at v4.16 32 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2/* 3 * Performance events: 4 * 5 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 8 * 9 * Data type definitions, declarations, prototypes. 10 * 11 * Started by: Thomas Gleixner and Ingo Molnar 12 * 13 * For licencing details see kernel-base/COPYING 14 */ 15#ifndef _UAPI_LINUX_PERF_EVENT_H 16#define _UAPI_LINUX_PERF_EVENT_H 17 18#include <linux/types.h> 19#include <linux/ioctl.h> 20#include <asm/byteorder.h> 21 22/* 23 * User-space ABI bits: 24 */ 25 26/* 27 * attr.type 28 */ 29enum perf_type_id { 30 PERF_TYPE_HARDWARE = 0, 31 PERF_TYPE_SOFTWARE = 1, 32 PERF_TYPE_TRACEPOINT = 2, 33 PERF_TYPE_HW_CACHE = 3, 34 PERF_TYPE_RAW = 4, 35 PERF_TYPE_BREAKPOINT = 5, 36 37 PERF_TYPE_MAX, /* non-ABI */ 38}; 39 40/* 41 * Generalized performance event event_id types, used by the 42 * attr.event_id parameter of the sys_perf_event_open() 43 * syscall: 44 */ 45enum perf_hw_id { 46 /* 47 * Common hardware events, generalized by the kernel: 48 */ 49 PERF_COUNT_HW_CPU_CYCLES = 0, 50 PERF_COUNT_HW_INSTRUCTIONS = 1, 51 PERF_COUNT_HW_CACHE_REFERENCES = 2, 52 PERF_COUNT_HW_CACHE_MISSES = 3, 53 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 54 PERF_COUNT_HW_BRANCH_MISSES = 5, 55 PERF_COUNT_HW_BUS_CYCLES = 6, 56 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7, 57 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8, 58 PERF_COUNT_HW_REF_CPU_CYCLES = 9, 59 60 PERF_COUNT_HW_MAX, /* non-ABI */ 61}; 62 63/* 64 * Generalized hardware cache events: 65 * 66 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x 67 * { read, write, prefetch } x 68 * { accesses, misses } 69 */ 70enum perf_hw_cache_id { 71 PERF_COUNT_HW_CACHE_L1D = 0, 72 PERF_COUNT_HW_CACHE_L1I = 1, 73 PERF_COUNT_HW_CACHE_LL = 2, 74 PERF_COUNT_HW_CACHE_DTLB = 3, 75 PERF_COUNT_HW_CACHE_ITLB = 4, 76 PERF_COUNT_HW_CACHE_BPU = 5, 77 PERF_COUNT_HW_CACHE_NODE = 6, 78 79 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 80}; 81 82enum perf_hw_cache_op_id { 83 PERF_COUNT_HW_CACHE_OP_READ = 0, 84 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 85 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 86 87 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 88}; 89 90enum perf_hw_cache_op_result_id { 91 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 92 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 93 94 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 95}; 96 97/* 98 * Special "software" events provided by the kernel, even if the hardware 99 * does not support performance events. These events measure various 100 * physical and sw events of the kernel (and allow the profiling of them as 101 * well): 102 */ 103enum perf_sw_ids { 104 PERF_COUNT_SW_CPU_CLOCK = 0, 105 PERF_COUNT_SW_TASK_CLOCK = 1, 106 PERF_COUNT_SW_PAGE_FAULTS = 2, 107 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 108 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 109 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 110 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 111 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 112 PERF_COUNT_SW_EMULATION_FAULTS = 8, 113 PERF_COUNT_SW_DUMMY = 9, 114 PERF_COUNT_SW_BPF_OUTPUT = 10, 115 116 PERF_COUNT_SW_MAX, /* non-ABI */ 117}; 118 119/* 120 * Bits that can be set in attr.sample_type to request information 121 * in the overflow packets. 122 */ 123enum perf_event_sample_format { 124 PERF_SAMPLE_IP = 1U << 0, 125 PERF_SAMPLE_TID = 1U << 1, 126 PERF_SAMPLE_TIME = 1U << 2, 127 PERF_SAMPLE_ADDR = 1U << 3, 128 PERF_SAMPLE_READ = 1U << 4, 129 PERF_SAMPLE_CALLCHAIN = 1U << 5, 130 PERF_SAMPLE_ID = 1U << 6, 131 PERF_SAMPLE_CPU = 1U << 7, 132 PERF_SAMPLE_PERIOD = 1U << 8, 133 PERF_SAMPLE_STREAM_ID = 1U << 9, 134 PERF_SAMPLE_RAW = 1U << 10, 135 PERF_SAMPLE_BRANCH_STACK = 1U << 11, 136 PERF_SAMPLE_REGS_USER = 1U << 12, 137 PERF_SAMPLE_STACK_USER = 1U << 13, 138 PERF_SAMPLE_WEIGHT = 1U << 14, 139 PERF_SAMPLE_DATA_SRC = 1U << 15, 140 PERF_SAMPLE_IDENTIFIER = 1U << 16, 141 PERF_SAMPLE_TRANSACTION = 1U << 17, 142 PERF_SAMPLE_REGS_INTR = 1U << 18, 143 PERF_SAMPLE_PHYS_ADDR = 1U << 19, 144 145 PERF_SAMPLE_MAX = 1U << 20, /* non-ABI */ 146}; 147 148/* 149 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set 150 * 151 * If the user does not pass priv level information via branch_sample_type, 152 * the kernel uses the event's priv level. Branch and event priv levels do 153 * not have to match. Branch priv level is checked for permissions. 