_cpu(softnet_data, next_cpu).input_queue_head;
3677 }
3678
3679 rflow->cpu = next_cpu;
3680 return rflow;
3681}
3682
3683/*
3684 * get_rps_cpu is called from netif_receive_skb and returns the target
3685 * CPU from the RPS map of the receiving queue for a given skb.
3686 * rcu_read_lock must be held on entry.
3687 */
3688static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3689 struct rps_dev_flow **rflowp)
3690{
3691 const struct rps_sock_flow_table *sock_flow_table;
3692 struct netdev_rx_queue *rxqueue = dev->_rx;
3693 struct rps_dev_flow_table *flow_table;
3694 struct rps_map *map;
3695 int cpu = -1;
3696 u32 tcpu;
3697 u32 hash;
3698
3699 if (skb_rx_queue_recorded(skb)) {
3700 u16 index = skb_get_rx_queue(skb);
3701
3702 if (unlikely(index >= dev->real_num_rx_queues)) {
3703 WARN_ONCE(dev->real_num_rx_queues > 1,
3704 "%s received packet on queue %u, but number "
3705 "of RX queues is %u\n",
3706 dev->name, index, dev->real_num_rx_queues);
3707 goto done;
3708 }
3709 rxqueue += index;
3710 }
3711
3712 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3713
3714 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3715 map = rcu_dereference(rxqueue->rps_map);
3716 if (!flow_table && !map)
3717 goto done;
3718
3719 skb_reset_network_header(skb);
3720 hash = skb_get_hash(skb);
3721 if (!hash)
3722 goto done;
3723
3724 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3725 if (flow_table && sock_flow_table) {
3726 struct rps_dev_flow *rflow;
3727 u32 next_cpu;
3728 u32 ident;
3729
3730 /* First check into global flow table if there is a match */
3731 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3732 if ((ident ^ hash) & ~rps_cpu_mask)
3733 goto try_rps;
3734
3735 next_cpu = ident & rps_cpu_mask;
3736
3737 /* OK, now we know there is a match,
3738 * we can look at the local (per receive queue) flow table
3739 */
3740 rflow = &flow_table->flows[hash & flow_table->mask];
3741 tcpu = rflow->cpu;
3742
3743 /*
3744 * If the desired CPU (where last recvmsg was done) is
3745 * different from current CPU (one in the rx-queue flow
3746 * table entry), switch if one of the following holds:
3747 * - Current CPU is unset (>= nr_cpu_ids).
3748 * - Current CPU is offline.
3749 * - The current CPU's queue tail has advanced beyond the
3750 * last packet that was enqueued using this table entry.
3751 * This guarantees that all previous packets for the flow
3752 * have been dequeued, thus preserving in order delivery.
3753 */
3754 if (unlikely(tcpu != next_cpu) &&
3755 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3756 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3757 rflow->last_qtail)) >= 0)) {
3758 tcpu = next_cpu;
3759 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3760 }
3761
3762 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3763 *rflowp = rflow;
3764 cpu = tcpu;
3765 goto done;
3766 }
3767 }
3768
3769try_rps:
3770
3771 if (map) {
3772 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3773 if (cpu_online(tcpu)) {
3774 cpu = tcpu;
3775 goto done;
3776 }
3777 }
3778
3779done:
3780 return cpu;
3781}
3782
3783#ifdef CONFIG_RFS_ACCEL
3784
3785/**
3786 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3787 * @dev: Device on which the filter was set
3788 * @rxq_index: RX queue index
3789 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3790 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3791 *
3792 * Drivers that implement ndo_rx_flow_steer() should periodically call
3793 * this function for each installed filter and remove the filters for
3794 * which it returns %true.
3795 */
3796bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3797 u32 flow_id, u16 filter_id)
3798{
3799 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3800 struct rps_dev_flow_table *flow_table;
3801 struct rps_dev_flow *rflow;
3802 bool expire = true;
3803 unsigned int cpu;
3804
3805 rcu_read_lock();
3806 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3807 if (flow_table && flow_id <= flow_table->mask) {
3808 rflow = &flow_table->flows[flow_id];
3809 cpu = READ_ONCE(rflow->cpu);
3810 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3811 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3812 rflow->last_qtail) <
3813 (int)(10 * flow_table->mask)))
3814 expire = false;
3815 }
3816 rcu_read_unlock();
3817 return expire;
3818}
3819EXPORT_SYMBOL(rps_may_expire_flow);
3820
3821#endif /* CONFIG_RFS_ACCEL */
3822
3823/* Called from hardirq (IPI) context */
3824static void rps_trigger_softirq(void *data)
3825{
3826 struct softnet_data *sd = data;
3827
3828 ____napi_schedule(sd, &sd->backlog);
3829 sd->received_rps++;
3830}
3831
3832#endif /* CONFIG_RPS */
3833
3834/*
3835 * Check if this softnet_data structure is another cpu one
3836 * If yes, queue it to our IPI list and return 1
3837 * If no, return 0
3838 */
3839static int rps_ipi_queued(struct softnet_data *sd)
3840{
3841#ifdef CONFIG_RPS
3842 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3843
3844 if (sd != mysd) {
3845 sd->rps_ipi_next = mysd->rps_ipi_list;
3846 mysd->rps_ipi_list = sd;
3847
3848 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3849 return 1;
3850 }
3851#endif /* CONFIG_RPS */
3852 return 0;
3853}
3854
3855#ifdef CONFIG_NET_FLOW_LIMIT
3856int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3857#endif
3858
3859static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3860{
3861#ifdef CONFIG_NET_FLOW_LIMIT
3862 struct sd_flow_limit *fl;
3863 struct softnet_data *sd;
3864 unsigned int old_flow, new_flow;
3865
3866 if (qlen < (netdev_max_backlog >> 1))
3867 return false;
3868
3869 sd = this_cpu_ptr(&softnet_data);
3870
3871 rcu_read_lock();
3872 fl = rcu_dereference(sd->flow_limit);
3873 if (fl) {
3874 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3875 old_flow = fl->history[fl->history_head];
3876 fl->history[fl->history_head] = new_flow;
3877
3878 fl->history_head++;
3879 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3880
3881 if (likely(fl->buckets[old_flow]))
3882 fl->buckets[old_flow]--;
3883
3884 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3885 fl->count++;
3886 rcu_read_unlock();
3887 return true;
3888 }
3889 }
3890 rcu_read_unlock();
3891#endif
3892 return false;
3893}
3894
3895/*
3896 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3897 * queue (may be a remote CPU queue).
3898 */
3899static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3900 unsigned int *qtail)
3901{
3902 struct softnet_data *sd;
3903 unsigned long flags;
3904 unsigned int qlen;
3905
3906 sd = &per_cpu(softnet_data, cpu);
3907
3908 local_irq_save(flags);
3909
3910 rps_lock(sd);
3911 if (!netif_running(skb->dev))
3912 goto drop;
3913 qlen = skb_queue_len(&sd->input_pkt_queue);
3914 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3915 if (qlen) {
3916enqueue:
3917 __skb_queue_tail(&sd->input_pkt_queue, skb);
3918 input_queue_tail_incr_save(sd, qtail);
3919 rps_unlock(sd);
3920 local_irq_restore(flags);
3921 return NET_RX_SUCCESS;
3922 }
3923
3924 /* Schedule NAPI for backlog device
3925 * We can use non atomic operation since we own the queue lock
3926 */
3927 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3928 if (!rps_ipi_queued(sd))
3929 ____napi_schedule(sd, &sd->backlog);
3930 }
3931 goto enqueue;
3932 }
3933
3934drop:
3935 sd->dropped++;
3936 rps_unlock(sd);
3937
3938 local_irq_restore(flags);
3939
3940 atomic_long_inc(&skb->dev->rx_dropped);
3941 kfree_skb(skb);
3942 return NET_RX_DROP;
3943}
3944
3945static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3946{
3947 struct net_device *dev = skb->dev;
3948 struct netdev_rx_queue *rxqueue;
3949
3950 rxqueue = dev->_rx;
3951
3952 if (skb_rx_queue_recorded(skb)) {
3953 u16 index = skb_get_rx_queue(skb);
3954
3955 if (unlikely(index >= dev->real_num_rx_queues)) {
3956 WARN_ONCE(dev->real_num_rx_queues > 1,
3957 "%s received packet on queue %u, but number "
3958 "of RX queues is %u\n",
3959 dev->name, index, dev->real_num_rx_queues);
3960
3961 return rxqueue; /* Return first rxqueue */
3962 }
3963 rxqueue += index;
3964 }
3965 return rxqueue;
3966}
3967
3968static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3969 struct bpf_prog *xdp_prog)
3970{
3971 struct netdev_rx_queue *rxqueue;
3972 u32 metalen, act = XDP_DROP;
3973 struct xdp_buff xdp;
3974 void *orig_data;
3975 int hlen, off;
3976 u32 mac_len;
3977
3978 /* Reinjected packets coming from act_mirred or similar should
3979 * not get XDP generic processing.
3980 */
3981 if (skb_cloned(skb))
3982 return XDP_PASS;
3983
3984 /* XDP packets must be linear and must have sufficient headroom
3985 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3986 * native XDP provides, thus we need to do it here as well.
3987 */
3988 if (skb_is_nonlinear(skb) ||
3989 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3990 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3991 int troom = skb->tail + skb->data_len - skb->end;
3992
3993 /* In case we have to go down the path and also linearize,
3994 * then lets do the pskb_expand_head() work just once here.
3995 */
3996 if (pskb_expand_head(skb,
3997 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3998 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3999 goto do_drop;
4000 if (skb_linearize(skb))
4001 goto do_drop;
4002 }
4003
4004 /* The XDP program wants to see the packet starting at the MAC
4005 * header.
4006 */
4007 mac_len = skb->data - skb_mac_header(skb);
4008 hlen = skb_headlen(skb) + mac_len;
4009 xdp.data = skb->data - mac_len;
4010 xdp.data_meta = xdp.data;
4011 xdp.data_end = xdp.data + hlen;
4012 xdp.data_hard_start = skb->data - skb_headroom(skb);
4013 orig_data = xdp.data;
4014
4015 rxqueue = netif_get_rxqueue(skb);
4016 xdp.rxq = &rxqueue->xdp_rxq;
4017
4018 act = bpf_prog_run_xdp(xdp_prog, &xdp);
4019
4020 off = xdp.data - orig_data;
4021 if (off > 0)
4022 __skb_pull(skb, off);
4023 else if (off < 0)
4024 __skb_push(skb, -off);
4025 skb->mac_header += off;
4026
4027 switch (act) {
4028 case XDP_REDIRECT:
4029 case XDP_TX:
4030 __skb_push(skb, mac_len);
4031 break;
4032 case XDP_PASS:
4033 metalen = xdp.data - xdp.data_meta;
4034 if (metalen)
4035 skb_metadata_set(skb, metalen);
4036 break;
4037 default:
4038 bpf_warn_invalid_xdp_action(act);
4039 /* fall through */
4040 case XDP_ABORTED:
4041 trace_xdp_exception(skb->dev, xdp_prog, act);
4042 /* fall through */
4043 case XDP_DROP:
4044 do_drop:
4045 kfree_skb(skb);
4046 break;
4047 }
4048
4049 return act;
4050}
4051
4052/* When doing generic XDP we have to bypass the qdisc layer and the
4053 * network taps in order to match in-driver-XDP behavior.
4054 */
4055void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4056{
4057 struct net_device *dev = skb->dev;
4058 struct netdev_queue *txq;
4059 bool free_skb = true;
4060 int cpu, rc;
4061
4062 txq = netdev_pick_tx(dev, skb, NULL);
4063 cpu = smp_processor_id();
4064 HARD_TX_LOCK(dev, txq, cpu);
4065 if (!netif_xmit_stopped(txq)) {
4066 rc = netdev_start_xmit(skb, dev, txq, 0);
4067 if (dev_xmit_complete(rc))
4068 free_skb = false;
4069 }
4070 HARD_TX_UNLOCK(dev, txq);
4071 if (free_skb) {
4072 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4073 kfree_skb(skb);
4074 }
4075}
4076EXPORT_SYMBOL_GPL(generic_xdp_tx);
4077
4078static struct static_key generic_xdp_needed __read_mostly;
4079
4080int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4081{
4082 if (xdp_prog) {
4083 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4084 int err;
4085
4086 if (act != XDP_PASS) {
4087 switch (act) {
4088 case XDP_REDIRECT:
4089 err = xdp_do_generic_redirect(skb->dev, skb,
4090 xdp_prog);
4091 if (err)
4092 goto out_redir;
4093 /* fallthru to submit skb */
4094 case XDP_TX:
4095 generic_xdp_tx(skb, xdp_prog);
4096 break;
4097 }
4098 return XDP_DROP;
4099 }
4100 }
4101 return XDP_PASS;
4102out_redir:
4103 kfree_skb(skb);
4104 return XDP_DROP;
4105}
4106EXPORT_SYMBOL_GPL(do_xdp_generic);
4107
4108static int netif_rx_internal(struct sk_buff *skb)
4109{
4110 int ret;
4111
4112 net_timestamp_check(netdev_tstamp_prequeue, skb);
4113
4114 trace_netif_rx(skb);
4115
4116 if (static_key_false(&generic_xdp_needed)) {
4117 int ret;
4118
4119 preempt_disable();
4120 rcu_read_lock();
4121 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4122 rcu_read_unlock();
4123 preempt_enable();
4124
4125 /* Consider XDP consuming the packet a success from
4126 * the netdev point of view we do not want to count
4127 * this as an error.
4128 */
4129 if (ret != XDP_PASS)
4130 return NET_RX_SUCCESS;
4131 }
4132
4133#ifdef CONFIG_RPS
4134 if (static_key_false(&rps_needed)) {
4135 struct rps_dev_flow voidflow, *rflow = &voidflow;
4136 int cpu;
4137
4138 preempt_disable();
4139 rcu_read_lock();
4140
4141 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4142 if (cpu < 0)
4143 cpu = smp_processor_id();
4144
4145 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4146
4147 rcu_read_unlock();
4148 preempt_enable();
4149 } else
4150#endif
4151 {
4152 unsigned int qtail;
4153
4154 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4155 put_cpu();
4156 }
4157 return ret;
4158}
4159
4160/**
4161 * netif_rx - post buffer to the network code
4162 * @skb: buffer to post
4163 *
4164 * This function receives a packet from a device driver and queues it for
4165 * the upper (protocol) levels to process. It always succeeds. The buffer
4166 * may be dropped during processing for congestion control or by the
4167 * protocol layers.
4168 *
4169 * return values:
4170 * NET_RX_SUCCESS (no congestion)
4171 * NET_RX_DROP (packet was dropped)
4172 *
4173 */
4174
4175int netif_rx(struct sk_buff *skb)
4176{
4177 trace_netif_rx_entry(skb);
4178
4179 return netif_rx_internal(skb);
4180}
4181EXPORT_SYMBOL(netif_rx);
4182
4183int netif_rx_ni(struct sk_buff *skb)
4184{
4185 int err;
4186
4187 trace_netif_rx_ni_entry(skb);
4188
4189 preempt_disable();
4190 err = netif_rx_internal(skb);
4191 if (local_softirq_pending())
4192 do_softirq();
4193 preempt_enable();
4194
4195 return err;
4196}
4197EXPORT_SYMBOL(netif_rx_ni);
4198
4199static __latent_entropy void net_tx_action(struct softirq_action *h)
4200{
4201 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4202
4203 if (sd->completion_queue) {
4204 struct sk_buff *clist;
4205
4206 local_irq_disable();
4207 clist = sd->completion_queue;
4208 sd->completion_queue = NULL;
4209 local_irq_enable();
4210
4211 while (clist) {
4212 struct sk_buff *skb = clist;
4213
4214 clist = clist->next;
4215
4216 WARN_ON(refcount_read(&skb->users));
4217 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4218 trace_consume_skb(skb);
4219 else
4220 trace_kfree_skb(skb, net_tx_action);
4221
4222 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4223 __kfree_skb(skb);
4224 else
4225 __kfree_skb_defer(skb);
4226 }
4227
4228 __kfree_skb_flush();
4229 }
4230
4231 if (sd->output_queue) {
4232 struct Qdisc *head;
4233
4234 local_irq_disable();
4235 head = sd->output_queue;
4236 sd->output_queue = NULL;
4237 sd->output_queue_tailp = &sd->output_queue;
4238 local_irq_enable();
4239
4240 while (head) {
4241 struct Qdisc *q = head;
4242 spinlock_t *root_lock = NULL;
4243
4244 head = head->next_sched;
4245
4246 if (!(q->flags & TCQ_F_NOLOCK)) {
4247 root_lock = qdisc_lock(q);
4248 spin_lock(root_lock);
4249 }
4250 /* We need to make sure head->next_sched is read
4251 * before clearing __QDISC_STATE_SCHED
4252 */
4253 smp_mb__before_atomic();
4254 clear_bit(__QDISC_STATE_SCHED, &q->state);
4255 qdisc_run(q);
4256 if (root_lock)
4257 spin_unlock(root_lock);
4258 }
4259 }
4260
4261 xfrm_dev_backlog(sd);
4262}
4263
4264#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4265/* This hook is defined here for ATM LANE */
4266int (*br_fdb_test_addr_hook)(struct net_device *dev,
4267 unsigned char *addr) __read_mostly;
4268EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4269#endif
4270
4271static inline struct sk_buff *
4272sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4273 struct net_device *orig_dev)
4274{
4275#ifdef CONFIG_NET_CLS_ACT
4276 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4277 struct tcf_result cl_res;
4278
4279 /* If there's at least one ingress present somewhere (so
4280 * we get here via enabled static key), remaining devices
4281 * that are not configured with an ingress qdisc will bail
4282 * out here.
4283 */
4284 if (!miniq)
4285 return skb;
4286
4287 if (*pt_prev) {
4288 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4289 *pt_prev = NULL;
4290 }
4291
4292 qdisc_skb_cb(skb)->pkt_len = skb->len;
4293 skb->tc_at_ingress = 1;
4294 mini_qdisc_bstats_cpu_update(miniq, skb);
4295
4296 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4297 case TC_ACT_OK:
4298 case TC_ACT_RECLASSIFY:
4299 skb->tc_index = TC_H_MIN(cl_res.classid);
4300 break;
4301 case TC_ACT_SHOT:
4302 mini_qdisc_qstats_cpu_drop(miniq);
4303 kfree_skb(skb);
4304 return NULL;
4305 case TC_ACT_STOLEN:
4306 case TC_ACT_QUEUED:
4307 case TC_ACT_TRAP:
4308 consume_skb(skb);
4309 return NULL;
4310 case TC_ACT_REDIRECT:
4311 /* skb_mac_header check was done by cls/act_bpf, so
4312 * we can safely push the L2 header back before
4313 * redirecting to another netdev
4314 */
4315 __skb_push(skb, skb->mac_len);
4316 skb_do_redirect(skb);
4317 return NULL;
4318 default:
4319 break;
4320 }
4321#endif /* CONFIG_NET_CLS_ACT */
4322 return skb;
4323}
4324
4325/**
4326 * netdev_is_rx_handler_busy - check if receive handler is registered
4327 * @dev: device to check
4328 *
4329 * Check if a receive handler is already registered for a given device.
4330 * Return true if there one.
4331 *
4332 * The caller must hold the rtnl_mutex.
4333 */
4334bool netdev_is_rx_handler_busy(struct net_device *dev)
4335{
4336 ASSERT_RTNL();
4337 return dev && rtnl_dereference(dev->rx_handler);
4338}
4339EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4340
4341/**
4342 * netdev_rx_handler_register - register receive handler
4343 * @dev: device to register a handler for
4344 * @rx_handler: receive handler to register
4345 * @rx_handler_data: data pointer that is used by rx handler
4346 *
4347 * Register a receive handler for a device. This handler will then be
4348 * called from __netif_receive_skb. A negative errno code is returned
4349 * on a failure.
4350 *
4351 * The caller must hold the rtnl_mutex.
4352 *
4353 * For a general description of rx_handler, see enum rx_handler_result.
4354 */
4355int netdev_rx_handler_register(struct net_device *dev,
4356 rx_handler_func_t *rx_handler,
4357 void *rx_handler_data)
4358{
4359 if (netdev_is_rx_handler_busy(dev))
4360 return -EBUSY;
4361
4362 /* Note: rx_handler_data must be set before rx_handler */
4363 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4364 rcu_assign_pointer(dev->rx_handler, rx_handler);
4365
4366 return 0;
4367}
4368EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4369
4370/**
4371 * netdev_rx_handler_unregister - unregister receive handler
4372 * @dev: device to unregister a handler from
4373 *
4374 * Unregister a receive handler from a device.
4375 *
4376 * The caller must hold the rtnl_mutex.
4377 */
4378void netdev_rx_handler_unregister(struct net_device *dev)
4379{
4380
4381 ASSERT_RTNL();
4382 RCU_INIT_POINTER(dev->rx_handler, NULL);
4383 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4384 * section has a guarantee to see a non NULL rx_handler_data
4385 * as well.
4386 */
4387 synchronize_net();
4388 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4389}
4390EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4391
4392/*
4393 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4394 * the special handling of PFMEMALLOC skbs.
4395 */
4396static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4397{
4398 switch (skb->protocol) {
4399 case htons(ETH_P_ARP):
4400 case htons(ETH_P_IP):
4401 case htons(ETH_P_IPV6):
4402 case htons(ETH_P_8021Q):
4403 case htons(ETH_P_8021AD):
4404 return true;
4405 default:
4406 return false;
4407 }
4408}
4409
4410static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4411 int *ret, struct net_device *orig_dev)
4412{
4413#ifdef CONFIG_NETFILTER_INGRESS
4414 if (nf_hook_ingress_active(skb)) {
4415 int ingress_retval;
4416
4417 if (*pt_prev) {
4418 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4419 *pt_prev = NULL;
4420 }
4421
4422 rcu_read_lock();
4423 ingress_retval = nf_hook_ingress(skb);
4424 rcu_read_unlock();
4425 return ingress_retval;
4426 }
4427#endif /* CONFIG_NETFILTER_INGRESS */
4428 return 0;
4429}
4430
4431static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4432{
4433 struct packet_type *ptype, *pt_prev;
4434 rx_handler_func_t *rx_handler;
4435 struct net_device *orig_dev;
4436 bool deliver_exact = false;
4437 int ret = NET_RX_DROP;
4438 __be16 type;
4439
4440 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4441
4442 trace_netif_receive_skb(skb);
4443
4444 orig_dev = skb->dev;
4445
4446 skb_reset_network_header(skb);
4447 if (!skb_transport_header_was_set(skb))
4448 skb_reset_transport_header(skb);
4449 skb_reset_mac_len(skb);
4450
4451 pt_prev = NULL;
4452
4453another_round:
4454 skb->skb_iif = skb->dev->ifindex;
4455
4456 __this_cpu_inc(softnet_data.processed);
4457
4458 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4459 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4460 skb = skb_vlan_untag(skb);
4461 if (unlikely(!skb))
4462 goto out;
4463 }
4464
4465 if (skb_skip_tc_classify(skb))
4466 goto skip_classify;
4467
4468 if (pfmemalloc)
4469 goto skip_taps;
4470
4471 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4472 if (pt_prev)
4473 ret = deliver_skb(skb, pt_prev, orig_dev);
4474 pt_prev = ptype;
4475 }
4476
4477 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4478 if (pt_prev)
4479 ret = deliver_skb(skb, pt_prev, orig_dev);
4480 pt_prev = ptype;
4481 }
4482
4483skip_taps:
4484#ifdef CONFIG_NET_INGRESS
4485 if (static_key_false(&ingress_needed)) {
4486 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4487 if (!skb)
4488 goto out;
4489
4490 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4491 goto out;
4492 }
4493#endif
4494 skb_reset_tc(skb);
4495skip_classify:
4496 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4497 goto drop;
4498
4499 if (skb_vlan_tag_present(skb)) {
4500 if (pt_prev) {
4501 ret = deliver_skb(skb, pt_prev, orig_dev);
4502 pt_prev = NULL;
4503 }
4504 if (vlan_do_receive(&skb))
4505 goto another_round;
4506 else if (unlikely(!skb))
4507 goto out;
4508 }
4509
4510 rx_handler = rcu_dereference(skb->dev->rx_handler);
4511 if (rx_handler) {
4512 if (pt_prev) {
4513 ret = deliver_skb(skb, pt_prev, orig_dev);
4514 pt_prev = NULL;
4515 }
4516 switch (rx_handler(&skb)) {
4517 case RX_HANDLER_CONSUMED:
4518 ret = NET_RX_SUCCESS;
4519 goto out;
4520 case RX_HANDLER_ANOTHER:
4521 goto another_round;
4522 case RX_HANDLER_EXACT:
4523 deliver_exact = true;
4524 case RX_HANDLER_PASS:
4525 break;
4526 default:
4527 BUG();
4528 }
4529 }
4530
4531 if (unlikely(skb_vlan_tag_present(skb))) {
4532 if (skb_vlan_tag_get_id(skb))
4533 skb->pkt_type = PACKET_OTHERHOST;
4534 /* Note: we might in the future use prio bits
4535 * and set skb->priority like in vlan_do_receive()
4536 * For the time being, just ignore Priority Code Point
4537 */
4538 skb->vlan_tci = 0;
4539 }
4540
4541 type = skb->protocol;
4542
4543 /* deliver only exact match when indicated */
4544 if (likely(!deliver_exact)) {
4545 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4546 &ptype_base[ntohs(type) &
4547 PTYPE_HASH_MASK]);
4548 }
4549
4550 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4551 &orig_dev->ptype_specific);
4552
4553 if (unlikely(skb->dev != orig_dev)) {
4554 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4555 &skb->dev->ptype_specific);
4556 }
4557
4558 if (pt_prev) {
4559 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4560 goto drop;
4561 else
4562 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4563 } else {
4564drop:
4565 if (!deliver_exact)
4566 atomic_long_inc(&skb->dev->rx_dropped);
4567 else
4568 atomic_long_inc(&skb->dev->rx_nohandler);
4569 kfree_skb(skb);
4570 /* Jamal, now you will not able to escape explaining
4571 * me how you were going to use this. :-)
4572 */
4573 ret = NET_RX_DROP;
4574 }
4575
4576out:
4577 return ret;
4578}
4579
4580/**
4581 * netif_receive_skb_core - special purpose version of netif_receive_skb
4582 * @skb: buffer to process
4583 *
4584 * More direct receive version of netif_receive_skb(). It should
4585 * only be used by callers that have a need to skip RPS and Generic XDP.
4586 * Caller must also take care of handling if (page_is_)pfmemalloc.
4587 *
4588 * This function may only be called from softirq context and interrupts
4589 * should be enabled.
4590 *
4591 * Return values (usually ignored):
4592 * NET_RX_SUCCESS: no congestion
4593 * NET_RX_DROP: packet was dropped
4594 */
4595int netif_receive_skb_core(struct sk_buff *skb)
4596{
4597 int ret;
4598
4599 rcu_read_lock();
4600 ret = __netif_receive_skb_core(skb, false);
4601 rcu_read_unlock();
4602
4603 return ret;
4604}
4605EXPORT_SYMBOL(netif_receive_skb_core);
4606
4607static int __netif_receive_skb(struct sk_buff *skb)
4608{
4609 int ret;
4610
4611 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4612 unsigned int noreclaim_flag;
4613
4614 /*
4615 * PFMEMALLOC skbs are special, they should
4616 * - be delivered to SOCK_MEMALLOC sockets only
4617 * - stay away from userspace
4618 * - have bounded memory usage
4619 *
4620 * Use PF_MEMALLOC as this saves us from propagating the allocation
4621 * context down to all allocation sites.
4622 */
4623 noreclaim_flag = memalloc_noreclaim_save();
4624 ret = __netif_receive_skb_core(skb, true);
4625 memalloc_noreclaim_restore(noreclaim_flag);
4626 } else
4627 ret = __netif_receive_skb_core(skb, false);
4628
4629 return ret;
4630}
4631
4632static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4633{
4634 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4635 struct bpf_prog *new = xdp->prog;
4636 int ret = 0;
4637
4638 switch (xdp->command) {
4639 case XDP_SETUP_PROG:
4640 rcu_assign_pointer(dev->xdp_prog, new);
4641 if (old)
4642 bpf_prog_put(old);
4643
4644 if (old && !new) {
4645 static_key_slow_dec(&generic_xdp_needed);
4646 } else if (new && !old) {
4647 static_key_slow_inc(&generic_xdp_needed);
4648 dev_disable_lro(dev);
4649 dev_disable_gro_hw(dev);
4650 }
4651 break;
4652
4653 case XDP_QUERY_PROG:
4654 xdp->prog_attached = !!old;
4655 xdp->prog_id = old ? old->aux->id : 0;
4656 break;
4657
4658 default:
4659 ret = -EINVAL;
4660 break;
4661 }
4662
4663 return ret;
4664}
4665
4666static int netif_receive_skb_internal(struct sk_buff *skb)
4667{
4668 int ret;
4669
4670 net_timestamp_check(netdev_tstamp_prequeue, skb);
4671
4672 if (skb_defer_rx_timestamp(skb))
4673 return NET_RX_SUCCESS;
4674
4675 if (static_key_false(&generic_xdp_needed)) {
4676 int ret;
4677
4678 preempt_disable();
4679 rcu_read_lock();
4680 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4681 rcu_read_unlock();
4682 preempt_enable();
4683
4684 if (ret != XDP_PASS)
4685 return NET_RX_DROP;
4686 }
4687
4688 rcu_read_lock();
4689#ifdef CONFIG_RPS
4690 if (static_key_false(&rps_needed)) {
4691 struct rps_dev_flow voidflow, *rflow = &voidflow;
4692 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4693
4694 if (cpu >= 0) {
4695 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4696 rcu_read_unlock();
4697 return ret;
4698 }
4699 }
4700#endif
4701 ret = __netif_receive_skb(skb);
4702 rcu_read_unlock();
4703 return ret;
4704}
4705
4706/**
4707 * netif_receive_skb - process receive buffer from network
4708 * @skb: buffer to process
4709 *
4710 * netif_receive_skb() is the main receive data processing function.
4711 * It always succeeds. The buffer may be dropped during processing
4712 * for congestion control or by the protocol layers.
4713 *
4714 * This function may only be called from softirq context and interrupts
4715 * should be enabled.
4716 *
4717 * Return values (usually ignored):
4718 * NET_RX_SUCCESS: no congestion
4719 * NET_RX_DROP: packet was dropped
4720 */
4721int netif_receive_skb(struct sk_buff *skb)
4722{
4723 trace_netif_receive_skb_entry(skb);
4724
4725 return netif_receive_skb_internal(skb);
4726}
4727EXPORT_SYMBOL(netif_receive_skb);
4728
4729DEFINE_PER_CPU(struct work_struct, flush_works);
4730
4731/* Network device is going away, flush any packets still pending */
4732static void flush_backlog(struct work_struct *work)
4733{
4734 struct sk_buff *skb, *tmp;
4735 struct softnet_data *sd;
4736
4737 local_bh_disable();
4738 sd = this_cpu_ptr(&softnet_data);
4739
4740 local_irq_disable();
4741 rps_lock(sd);
4742 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4743 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4744 __skb_unlink(skb, &sd->input_pkt_queue);
4745 kfree_skb(skb);
4746 input_queue_head_incr(sd);
4747 }
4748 }
4749 rps_unlock(sd);
4750 local_irq_enable();
4751
4752 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4753 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4754 __skb_unlink(skb, &sd->process_queue);
4755 kfree_skb(skb);
4756 input_queue_head_incr(sd);
4757 }
4758 }
4759 local_bh_enable();
4760}
4761
4762static void flush_all_backlogs(void)
4763{
4764 unsigned int cpu;
4765
4766 get_online_cpus();
4767
4768 for_each_online_cpu(cpu)
4769 queue_work_on(cpu, system_highpri_wq,
4770 per_cpu_ptr(&flush_works, cpu));
4771
4772 for_each_online_cpu(cpu)
4773 flush_work(per_cpu_ptr(&flush_works, cpu));
4774
4775 put_online_cpus();
4776}
4777
4778static int napi_gro_complete(struct sk_buff *skb)
4779{
4780 struct packet_offload *ptype;
4781 __be16 type = skb->protocol;
4782 struct list_head *head = &offload_base;
4783 int err = -ENOENT;
4784
4785 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4786
4787 if (NAPI_GRO_CB(skb)->count == 1) {
4788 skb_shinfo(skb)->gso_size = 0;
4789 goto out;
4790 }
4791
4792 rcu_read_lock();
4793 list_for_each_entry_rcu(ptype, head, list) {
4794 if (ptype->type != type || !ptype->callbacks.gro_complete)
4795 continue;
4796
4797 err = ptype->callbacks.gro_complete(skb, 0);
4798 break;
4799 }
4800 rcu_read_unlock();
4801
4802 if (err) {
4803 WARN_ON(&ptype->list == head);
4804 kfree_skb(skb);
4805 return NET_RX_SUCCESS;
4806 }
4807
4808out:
4809 return netif_receive_skb_internal(skb);
4810}
4811
4812/* napi->gro_list contains packets ordered by age.
4813 * youngest packets at the head of it.
4814 * Complete skbs in reverse order to reduce latencies.
4815 */
4816void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4817{
4818 struct sk_buff *skb, *prev = NULL;
4819
4820 /* scan list and build reverse chain */
4821 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4822 skb->prev = prev;
4823 prev = skb;
4824 }
4825
4826 for (skb = prev; skb; skb = prev) {
4827 skb->next = NULL;
4828
4829 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4830 return;
4831
4832 prev = skb->prev;
4833 napi_gro_complete(skb);
4834 napi->gro_count--;
4835 }
4836
4837 napi->gro_list = NULL;
4838}
4839EXPORT_SYMBOL(napi_gro_flush);
4840
4841static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4842{
4843 struct sk_buff *p;
4844 unsigned int maclen = skb->dev->hard_header_len;
4845 u32 hash = skb_get_hash_raw(skb);
4846
4847 for (p = napi->gro_list; p; p = p->next) {
4848 unsigned long diffs;
4849
4850 NAPI_GRO_CB(p)->flush = 0;
4851
4852 if (hash != skb_get_hash_raw(p)) {
4853 NAPI_GRO_CB(p)->same_flow = 0;
4854 continue;
4855 }
4856
4857 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4858 diffs |= p->vlan_tci ^ skb->vlan_tci;
4859 diffs |= skb_metadata_dst_cmp(p, skb);
4860 diffs |= skb_metadata_differs(p, skb);
4861 if (maclen == ETH_HLEN)
4862 diffs |= compare_ether_header(skb_mac_header(p),
4863 skb_mac_header(skb));
4864 else if (!diffs)
4865 diffs = memcmp(skb_mac_header(p),
4866 skb_mac_header(skb),
4867 maclen);
4868 NAPI_GRO_CB(p)->same_flow = !diffs;
4869 }
4870}
4871
4872static void skb_gro_reset_offset(struct sk_buff *skb)
4873{
4874 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4875 const skb_frag_t *frag0 = &pinfo->frags[0];
4876
4877 NAPI_GRO_CB(skb)->data_offset = 0;
4878 NAPI_GRO_CB(skb)->frag0 = NULL;
4879 NAPI_GRO_CB(skb)->frag0_len = 0;
4880
4881 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4882 pinfo->nr_frags &&
4883 !PageHighMem(skb_frag_page(frag0))) {
4884 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4885 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4886 skb_frag_size(frag0),
4887 skb->end - skb->tail);
4888 }
4889}
4890
4891static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4892{
4893 struct skb_shared_info *pinfo = skb_shinfo(skb);
4894
4895 BUG_ON(skb->end - skb->tail < grow);
4896
4897 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4898
4899 skb->data_len -= grow;
4900 skb->tail += grow;
4901
4902 pinfo->frags[0].page_offset += grow;
4903 skb_frag_size_sub(&pinfo->frags[0], grow);
4904
4905 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4906 skb_frag_unref(skb, 0);
4907 memmove(pinfo->frags, pinfo->frags + 1,
4908 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4909 }
4910}
4911
4912static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4913{
4914 struct sk_buff **pp = NULL;
4915 struct packet_offload *ptype;
4916 __be16 type = skb->protocol;
4917 struct list_head *head = &offload_base;
4918 int same_flow;
4919 enum gro_result ret;
4920 int grow;
4921
4922 if (netif_elide_gro(skb->dev))
4923 goto normal;
4924
4925 gro_list_prepare(napi, skb);
4926
4927 rcu_read_lock();
4928 list_for_each_entry_rcu(ptype, head, list) {
4929 if (ptype->type != type || !ptype->callbacks.gro_receive)
4930 continue;
4931
4932 skb_set_network_header(skb, skb_gro_offset(skb));
4933 skb_reset_mac_len(skb);
4934 NAPI_GRO_CB(skb)->same_flow = 0;
4935 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4936 NAPI_GRO_CB(skb)->free = 0;
4937 NAPI_GRO_CB(skb)->encap_mark = 0;
4938 NAPI_GRO_CB(skb)->recursion_counter = 0;
4939 NAPI_GRO_CB(skb)->is_fou = 0;
4940 NAPI_GRO_CB(skb)->is_atomic = 1;
4941 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4942
4943 /* Setup for GRO checksum validation */
4944 switch (skb->ip_summed) {
4945 case CHECKSUM_COMPLETE:
4946 NAPI_GRO_CB(skb)->csum = skb->csum;
4947 NAPI_GRO_CB(skb)->csum_valid = 1;
4948 NAPI_GRO_CB(skb)->csum_cnt = 0;
4949 break;
4950 case CHECKSUM_UNNECESSARY:
4951 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4952 NAPI_GRO_CB(skb)->csum_valid = 0;
4953 break;
4954 default:
4955 NAPI_GRO_CB(skb)->csum_cnt = 0;
4956 NAPI_GRO_CB(skb)->csum_valid = 0;
4957 }
4958
4959 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4960 break;
4961 }
4962 rcu_read_unlock();
4963
4964 if (&ptype->list == head)
4965 goto normal;
4966
4967 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4968 ret = GRO_CONSUMED;
4969 goto ok;
4970 }
4971
4972 same_flow = NAPI_GRO_CB(skb)->same_flow;
4973 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4974
4975 if (pp) {
4976 struct sk_buff *nskb = *pp;
4977
4978 *pp = nskb->next;
4979 nskb->next = NULL;
4980 napi_gro_complete(nskb);
4981 napi->gro_count--;
4982 }
4983
4984 if (same_flow)
4985 goto ok;
4986
4987 if (NAPI_GRO_CB(skb)->flush)
4988 goto normal;
4989
4990 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4991 struct sk_buff *nskb = napi->gro_list;
4992
4993 /* locate the end of the list to select the 'oldest' flow */
4994 while (nskb->next) {
4995 pp = &nskb->next;
4996 nskb = *pp;
4997 }
4998 *pp = NULL;
4999 nskb->next = NULL;
5000 napi_gro_complete(nskb);
5001 } else {
5002 napi->gro_count++;
5003 }
5004 NAPI_GRO_CB(skb)->count = 1;
5005 NAPI_GRO_CB(skb)->age = jiffies;
5006 NAPI_GRO_CB(skb)->last = skb;
5007 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5008 skb->next = napi->gro_list;
5009 napi->gro_list = skb;
5010 ret = GRO_HELD;
5011
5012pull:
5013 grow = skb_gro_offset(skb) - skb_headlen(skb);
5014 if (grow > 0)
5015 gro_pull_from_frag0(skb, grow);
5016ok:
5017 return ret;
5018
5019normal:
5020 ret = GRO_NORMAL;
5021 goto pull;
5022}
5023
5024struct packet_offload *gro_find_receive_by_type(__be16 type)
5025{
5026 struct list_head *offload_head = &offload_base;
5027 struct packet_offload *ptype;
5028
5029 list_for_each_entry_rcu(ptype, offload_head, list) {
5030 if (ptype->type != type || !ptype->callbacks.gro_receive)
5031 continue;
5032 return ptype;
5033 }
5034 return NULL;
5035}
5036EXPORT_SYMBOL(gro_find_receive_by_type);
5037
5038struct packet_offload *gro_find_complete_by_type(__be16 type)
5039{
5040 struct list_head *offload_head = &offload_base;
5041 struct packet_offload *ptype;
5042
5043 list_for_each_entry_rcu(ptype, offload_head, list) {
5044 if (ptype->type != type || !ptype->callbacks.gro_complete)
5045 continue;
5046 return ptype;
5047 }
5048 return NULL;
5049}
5050EXPORT_SYMBOL(gro_find_complete_by_type);
5051
5052static void napi_skb_free_stolen_head(struct sk_buff *skb)
5053{
5054 skb_dst_drop(skb);
5055 secpath_reset(skb);
5056 kmem_cache_free(skbuff_head_cache, skb);
5057}
5058
5059static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5060{
5061 switch (ret) {
5062 case GRO_NORMAL:
5063 if (netif_receive_skb_internal(skb))
5064 ret = GRO_DROP;
5065 break;
5066
5067 case GRO_DROP:
5068 kfree_skb(skb);
5069 break;
5070
5071 case GRO_MERGED_FREE:
5072 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5073 napi_skb_free_stolen_head(skb);
5074 else
5075 __kfree_skb(skb);
5076 break;
5077
5078 case GRO_HELD:
5079 case GRO_MERGED:
5080 case GRO_CONSUMED:
5081 break;
5082 }
5083
5084 return ret;
5085}
5086
5087gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5088{
5089 skb_mark_napi_id(skb, napi);
5090 trace_napi_gro_receive_entry(skb);
5091
5092 skb_gro_reset_offset(skb);
5093
5094 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5095}
5096EXPORT_SYMBOL(napi_gro_receive);
5097
5098static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5099{
5100 if (unlikely(skb->pfmemalloc)) {
5101 consume_skb(skb);
5102 return;
5103 }
5104 __skb_pull(skb, skb_headlen(skb));
5105 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5106 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5107 skb->vlan_tci = 0;
5108 skb->dev = napi->dev;
5109 skb->skb_iif = 0;
5110 skb->encapsulation = 0;
5111 skb_shinfo(skb)->gso_type = 0;
5112 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5113 secpath_reset(skb);
5114
5115 napi->skb = skb;
5116}
5117
5118struct sk_buff *napi_get_frags(struct napi_struct *napi)
5119{
5120 struct sk_buff *skb = napi->skb;
5121
5122 if (!skb) {
5123 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5124 if (skb) {
5125 napi->skb = skb;
5126 skb_mark_napi_id(skb, napi);
5127 }
5128 }
5129 return skb;
5130}
5131EXPORT_SYMBOL(napi_get_frags);
5132
5133static gro_result_t napi_frags_finish(struct napi_struct *napi,
5134 struct sk_buff *skb,
5135 gro_result_t ret)
5136{
5137 switch (ret) {
5138 case GRO_NORMAL:
5139 case GRO_HELD:
5140 __skb_push(skb, ETH_HLEN);
5141 skb->protocol = eth_type_trans(skb, skb->dev);
5142 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5143 ret = GRO_DROP;
5144 break;
5145
5146 case GRO_DROP:
5147 napi_reuse_skb(napi, skb);
5148 break;
5149
5150 case GRO_MERGED_FREE:
5151 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5152 napi_skb_free_stolen_head(skb);
5153 else
5154 napi_reuse_skb(napi, skb);
5155 break;
5156
5157 case GRO_MERGED:
5158 case GRO_CONSUMED:
5159 break;
5160 }
5161
5162 return ret;
5163}
5164
5165/* Upper GRO stack assumes network header starts at gro_offset=0
5166 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5167 * We copy ethernet header into skb->data to have a common layout.