154 * 155 * The branch types can be combined, however BRANCH_ANY covers all types 156 * of branches and therefore it supersedes all the other types. 157 */ 158enum perf_branch_sample_type_shift { 159 PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */ 160 PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */ 161 PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */ 162 163 PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */ 164 PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */ 165 PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */ 166 PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */ 167 PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */ 168 PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */ 169 PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */ 170 PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */ 171 172 PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */ 173 PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */ 174 PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */ 175 176 PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */ 177 PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */ 178 179 PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT = 16, /* save branch type */ 180 181 PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */ 182}; 183 184enum perf_branch_sample_type { 185 PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT, 186 PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT, 187 PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT, 188 189 PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT, 190 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT, 191 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT, 192 PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT, 193 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT, 194 PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT, 195 PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT, 196 PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT, 197 198 PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT, 199 PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT, 200 PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT, 201 202 PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT, 203 PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT, 204 205 PERF_SAMPLE_BRANCH_TYPE_SAVE = 206 1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT, 207 208 PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT, 209}; 210 211/* 212 * Common flow change classification 213 */ 214enum { 215 PERF_BR_UNKNOWN = 0, /* unknown */ 216 PERF_BR_COND = 1, /* conditional */ 217 PERF_BR_UNCOND = 2, /* unconditional */ 218 PERF_BR_IND = 3, /* indirect */ 219 PERF_BR_CALL = 4, /* function call */ 220 PERF_BR_IND_CALL = 5, /* indirect function call */ 221 PERF_BR_RET = 6, /* function return */ 222 PERF_BR_SYSCALL = 7, /* syscall */ 223 PERF_BR_SYSRET = 8, /* syscall return */ 224 PERF_BR_COND_CALL = 9, /* conditional function call */ 225 PERF_BR_COND_RET = 10, /* conditional function return */ 226 PERF_BR_MAX, 227}; 228 229#define PERF_SAMPLE_BRANCH_PLM_ALL \ 230 (PERF_SAMPLE_BRANCH_USER|\ 231 PERF_SAMPLE_BRANCH_KERNEL|\ 232 PERF_SAMPLE_BRANCH_HV) 233 234/* 235 * Values to determine ABI of the registers dump. 236 */ 237enum perf_sample_regs_abi { 238 PERF_SAMPLE_REGS_ABI_NONE = 0, 239 PERF_SAMPLE_REGS_ABI_32 = 1, 240 PERF_SAMPLE_REGS_ABI_64 = 2, 241}; 242 243/* 244 * Values for the memory transaction event qualifier, mostly for 245 * abort events. Multiple bits can be set. 246 */ 247enum { 248 PERF_TXN_ELISION = (1 << 0), /* From elision */ 249 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */ 250 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */ 251 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */ 252 PERF_TXN_RETRY = (1 << 4), /* Retry possible */ 253 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */ 254 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */ 255 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */ 256 257 PERF_TXN_MAX = (1 << 8), /* non-ABI */ 258 259 /* bits 32..63 are reserved for the abort code */ 260 261 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32), 262 PERF_TXN_ABORT_SHIFT = 32, 263}; 264 265/* 266 * The format of the data returned by read() on a perf event fd, 267 * as specified by attr.read_format: 268 * 269 * struct read_format { 270 * { u64 value; 271 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 272 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 273 * { u64 id; } && PERF_FORMAT_ID 274 * } && !PERF_FORMAT_GROUP 275 * 276 * { u64 nr; 277 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 278 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 279 * { u64 value; 280 * { u64 id; } && PERF_FORMAT_ID 281 * } cntr[nr]; 282 * } && PERF_FORMAT_GROUP 283 * }; 284 */ 285enum perf_event_read_format { 286 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 287 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 288 PERF_FORMAT_ID = 1U << 2, 289 PERF_FORMAT_GROUP = 1U << 3, 290 291 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 292}; 293 294#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 295#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */ 296#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */ 297#define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */ 298 /* add: sample_stack_user */ 299#define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */ 300#define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */ 301 302/* 303 * Hardware event_id to monitor via a performance monitoring event: 304 * 305 * @sample_max_stack: Max number of frame pointers in a callchain, 306 * should be < /proc/sys/kernel/perf_event_max_stack 307 */ 308struct perf_event_attr { 309 310 /* 311 * Major type: hardware/software/tracepoint/etc. 312 */ 313 __u32 type; 314 315 /* 316 * Size of the attr structure, for fwd/bwd compat. 317 */ 318 __u32 size; 319 320 /* 321 * Type specific configuration information. 322 */ 323 __u64 config; 324 325 union { 326 __u64 sample_period; 327 __u64 sample_freq; 328 }; 329 330 __u64 sample_type; 331 __u64 read_format; 332 333 __u64 disabled : 1, /* off by default */ 334 inherit : 1, /* children inherit it */ 335 pinned : 1, /* must always be on PMU */ 336 exclusive : 1, /* only group on PMU */ 337 exclude_user : 1, /* don't count user */ 338 exclude_kernel : 1, /* ditto kernel */ 339 exclude_hv : 1, /* ditto hypervisor */ 340 exclude_idle : 1, /* don't count when idle */ 341 mmap : 1, /* include mmap data */ 342 comm : 1, /* include comm data */ 343 freq : 1, /* use freq, not period */ 344 inherit_stat : 1, /* per task counts */ 345 enable_on_exec : 1, /* next exec enables */ 346 task : 1, /* trace fork/exit */ 347 watermark : 1, /* wakeup_watermark */ 348 /* 349 * precise_ip: 350 * 351 * 0 - SAMPLE_IP can have arbitrary skid 352 * 1 - SAMPLE_IP must have constant skid 353 * 2 - SAMPLE_IP requested to have 0 skid 354 * 3 - SAMPLE_IP must have 0 skid 355 * 356 * See also PERF_RECORD_MISC_EXACT_IP 357 */ 358 precise_ip : 2, /* skid constraint */ 359 mmap_data : 1, /* non-exec mmap data */ 360 sample_id_all : 1, /* sample_type all events */ 361 362 exclude_host : 1, /* don't count in host */ 363 exclude_guest : 1, /* don't count in guest */ 364 365 exclude_callchain_kernel : 1, /* exclude kernel callchains */ 366 exclude_callchain_user : 1, /* exclude user callchains */ 367 mmap2 : 1, /* include mmap with inode data */ 368 comm_exec : 1, /* flag comm events that are due to an exec */ 369 use_clockid : 1, /* use @clockid for time fields */ 370 context_switch : 1, /* context switch data */ 371 write_backward : 1, /* Write ring buffer from end to beginning */ 372 namespaces : 1, /* include namespaces data */ 373 __reserved_1 : 35; 374 375 union { 376 __u32 wakeup_events; /* wakeup every n events */ 377 __u32 wakeup_watermark; /* bytes before wakeup */ 378 }; 379 380 __u32 bp_type; 381 union { 382 __u64 bp_addr; 383 __u64 config1; /* extension of config */ 384 }; 385 union { 386 __u64 bp_len; 387 __u64 config2; /* extension of config1 */ 388 }; 389 __u64 branch_sample_type; /* enum perf_branch_sample_type */ 390 391 /* 392 * Defines set of user regs to dump on samples. 