5168 */
5169static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5170{
5171 struct sk_buff *skb = napi->skb;
5172 const struct ethhdr *eth;
5173 unsigned int hlen = sizeof(*eth);
5174
5175 napi->skb = NULL;
5176
5177 skb_reset_mac_header(skb);
5178 skb_gro_reset_offset(skb);
5179
5180 eth = skb_gro_header_fast(skb, 0);
5181 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5182 eth = skb_gro_header_slow(skb, hlen, 0);
5183 if (unlikely(!eth)) {
5184 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5185 __func__, napi->dev->name);
5186 napi_reuse_skb(napi, skb);
5187 return NULL;
5188 }
5189 } else {
5190 gro_pull_from_frag0(skb, hlen);
5191 NAPI_GRO_CB(skb)->frag0 += hlen;
5192 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5193 }
5194 __skb_pull(skb, hlen);
5195
5196 /*
5197 * This works because the only protocols we care about don't require
5198 * special handling.
5199 * We'll fix it up properly in napi_frags_finish()
5200 */
5201 skb->protocol = eth->h_proto;
5202
5203 return skb;
5204}
5205
5206gro_result_t napi_gro_frags(struct napi_struct *napi)
5207{
5208 struct sk_buff *skb = napi_frags_skb(napi);
5209
5210 if (!skb)
5211 return GRO_DROP;
5212
5213 trace_napi_gro_frags_entry(skb);
5214
5215 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5216}
5217EXPORT_SYMBOL(napi_gro_frags);
5218
5219/* Compute the checksum from gro_offset and return the folded value
5220 * after adding in any pseudo checksum.
5221 */
5222__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5223{
5224 __wsum wsum;
5225 __sum16 sum;
5226
5227 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5228
5229 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5230 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5231 if (likely(!sum)) {
5232 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5233 !skb->csum_complete_sw)
5234 netdev_rx_csum_fault(skb->dev);
5235 }
5236
5237 NAPI_GRO_CB(skb)->csum = wsum;
5238 NAPI_GRO_CB(skb)->csum_valid = 1;
5239
5240 return sum;
5241}
5242EXPORT_SYMBOL(__skb_gro_checksum_complete);
5243
5244static void net_rps_send_ipi(struct softnet_data *remsd)
5245{
5246#ifdef CONFIG_RPS
5247 while (remsd) {
5248 struct softnet_data *next = remsd->rps_ipi_next;
5249
5250 if (cpu_online(remsd->cpu))
5251 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5252 remsd = next;
5253 }
5254#endif
5255}
5256
5257/*
5258 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5259 * Note: called with local irq disabled, but exits with local irq enabled.
5260 */
5261static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5262{
5263#ifdef CONFIG_RPS
5264 struct softnet_data *remsd = sd->rps_ipi_list;
5265
5266 if (remsd) {
5267 sd->rps_ipi_list = NULL;
5268
5269 local_irq_enable();
5270
5271 /* Send pending IPI's to kick RPS processing on remote cpus. */
5272 net_rps_send_ipi(remsd);
5273 } else
5274#endif
5275 local_irq_enable();
5276}
5277
5278static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5279{
5280#ifdef CONFIG_RPS
5281 return sd->rps_ipi_list != NULL;
5282#else
5283 return false;
5284#endif
5285}
5286
5287static int process_backlog(struct napi_struct *napi, int quota)
5288{
5289 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5290 bool again = true;
5291 int work = 0;
5292
5293 /* Check if we have pending ipi, its better to send them now,
5294 * not waiting net_rx_action() end.
5295 */
5296 if (sd_has_rps_ipi_waiting(sd)) {
5297 local_irq_disable();
5298 net_rps_action_and_irq_enable(sd);
5299 }
5300
5301 napi->weight = dev_rx_weight;
5302 while (again) {
5303 struct sk_buff *skb;
5304
5305 while ((skb = __skb_dequeue(&sd->process_queue))) {
5306 rcu_read_lock();
5307 __netif_receive_skb(skb);
5308 rcu_read_unlock();
5309 input_queue_head_incr(sd);
5310 if (++work >= quota)
5311 return work;
5312
5313 }
5314
5315 local_irq_disable();
5316 rps_lock(sd);
5317 if (skb_queue_empty(&sd->input_pkt_queue)) {
5318 /*
5319 * Inline a custom version of __napi_complete().
5320 * only current cpu owns and manipulates this napi,
5321 * and NAPI_STATE_SCHED is the only possible flag set
5322 * on backlog.
5323 * We can use a plain write instead of clear_bit(),
5324 * and we dont need an smp_mb() memory barrier.
5325 */
5326 napi->state = 0;
5327 again = false;
5328 } else {
5329 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5330 &sd->process_queue);
5331 }
5332 rps_unlock(sd);
5333 local_irq_enable();
5334 }
5335
5336 return work;
5337}
5338
5339/**
5340 * __napi_schedule - schedule for receive
5341 * @n: entry to schedule
5342 *
5343 * The entry's receive function will be scheduled to run.
5344 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5345 */
5346void __napi_schedule(struct napi_struct *n)
5347{
5348 unsigned long flags;
5349
5350 local_irq_save(flags);
5351 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5352 local_irq_restore(flags);
5353}
5354EXPORT_SYMBOL(__napi_schedule);
5355
5356/**
5357 * napi_schedule_prep - check if napi can be scheduled
5358 * @n: napi context
5359 *
5360 * Test if NAPI routine is already running, and if not mark
5361 * it as running. This is used as a condition variable
5362 * insure only one NAPI poll instance runs. We also make
5363 * sure there is no pending NAPI disable.
5364 */
5365bool napi_schedule_prep(struct napi_struct *n)
5366{
5367 unsigned long val, new;
5368
5369 do {
5370 val = READ_ONCE(n->state);
5371 if (unlikely(val & NAPIF_STATE_DISABLE))
5372 return false;
5373 new = val | NAPIF_STATE_SCHED;
5374
5375 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5376 * This was suggested by Alexander Duyck, as compiler
5377 * emits better code than :
5378 * if (val & NAPIF_STATE_SCHED)
5379 * new |= NAPIF_STATE_MISSED;
5380 */
5381 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5382 NAPIF_STATE_MISSED;
5383 } while (cmpxchg(&n->state, val, new) != val);
5384
5385 return !(val & NAPIF_STATE_SCHED);
5386}
5387EXPORT_SYMBOL(napi_schedule_prep);
5388
5389/**
5390 * __napi_schedule_irqoff - schedule for receive
5391 * @n: entry to schedule
5392 *
5393 * Variant of __napi_schedule() assuming hard irqs are masked
5394 */
5395void __napi_schedule_irqoff(struct napi_struct *n)
5396{
5397 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5398}
5399EXPORT_SYMBOL(__napi_schedule_irqoff);
5400
5401bool napi_complete_done(struct napi_struct *n, int work_done)
5402{
5403 unsigned long flags, val, new;
5404
5405 /*
5406 * 1) Don't let napi dequeue from the cpu poll list
5407 * just in case its running on a different cpu.
5408 * 2) If we are busy polling, do nothing here, we have
5409 * the guarantee we will be called later.
5410 */
5411 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5412 NAPIF_STATE_IN_BUSY_POLL)))
5413 return false;
5414
5415 if (n->gro_list) {
5416 unsigned long timeout = 0;
5417
5418 if (work_done)
5419 timeout = n->dev->gro_flush_timeout;
5420
5421 if (timeout)
5422 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5423 HRTIMER_MODE_REL_PINNED);
5424 else
5425 napi_gro_flush(n, false);
5426 }
5427 if (unlikely(!list_empty(&n->poll_list))) {
5428 /* If n->poll_list is not empty, we need to mask irqs */
5429 local_irq_save(flags);
5430 list_del_init(&n->poll_list);
5431 local_irq_restore(flags);
5432 }
5433
5434 do {
5435 val = READ_ONCE(n->state);
5436
5437 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5438
5439 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5440
5441 /* If STATE_MISSED was set, leave STATE_SCHED set,
5442 * because we will call napi->poll() one more time.
5443 * This C code was suggested by Alexander Duyck to help gcc.
5444 */
5445 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5446 NAPIF_STATE_SCHED;
5447 } while (cmpxchg(&n->state, val, new) != val);
5448
5449 if (unlikely(val & NAPIF_STATE_MISSED)) {
5450 __napi_schedule(n);
5451 return false;
5452 }
5453
5454 return true;
5455}
5456EXPORT_SYMBOL(napi_complete_done);
5457
5458/* must be called under rcu_read_lock(), as we dont take a reference */
5459static struct napi_struct *napi_by_id(unsigned int napi_id)
5460{
5461 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5462 struct napi_struct *napi;
5463
5464 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5465 if (napi->napi_id == napi_id)
5466 return napi;
5467
5468 return NULL;
5469}
5470
5471#if defined(CONFIG_NET_RX_BUSY_POLL)
5472
5473#define BUSY_POLL_BUDGET 8
5474
5475static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5476{
5477 int rc;
5478
5479 /* Busy polling means there is a high chance device driver hard irq
5480 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5481 * set in napi_schedule_prep().
5482 * Since we are about to call napi->poll() once more, we can safely
5483 * clear NAPI_STATE_MISSED.
5484 *
5485 * Note: x86 could use a single "lock and ..." instruction
5486 * to perform these two clear_bit()
5487 */
5488 clear_bit(NAPI_STATE_MISSED, &napi->state);
5489 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5490
5491 local_bh_disable();
5492
5493 /* All we really want here is to re-enable device interrupts.
5494 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5495 */
5496 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5497 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5498 netpoll_poll_unlock(have_poll_lock);
5499 if (rc == BUSY_POLL_BUDGET)
5500 __napi_schedule(napi);
5501 local_bh_enable();
5502}
5503
5504void napi_busy_loop(unsigned int napi_id,
5505 bool (*loop_end)(void *, unsigned long),
5506 void *loop_end_arg)
5507{
5508 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5509 int (*napi_poll)(struct napi_struct *napi, int budget);
5510 void *have_poll_lock = NULL;
5511 struct napi_struct *napi;
5512
5513restart:
5514 napi_poll = NULL;
5515
5516 rcu_read_lock();
5517
5518 napi = napi_by_id(napi_id);
5519 if (!napi)
5520 goto out;
5521
5522 preempt_disable();
5523 for (;;) {
5524 int work = 0;
5525
5526 local_bh_disable();
5527 if (!napi_poll) {
5528 unsigned long val = READ_ONCE(napi->state);
5529
5530 /* If multiple threads are competing for this napi,
5531 * we avoid dirtying napi->state as much as we can.
5532 */
5533 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5534 NAPIF_STATE_IN_BUSY_POLL))
5535 goto count;
5536 if (cmpxchg(&napi->state, val,
5537 val | NAPIF_STATE_IN_BUSY_POLL |
5538 NAPIF_STATE_SCHED) != val)
5539 goto count;
5540 have_poll_lock = netpoll_poll_lock(napi);
5541 napi_poll = napi->poll;
5542 }
5543 work = napi_poll(napi, BUSY_POLL_BUDGET);
5544 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5545count:
5546 if (work > 0)
5547 __NET_ADD_STATS(dev_net(napi->dev),
5548 LINUX_MIB_BUSYPOLLRXPACKETS, work);
5549 local_bh_enable();
5550
5551 if (!loop_end || loop_end(loop_end_arg, start_time))
5552 break;
5553
5554 if (unlikely(need_resched())) {
5555 if (napi_poll)
5556 busy_poll_stop(napi, have_poll_lock);
5557 preempt_enable();
5558 rcu_read_unlock();
5559 cond_resched();
5560 if (loop_end(loop_end_arg, start_time))
5561 return;
5562 goto restart;
5563 }
5564 cpu_relax();
5565 }
5566 if (napi_poll)
5567 busy_poll_stop(napi, have_poll_lock);
5568 preempt_enable();
5569out:
5570 rcu_read_unlock();
5571}
5572EXPORT_SYMBOL(napi_busy_loop);
5573
5574#endif /* CONFIG_NET_RX_BUSY_POLL */
5575
5576static void napi_hash_add(struct napi_struct *napi)
5577{
5578 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5579 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5580 return;
5581
5582 spin_lock(&napi_hash_lock);
5583
5584 /* 0..NR_CPUS range is reserved for sender_cpu use */
5585 do {
5586 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5587 napi_gen_id = MIN_NAPI_ID;
5588 } while (napi_by_id(napi_gen_id));
5589 napi->napi_id = napi_gen_id;
5590
5591 hlist_add_head_rcu(&napi->napi_hash_node,
5592 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5593
5594 spin_unlock(&napi_hash_lock);
5595}
5596
5597/* Warning : caller is responsible to make sure rcu grace period
5598 * is respected before freeing memory containing @napi
5599 */
5600bool napi_hash_del(struct napi_struct *napi)
5601{
5602 bool rcu_sync_needed = false;
5603
5604 spin_lock(&napi_hash_lock);
5605
5606 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5607 rcu_sync_needed = true;
5608 hlist_del_rcu(&napi->napi_hash_node);
5609 }
5610 spin_unlock(&napi_hash_lock);
5611 return rcu_sync_needed;
5612}
5613EXPORT_SYMBOL_GPL(napi_hash_del);
5614
5615static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5616{
5617 struct napi_struct *napi;
5618
5619 napi = container_of(timer, struct napi_struct, timer);
5620
5621 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5622 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5623 */
5624 if (napi->gro_list && !napi_disable_pending(napi) &&
5625 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5626 __napi_schedule_irqoff(napi);
5627
5628 return HRTIMER_NORESTART;
5629}
5630
5631void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5632 int (*poll)(struct napi_struct *, int), int weight)
5633{
5634 INIT_LIST_HEAD(&napi->poll_list);
5635 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5636 napi->timer.function = napi_watchdog;
5637 napi->gro_count = 0;
5638 napi->gro_list = NULL;
5639 napi->skb = NULL;
5640 napi->poll = poll;
5641 if (weight > NAPI_POLL_WEIGHT)
5642 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5643 weight, dev->name);
5644 napi->weight = weight;
5645 list_add(&napi->dev_list, &dev->napi_list);
5646 napi->dev = dev;
5647#ifdef CONFIG_NETPOLL
5648 napi->poll_owner = -1;
5649#endif
5650 set_bit(NAPI_STATE_SCHED, &napi->state);
5651 napi_hash_add(napi);
5652}
5653EXPORT_SYMBOL(netif_napi_add);
5654
5655void napi_disable(struct napi_struct *n)
5656{
5657 might_sleep();
5658 set_bit(NAPI_STATE_DISABLE, &n->state);
5659
5660 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5661 msleep(1);
5662 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5663 msleep(1);
5664
5665 hrtimer_cancel(&n->timer);
5666
5667 clear_bit(NAPI_STATE_DISABLE, &n->state);
5668}
5669EXPORT_SYMBOL(napi_disable);
5670
5671/* Must be called in process context */
5672void netif_napi_del(struct napi_struct *napi)
5673{
5674 might_sleep();
5675 if (napi_hash_del(napi))
5676 synchronize_net();
5677 list_del_init(&napi->dev_list);
5678 napi_free_frags(napi);
5679
5680 kfree_skb_list(napi->gro_list);
5681 napi->gro_list = NULL;
5682 napi->gro_count = 0;
5683}
5684EXPORT_SYMBOL(netif_napi_del);
5685
5686static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5687{
5688 void *have;
5689 int work, weight;
5690
5691 list_del_init(&n->poll_list);
5692
5693 have = netpoll_poll_lock(n);
5694
5695 weight = n->weight;
5696
5697 /* This NAPI_STATE_SCHED test is for avoiding a race
5698 * with netpoll's poll_napi(). Only the entity which
5699 * obtains the lock and sees NAPI_STATE_SCHED set will
5700 * actually make the ->poll() call. Therefore we avoid
5701 * accidentally calling ->poll() when NAPI is not scheduled.
5702 */
5703 work = 0;
5704 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5705 work = n->poll(n, weight);
5706 trace_napi_poll(n, work, weight);
5707 }
5708
5709 WARN_ON_ONCE(work > weight);
5710
5711 if (likely(work < weight))
5712 goto out_unlock;
5713
5714 /* Drivers must not modify the NAPI state if they
5715 * consume the entire weight. In such cases this code
5716 * still "owns" the NAPI instance and therefore can
5717 * move the instance around on the list at-will.
5718 */
5719 if (unlikely(napi_disable_pending(n))) {
5720 napi_complete(n);
5721 goto out_unlock;
5722 }
5723
5724 if (n->gro_list) {
5725 /* flush too old packets
5726 * If HZ < 1000, flush all packets.
5727 */
5728 napi_gro_flush(n, HZ >= 1000);
5729 }
5730
5731 /* Some drivers may have called napi_schedule
5732 * prior to exhausting their budget.
5733 */
5734 if (unlikely(!list_empty(&n->poll_list))) {
5735 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5736 n->dev ? n->dev->name : "backlog");
5737 goto out_unlock;
5738 }
5739
5740 list_add_tail(&n->poll_list, repoll);
5741
5742out_unlock:
5743 netpoll_poll_unlock(have);
5744
5745 return work;
5746}
5747
5748static __latent_entropy void net_rx_action(struct softirq_action *h)
5749{
5750 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5751 unsigned long time_limit = jiffies +
5752 usecs_to_jiffies(netdev_budget_usecs);
5753 int budget = netdev_budget;
5754 LIST_HEAD(list);
5755 LIST_HEAD(repoll);
5756
5757 local_irq_disable();
5758 list_splice_init(&sd->poll_list, &list);
5759 local_irq_enable();
5760
5761 for (;;) {
5762 struct napi_struct *n;
5763
5764 if (list_empty(&list)) {
5765 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5766 goto out;
5767 break;
5768 }
5769
5770 n = list_first_entry(&list, struct napi_struct, poll_list);
5771 budget -= napi_poll(n, &repoll);
5772
5773 /* If softirq window is exhausted then punt.
5774 * Allow this to run for 2 jiffies since which will allow
5775 * an average latency of 1.5/HZ.
5776 */
5777 if (unlikely(budget <= 0 ||
5778 time_after_eq(jiffies, time_limit))) {
5779 sd->time_squeeze++;
5780 break;
5781 }
5782 }
5783
5784 local_irq_disable();
5785
5786 list_splice_tail_init(&sd->poll_list, &list);
5787 list_splice_tail(&repoll, &list);
5788 list_splice(&list, &sd->poll_list);
5789 if (!list_empty(&sd->poll_list))
5790 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5791
5792 net_rps_action_and_irq_enable(sd);
5793out:
5794 __kfree_skb_flush();
5795}
5796
5797struct netdev_adjacent {
5798 struct net_device *dev;
5799
5800 /* upper master flag, there can only be one master device per list */
5801 bool master;
5802
5803 /* counter for the number of times this device was added to us */
5804 u16 ref_nr;
5805
5806 /* private field for the users */
5807 void *private;
5808
5809 struct list_head list;
5810 struct rcu_head rcu;
5811};
5812
5813static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5814 struct list_head *adj_list)
5815{
5816 struct netdev_adjacent *adj;
5817
5818 list_for_each_entry(adj, adj_list, list) {
5819 if (adj->dev == adj_dev)
5820 return adj;
5821 }
5822 return NULL;
5823}
5824
5825static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5826{
5827 struct net_device *dev = data;
5828
5829 return upper_dev == dev;
5830}
5831
5832/**
5833 * netdev_has_upper_dev - Check if device is linked to an upper device
5834 * @dev: device
5835 * @upper_dev: upper device to check
5836 *
5837 * Find out if a device is linked to specified upper device and return true
5838 * in case it is. Note that this checks only immediate upper device,
5839 * not through a complete stack of devices. The caller must hold the RTNL lock.
5840 */
5841bool netdev_has_upper_dev(struct net_device *dev,
5842 struct net_device *upper_dev)
5843{
5844 ASSERT_RTNL();
5845
5846 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5847 upper_dev);
5848}
5849EXPORT_SYMBOL(netdev_has_upper_dev);
5850
5851/**
5852 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5853 * @dev: device
5854 * @upper_dev: upper device to check
5855 *
5856 * Find out if a device is linked to specified upper device and return true
5857 * in case it is. Note that this checks the entire upper device chain.
5858 * The caller must hold rcu lock.
5859 */
5860
5861bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5862 struct net_device *upper_dev)
5863{
5864 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5865 upper_dev);
5866}
5867EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5868
5869/**
5870 * netdev_has_any_upper_dev - Check if device is linked to some device
5871 * @dev: device
5872 *
5873 * Find out if a device is linked to an upper device and return true in case
5874 * it is. The caller must hold the RTNL lock.
5875 */
5876bool netdev_has_any_upper_dev(struct net_device *dev)
5877{
5878 ASSERT_RTNL();
5879
5880 return !list_empty(&dev->adj_list.upper);
5881}
5882EXPORT_SYMBOL(netdev_has_any_upper_dev);
5883
5884/**
5885 * netdev_master_upper_dev_get - Get master upper device
5886 * @dev: device
5887 *
5888 * Find a master upper device and return pointer to it or NULL in case
5889 * it's not there. The caller must hold the RTNL lock.
5890 */
5891struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5892{
5893 struct netdev_adjacent *upper;
5894
5895 ASSERT_RTNL();
5896
5897 if (list_empty(&dev->adj_list.upper))
5898 return NULL;
5899
5900 upper = list_first_entry(&dev->adj_list.upper,
5901 struct netdev_adjacent, list);
5902 if (likely(upper->master))
5903 return upper->dev;
5904 return NULL;
5905}
5906EXPORT_SYMBOL(netdev_master_upper_dev_get);
5907
5908/**
5909 * netdev_has_any_lower_dev - Check if device is linked to some device
5910 * @dev: device
5911 *
5912 * Find out if a device is linked to a lower device and return true in case
5913 * it is. The caller must hold the RTNL lock.
5914 */
5915static bool netdev_has_any_lower_dev(struct net_device *dev)
5916{
5917 ASSERT_RTNL();
5918
5919 return !list_empty(&dev->adj_list.lower);
5920}
5921
5922void *netdev_adjacent_get_private(struct list_head *adj_list)
5923{
5924 struct netdev_adjacent *adj;
5925
5926 adj = list_entry(adj_list, struct netdev_adjacent, list);
5927
5928 return adj->private;
5929}
5930EXPORT_SYMBOL(netdev_adjacent_get_private);
5931
5932/**
5933 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5934 * @dev: device
5935 * @iter: list_head ** of the current position
5936 *
5937 * Gets the next device from the dev's upper list, starting from iter
5938 * position. The caller must hold RCU read lock.
5939 */
5940struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5941 struct list_head **iter)
5942{
5943 struct netdev_adjacent *upper;
5944
5945 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5946
5947 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5948
5949 if (&upper->list == &dev->adj_list.upper)
5950 return NULL;
5951
5952 *iter = &upper->list;
5953
5954 return upper->dev;
5955}
5956EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5957
5958static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5959 struct list_head **iter)
5960{
5961 struct netdev_adjacent *upper;
5962
5963 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5964
5965 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5966
5967 if (&upper->list == &dev->adj_list.upper)
5968 return NULL;
5969
5970 *iter = &upper->list;
5971
5972 return upper->dev;
5973}
5974
5975int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5976 int (*fn)(struct net_device *dev,
5977 void *data),
5978 void *data)
5979{
5980 struct net_device *udev;
5981 struct list_head *iter;
5982 int ret;
5983
5984 for (iter = &dev->adj_list.upper,
5985 udev = netdev_next_upper_dev_rcu(dev, &iter);
5986 udev;
5987 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5988 /* first is the upper device itself */
5989 ret = fn(udev, data);
5990 if (ret)
5991 return ret;
5992
5993 /* then look at all of its upper devices */
5994 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5995 if (ret)
5996 return ret;
5997 }
5998
5999 return 0;
6000}
6001EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6002
6003/**
6004 * netdev_lower_get_next_private - Get the next ->private from the
6005 * lower neighbour list
6006 * @dev: device
6007 * @iter: list_head ** of the current position
6008 *
6009 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6010 * list, starting from iter position. The caller must hold either hold the
6011 * RTNL lock or its own locking that guarantees that the neighbour lower
6012 * list will remain unchanged.
6013 */
6014void *netdev_lower_get_next_private(struct net_device *dev,
6015 struct list_head **iter)
6016{
6017 struct netdev_adjacent *lower;
6018
6019 lower = list_entry(*iter, struct netdev_adjacent, list);
6020
6021 if (&lower->list == &dev->adj_list.lower)
6022 return NULL;
6023
6024 *iter = lower->list.next;
6025
6026 return lower->private;
6027}
6028EXPORT_SYMBOL(netdev_lower_get_next_private);
6029
6030/**
6031 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6032 * lower neighbour list, RCU
6033 * variant
6034 * @dev: device
6035 * @iter: list_head ** of the current position
6036 *
6037 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6038 * list, starting from iter position. The caller must hold RCU read lock.
6039 */
6040void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6041 struct list_head **iter)
6042{
6043 struct netdev_adjacent *lower;
6044
6045 WARN_ON_ONCE(!rcu_read_lock_held());
6046
6047 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6048
6049 if (&lower->list == &dev->adj_list.lower)
6050 return NULL;
6051
6052 *iter = &lower->list;
6053
6054 return lower->private;
6055}
6056EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6057
6058/**
6059 * netdev_lower_get_next - Get the next device from the lower neighbour
6060 * list
6061 * @dev: device
6062 * @iter: list_head ** of the current position
6063 *
6064 * Gets the next netdev_adjacent from the dev's lower neighbour
6065 * list, starting from iter position. The caller must hold RTNL lock or
6066 * its own locking that guarantees that the neighbour lower
6067 * list will remain unchanged.
6068 */
6069void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6070{
6071 struct netdev_adjacent *lower;
6072
6073 lower = list_entry(*iter, struct netdev_adjacent, list);
6074
6075 if (&lower->list == &dev->adj_list.lower)
6076 return NULL;
6077
6078 *iter = lower->list.next;
6079
6080 return lower->dev;
6081}
6082EXPORT_SYMBOL(netdev_lower_get_next);
6083
6084static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6085 struct list_head **iter)
6086{
6087 struct netdev_adjacent *lower;
6088
6089 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6090
6091 if (&lower->list == &dev->adj_list.lower)
6092 return NULL;
6093
6094 *iter = &lower->list;
6095
6096 return lower->dev;
6097}
6098
6099int netdev_walk_all_lower_dev(struct net_device *dev,
6100 int (*fn)(struct net_device *dev,
6101 void *data),
6102 void *data)
6103{
6104 struct net_device *ldev;
6105 struct list_head *iter;
6106 int ret;
6107
6108 for (iter = &dev->adj_list.lower,
6109 ldev = netdev_next_lower_dev(dev, &iter);
6110 ldev;
6111 ldev = netdev_next_lower_dev(dev, &iter)) {
6112 /* first is the lower device itself */
6113 ret = fn(ldev, data);
6114 if (ret)
6115 return ret;
6116
6117 /* then look at all of its lower devices */
6118 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6119 if (ret)
6120 return ret;
6121 }
6122
6123 return 0;
6124}
6125EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6126
6127static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6128 struct list_head **iter)
6129{
6130 struct netdev_adjacent *lower;
6131
6132 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6133 if (&lower->list == &dev->adj_list.lower)
6134 return NULL;
6135
6136 *iter = &lower->list;
6137
6138 return lower->dev;
6139}
6140
6141int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6142 int (*fn)(struct net_device *dev,
6143 void *data),
6144 void *data)
6145{
6146 struct net_device *ldev;
6147 struct list_head *iter;
6148 int ret;
6149
6150 for (iter = &dev->adj_list.lower,
6151 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6152 ldev;
6153 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6154 /* first is the lower device itself */
6155 ret = fn(ldev, data);
6156 if (ret)
6157 return ret;
6158
6159 /* then look at all of its lower devices */
6160 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6161 if (ret)
6162 return ret;
6163 }
6164
6165 return 0;
6166}
6167EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6168
6169/**
6170 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6171 * lower neighbour list, RCU
6172 * variant
6173 * @dev: device
6174 *
6175 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6176 * list. The caller must hold RCU read lock.
6177 */
6178void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6179{
6180 struct netdev_adjacent *lower;
6181
6182 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6183 struct netdev_adjacent, list);
6184 if (lower)
6185 return lower->private;
6186 return NULL;
6187}
6188EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6189
6190/**
6191 * netdev_master_upper_dev_get_rcu - Get master upper device
6192 * @dev: device
6193 *
6194 * Find a master upper device and return pointer to it or NULL in case
6195 * it's not there. The caller must hold the RCU read lock.
6196 */
6197struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6198{
6199 struct netdev_adjacent *upper;
6200
6201 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6202 struct netdev_adjacent, list);
6203 if (upper && likely(upper->master))
6204 return upper->dev;
6205 return NULL;
6206}
6207EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6208
6209static int netdev_adjacent_sysfs_add(struct net_device *dev,
6210 struct net_device *adj_dev,
6211 struct list_head *dev_list)
6212{
6213 char linkname[IFNAMSIZ+7];
6214
6215 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6216 "upper_%s" : "lower_%s", adj_dev->name);
6217 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6218 linkname);
6219}
6220static void netdev_adjacent_sysfs_del(struct net_device *dev,
6221 char *name,
6222 struct list_head *dev_list)
6223{
6224 char linkname[IFNAMSIZ+7];
6225
6226 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6227 "upper_%s" : "lower_%s", name);
6228 sysfs_remove_link(&(dev->dev.kobj), linkname);
6229}
6230
6231static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6232 struct net_device *adj_dev,
6233 struct list_head *dev_list)
6234{
6235 return (dev_list == &dev->adj_list.upper ||
6236 dev_list == &dev->adj_list.lower) &&
6237 net_eq(dev_net(dev), dev_net(adj_dev));
6238}
6239
6240static int __netdev_adjacent_dev_insert(struct net_device *dev,
6241 struct net_device *adj_dev,
6242 struct list_head *dev_list,
6243 void *private, bool master)
6244{
6245 struct netdev_adjacent *adj;
6246 int ret;
6247
6248 adj = __netdev_find_adj(adj_dev, dev_list);
6249
6250 if (adj) {
6251 adj->ref_nr += 1;
6252 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6253 dev->name, adj_dev->name, adj->ref_nr);
6254
6255 return 0;
6256 }
6257
6258 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6259 if (!adj)
6260 return -ENOMEM;
6261
6262 adj->dev = adj_dev;
6263 adj->master = master;
6264 adj->ref_nr = 1;
6265 adj->private = private;
6266 dev_hold(adj_dev);
6267
6268 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6269 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6270
6271 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6272 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6273 if (ret)
6274 goto free_adj;
6275 }
6276
6277 /* Ensure that master link is always the first item in list. */
6278 if (master) {
6279 ret = sysfs_create_link(&(dev->dev.kobj),
6280 &(adj_dev->dev.kobj), "master");
6281 if (ret)
6282 goto remove_symlinks;
6283
6284 list_add_rcu(&adj->list, dev_list);
6285 } else {
6286 list_add_tail_rcu(&adj->list, dev_list);
6287 }
6288
6289 return 0;
6290
6291remove_symlinks:
6292 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6293 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6294free_adj:
6295 kfree(adj);
6296 dev_put(adj_dev);
6297
6298 return ret;
6299}
6300
6301static void __netdev_adjacent_dev_remove(struct net_device *dev,
6302 struct net_device *adj_dev,
6303 u16 ref_nr,
6304 struct list_head *dev_list)
6305{
6306 struct netdev_adjacent *adj;
6307
6308 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6309 dev->name, adj_dev->name, ref_nr);
6310
6311 adj = __netdev_find_adj(adj_dev, dev_list);
6312
6313 if (!adj) {
6314 pr_err("Adjacency does not exist for device %s from %s\n",
6315 dev->name, adj_dev->name);
6316 WARN_ON(1);
6317 return;
6318 }
6319
6320 if (adj->ref_nr > ref_nr) {
6321 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6322 dev->name, adj_dev->name, ref_nr,
6323 adj->ref_nr - ref_nr);
6324 adj->ref_nr -= ref_nr;
6325 return;
6326 }
6327
6328 if (adj->master)
6329 sysfs_remove_link(&(dev->dev.kobj), "master");
6330
6331 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6332 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6333
6334 list_del_rcu(&adj->list);
6335 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6336 adj_dev->name, dev->name, adj_dev->name);
6337 dev_put(adj_dev);
6338 kfree_rcu(adj, rcu);
6339}
6340
6341static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6342 struct net_device *upper_dev,
6343 struct list_head *up_list,
6344 struct list_head *down_list,
6345 void *private, bool master)
6346{
6347 int ret;
6348
6349 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6350 private, master);
6351 if (ret)
6352 return ret;
6353
6354 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6355 private, false);
6356 if (ret) {
6357 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6358 return ret;
6359 }
6360
6361 return 0;
6362}
6363
6364static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6365 struct net_device *upper_dev,
6366 u16 ref_nr,
6367 struct list_head *up_list,
6368 struct list_head *down_list)
6369{
6370 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6371 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6372}
6373
6374static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6375 struct net_device *upper_dev,
6376 void *private, bool master)
6377{
6378 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6379 &dev->adj_list.upper,
6380 &upper_dev->adj_list.lower,
6381 private, master);
6382}
6383
6384static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6385 struct net_device *upper_dev)
6386{
6387 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6388 &dev->adj_list.upper,
6389 &upper_dev->adj_list.lower);
6390}
6391
6392static int __netdev_upper_dev_link(struct net_device *dev,
6393 struct net_device *upper_dev, bool master,
6394 void *upper_priv, void *upper_info,
6395 struct netlink_ext_ack *extack)
6396{
6397 struct netdev_notifier_changeupper_info changeupper_info = {
6398 .info = {
6399 .dev = dev,
6400 .extack = extack,
6401 },
6402 .upper_dev = upper_dev,
6403 .master = master,
6404 .linking = true,
6405 .upper_info = upper_info,
6406 };
6407 struct net_device *master_dev;
6408 int ret = 0;
6409
6410 ASSERT_RTNL();
6411
6412 if (dev == upper_dev)
6413 return -EBUSY;
6414
6415 /* To prevent loops, check if dev is not upper device to upper_dev. */
6416 if (netdev_has_upper_dev(upper_dev, dev))
6417 return -EBUSY;
6418
6419 if (!master) {
6420 if (netdev_has_upper_dev(dev, upper_dev))
6421 return -EEXIST;
6422 } else {
6423 master_dev = netdev_master_upper_dev_get(dev);
6424 if (master_dev)
6425 return master_dev == upper_dev ? -EEXIST : -EBUSY;
6426 }
6427
6428 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6429 &changeupper_info.info);
6430 ret = notifier_to_errno(ret);
6431 if (ret)
6432 return ret;
6433
6434 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6435 master);
6436 if (ret)
6437 return ret;
6438
6439 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6440 &changeupper_info.info);
6441 ret = notifier_to_errno(ret);
6442 if (ret)
6443 goto rollback;
6444
6445 return 0;
6446
6447rollback:
6448 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6449
6450 return ret;
6451}
6452
6453/**
6454 * netdev_upper_dev_link - Add a link to the upper device
6455 * @dev: device
6456 * @upper_dev: new upper device
6457 * @extack: netlink extended ack
6458 *
6459 * Adds a link to device which is upper to this one. The caller must hold
6460 * the RTNL lock. On a failure a negative errno code is returned.