393 * See asm/perf_regs.h for details. 394 */ 395 __u64 sample_regs_user; 396 397 /* 398 * Defines size of the user stack to dump on samples. 399 */ 400 __u32 sample_stack_user; 401 402 __s32 clockid; 403 /* 404 * Defines set of regs to dump for each sample 405 * state captured on: 406 * - precise = 0: PMU interrupt 407 * - precise > 0: sampled instruction 408 * 409 * See asm/perf_regs.h for details. 410 */ 411 __u64 sample_regs_intr; 412 413 /* 414 * Wakeup watermark for AUX area 415 */ 416 __u32 aux_watermark; 417 __u16 sample_max_stack; 418 __u16 __reserved_2; /* align to __u64 */ 419}; 420 421/* 422 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command 423 * to query bpf programs attached to the same perf tracepoint 424 * as the given perf event. 425 */ 426struct perf_event_query_bpf { 427 /* 428 * The below ids array length 429 */ 430 __u32 ids_len; 431 /* 432 * Set by the kernel to indicate the number of 433 * available programs 434 */ 435 __u32 prog_cnt; 436 /* 437 * User provided buffer to store program ids 438 */ 439 __u32 ids[0]; 440}; 441 442#define perf_flags(attr) (*(&(attr)->read_format + 1)) 443 444/* 445 * Ioctls that can be done on a perf event fd: 446 */ 447#define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 448#define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 449#define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 450#define PERF_EVENT_IOC_RESET _IO ('$', 3) 451#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 452#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 453#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 454#define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *) 455#define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32) 456#define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW('$', 9, __u32) 457#define PERF_EVENT_IOC_QUERY_BPF _IOWR('$', 10, struct perf_event_query_bpf *) 458 459enum perf_event_ioc_flags { 460 PERF_IOC_FLAG_GROUP = 1U << 0, 461}; 462 463/* 464 * Structure of the page that can be mapped via mmap 465 */ 466struct perf_event_mmap_page { 467 __u32 version; /* version number of this structure */ 468 __u32 compat_version; /* lowest version this is compat with */ 469 470 /* 471 * Bits needed to read the hw events in user-space. 472 * 473 * u32 seq, time_mult, time_shift, index, width; 474 * u64 count, enabled, running; 475 * u64 cyc, time_offset; 476 * s64 pmc = 0; 477 * 478 * do { 479 * seq = pc->lock; 480 * barrier() 481 * 482 * enabled = pc->time_enabled; 483 * running = pc->time_running; 484 * 485 * if (pc->cap_usr_time && enabled != running) { 486 * cyc = rdtsc(); 487 * time_offset = pc->time_offset; 488 * time_mult = pc->time_mult; 489 * time_shift = pc->time_shift; 490 * } 491 * 492 * index = pc->index; 493 * count = pc->offset; 494 * if (pc->cap_user_rdpmc && index) { 495 * width = pc->pmc_width; 496 * pmc = rdpmc(index - 1); 497 * } 498 * 499 * barrier(); 500 * } while (pc->lock != seq); 501 * 502 * NOTE: for obvious reason this only works on self-monitoring 503 * processes. 504 */ 505 __u32 lock; /* seqlock for synchronization */ 506 __u32 index; /* hardware event identifier */ 507 __s64 offset; /* add to hardware event value */ 508 __u64 time_enabled; /* time event active */ 509 __u64 time_running; /* time event on cpu */ 510 union { 511 __u64 capabilities; 512 struct { 513 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */ 514 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */ 515 516 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */ 517 cap_user_time : 1, /* The time_* fields are used */ 518 cap_user_time_zero : 1, /* The time_zero field is used */ 519 cap_____res : 59; 520 }; 521 }; 522 523 /* 524 * If cap_user_rdpmc this field provides the bit-width of the value 525 * read using the rdpmc() or equivalent instruction. This can be used 526 * to sign extend the result like: 527 * 528 * pmc <<= 64 - width; 529 * pmc >>= 64 - width; // signed shift right 530 * count += pmc; 531 */ 532 __u16 pmc_width; 533 534 /* 535 * If cap_usr_time the below fields can be used to compute the time 536 * delta since time_enabled (in ns) using rdtsc or similar. 