6461 * On success the reference counts are adjusted and the function
6462 * returns zero.
6463 */
6464int netdev_upper_dev_link(struct net_device *dev,
6465 struct net_device *upper_dev,
6466 struct netlink_ext_ack *extack)
6467{
6468 return __netdev_upper_dev_link(dev, upper_dev, false,
6469 NULL, NULL, extack);
6470}
6471EXPORT_SYMBOL(netdev_upper_dev_link);
6472
6473/**
6474 * netdev_master_upper_dev_link - Add a master link to the upper device
6475 * @dev: device
6476 * @upper_dev: new upper device
6477 * @upper_priv: upper device private
6478 * @upper_info: upper info to be passed down via notifier
6479 * @extack: netlink extended ack
6480 *
6481 * Adds a link to device which is upper to this one. In this case, only
6482 * one master upper device can be linked, although other non-master devices
6483 * might be linked as well. The caller must hold the RTNL lock.
6484 * On a failure a negative errno code is returned. On success the reference
6485 * counts are adjusted and the function returns zero.
6486 */
6487int netdev_master_upper_dev_link(struct net_device *dev,
6488 struct net_device *upper_dev,
6489 void *upper_priv, void *upper_info,
6490 struct netlink_ext_ack *extack)
6491{
6492 return __netdev_upper_dev_link(dev, upper_dev, true,
6493 upper_priv, upper_info, extack);
6494}
6495EXPORT_SYMBOL(netdev_master_upper_dev_link);
6496
6497/**
6498 * netdev_upper_dev_unlink - Removes a link to upper device
6499 * @dev: device
6500 * @upper_dev: new upper device
6501 *
6502 * Removes a link to device which is upper to this one. The caller must hold
6503 * the RTNL lock.
6504 */
6505void netdev_upper_dev_unlink(struct net_device *dev,
6506 struct net_device *upper_dev)
6507{
6508 struct netdev_notifier_changeupper_info changeupper_info = {
6509 .info = {
6510 .dev = dev,
6511 },
6512 .upper_dev = upper_dev,
6513 .linking = false,
6514 };
6515
6516 ASSERT_RTNL();
6517
6518 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6519
6520 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6521 &changeupper_info.info);
6522
6523 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6524
6525 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6526 &changeupper_info.info);
6527}
6528EXPORT_SYMBOL(netdev_upper_dev_unlink);
6529
6530/**
6531 * netdev_bonding_info_change - Dispatch event about slave change
6532 * @dev: device
6533 * @bonding_info: info to dispatch
6534 *
6535 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6536 * The caller must hold the RTNL lock.
6537 */
6538void netdev_bonding_info_change(struct net_device *dev,
6539 struct netdev_bonding_info *bonding_info)
6540{
6541 struct netdev_notifier_bonding_info info = {
6542 .info.dev = dev,
6543 };
6544
6545 memcpy(&info.bonding_info, bonding_info,
6546 sizeof(struct netdev_bonding_info));
6547 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6548 &info.info);
6549}
6550EXPORT_SYMBOL(netdev_bonding_info_change);
6551
6552static void netdev_adjacent_add_links(struct net_device *dev)
6553{
6554 struct netdev_adjacent *iter;
6555
6556 struct net *net = dev_net(dev);
6557
6558 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6559 if (!net_eq(net, dev_net(iter->dev)))
6560 continue;
6561 netdev_adjacent_sysfs_add(iter->dev, dev,
6562 &iter->dev->adj_list.lower);
6563 netdev_adjacent_sysfs_add(dev, iter->dev,
6564 &dev->adj_list.upper);
6565 }
6566
6567 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6568 if (!net_eq(net, dev_net(iter->dev)))
6569 continue;
6570 netdev_adjacent_sysfs_add(iter->dev, dev,
6571 &iter->dev->adj_list.upper);
6572 netdev_adjacent_sysfs_add(dev, iter->dev,
6573 &dev->adj_list.lower);
6574 }
6575}
6576
6577static void netdev_adjacent_del_links(struct net_device *dev)
6578{
6579 struct netdev_adjacent *iter;
6580
6581 struct net *net = dev_net(dev);
6582
6583 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6584 if (!net_eq(net, dev_net(iter->dev)))
6585 continue;
6586 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6587 &iter->dev->adj_list.lower);
6588 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6589 &dev->adj_list.upper);
6590 }
6591
6592 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6593 if (!net_eq(net, dev_net(iter->dev)))
6594 continue;
6595 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6596 &iter->dev->adj_list.upper);
6597 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6598 &dev->adj_list.lower);
6599 }
6600}
6601
6602void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6603{
6604 struct netdev_adjacent *iter;
6605
6606 struct net *net = dev_net(dev);
6607
6608 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6609 if (!net_eq(net, dev_net(iter->dev)))
6610 continue;
6611 netdev_adjacent_sysfs_del(iter->dev, oldname,
6612 &iter->dev->adj_list.lower);
6613 netdev_adjacent_sysfs_add(iter->dev, dev,
6614 &iter->dev->adj_list.lower);
6615 }
6616
6617 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6618 if (!net_eq(net, dev_net(iter->dev)))
6619 continue;
6620 netdev_adjacent_sysfs_del(iter->dev, oldname,
6621 &iter->dev->adj_list.upper);
6622 netdev_adjacent_sysfs_add(iter->dev, dev,
6623 &iter->dev->adj_list.upper);
6624 }
6625}
6626
6627void *netdev_lower_dev_get_private(struct net_device *dev,
6628 struct net_device *lower_dev)
6629{
6630 struct netdev_adjacent *lower;
6631
6632 if (!lower_dev)
6633 return NULL;
6634 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6635 if (!lower)
6636 return NULL;
6637
6638 return lower->private;
6639}
6640EXPORT_SYMBOL(netdev_lower_dev_get_private);
6641
6642
6643int dev_get_nest_level(struct net_device *dev)
6644{
6645 struct net_device *lower = NULL;
6646 struct list_head *iter;
6647 int max_nest = -1;
6648 int nest;
6649
6650 ASSERT_RTNL();
6651
6652 netdev_for_each_lower_dev(dev, lower, iter) {
6653 nest = dev_get_nest_level(lower);
6654 if (max_nest < nest)
6655 max_nest = nest;
6656 }
6657
6658 return max_nest + 1;
6659}
6660EXPORT_SYMBOL(dev_get_nest_level);
6661
6662/**
6663 * netdev_lower_change - Dispatch event about lower device state change
6664 * @lower_dev: device
6665 * @lower_state_info: state to dispatch
6666 *
6667 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6668 * The caller must hold the RTNL lock.
6669 */
6670void netdev_lower_state_changed(struct net_device *lower_dev,
6671 void *lower_state_info)
6672{
6673 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6674 .info.dev = lower_dev,
6675 };
6676
6677 ASSERT_RTNL();
6678 changelowerstate_info.lower_state_info = lower_state_info;
6679 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6680 &changelowerstate_info.info);
6681}
6682EXPORT_SYMBOL(netdev_lower_state_changed);
6683
6684static void dev_change_rx_flags(struct net_device *dev, int flags)
6685{
6686 const struct net_device_ops *ops = dev->netdev_ops;
6687
6688 if (ops->ndo_change_rx_flags)
6689 ops->ndo_change_rx_flags(dev, flags);
6690}
6691
6692static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6693{
6694 unsigned int old_flags = dev->flags;
6695 kuid_t uid;
6696 kgid_t gid;
6697
6698 ASSERT_RTNL();
6699
6700 dev->flags |= IFF_PROMISC;
6701 dev->promiscuity += inc;
6702 if (dev->promiscuity == 0) {
6703 /*
6704 * Avoid overflow.
6705 * If inc causes overflow, untouch promisc and return error.
6706 */
6707 if (inc < 0)
6708 dev->flags &= ~IFF_PROMISC;
6709 else {
6710 dev->promiscuity -= inc;
6711 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6712 dev->name);
6713 return -EOVERFLOW;
6714 }
6715 }
6716 if (dev->flags != old_flags) {
6717 pr_info("device %s %s promiscuous mode\n",
6718 dev->name,
6719 dev->flags & IFF_PROMISC ? "entered" : "left");
6720 if (audit_enabled) {
6721 current_uid_gid(&uid, &gid);
6722 audit_log(current->audit_context, GFP_ATOMIC,
6723 AUDIT_ANOM_PROMISCUOUS,
6724 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6725 dev->name, (dev->flags & IFF_PROMISC),
6726 (old_flags & IFF_PROMISC),
6727 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6728 from_kuid(&init_user_ns, uid),
6729 from_kgid(&init_user_ns, gid),
6730 audit_get_sessionid(current));
6731 }
6732
6733 dev_change_rx_flags(dev, IFF_PROMISC);
6734 }
6735 if (notify)
6736 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6737 return 0;
6738}
6739
6740/**
6741 * dev_set_promiscuity - update promiscuity count on a device
6742 * @dev: device
6743 * @inc: modifier
6744 *
6745 * Add or remove promiscuity from a device. While the count in the device
6746 * remains above zero the interface remains promiscuous. Once it hits zero
6747 * the device reverts back to normal filtering operation. A negative inc
6748 * value is used to drop promiscuity on the device.
6749 * Return 0 if successful or a negative errno code on error.
6750 */
6751int dev_set_promiscuity(struct net_device *dev, int inc)
6752{
6753 unsigned int old_flags = dev->flags;
6754 int err;
6755
6756 err = __dev_set_promiscuity(dev, inc, true);
6757 if (err < 0)
6758 return err;
6759 if (dev->flags != old_flags)
6760 dev_set_rx_mode(dev);
6761 return err;
6762}
6763EXPORT_SYMBOL(dev_set_promiscuity);
6764
6765static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6766{
6767 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6768
6769 ASSERT_RTNL();
6770
6771 dev->flags |= IFF_ALLMULTI;
6772 dev->allmulti += inc;
6773 if (dev->allmulti == 0) {
6774 /*
6775 * Avoid overflow.
6776 * If inc causes overflow, untouch allmulti and return error.
6777 */
6778 if (inc < 0)
6779 dev->flags &= ~IFF_ALLMULTI;
6780 else {
6781 dev->allmulti -= inc;
6782 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6783 dev->name);
6784 return -EOVERFLOW;
6785 }
6786 }
6787 if (dev->flags ^ old_flags) {
6788 dev_change_rx_flags(dev, IFF_ALLMULTI);
6789 dev_set_rx_mode(dev);
6790 if (notify)
6791 __dev_notify_flags(dev, old_flags,
6792 dev->gflags ^ old_gflags);
6793 }
6794 return 0;
6795}
6796
6797/**
6798 * dev_set_allmulti - update allmulti count on a device
6799 * @dev: device
6800 * @inc: modifier
6801 *
6802 * Add or remove reception of all multicast frames to a device. While the
6803 * count in the device remains above zero the interface remains listening
6804 * to all interfaces. Once it hits zero the device reverts back to normal
6805 * filtering operation. A negative @inc value is used to drop the counter
6806 * when releasing a resource needing all multicasts.
6807 * Return 0 if successful or a negative errno code on error.
6808 */
6809
6810int dev_set_allmulti(struct net_device *dev, int inc)
6811{
6812 return __dev_set_allmulti(dev, inc, true);
6813}
6814EXPORT_SYMBOL(dev_set_allmulti);
6815
6816/*
6817 * Upload unicast and multicast address lists to device and
6818 * configure RX filtering. When the device doesn't support unicast
6819 * filtering it is put in promiscuous mode while unicast addresses
6820 * are present.
6821 */
6822void __dev_set_rx_mode(struct net_device *dev)
6823{
6824 const struct net_device_ops *ops = dev->netdev_ops;
6825
6826 /* dev_open will call this function so the list will stay sane. */
6827 if (!(dev->flags&IFF_UP))
6828 return;
6829
6830 if (!netif_device_present(dev))
6831 return;
6832
6833 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6834 /* Unicast addresses changes may only happen under the rtnl,
6835 * therefore calling __dev_set_promiscuity here is safe.
6836 */
6837 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6838 __dev_set_promiscuity(dev, 1, false);
6839 dev->uc_promisc = true;
6840 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6841 __dev_set_promiscuity(dev, -1, false);
6842 dev->uc_promisc = false;
6843 }
6844 }
6845
6846 if (ops->ndo_set_rx_mode)
6847 ops->ndo_set_rx_mode(dev);
6848}
6849
6850void dev_set_rx_mode(struct net_device *dev)
6851{
6852 netif_addr_lock_bh(dev);
6853 __dev_set_rx_mode(dev);
6854 netif_addr_unlock_bh(dev);
6855}
6856
6857/**
6858 * dev_get_flags - get flags reported to userspace
6859 * @dev: device
6860 *
6861 * Get the combination of flag bits exported through APIs to userspace.
6862 */
6863unsigned int dev_get_flags(const struct net_device *dev)
6864{
6865 unsigned int flags;
6866
6867 flags = (dev->flags & ~(IFF_PROMISC |
6868 IFF_ALLMULTI |
6869 IFF_RUNNING |
6870 IFF_LOWER_UP |
6871 IFF_DORMANT)) |
6872 (dev->gflags & (IFF_PROMISC |
6873 IFF_ALLMULTI));
6874
6875 if (netif_running(dev)) {
6876 if (netif_oper_up(dev))
6877 flags |= IFF_RUNNING;
6878 if (netif_carrier_ok(dev))
6879 flags |= IFF_LOWER_UP;
6880 if (netif_dormant(dev))
6881 flags |= IFF_DORMANT;
6882 }
6883
6884 return flags;
6885}
6886EXPORT_SYMBOL(dev_get_flags);
6887
6888int __dev_change_flags(struct net_device *dev, unsigned int flags)
6889{
6890 unsigned int old_flags = dev->flags;
6891 int ret;
6892
6893 ASSERT_RTNL();
6894
6895 /*
6896 * Set the flags on our device.
6897 */
6898
6899 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6900 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6901 IFF_AUTOMEDIA)) |
6902 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6903 IFF_ALLMULTI));
6904
6905 /*
6906 * Load in the correct multicast list now the flags have changed.
6907 */
6908
6909 if ((old_flags ^ flags) & IFF_MULTICAST)
6910 dev_change_rx_flags(dev, IFF_MULTICAST);
6911
6912 dev_set_rx_mode(dev);
6913
6914 /*
6915 * Have we downed the interface. We handle IFF_UP ourselves
6916 * according to user attempts to set it, rather than blindly
6917 * setting it.
6918 */
6919
6920 ret = 0;
6921 if ((old_flags ^ flags) & IFF_UP) {
6922 if (old_flags & IFF_UP)
6923 __dev_close(dev);
6924 else
6925 ret = __dev_open(dev);
6926 }
6927
6928 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6929 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6930 unsigned int old_flags = dev->flags;
6931
6932 dev->gflags ^= IFF_PROMISC;
6933
6934 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6935 if (dev->flags != old_flags)
6936 dev_set_rx_mode(dev);
6937 }
6938
6939 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6940 * is important. Some (broken) drivers set IFF_PROMISC, when
6941 * IFF_ALLMULTI is requested not asking us and not reporting.
6942 */
6943 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6944 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6945
6946 dev->gflags ^= IFF_ALLMULTI;
6947 __dev_set_allmulti(dev, inc, false);
6948 }
6949
6950 return ret;
6951}
6952
6953void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6954 unsigned int gchanges)
6955{
6956 unsigned int changes = dev->flags ^ old_flags;
6957
6958 if (gchanges)
6959 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6960
6961 if (changes & IFF_UP) {
6962 if (dev->flags & IFF_UP)
6963 call_netdevice_notifiers(NETDEV_UP, dev);
6964 else
6965 call_netdevice_notifiers(NETDEV_DOWN, dev);
6966 }
6967
6968 if (dev->flags & IFF_UP &&
6969 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6970 struct netdev_notifier_change_info change_info = {
6971 .info = {
6972 .dev = dev,
6973 },
6974 .flags_changed = changes,
6975 };
6976
6977 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6978 }
6979}
6980
6981/**
6982 * dev_change_flags - change device settings
6983 * @dev: device
6984 * @flags: device state flags
6985 *
6986 * Change settings on device based state flags. The flags are
6987 * in the userspace exported format.
6988 */
6989int dev_change_flags(struct net_device *dev, unsigned int flags)
6990{
6991 int ret;
6992 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6993
6994 ret = __dev_change_flags(dev, flags);
6995 if (ret < 0)
6996 return ret;
6997
6998 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6999 __dev_notify_flags(dev, old_flags, changes);
7000 return ret;
7001}
7002EXPORT_SYMBOL(dev_change_flags);
7003
7004int __dev_set_mtu(struct net_device *dev, int new_mtu)
7005{
7006 const struct net_device_ops *ops = dev->netdev_ops;
7007
7008 if (ops->ndo_change_mtu)
7009 return ops->ndo_change_mtu(dev, new_mtu);
7010
7011 dev->mtu = new_mtu;
7012 return 0;
7013}
7014EXPORT_SYMBOL(__dev_set_mtu);
7015
7016/**
7017 * dev_set_mtu - Change maximum transfer unit
7018 * @dev: device
7019 * @new_mtu: new transfer unit
7020 *
7021 * Change the maximum transfer size of the network device.
7022 */
7023int dev_set_mtu(struct net_device *dev, int new_mtu)
7024{
7025 int err, orig_mtu;
7026
7027 if (new_mtu == dev->mtu)
7028 return 0;
7029
7030 /* MTU must be positive, and in range */
7031 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7032 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7033 dev->name, new_mtu, dev->min_mtu);
7034 return -EINVAL;
7035 }
7036
7037 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7038 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7039 dev->name, new_mtu, dev->max_mtu);
7040 return -EINVAL;
7041 }
7042
7043 if (!netif_device_present(dev))
7044 return -ENODEV;
7045
7046 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7047 err = notifier_to_errno(err);
7048 if (err)
7049 return err;
7050
7051 orig_mtu = dev->mtu;
7052 err = __dev_set_mtu(dev, new_mtu);
7053
7054 if (!err) {
7055 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7056 err = notifier_to_errno(err);
7057 if (err) {
7058 /* setting mtu back and notifying everyone again,
7059 * so that they have a chance to revert changes.