537 * 538 * u64 quot, rem; 539 * u64 delta; 540 * 541 * quot = (cyc >> time_shift); 542 * rem = cyc & (((u64)1 << time_shift) - 1); 543 * delta = time_offset + quot * time_mult + 544 * ((rem * time_mult) >> time_shift); 545 * 546 * Where time_offset,time_mult,time_shift and cyc are read in the 547 * seqcount loop described above. This delta can then be added to 548 * enabled and possible running (if index), improving the scaling: 549 * 550 * enabled += delta; 551 * if (index) 552 * running += delta; 553 * 554 * quot = count / running; 555 * rem = count % running; 556 * count = quot * enabled + (rem * enabled) / running; 557 */ 558 __u16 time_shift; 559 __u32 time_mult; 560 __u64 time_offset; 561 /* 562 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated 563 * from sample timestamps. 564 * 565 * time = timestamp - time_zero; 566 * quot = time / time_mult; 567 * rem = time % time_mult; 568 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult; 569 * 570 * And vice versa: 571 * 572 * quot = cyc >> time_shift; 573 * rem = cyc & (((u64)1 << time_shift) - 1); 574 * timestamp = time_zero + quot * time_mult + 575 * ((rem * time_mult) >> time_shift); 576 */ 577 __u64 time_zero; 578 __u32 size; /* Header size up to __reserved[] fields. */ 579 580 /* 581 * Hole for extension of the self monitor capabilities 582 */ 583 584 __u8 __reserved[118*8+4]; /* align to 1k. */ 585 586 /* 587 * Control data for the mmap() data buffer. 588 * 589 * User-space reading the @data_head value should issue an smp_rmb(), 590 * after reading this value. 591 * 592 * When the mapping is PROT_WRITE the @data_tail value should be 593 * written by userspace to reflect the last read data, after issueing 594 * an smp_mb() to separate the data read from the ->data_tail store. 595 * In this case the kernel will not over-write unread data. 596 * 597 * See perf_output_put_handle() for the data ordering. 598 * 599 * data_{offset,size} indicate the location and size of the perf record 600 * buffer within the mmapped area. 601 */ 602 __u64 data_head; /* head in the data section */ 603 __u64 data_tail; /* user-space written tail */ 604 __u64 data_offset; /* where the buffer starts */ 605 __u64 data_size; /* data buffer size */ 606 607 /* 608 * AUX area is defined by aux_{offset,size} fields that should be set 609 * by the userspace, so that 610 * 611 * aux_offset >= data_offset + data_size 612 * 613 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size. 614 * 615 * Ring buffer pointers aux_{head,tail} have the same semantics as 616 * data_{head,tail} and same ordering rules apply. 617 */ 618 __u64 aux_head; 619 __u64 aux_tail; 620 __u64 aux_offset; 621 __u64 aux_size; 622}; 623 624#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 625#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 626#define PERF_RECORD_MISC_KERNEL (1 << 0) 627#define PERF_RECORD_MISC_USER (2 << 0) 628#define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 629#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 630#define PERF_RECORD_MISC_GUEST_USER (5 << 0) 631 632/* 633 * Indicates that /proc/PID/maps parsing are truncated by time out. 634 */ 635#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12) 636/* 637 * Following PERF_RECORD_MISC_* are used on different 638 * events, so can reuse the same bit position: 639 * 640 * PERF_RECORD_MISC_MMAP_DATA - PERF_RECORD_MMAP* events 641 * PERF_RECORD_MISC_COMM_EXEC - PERF_RECORD_COMM event 642 * PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events 643 */ 644#define PERF_RECORD_MISC_MMAP_DATA (1 << 13) 645#define PERF_RECORD_MISC_COMM_EXEC (1 << 13) 646#define PERF_RECORD_MISC_SWITCH_OUT (1 << 13) 647/* 648 * Indicates that the content of PERF_SAMPLE_IP points to 649 * the actual instruction that triggered the event. See also 650 * perf_event_attr::precise_ip. 