7060 */
7061 __dev_set_mtu(dev, orig_mtu);
7062 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7063 }
7064 }
7065 return err;
7066}
7067EXPORT_SYMBOL(dev_set_mtu);
7068
7069/**
7070 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7071 * @dev: device
7072 * @new_len: new tx queue length
7073 */
7074int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7075{
7076 unsigned int orig_len = dev->tx_queue_len;
7077 int res;
7078
7079 if (new_len != (unsigned int)new_len)
7080 return -ERANGE;
7081
7082 if (new_len != orig_len) {
7083 dev->tx_queue_len = new_len;
7084 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7085 res = notifier_to_errno(res);
7086 if (res) {
7087 netdev_err(dev,
7088 "refused to change device tx_queue_len\n");
7089 dev->tx_queue_len = orig_len;
7090 return res;
7091 }
7092 return dev_qdisc_change_tx_queue_len(dev);
7093 }
7094
7095 return 0;
7096}
7097
7098/**
7099 * dev_set_group - Change group this device belongs to
7100 * @dev: device
7101 * @new_group: group this device should belong to
7102 */
7103void dev_set_group(struct net_device *dev, int new_group)
7104{
7105 dev->group = new_group;
7106}
7107EXPORT_SYMBOL(dev_set_group);
7108
7109/**
7110 * dev_set_mac_address - Change Media Access Control Address
7111 * @dev: device
7112 * @sa: new address
7113 *
7114 * Change the hardware (MAC) address of the device
7115 */
7116int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7117{
7118 const struct net_device_ops *ops = dev->netdev_ops;
7119 int err;
7120
7121 if (!ops->ndo_set_mac_address)
7122 return -EOPNOTSUPP;
7123 if (sa->sa_family != dev->type)
7124 return -EINVAL;
7125 if (!netif_device_present(dev))
7126 return -ENODEV;
7127 err = ops->ndo_set_mac_address(dev, sa);
7128 if (err)
7129 return err;
7130 dev->addr_assign_type = NET_ADDR_SET;
7131 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7132 add_device_randomness(dev->dev_addr, dev->addr_len);
7133 return 0;
7134}
7135EXPORT_SYMBOL(dev_set_mac_address);
7136
7137/**
7138 * dev_change_carrier - Change device carrier
7139 * @dev: device
7140 * @new_carrier: new value
7141 *
7142 * Change device carrier
7143 */
7144int dev_change_carrier(struct net_device *dev, bool new_carrier)
7145{
7146 const struct net_device_ops *ops = dev->netdev_ops;
7147
7148 if (!ops->ndo_change_carrier)
7149 return -EOPNOTSUPP;
7150 if (!netif_device_present(dev))
7151 return -ENODEV;
7152 return ops->ndo_change_carrier(dev, new_carrier);
7153}
7154EXPORT_SYMBOL(dev_change_carrier);
7155
7156/**
7157 * dev_get_phys_port_id - Get device physical port ID
7158 * @dev: device
7159 * @ppid: port ID
7160 *
7161 * Get device physical port ID
7162 */
7163int dev_get_phys_port_id(struct net_device *dev,
7164 struct netdev_phys_item_id *ppid)
7165{
7166 const struct net_device_ops *ops = dev->netdev_ops;
7167
7168 if (!ops->ndo_get_phys_port_id)
7169 return -EOPNOTSUPP;
7170 return ops->ndo_get_phys_port_id(dev, ppid);
7171}
7172EXPORT_SYMBOL(dev_get_phys_port_id);
7173
7174/**
7175 * dev_get_phys_port_name - Get device physical port name
7176 * @dev: device
7177 * @name: port name
7178 * @len: limit of bytes to copy to name
7179 *
7180 * Get device physical port name
7181 */
7182int dev_get_phys_port_name(struct net_device *dev,
7183 char *name, size_t len)
7184{
7185 const struct net_device_ops *ops = dev->netdev_ops;
7186
7187 if (!ops->ndo_get_phys_port_name)
7188 return -EOPNOTSUPP;
7189 return ops->ndo_get_phys_port_name(dev, name, len);
7190}
7191EXPORT_SYMBOL(dev_get_phys_port_name);
7192
7193/**
7194 * dev_change_proto_down - update protocol port state information
7195 * @dev: device
7196 * @proto_down: new value
7197 *
7198 * This info can be used by switch drivers to set the phys state of the
7199 * port.
7200 */
7201int dev_change_proto_down(struct net_device *dev, bool proto_down)
7202{
7203 const struct net_device_ops *ops = dev->netdev_ops;
7204
7205 if (!ops->ndo_change_proto_down)
7206 return -EOPNOTSUPP;
7207 if (!netif_device_present(dev))
7208 return -ENODEV;
7209 return ops->ndo_change_proto_down(dev, proto_down);
7210}
7211EXPORT_SYMBOL(dev_change_proto_down);
7212
7213void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7214 struct netdev_bpf *xdp)
7215{
7216 memset(xdp, 0, sizeof(*xdp));
7217 xdp->command = XDP_QUERY_PROG;
7218
7219 /* Query must always succeed. */
7220 WARN_ON(bpf_op(dev, xdp) < 0);
7221}
7222
7223static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7224{
7225 struct netdev_bpf xdp;
7226
7227 __dev_xdp_query(dev, bpf_op, &xdp);
7228
7229 return xdp.prog_attached;
7230}
7231
7232static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7233 struct netlink_ext_ack *extack, u32 flags,
7234 struct bpf_prog *prog)
7235{
7236 struct netdev_bpf xdp;
7237
7238 memset(&xdp, 0, sizeof(xdp));
7239 if (flags & XDP_FLAGS_HW_MODE)
7240 xdp.command = XDP_SETUP_PROG_HW;
7241 else
7242 xdp.command = XDP_SETUP_PROG;
7243 xdp.extack = extack;
7244 xdp.flags = flags;
7245 xdp.prog = prog;
7246
7247 return bpf_op(dev, &xdp);
7248}
7249
7250static void dev_xdp_uninstall(struct net_device *dev)
7251{
7252 struct netdev_bpf xdp;
7253 bpf_op_t ndo_bpf;
7254
7255 /* Remove generic XDP */
7256 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7257
7258 /* Remove from the driver */
7259 ndo_bpf = dev->netdev_ops->ndo_bpf;
7260 if (!ndo_bpf)
7261 return;
7262
7263 __dev_xdp_query(dev, ndo_bpf, &xdp);
7264 if (xdp.prog_attached == XDP_ATTACHED_NONE)
7265 return;
7266
7267 /* Program removal should always succeed */
7268 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7269}
7270
7271/**
7272 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7273 * @dev: device
7274 * @extack: netlink extended ack
7275 * @fd: new program fd or negative value to clear
7276 * @flags: xdp-related flags
7277 *
7278 * Set or clear a bpf program for a device
7279 */
7280int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7281 int fd, u32 flags)
7282{
7283 const struct net_device_ops *ops = dev->netdev_ops;
7284 struct bpf_prog *prog = NULL;
7285 bpf_op_t bpf_op, bpf_chk;
7286 int err;
7287
7288 ASSERT_RTNL();
7289
7290 bpf_op = bpf_chk = ops->ndo_bpf;
7291 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7292 return -EOPNOTSUPP;
7293 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7294 bpf_op = generic_xdp_install;
7295 if (bpf_op == bpf_chk)
7296 bpf_chk = generic_xdp_install;
7297
7298 if (fd >= 0) {
7299 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7300 return -EEXIST;
7301 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7302 __dev_xdp_attached(dev, bpf_op))
7303 return -EBUSY;
7304
7305 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7306 bpf_op == ops->ndo_bpf);
7307 if (IS_ERR(prog))
7308 return PTR_ERR(prog);
7309
7310 if (!(flags & XDP_FLAGS_HW_MODE) &&
7311 bpf_prog_is_dev_bound(prog->aux)) {
7312 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7313 bpf_prog_put(prog);
7314 return -EINVAL;
7315 }
7316 }
7317
7318 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7319 if (err < 0 && prog)
7320 bpf_prog_put(prog);
7321
7322 return err;
7323}
7324
7325/**
7326 * dev_new_index - allocate an ifindex
7327 * @net: the applicable net namespace
7328 *
7329 * Returns a suitable unique value for a new device interface
7330 * number. The caller must hold the rtnl semaphore or the
7331 * dev_base_lock to be sure it remains unique.
7332 */
7333static int dev_new_index(struct net *net)
7334{
7335 int ifindex = net->ifindex;
7336
7337 for (;;) {
7338 if (++ifindex <= 0)
7339 ifindex = 1;
7340 if (!__dev_get_by_index(net, ifindex))
7341 return net->ifindex = ifindex;
7342 }
7343}
7344
7345/* Delayed registration/unregisteration */
7346static LIST_HEAD(net_todo_list);
7347DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7348
7349static void net_set_todo(struct net_device *dev)
7350{
7351 list_add_tail(&dev->todo_list, &net_todo_list);
7352 dev_net(dev)->dev_unreg_count++;
7353}
7354
7355static void rollback_registered_many(struct list_head *head)
7356{
7357 struct net_device *dev, *tmp;
7358 LIST_HEAD(close_head);
7359
7360 BUG_ON(dev_boot_phase);
7361 ASSERT_RTNL();
7362
7363 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7364 /* Some devices call without registering
7365 * for initialization unwind. Remove those
7366 * devices and proceed with the remaining.
7367 */
7368 if (dev->reg_state == NETREG_UNINITIALIZED) {
7369 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7370 dev->name, dev);
7371
7372 WARN_ON(1);
7373 list_del(&dev->unreg_list);
7374 continue;
7375 }
7376 dev->dismantle = true;
7377 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7378 }
7379
7380 /* If device is running, close it first. */
7381 list_for_each_entry(dev, head, unreg_list)
7382 list_add_tail(&dev->close_list, &close_head);
7383 dev_close_many(&close_head, true);
7384
7385 list_for_each_entry(dev, head, unreg_list) {
7386 /* And unlink it from device chain. */
7387 unlist_netdevice(dev);
7388
7389 dev->reg_state = NETREG_UNREGISTERING;
7390 }
7391 flush_all_backlogs();
7392
7393 synchronize_net();
7394
7395 list_for_each_entry(dev, head, unreg_list) {
7396 struct sk_buff *skb = NULL;
7397
7398 /* Shutdown queueing discipline. */
7399 dev_shutdown(dev);
7400
7401 dev_xdp_uninstall(dev);
7402
7403 /* Notify protocols, that we are about to destroy
7404 * this device. They should clean all the things.
7405 */
7406 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7407
7408 if (!dev->rtnl_link_ops ||
7409 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7410 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7411 GFP_KERNEL, NULL, 0);
7412
7413 /*
7414 * Flush the unicast and multicast chains
7415 */
7416 dev_uc_flush(dev);
7417 dev_mc_flush(dev);
7418
7419 if (dev->netdev_ops->ndo_uninit)
7420 dev->netdev_ops->ndo_uninit(dev);
7421
7422 if (skb)
7423 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7424
7425 /* Notifier chain MUST detach us all upper devices. */
7426 WARN_ON(netdev_has_any_upper_dev(dev));
7427 WARN_ON(netdev_has_any_lower_dev(dev));
7428
7429 /* Remove entries from kobject tree */
7430 netdev_unregister_kobject(dev);
7431#ifdef CONFIG_XPS
7432 /* Remove XPS queueing entries */
7433 netif_reset_xps_queues_gt(dev, 0);
7434#endif
7435 }
7436
7437 synchronize_net();
7438
7439 list_for_each_entry(dev, head, unreg_list)
7440 dev_put(dev);
7441}
7442
7443static void rollback_registered(struct net_device *dev)
7444{
7445 LIST_HEAD(single);
7446
7447 list_add(&dev->unreg_list, &single);
7448 rollback_registered_many(&single);
7449 list_del(&single);
7450}
7451
7452static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7453 struct net_device *upper, netdev_features_t features)
7454{
7455 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7456 netdev_features_t feature;
7457 int feature_bit;
7458
7459 for_each_netdev_feature(&upper_disables, feature_bit) {
7460 feature = __NETIF_F_BIT(feature_bit);
7461 if (!(upper->wanted_features & feature)
7462 && (features & feature)) {
7463 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7464 &feature, upper->name);
7465 features &= ~feature;
7466 }
7467 }
7468
7469 return features;
7470}
7471
7472static void netdev_sync_lower_features(struct net_device *upper,
7473 struct net_device *lower, netdev_features_t features)
7474{
7475 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7476 netdev_features_t feature;
7477 int feature_bit;
7478
7479 for_each_netdev_feature(&upper_disables, feature_bit) {
7480 feature = __NETIF_F_BIT(feature_bit);
7481 if (!(features & feature) && (lower->features & feature)) {
7482 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7483 &feature, lower->name);
7484 lower->wanted_features &= ~feature;
7485 netdev_update_features(lower);
7486
7487 if (unlikely(lower->features & feature))
7488 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7489 &feature, lower->name);
7490 }
7491 }
7492}
7493
7494static netdev_features_t netdev_fix_features(struct net_device *dev,
7495 netdev_features_t features)
7496{
7497 /* Fix illegal checksum combinations */
7498 if ((features & NETIF_F_HW_CSUM) &&
7499 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7500 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7501 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7502 }
7503
7504 /* TSO requires that SG is present as well. */
7505 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7506 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7507 features &= ~NETIF_F_ALL_TSO;
7508 }
7509
7510 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7511 !(features & NETIF_F_IP_CSUM)) {
7512 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7513 features &= ~NETIF_F_TSO;
7514 features &= ~NETIF_F_TSO_ECN;
7515 }
7516
7517 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7518 !(features & NETIF_F_IPV6_CSUM)) {
7519 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7520 features &= ~NETIF_F_TSO6;
7521 }
7522
7523 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7524 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7525 features &= ~NETIF_F_TSO_MANGLEID;
7526
7527 /* TSO ECN requires that TSO is present as well. */
7528 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7529 features &= ~NETIF_F_TSO_ECN;
7530
7531 /* Software GSO depends on SG. */
7532 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7533 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7534 features &= ~NETIF_F_GSO;
7535 }
7536
7537 /* GSO partial features require GSO partial be set */
7538 if ((features & dev->gso_partial_features) &&
7539 !(features & NETIF_F_GSO_PARTIAL)) {
7540 netdev_dbg(dev,
7541 "Dropping partially supported GSO features since no GSO partial.\n");
7542 features &= ~dev->gso_partial_features;
7543 }
7544
7545 if (!(features & NETIF_F_RXCSUM)) {
7546 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7547 * successfully merged by hardware must also have the
7548 * checksum verified by hardware. If the user does not
7549 * want to enable RXCSUM, logically, we should disable GRO_HW.
7550 */
7551 if (features & NETIF_F_GRO_HW) {
7552 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7553 features &= ~NETIF_F_GRO_HW;
7554 }
7555 }
7556
7557 return features;
7558}
7559
7560int __netdev_update_features(struct net_device *dev)
7561{
7562 struct net_device *upper, *lower;
7563 netdev_features_t features;
7564 struct list_head *iter;
7565 int err = -1;
7566
7567 ASSERT_RTNL();
7568
7569 features = netdev_get_wanted_features(dev);
7570
7571 if (dev->netdev_ops->ndo_fix_features)
7572 features = dev->netdev_ops->ndo_fix_features(dev, features);
7573
7574 /* driver might be less strict about feature dependencies */
7575 features = netdev_fix_features(dev, features);
7576
7577 /* some features can't be enabled if they're off an an upper device */
7578 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7579 features = netdev_sync_upper_features(dev, upper, features);
7580
7581 if (dev->features == features)
7582 goto sync_lower;
7583
7584 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7585 &dev->features, &features);
7586
7587 if (dev->netdev_ops->ndo_set_features)
7588 err = dev->netdev_ops->ndo_set_features(dev, features);
7589 else
7590 err = 0;
7591
7592 if (unlikely(err < 0)) {
7593 netdev_err(dev,
7594 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7595 err, &features, &dev->features);
7596 /* return non-0 since some features might have changed and
7597 * it's better to fire a spurious notification than miss it
7598 */
7599 return -1;
7600 }
7601
7602sync_lower:
7603 /* some features must be disabled on lower devices when disabled
7604 * on an upper device (think: bonding master or bridge)
7605 */
7606 netdev_for_each_lower_dev(dev, lower, iter)
7607 netdev_sync_lower_features(dev, lower, features);
7608
7609 if (!err) {
7610 netdev_features_t diff = features ^ dev->features;
7611
7612 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7613 /* udp_tunnel_{get,drop}_rx_info both need
7614 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7615 * device, or they won't do anything.
7616 * Thus we need to update dev->features
7617 * *before* calling udp_tunnel_get_rx_info,
7618 * but *after* calling udp_tunnel_drop_rx_info.
7619 */
7620 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7621 dev->features = features;
7622 udp_tunnel_get_rx_info(dev);
7623 } else {
7624 udp_tunnel_drop_rx_info(dev);
7625 }
7626 }
7627
7628 dev->features = features;
7629 }
7630
7631 return err < 0 ? 0 : 1;
7632}
7633
7634/**
7635 * netdev_update_features - recalculate device features
7636 * @dev: the device to check
7637 *
7638 * Recalculate dev->features set and send notifications if it
7639 * has changed. Should be called after driver or hardware dependent
7640 * conditions might have changed that influence the features.
7641 */
7642void netdev_update_features(struct net_device *dev)
7643{
7644 if (__netdev_update_features(dev))
7645 netdev_features_change(dev);
7646}
7647EXPORT_SYMBOL(netdev_update_features);
7648
7649/**
7650 * netdev_change_features - recalculate device features
7651 * @dev: the device to check
7652 *
7653 * Recalculate dev->features set and send notifications even
7654 * if they have not changed. Should be called instead of
7655 * netdev_update_features() if also dev->vlan_features might
7656 * have changed to allow the changes to be propagated to stacked
7657 * VLAN devices.
7658 */
7659void netdev_change_features(struct net_device *dev)
7660{
7661 __netdev_update_features(dev);
7662 netdev_features_change(dev);
7663}
7664EXPORT_SYMBOL(netdev_change_features);
7665
7666/**
7667 * netif_stacked_transfer_operstate - transfer operstate
7668 * @rootdev: the root or lower level device to transfer state from
7669 * @dev: the device to transfer operstate to
7670 *
7671 * Transfer operational state from root to device. This is normally
7672 * called when a stacking relationship exists between the root
7673 * device and the device(a leaf device).
7674 */
7675void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7676 struct net_device *dev)
7677{
7678 if (rootdev->operstate == IF_OPER_DORMANT)
7679 netif_dormant_on(dev);
7680 else
7681 netif_dormant_off(dev);
7682
7683 if (netif_carrier_ok(rootdev))
7684 netif_carrier_on(dev);
7685 else
7686 netif_carrier_off(dev);
7687}
7688EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7689
7690static int netif_alloc_rx_queues(struct net_device *dev)
7691{
7692 unsigned int i, count = dev->num_rx_queues;
7693 struct netdev_rx_queue *rx;
7694 size_t sz = count * sizeof(*rx);
7695 int err = 0;
7696
7697 BUG_ON(count < 1);
7698
7699 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7700 if (!rx)
7701 return -ENOMEM;
7702
7703 dev->_rx = rx;
7704
7705 for (i = 0; i < count; i++) {
7706 rx[i].dev = dev;
7707
7708 /* XDP RX-queue setup */
7709 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7710 if (err < 0)
7711 goto err_rxq_info;
7712 }
7713 return 0;
7714
7715err_rxq_info:
7716 /* Rollback successful reg's and free other resources */
7717 while (i--)
7718 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7719 kvfree(dev->_rx);
7720 dev->_rx = NULL;
7721 return err;
7722}
7723
7724static void netif_free_rx_queues(struct net_device *dev)
7725{
7726 unsigned int i, count = dev->num_rx_queues;
7727
7728 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7729 if (!dev->_rx)
7730 return;
7731
7732 for (i = 0; i < count; i++)
7733 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7734
7735 kvfree(dev->_rx);
7736}
7737
7738static void netdev_init_one_queue(struct net_device *dev,
7739 struct netdev_queue *queue, void *_unused)
7740{
7741 /* Initialize queue lock */
7742 spin_lock_init(&queue->_xmit_lock);
7743 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7744 queue->xmit_lock_owner = -1;
7745 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7746 queue->dev = dev;
7747#ifdef CONFIG_BQL
7748 dql_init(&queue->dql, HZ);
7749#endif
7750}
7751
7752static void netif_free_tx_queues(struct net_device *dev)
7753{
7754 kvfree(dev->_tx);
7755}
7756
7757static int netif_alloc_netdev_queues(struct net_device *dev)
7758{
7759 unsigned int count = dev->num_tx_queues;
7760 struct netdev_queue *tx;
7761 size_t sz = count * sizeof(*tx);
7762
7763 if (count < 1 || count > 0xffff)
7764 return -EINVAL;
7765
7766 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7767 if (!tx)
7768 return -ENOMEM;
7769
7770 dev->_tx = tx;
7771
7772 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7773 spin_lock_init(&dev->tx_global_lock);
7774
7775 return 0;
7776}
7777
7778void netif_tx_stop_all_queues(struct net_device *dev)
7779{
7780 unsigned int i;
7781
7782 for (i = 0; i < dev->num_tx_queues; i++) {
7783 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7784
7785 netif_tx_stop_queue(txq);
7786 }
7787}
7788EXPORT_SYMBOL(netif_tx_stop_all_queues);
7789
7790/**
7791 * register_netdevice - register a network device
7792 * @dev: device to register
7793 *
7794 * Take a completed network device structure and add it to the kernel
7795 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7796 * chain. 0 is returned on success. A negative errno code is returned
7797 * on a failure to set up the device, or if the name is a duplicate.
7798 *
7799 * Callers must hold the rtnl semaphore. You may want
7800 * register_netdev() instead of this.
7801 *
7802 * BUGS:
7803 * The locking appears insufficient to guarantee two parallel registers
7804 * will not get the same name.
7805 */
7806
7807int register_netdevice(struct net_device *dev)
7808{
7809 int ret;
7810 struct net *net = dev_net(dev);
7811
7812 BUG_ON(dev_boot_phase);
7813 ASSERT_RTNL();
7814
7815 might_sleep();
7816
7817 /* When net_device's are persistent, this will be fatal. */
7818 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7819 BUG_ON(!net);
7820
7821 spin_lock_init(&dev->addr_list_lock);
7822 netdev_set_addr_lockdep_class(dev);
7823
7824 ret = dev_get_valid_name(net, dev, dev->name);
7825 if (ret < 0)
7826 goto out;
7827
7828 /* Init, if this function is available */
7829 if (dev->netdev_ops->ndo_init) {
7830 ret = dev->netdev_ops->ndo_init(dev);
7831 if (ret) {
7832 if (ret > 0)
7833 ret = -EIO;
7834 goto out;
7835 }
7836 }
7837
7838 if (((dev->hw_features | dev->features) &
7839 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7840 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7841 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7842 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7843 ret = -EINVAL;
7844 goto err_uninit;
7845 }
7846
7847 ret = -EBUSY;
7848 if (!dev->ifindex)
7849 dev->ifindex = dev_new_index(net);
7850 else if (__dev_get_by_index(net, dev->ifindex))
7851 goto err_uninit;
7852
7853 /* Transfer changeable features to wanted_features and enable
7854 * software offloads (GSO and GRO).
7855 */
7856 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7857 dev->features |= NETIF_F_SOFT_FEATURES;
7858
7859 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7860 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7861 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7862 }
7863
7864 dev->wanted_features = dev->features & dev->hw_features;
7865
7866 if (!(dev->flags & IFF_LOOPBACK))
7867 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7868
7869 /* If IPv4 TCP segmentation offload is supported we should also
7870 * allow the device to enable segmenting the frame with the option
7871 * of ignoring a static IP ID value. This doesn't enable the
7872 * feature itself but allows the user to enable it later.
7873 */
7874 if (dev->hw_features & NETIF_F_TSO)
7875 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7876 if (dev->vlan_features & NETIF_F_TSO)
7877 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7878 if (dev->mpls_features & NETIF_F_TSO)
7879 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7880 if (dev->hw_enc_features & NETIF_F_TSO)
7881 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7882
7883 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7884 */
7885 dev->vlan_features |= NETIF_F_HIGHDMA;
7886
7887 /* Make NETIF_F_SG inheritable to tunnel devices.
7888 */
7889 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7890
7891 /* Make NETIF_F_SG inheritable to MPLS.
7892 */
7893 dev->mpls_features |= NETIF_F_SG;
7894
7895 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7896 ret = notifier_to_errno(ret);
7897 if (ret)
7898 goto err_uninit;
7899
7900 ret = netdev_register_kobject(dev);
7901 if (ret)
7902 goto err_uninit;
7903 dev->reg_state = NETREG_REGISTERED;
7904
7905 __netdev_update_features(dev);
7906
7907 /*
7908 * Default initial state at registry is that the
7909 * device is present.
7910 */
7911
7912 set_bit(__LINK_STATE_PRESENT, &dev->state);
7913
7914 linkwatch_init_dev(dev);
7915
7916 dev_init_scheduler(dev);
7917 dev_hold(dev);
7918 list_netdevice(dev);
7919 add_device_randomness(dev->dev_addr, dev->addr_len);
7920
7921 /* If the device has permanent device address, driver should
7922 * set dev_addr and also addr_assign_type should be set to
7923 * NET_ADDR_PERM (default value).
7924 */
7925 if (dev->addr_assign_type == NET_ADDR_PERM)
7926 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7927
7928 /* Notify protocols, that a new device appeared. */
7929 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7930 ret = notifier_to_errno(ret);
7931 if (ret) {
7932 rollback_registered(dev);
7933 dev->reg_state = NETREG_UNREGISTERED;
7934 }
7935 /*
7936 * Prevent userspace races by waiting until the network
7937 * device is fully setup before sending notifications.
7938 */
7939 if (!dev->rtnl_link_ops ||
7940 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7941 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7942
7943out:
7944 return ret;
7945
7946err_uninit:
7947 if (dev->netdev_ops->ndo_uninit)
7948 dev->netdev_ops->ndo_uninit(dev);
7949 if (dev->priv_destructor)
7950 dev->priv_destructor(dev);
7951 goto out;
7952}
7953EXPORT_SYMBOL(register_netdevice);
7954
7955/**
7956 * init_dummy_netdev - init a dummy network device for NAPI
7957 * @dev: device to init
7958 *
7959 * This takes a network device structure and initialize the minimum
7960 * amount of fields so it can be used to schedule NAPI polls without
7961 * registering a full blown interface. This is to be used by drivers
7962 * that need to tie several hardware interfaces to a single NAPI
7963 * poll scheduler due to HW limitations.
7964 */
7965int init_dummy_netdev(struct net_device *dev)
7966{
7967 /* Clear everything. Note we don't initialize spinlocks
7968 * are they aren't supposed to be taken by any of the
7969 * NAPI code and this dummy netdev is supposed to be
7970 * only ever used for NAPI polls
7971 */
7972 memset(dev, 0, sizeof(struct net_device));
7973
7974 /* make sure we BUG if trying to hit standard
7975 * register/unregister code path
7976 */
7977 dev->reg_state = NETREG_DUMMY;
7978
7979 /* NAPI wants this */
7980 INIT_LIST_HEAD(&dev->napi_list);
7981
7982 /* a dummy interface is started by default */
7983 set_bit(__LINK_STATE_PRESENT, &dev->state);
7984 set_bit(__LINK_STATE_START, &dev->state);
7985
7986 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7987 * because users of this 'device' dont need to change
7988 * its refcount.
7989 */
7990
7991 return 0;
7992}
7993EXPORT_SYMBOL_GPL(init_dummy_netdev);
7994
7995
7996/**
7997 * register_netdev - register a network device
7998 * @dev: device to register
7999 *
8000 * Take a completed network device structure and add it to the kernel
8001 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8002 * chain. 0 is returned on success. A negative errno code is returned
8003 * on a failure to set up the device, or if the name is a duplicate.
8004 *
8005 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8006 * and expands the device name if you passed a format string to
8007 * alloc_netdev.
8008 */
8009int register_netdev(struct net_device *dev)
8010{
8011 int err;
8012
8013 rtnl_lock();
8014 err = register_netdevice(dev);
8015 rtnl_unlock();
8016 return err;
8017}
8018EXPORT_SYMBOL(register_netdev);
8019
8020int netdev_refcnt_read(const struct net_device *dev)
8021{
8022 int i, refcnt = 0;
8023
8024 for_each_possible_cpu(i)
8025 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8026 return refcnt;
8027}
8028EXPORT_SYMBOL(netdev_refcnt_read);
8029
8030/**
8031 * netdev_wait_allrefs - wait until all references are gone.
8032 * @dev: target net_device
8033 *
8034 * This is called when unregistering network devices.
8035 *
8036 * Any protocol or device that holds a reference should register
8037 * for netdevice notification, and cleanup and put back the
8038 * reference if they receive an UNREGISTER event.
8039 * We can get stuck here if buggy protocols don't correctly
8040 * call dev_put.
8041 */
8042static void netdev_wait_allrefs(struct net_device *dev)
8043{
8044 unsigned long rebroadcast_time, warning_time;
8045 int refcnt;
8046
8047 linkwatch_forget_dev(dev);
8048
8049 rebroadcast_time = warning_time = jiffies;
8050 refcnt = netdev_refcnt_read(dev);
8051
8052 while (refcnt != 0) {
8053 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8054 rtnl_lock();
8055
8056 /* Rebroadcast unregister notification */
8057 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8058
8059 __rtnl_unlock();
8060 rcu_barrier();
8061 rtnl_lock();
8062
8063 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8064 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8065 &dev->state)) {
8066 /* We must not have linkwatch events
8067 * pending on unregister. If this
8068 * happens, we simply run the queue
8069 * unscheduled, resulting in a noop
8070 * for this device.
8071 */
8072 linkwatch_run_queue();
8073 }
8074
8075 __rtnl_unlock();
8076
8077 rebroadcast_time = jiffies;
8078 }
8079
8080 msleep(250);
8081
8082 refcnt = netdev_refcnt_read(dev);
8083
8084 if (time_after(jiffies, warning_time + 10 * HZ)) {
8085 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8086 dev->name, refcnt);
8087 warning_time = jiffies;
8088 }
8089 }
8090}
8091
8092/* The sequence is:
8093 *
8094 * rtnl_lock();
8095 * ...
8096 * register_netdevice(x1);
8097 * register_netdevice(x2);
8098 * ...
8099 * unregister_netdevice(y1);
8100 * unregister_netdevice(y2);
8101 * ...
8102 * rtnl_unlock();
8103 * free_netdev(y1);
8104 * free_netdev(y2);
8105 *
8106 * We are invoked by rtnl_unlock().
8107 * This allows us to deal with problems:
8108 * 1) We can delete sysfs objects which invoke hotplug
8109 * without deadlocking with linkwatch via keventd.
8110 * 2) Since we run with the RTNL semaphore not held, we can sleep
8111 * safely in order to wait for the netdev refcnt to drop to zero.
8112 *
8113 * We must not return until all unregister events added during
8114 * the interval the lock was held have been completed.
8115 */
8116void netdev_run_todo(void)
8117{
8118 struct list_head list;
8119
8120 /* Snapshot list, allow later requests */
8121 list_replace_init(&net_todo_list, &list);
8122
8123 __rtnl_unlock();
8124
8125
8126 /* Wait for rcu callbacks to finish before next phase */
8127 if (!list_empty(&list))
8128 rcu_barrier();
8129
8130 while (!list_empty(&list)) {
8131 struct net_device *dev
8132 = list_first_entry(&list, struct net_device, todo_list);
8133 list_del(&dev->todo_list);
8134
8135 rtnl_lock();
8136 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8137 __rtnl_unlock();
8138
8139 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8140 pr_err("network todo '%s' but state %d\n",
8141 dev->name, dev->reg_state);
8142 dump_stack();
8143 continue;
8144 }
8145
8146 dev->reg_state = NETREG_UNREGISTERED;
8147
8148 netdev_wait_allrefs(dev);
8149
8150 /* paranoia */
8151 BUG_ON(netdev_refcnt_read(dev));
8152 BUG_ON(!list_empty(&dev->ptype_all));
8153 BUG_ON(!list_empty(&dev->ptype_specific));
8154 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8155 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8156 WARN_ON(dev->dn_ptr);
8157
8158 if (dev->priv_destructor)
8159 dev->priv_destructor(dev);
8160 if (dev->needs_free_netdev)
8161 free_netdev(dev);
8162
8163 /* Report a network device has been unregistered */
8164 rtnl_lock();
8165 dev_net(dev)->dev_unreg_count--;
8166 __rtnl_unlock();
8167 wake_up(&netdev_unregistering_wq);
8168
8169 /* Free network device */
8170 kobject_put(&dev->dev.kobj);
8171 }
8172}
8173
8174/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8175 * all the same fields in the same order as net_device_stats, with only
8176 * the type differing, but rtnl_link_stats64 may have additional fields
8177 * at the end for newer counters.
8178 */
8179void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8180 const struct net_device_stats *netdev_stats)
8181{
8182#if BITS_PER_LONG == 64
8183 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8184 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8185 /* zero out counters that only exist in rtnl_link_stats64 */
8186 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8187 sizeof(*stats64) - sizeof(*netdev_stats));
8188#else
8189 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8190 const unsigned long *src = (const unsigned long *)netdev_stats;
8191 u64 *dst = (u64 *)stats64;
8192
8193 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8194 for (i = 0; i < n; i++)
8195 dst[i] = src[i];
8196 /* zero out counters that only exist in rtnl_link_stats64 */
8197 memset((char *)stats64 + n * sizeof(u64), 0,
8198 sizeof(*stats64) - n * sizeof(u64));
8199#endif
8200}
8201EXPORT_SYMBOL(netdev_stats_to_stats64);
8202
8203/**
8204 * dev_get_stats - get network device statistics
8205 * @dev: device to get statistics from
8206 * @storage: place to store stats
8207 *
8208 * Get network statistics from device. Return @storage.
8209 * The device driver may provide its own method by setting
8210 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8211 * otherwise the internal statistics structure is used.
8212 */
8213struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8214 struct rtnl_link_stats64 *storage)
8215{
8216 const struct net_device_ops *ops = dev->netdev_ops;
8217
8218 if (ops->ndo_get_stats64) {
8219 memset(storage, 0, sizeof(*storage));
8220 ops->ndo_get_stats64(dev, storage);
8221 } else if (ops->ndo_get_stats) {
8222 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8223 } else {
8224 netdev_stats_to_stats64(storage, &dev->stats);
8225 }
8226 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8227 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8228 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8229 return storage;
8230}
8231EXPORT_SYMBOL(dev_get_stats);
8232
8233struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8234{
8235 struct netdev_queue *queue = dev_ingress_queue(dev);
8236
8237#ifdef CONFIG_NET_CLS_ACT
8238 if (queue)
8239 return queue;
8240 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8241 if (!queue)
8242 return NULL;
8243 netdev_init_one_queue(dev, queue, NULL);
8244 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8245 queue->qdisc_sleeping = &noop_qdisc;
8246 rcu_assign_pointer(dev->ingress_queue, queue);
8247#endif
8248 return queue;
8249}
8250
8251static const struct ethtool_ops default_ethtool_ops;
8252
8253void netdev_set_default_ethtool_ops(struct net_device *dev,
8254 const struct ethtool_ops *ops)
8255{
8256 if (dev->ethtool_ops == &default_ethtool_ops)
8257 dev->ethtool_ops = ops;
8258}
8259EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8260
8261void netdev_freemem(struct net_device *dev)
8262{
8263 char *addr = (char *)dev - dev->padded;
8264
8265 kvfree(addr);
8266}
8267
8268/**
8269 * alloc_netdev_mqs - allocate network device
8270 * @sizeof_priv: size of private data to allocate space for
8271 * @name: device name format string
8272 * @name_assign_type: origin of device name
8273 * @setup: callback to initialize device
8274 * @txqs: the number of TX subqueues to allocate
8275 * @rxqs: the number of RX subqueues to allocate
8276 *
8277 * Allocates a struct net_device with private data area for driver use
8278 * and performs basic initialization. Also allocates subqueue structs
8279 * for each queue on the device.
8280 */
8281struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8282 unsigned char name_assign_type,
8283 void (*setup)(struct net_device *),
8284 unsigned int txqs, unsigned int rxqs)
8285{
8286 struct net_device *dev;
8287 unsigned int alloc_size;
8288 struct net_device *p;
8289
8290 BUG_ON(strlen(name) >= sizeof(dev->name));
8291
8292 if (txqs < 1) {
8293 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8294 return NULL;
8295 }
8296
8297 if (rxqs < 1) {
8298 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8299 return NULL;
8300 }
8301
8302 alloc_size = sizeof(struct net_device);
8303 if (sizeof_priv) {
8304 /* ensure 32-byte alignment of private area */
8305 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8306 alloc_size += sizeof_priv;
8307 }
8308 /* ensure 32-byte alignment of whole construct */
8309 alloc_size += NETDEV_ALIGN - 1;
8310
8311 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8312 if (!p)
8313 return NULL;
8314
8315 dev = PTR_ALIGN(p, NETDEV_ALIGN);
8316 dev->padded = (char *)dev - (char *)p;
8317
8318 dev->pcpu_refcnt = alloc_percpu(int);
8319 if (!dev->pcpu_refcnt)
8320 goto free_dev;
8321
8322 if (dev_addr_init(dev))
8323 goto free_pcpu;
8324
8325 dev_mc_init(dev);
8326 dev_uc_init(dev);
8327
8328 dev_net_set(dev, &init_net);
8329
8330 dev->gso_max_size = GSO_MAX_SIZE;
8331 dev->gso_max_segs = GSO_MAX_SEGS;
8332
8333 INIT_LIST_HEAD(&dev->napi_list);
8334 INIT_LIST_HEAD(&dev->unreg_list);
8335 INIT_LIST_HEAD(&dev->close_list);
8336 INIT_LIST_HEAD(&dev->link_watch_list);
8337 INIT_LIST_HEAD(&dev->adj_list.upper);
8338 INIT_LIST_HEAD(&dev->adj_list.lower);
8339 INIT_LIST_HEAD(&dev->ptype_all);
8340 INIT_LIST_HEAD(&dev->ptype_specific);
8341#ifdef CONFIG_NET_SCHED
8342 hash_init(dev->qdisc_hash);
8343#endif
8344 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8345 setup(dev);
8346
8347 if (!dev->tx_queue_len) {
8348 dev->priv_flags |= IFF_NO_QUEUE;
8349 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8350 }
8351
8352 dev->num_tx_queues = txqs;
8353 dev->real_num_tx_queues = txqs;
8354 if (netif_alloc_netdev_queues(dev))
8355 goto free_all;
8356
8357 dev->num_rx_queues = rxqs;
8358 dev->real_num_rx_queues = rxqs;
8359 if (netif_alloc_rx_queues(dev))
8360 goto free_all;
8361
8362 strcpy(dev->name, name);
8363 dev->name_assign_type = name_assign_type;
8364 dev->group = INIT_NETDEV_GROUP;
8365 if (!dev->ethtool_ops)
8366 dev->ethtool_ops = &default_ethtool_ops;
8367
8368 nf_hook_ingress_init(dev);
8369
8370 return dev;
8371
8372free_all:
8373 free_netdev(dev);
8374 return NULL;
8375
8376free_pcpu:
8377 free_percpu(dev->pcpu_refcnt);
8378free_dev:
8379 netdev_freemem(dev);
8380 return NULL;
8381}
8382EXPORT_SYMBOL(alloc_netdev_mqs);
8383
8384/**
8385 * free_netdev - free network device
8386 * @dev: device
8387 *
8388 * This function does the last stage of destroying an allocated device
8389 * interface. The reference to the device object is released. If this
8390 * is the last reference then it will be freed.Must be called in process
8391 * context.
8392 */
8393void free_netdev(struct net_device *dev)
8394{
8395 struct napi_struct *p, *n;
8396
8397 might_sleep();
8398 netif_free_tx_queues(dev);
8399 netif_free_rx_queues(dev);
8400
8401 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8402
8403 /* Flush device addresses */
8404 dev_addr_flush(dev);
8405
8406 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8407 netif_napi_del(p);
8408
8409 free_percpu(dev->pcpu_refcnt);
8410 dev->pcpu_refcnt = NULL;
8411
8412 /* Compatibility with error handling in drivers */
8413 if (dev->reg_state == NETREG_UNINITIALIZED) {
8414 netdev_freemem(dev);
8415 return;
8416 }
8417
8418 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8419 dev->reg_state = NETREG_RELEASED;
8420
8421 /* will free via device release */
8422 put_device(&dev->dev);
8423}
8424EXPORT_SYMBOL(free_netdev);
8425
8426/**
8427 * synchronize_net - Synchronize with packet receive processing
8428 *
8429 * Wait for packets currently being received to be done.
8430 * Does not block later packets from starting.
8431 */
8432void synchronize_net(void)
8433{
8434 might_sleep();
8435 if (rtnl_is_locked())
8436 synchronize_rcu_expedited();
8437 else
8438 synchronize_rcu();
8439}
8440EXPORT_SYMBOL(synchronize_net);
8441
8442/**
8443 * unregister_netdevice_queue - remove device from the kernel
8444 * @dev: device
8445 * @head: list
8446 *
8447 * This function shuts down a device interface and removes it
8448 * from the kernel tables.
8449 * If head not NULL, device is queued to be unregistered later.
8450 *
8451 * Callers must hold the rtnl semaphore. You may want
8452 * unregister_netdev() instead of this.
8453 */
8454
8455void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8456{
8457 ASSERT_RTNL();
8458
8459 if (head) {
8460 list_move_tail(&dev->unreg_list, head);
8461 } else {
8462 rollback_registered(dev);
8463 /* Finish processing unregister after unlock */
8464 net_set_todo(dev);
8465 }
8466}
8467EXPORT_SYMBOL(unregister_netdevice_queue);
8468
8469/**
8470 * unregister_netdevice_many - unregister many devices
8471 * @head: list of devices
8472 *
8473 * Note: As most callers use a stack allocated list_head,
8474 * we force a list_del() to make sure stack wont be corrupted later.
8475 */
8476void unregister_netdevice_many(struct list_head *head)
8477{
8478 struct net_device *dev;
8479
8480 if (!list_empty(head)) {
8481 rollback_registered_many(head);
8482 list_for_each_entry(dev, head, unreg_list)
8483 net_set_todo(dev);
8484 list_del(head);
8485 }
8486}
8487EXPORT_SYMBOL(unregister_netdevice_many);
8488
8489/**
8490 * unregister_netdev - remove device from the kernel
8491 * @dev: device
8492 *
8493 * This function shuts down a device interface and removes it
8494 * from the kernel tables.
8495 *
8496 * This is just a wrapper for unregister_netdevice that takes
8497 * the rtnl semaphore. In general you want to use this and not
8498 * unregister_netdevice.
8499 */
8500void unregister_netdev(struct net_device *dev)
8501{
8502 rtnl_lock();
8503 unregister_netdevice(dev);
8504 rtnl_unlock();
8505}
8506EXPORT_SYMBOL(unregister_netdev);
8507
8508/**
8509 * dev_change_net_namespace - move device to different nethost namespace
8510 * @dev: device
8511 * @net: network namespace
8512 * @pat: If not NULL name pattern to try if the current device name
8513 * is already taken in the destination network namespace.
8514 *
8515 * This function shuts down a device interface and moves it
8516 * to a new network namespace. On success 0 is returned, on
8517 * a failure a netagive errno code is returned.
8518 *
8519 * Callers must hold the rtnl semaphore.
8520 */
8521
8522int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8523{
8524 int err, new_nsid, new_ifindex;
8525
8526 ASSERT_RTNL();
8527
8528 /* Don't allow namespace local devices to be moved. */
8529 err = -EINVAL;
8530 if (dev->features & NETIF_F_NETNS_LOCAL)
8531 goto out;
8532
8533 /* Ensure the device has been registrered */
8534 if (dev->reg_state != NETREG_REGISTERED)
8535 goto out;
8536
8537 /* Get out if there is nothing todo */
8538 err = 0;
8539 if (net_eq(dev_net(dev), net))
8540 goto out;
8541
8542 /* Pick the destination device name, and ensure
8543 * we can use it in the destination network namespace.
8544 */
8545 err = -EEXIST;
8546 if (__dev_get_by_name(net, dev->name)) {
8547 /* We get here if we can't use the current device name */
8548 if (!pat)
8549 goto out;
8550 if (dev_get_valid_name(net, dev, pat) < 0)
8551 goto out;
8552 }
8553
8554 /*
8555 * And now a mini version of register_netdevice unregister_netdevice.
8556 */
8557
8558 /* If device is running close it first. */
8559 dev_close(dev);
8560
8561 /* And unlink it from device chain */
8562 err = -ENODEV;
8563 unlist_netdevice(dev);
8564
8565 synchronize_net();
8566
8567 /* Shutdown queueing discipline. */
8568 dev_shutdown(dev);
8569
8570 /* Notify protocols, that we are about to destroy
8571 * this device. They should clean all the things.
8572 *
8573 * Note that dev->reg_state stays at NETREG_REGISTERED.
8574 * This is wanted because this way 8021q and macvlan know
8575 * the device is just moving and can keep their slaves up.
8576 */
8577 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8578 rcu_barrier();
8579 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8580
8581 new_nsid = peernet2id_alloc(dev_net(dev), net);
8582 /* If there is an ifindex conflict assign a new one */
8583 if (__dev_get_by_index(net, dev->ifindex))
8584 new_ifindex = dev_new_index(net);
8585 else
8586 new_ifindex = dev->ifindex;
8587
8588 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8589 new_ifindex);
8590
8591 /*
8592 * Flush the unicast and multicast chains
8593 */
8594 dev_uc_flush(dev);
8595 dev_mc_flush(dev);
8596
8597 /* Send a netdev-removed uevent to the old namespace */
8598 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8599 netdev_adjacent_del_links(dev);
8600
8601 /* Actually switch the network namespace */
8602 dev_net_set(dev, net);
8603 dev->ifindex = new_ifindex;
8604
8605 /* Send a netdev-add uevent to the new namespace */
8606 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8607 netdev_adjacent_add_links(dev);
8608
8609 /* Fixup kobjects */
8610 err = device_rename(&dev->dev, dev->name);
8611 WARN_ON(err);
8612
8613 /* Add the device back in the hashes */
8614 list_netdevice(dev);
8615
8616 /* Notify protocols, that a new device appeared. */
8617 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8618
8619 /*
8620 * Prevent userspace races by waiting until the network
8621 * device is fully setup before sending notifications.
8622 */
8623 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8624
8625 synchronize_net();
8626 err = 0;
8627out:
8628 return err;
8629}
8630EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8631
8632static int dev_cpu_dead(unsigned int oldcpu)
8633{
8634 struct sk_buff **list_skb;
8635 struct sk_buff *skb;
8636 unsigned int cpu;
8637 struct softnet_data *sd, *oldsd, *remsd = NULL;
8638
8639 local_irq_disable();
8640 cpu = smp_processor_id();
8641 sd = &per_cpu(softnet_data, cpu);
8642 oldsd = &per_cpu(softnet_data, oldcpu);
8643
8644 /* Find end of our completion_queue. */
8645 list_skb = &sd->completion_queue;
8646 while (*list_skb)
8647 list_skb = &(*list_skb)->next;
8648 /* Append completion queue from offline CPU. */
8649 *list_skb = oldsd->completion_queue;
8650 oldsd->completion_queue = NULL;
8651
8652 /* Append output queue from offline CPU. */
8653 if (oldsd->output_queue) {
8654 *sd->output_queue_tailp = oldsd->output_queue;
8655 sd->output_queue_tailp = oldsd->output_queue_tailp;
8656 oldsd->output_queue = NULL;
8657 oldsd->output_queue_tailp = &oldsd->output_queue;
8658 }
8659 /* Append NAPI poll list from offline CPU, with one exception :
8660 * process_backlog() must be called by cpu owning percpu backlog.
8661 * We properly handle process_queue & input_pkt_queue later.
8662 */
8663 while (!list_empty(&oldsd->poll_list)) {
8664 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8665 struct napi_struct,
8666 poll_list);
8667
8668 list_del_init(&napi->poll_list);
8669 if (napi->poll == process_backlog)
8670 napi->state = 0;
8671 else
8672 ____napi_schedule(sd, napi);
8673 }
8674
8675 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8676 local_irq_enable();
8677
8678#ifdef CONFIG_RPS
8679 remsd = oldsd->rps_ipi_list;
8680 oldsd->rps_ipi_list = NULL;
8681#endif
8682 /* send out pending IPI's on offline CPU */
8683 net_rps_send_ipi(remsd);
8684
8685 /* Process offline CPU's input_pkt_queue */
8686 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8687 netif_rx_ni(skb);
8688 input_queue_head_incr(oldsd);
8689 }
8690 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8691 netif_rx_ni(skb);
8692 input_queue_head_incr(oldsd);
8693 }
8694
8695 return 0;
8696}
8697
8698/**
8699 * netdev_increment_features - increment feature set by one
8700 * @all: current feature set
8701 * @one: new feature set
8702 * @mask: mask feature set
8703 *
8704 * Computes a new feature set after adding a device with feature set
8705 * @one to the master device with current feature set @all. Will not
8706 * enable anything that is off in @mask. Returns the new feature set.
8707 */
8708netdev_features_t netdev_increment_features(netdev_features_t all,
8709 netdev_features_t one, netdev_features_t mask)
8710{
8711 if (mask & NETIF_F_HW_CSUM)
8712 mask |= NETIF_F_CSUM_MASK;
8713 mask |= NETIF_F_VLAN_CHALLENGED;
8714
8715 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8716 all &= one | ~NETIF_F_ALL_FOR_ALL;
8717
8718 /* If one device supports hw checksumming, set for all. */
8719 if (all & NETIF_F_HW_CSUM)
8720 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8721
8722 return all;
8723}
8724EXPORT_SYMBOL(netdev_increment_features);
8725
8726static struct hlist_head * __net_init netdev_create_hash(void)
8727{
8728 int i;
8729 struct hlist_head *hash;
8730
8731 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8732 if (hash != NULL)
8733 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8734 INIT_HLIST_HEAD(&hash[i]);
8735
8736 return hash;
8737}
8738
8739/* Initialize per network namespace state */
8740static int __net_init netdev_init(struct net *net)
8741{
8742 if (net != &init_net)
8743 INIT_LIST_HEAD(&net->dev_base_head);
8744
8745 net->dev_name_head = netdev_create_hash();
8746 if (net->dev_name_head == NULL)
8747 goto err_name;
8748
8749 net->dev_index_head = netdev_create_hash();
8750 if (net->dev_index_head == NULL)
8751 goto err_idx;
8752
8753 return 0;
8754
8755err_idx:
8756 kfree(net->dev_name_head);
8757err_name:
8758 return -ENOMEM;
8759}
8760
8761/**
8762 * netdev_drivername - network driver for the device
8763 * @dev: network device
8764 *
8765 * Determine network driver for device.
8766 */
8767const char *netdev_drivername(const struct net_device *dev)
8768{
8769 const struct device_driver *driver;
8770 const struct device *parent;
8771 const char *empty = "";
8772
8773 parent = dev->dev.parent;
8774 if (!parent)
8775 return empty;
8776
8777 driver = parent->driver;
8778 if (driver && driver->name)
8779 return driver->name;
8780 return empty;
8781}
8782
8783static void __netdev_printk(const char *level, const struct net_device *dev,
8784 struct va_format *vaf)
8785{
8786 if (dev && dev->dev.parent) {
8787 dev_printk_emit(level[1] - '0',
8788 dev->dev.parent,
8789 "%s %s %s%s: %pV",
8790 dev_driver_string(dev->dev.parent),
8791 dev_name(dev->dev.parent),
8792 netdev_name(dev), netdev_reg_state(dev),
8793 vaf);
8794 } else if (dev) {
8795 printk("%s%s%s: %pV",
8796 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8797 } else {
8798 printk("%s(NULL net_device): %pV", level, vaf);
8799 }
8800}
8801
8802void netdev_printk(const char *level, const struct net_device *dev,
8803 const char *format, ...)
8804{
8805 struct va_format vaf;
8806 va_list args;
8807
8808 va_start(args, format);
8809
8810 vaf.fmt = format;
8811 vaf.va = &args;
8812
8813 __netdev_printk(level, dev, &vaf);
8814
8815 va_end(args);
8816}
8817EXPORT_SYMBOL(netdev_printk);
8818
8819#define define_netdev_printk_level(func, level) \
8820void func(const struct net_device *dev, const char *fmt, ...) \
8821{ \
8822 struct va_format vaf; \
8823 va_list args; \
8824 \
8825 va_start(args, fmt); \
8826 \
8827 vaf.fmt = fmt; \
8828 vaf.va = &args; \
8829 \
8830 __netdev_printk(level, dev, &vaf); \
8831 \
8832 va_end(args); \
8833} \
8834EXPORT_SYMBOL(func);
8835
8836define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8837define_netdev_printk_level(netdev_alert, KERN_ALERT);
8838define_netdev_printk_level(netdev_crit, KERN_CRIT);
8839define_netdev_printk_level(netdev_err, KERN_ERR);
8840define_netdev_printk_level(netdev_warn, KERN_WARNING);
8841define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8842define_netdev_printk_level(netdev_info, KERN_INFO);
8843
8844static void __net_exit netdev_exit(struct net *net)
8845{
8846 kfree(net->dev_name_head);
8847 kfree(net->dev_index_head);
8848 if (net != &init_net)
8849 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8850}
8851
8852static struct pernet_operations __net_initdata netdev_net_ops = {
8853 .init = netdev_init,
8854 .exit = netdev_exit,
8855};
8856
8857static void __net_exit default_device_exit(struct net *net)
8858{
8859 struct net_device *dev, *aux;
8860 /*
8861 * Push all migratable network devices back to the
8862 * initial network namespace
8863 */
8864 rtnl_lock();
8865 for_each_netdev_safe(net, dev, aux) {
8866 int err;
8867 char fb_name[IFNAMSIZ];
8868
8869 /* Ignore unmoveable devices (i.e. loopback) */
8870 if (dev->features & NETIF_F_NETNS_LOCAL)
8871 continue;
8872
8873 /* Leave virtual devices for the generic cleanup */
8874 if (dev->rtnl_link_ops)
8875 continue;
8876
8877 /* Push remaining network devices to init_net */
8878 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8879 err = dev_change_net_namespace(dev, &init_net, fb_name);
8880 if (err) {
8881 pr_emerg("%s: failed to move %s to init_net: %d\n",
8882 __func__, dev->name, err);
8883 BUG();
8884 }
8885 }
8886 rtnl_unlock();
8887}
8888
8889static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8890{
8891 /* Return with the rtnl_lock held when there are no network
8892 * devices unregistering in any network namespace in net_list.
8893 */
8894 struct net *net;
8895 bool unregistering;
8896 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8897
8898 add_wait_queue(&netdev_unregistering_wq, &wait);
8899 for (;;) {
8900 unregistering = false;
8901 rtnl_lock();
8902 list_for_each_entry(net, net_list, exit_list) {
8903 if (net->dev_unreg_count > 0) {
8904 unregistering = true;
8905 break;
8906 }
8907 }
8908 if (!unregistering)
8909 break;
8910 __rtnl_unlock();
8911
8912 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8913 }
8914 remove_wait_queue(&netdev_unregistering_wq, &wait);
8915}
8916
8917static void __net_exit default_device_exit_batch(struct list_head *net_list)
8918{
8919 /* At exit all network devices most be removed from a network
8920 * namespace. Do this in the reverse order of registration.
8921 * Do this across as many network namespaces as possible to
8922 * improve batching efficiency.
8923 */
8924 struct net_device *dev;
8925 struct net *net;
8926 LIST_HEAD(dev_kill_list);
8927
8928 /* To prevent network device cleanup code from dereferencing
8929 * loopback devices or network devices that have been freed
8930 * wait here for all pending unregistrations to complete,
8931 * before unregistring the loopback device and allowing the
8932 * network namespace be freed.
8933 *
8934 * The netdev todo list containing all network devices
8935 * unregistrations that happen in default_device_exit_batch
8936 * will run in the rtnl_unlock() at the end of
8937 * default_device_exit_batch.
8938 */
8939 rtnl_lock_unregistering(net_list);
8940 list_for_each_entry(net, net_list, exit_list) {
8941 for_each_netdev_reverse(net, dev) {
8942 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8943 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8944 else
8945 unregister_netdevice_queue(dev, &dev_kill_list);
8946 }
8947 }
8948 unregister_netdevice_many(&dev_kill_list);
8949 rtnl_unlock();
8950}
8951
8952static struct pernet_operations __net_initdata default_device_ops = {
8953 .exit = default_device_exit,
8954 .exit_batch = default_device_exit_batch,
8955};
8956
8957/*
8958 * Initialize the DEV module. At boot time this walks the device list and
8959 * unhooks any devices that fail to initialise (normally hardware not
8960 * present) and leaves us with a valid list of present and active devices.
8961 *
8962 */
8963
8964/*
8965 * This is called single threaded during boot, so no need
8966 * to take the rtnl semaphore.
8967 */
8968static int __init net_dev_init(void)
8969{
8970 int i, rc = -ENOMEM;
8971
8972 BUG_ON(!dev_boot_phase);
8973
8974 if (dev_proc_init())
8975 goto out;
8976
8977 if (netdev_kobject_init())
8978 goto out;
8979
8980 INIT_LIST_HEAD(&ptype_all);
8981 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8982 INIT_LIST_HEAD(&ptype_base[i]);
8983
8984 INIT_LIST_HEAD(&offload_base);
8985
8986 if (register_pernet_subsys(&netdev_net_ops))
8987 goto out;
8988
8989 /*
8990 * Initialise the packet receive queues.
8991 */
8992
8993 for_each_possible_cpu(i) {
8994 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8995 struct softnet_data *sd = &per_cpu(softnet_data, i);
8996
8997 INIT_WORK(flush, flush_backlog);
8998
8999 skb_queue_head_init(&sd->input_pkt_queue);
9000 skb_queue_head_init(&sd->process_queue);
9001#ifdef CONFIG_XFRM_OFFLOAD
9002 skb_queue_head_init(&sd->xfrm_backlog);
9003#endif
9004 INIT_LIST_HEAD(&sd->poll_list);
9005 sd->output_queue_tailp = &sd->output_queue;
9006#ifdef CONFIG_RPS
9007 sd->csd.func = rps_trigger_softirq;
9008 sd->csd.info = sd;
9009 sd->cpu = i;
9010#endif
9011
9012 sd->backlog.poll = process_backlog;
9013 sd->backlog.weight = weight_p;
9014 }
9015
9016 dev_boot_phase = 0;
9017
9018 /* The loopback device is special if any other network devices
9019 * is present in a network namespace the loopback device must
9020 * be present. Since we now dynamically allocate and free the
9021 * loopback device ensure this invariant is maintained by
9022 * keeping the loopback device as the first device on the
9023 * list of network devices. Ensuring the loopback devices
9024 * is the first device that appears and the last network device
9025 * that disappears.
9026 */
9027 if (register_pernet_device(&loopback_net_ops))
9028 goto out;
9029
9030 if (register_pernet_device(&default_device_ops))
9031 goto out;
9032
9033 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9034 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9035
9036 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9037 NULL, dev_cpu_dead);
9038 WARN_ON(rc < 0);
9039 rc = 0;
9040out:
9041 return rc;
9042}
9043
9044subsys_initcall(net_dev_init);