651 */ 652#define PERF_RECORD_MISC_EXACT_IP (1 << 14) 653/* 654 * Reserve the last bit to indicate some extended misc field 655 */ 656#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 657 658struct perf_event_header { 659 __u32 type; 660 __u16 misc; 661 __u16 size; 662}; 663 664struct perf_ns_link_info { 665 __u64 dev; 666 __u64 ino; 667}; 668 669enum { 670 NET_NS_INDEX = 0, 671 UTS_NS_INDEX = 1, 672 IPC_NS_INDEX = 2, 673 PID_NS_INDEX = 3, 674 USER_NS_INDEX = 4, 675 MNT_NS_INDEX = 5, 676 CGROUP_NS_INDEX = 6, 677 678 NR_NAMESPACES, /* number of available namespaces */ 679}; 680 681enum perf_event_type { 682 683 /* 684 * If perf_event_attr.sample_id_all is set then all event types will 685 * have the sample_type selected fields related to where/when 686 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU, 687 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed 688 * just after the perf_event_header and the fields already present for 689 * the existing fields, i.e. at the end of the payload. That way a newer 690 * perf.data file will be supported by older perf tools, with these new 691 * optional fields being ignored. 692 * 693 * struct sample_id { 694 * { u32 pid, tid; } && PERF_SAMPLE_TID 695 * { u64 time; } && PERF_SAMPLE_TIME 696 * { u64 id; } && PERF_SAMPLE_ID 697 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 698 * { u32 cpu, res; } && PERF_SAMPLE_CPU 699 * { u64 id; } && PERF_SAMPLE_IDENTIFIER 700 * } && perf_event_attr::sample_id_all 701 * 702 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The 703 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed 704 * relative to header.size. 705 */ 706 707 /* 708 * The MMAP events record the PROT_EXEC mappings so that we can 709 * correlate userspace IPs to code. They have the following structure: 710 * 711 * struct { 712 * struct perf_event_header header; 713 * 714 * u32 pid, tid; 715 * u64 addr; 716 * u64 len; 717 * u64 pgoff; 718 * char filename[]; 719 * struct sample_id sample_id; 720 * }; 721 */ 722 PERF_RECORD_MMAP = 1, 723 724 /* 725 * struct { 726 * struct perf_event_header header; 727 * u64 id; 728 * u64 lost; 729 * struct sample_id sample_id; 730 * }; 731 */ 732 PERF_RECORD_LOST = 2, 733 734 /* 735 * struct { 736 * struct perf_event_header header; 737 * 738 * u32 pid, tid; 739 * char comm[]; 740 * struct sample_id sample_id; 741 * }; 742 */ 743 PERF_RECORD_COMM = 3, 744 745 /* 746 * struct { 747 * struct perf_event_header header; 748 * u32 pid, ppid; 749 * u32 tid, ptid; 750 * u64 time; 751 * struct sample_id sample_id; 752 * }; 753 */ 754 PERF_RECORD_EXIT = 4, 755 756 /* 757 * struct { 758 * struct perf_event_header header; 759 * u64 time; 760 * u64 id; 761 * u64 stream_id; 762 * struct sample_id sample_id; 763 * }; 764 */ 765 PERF_RECORD_THROTTLE = 5, 766 PERF_RECORD_UNTHROTTLE = 6, 767 768 /* 769 * struct { 770 * struct perf_event_header header; 771 * u32 pid, ppid; 772 * u32 tid, ptid; 773 * u64 time; 774 * struct sample_id sample_id; 775 * }; 776 */ 777 PERF_RECORD_FORK = 7, 778 779 /* 780 * struct { 781 * struct perf_event_header header; 782 * u32 pid, tid; 783 * 784 * struct read_format values; 785 * struct sample_id sample_id; 786 * }; 787 */ 788 PERF_RECORD_READ = 8, 789 790 /* 791 * struct { 792 * struct perf_event_header header; 793 * 794 * # 795 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. 796 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position 797 * # is fixed relative to header. 798 * # 799 * 800 * { u64 id; } && PERF_SAMPLE_IDENTIFIER 801 * { u64 ip; } && PERF_SAMPLE_IP 802 * { u32 pid, tid; } && PERF_SAMPLE_TID 803 * { u64 time; } && PERF_SAMPLE_TIME 804 * { u64 addr; } && PERF_SAMPLE_ADDR 805 * { u64 id; } && PERF_SAMPLE_ID 806 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 807 * { u32 cpu, res; } && PERF_SAMPLE_CPU 808 * { u64 period; } && PERF_SAMPLE_PERIOD 809 * 810 * { struct read_format values; } && PERF_SAMPLE_READ 811 * 812 * { u64 nr, 813 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 814 * 815 * # 816 * # The RAW record below is opaque data wrt the ABI 817 * # 818 * # That is, the ABI doesn't make any promises wrt to 819 * # the stability of its content, it may vary depending 820 * # on event, hardware, kernel version and phase of 821 * # the moon. 822 * # 823 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 824 * # 825 * 826 * { u32 size; 827 * char data[size];}&& PERF_SAMPLE_RAW 828 * 829 * { u64 nr; 830 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK 831 * 832 * { u64 abi; # enum perf_sample_regs_abi 833 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER 834 * 835 * { u64 size; 836 * char data[size]; 837 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER 838 * 839 * { u64 weight; } && PERF_SAMPLE_WEIGHT 840 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC 841 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION 842 * { u64 abi; # enum perf_sample_regs_abi 843 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR 844 * { u64 phys_addr;} && PERF_SAMPLE_PHYS_ADDR 845 * }; 846 */ 847 PERF_RECORD_SAMPLE = 9, 848 849 /* 850 * The MMAP2 records are an augmented version of MMAP, they add 851 * maj, min, ino numbers to be used to uniquely identify each mapping 852 * 853 * struct { 854 * struct perf_event_header header; 855 * 856 * u32 pid, tid; 857 * u64 addr; 858 * u64 len; 859 * u64 pgoff; 860 * u32 maj; 861 * u32 min; 862 * u64 ino; 863 * u64 ino_generation; 864 * u32 prot, flags; 865 * char filename[]; 866 * struct sample_id sample_id; 867 * }; 868 */ 869 PERF_RECORD_MMAP2 = 10, 870 871 /* 872 * Records that new data landed in the AUX buffer part. 873 * 874 * struct { 875 * struct perf_event_header header; 876 * 877 * u64 aux_offset; 878 * u64 aux_size; 879 * u64 flags; 880 * struct sample_id sample_id; 881 * }; 882 */ 883 PERF_RECORD_AUX = 11, 884 885 /* 886 * Indicates that instruction trace has started 887 * 888 * struct { 889 * struct perf_event_header header; 890 * u32 pid; 891 * u32 tid; 892 * struct sample_id sample_id; 893 * }; 894 */ 895 PERF_RECORD_ITRACE_START = 12, 896 897 /* 898 * Records the dropped/lost sample number. 899 * 900 * struct { 901 * struct perf_event_header header; 902 * 903 * u64 lost; 904 * struct sample_id sample_id; 905 * }; 906 */ 907 PERF_RECORD_LOST_SAMPLES = 13, 908 909 /* 910 * Records a context switch in or out (flagged by 911 * PERF_RECORD_MISC_SWITCH_OUT). See also 912 * PERF_RECORD_SWITCH_CPU_WIDE. 913 * 914 * struct { 915 * struct perf_event_header header; 916 * struct sample_id sample_id; 917 * }; 918 */ 919 PERF_RECORD_SWITCH = 14, 920 921 /* 922 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and 923 * next_prev_tid that are the next (switching out) or previous 924 * (switching in) pid/tid. 925 * 926 * struct { 927 * struct perf_event_header header; 928 * u32 next_prev_pid; 929 * u32 next_prev_tid; 930 * struct sample_id sample_id; 931 * }; 932 */ 933 PERF_RECORD_SWITCH_CPU_WIDE = 15, 934 935 /* 936 * struct { 937 * struct perf_event_header header; 938 * u32 pid; 939 * u32 tid; 940 * u64 nr_namespaces; 941 * { u64 dev, inode; } [nr_namespaces]; 942 * struct sample_id sample_id; 943 * }; 944 */ 945 PERF_RECORD_NAMESPACES = 16, 946 947 PERF_RECORD_MAX, /* non-ABI */ 948}; 949 950#define PERF_MAX_STACK_DEPTH 127 951#define PERF_MAX_CONTEXTS_PER_STACK 8 952 953enum perf_callchain_context { 954 PERF_CONTEXT_HV = (__u64)-32, 955 PERF_CONTEXT_KERNEL = (__u64)-128, 956 PERF_CONTEXT_USER = (__u64)-512, 957 958 PERF_CONTEXT_GUEST = (__u64)-2048, 959 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 960 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 961 962 PERF_CONTEXT_MAX = (__u64)-4095, 963}; 964 965/** 966 * PERF_RECORD_AUX::flags bits 967 */ 968#define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */ 969#define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */ 970#define PERF_AUX_FLAG_PARTIAL 0x04 /* record contains gaps */ 971#define PERF_AUX_FLAG_COLLISION 0x08 /* sample collided with another */ 972 973#define PERF_FLAG_FD_NO_GROUP (1UL << 0) 974#define PERF_FLAG_FD_OUTPUT (1UL << 1) 975#define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */ 976#define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */ 977 978#if defined(__LITTLE_ENDIAN_BITFIELD) 979union perf_mem_data_src { 980 __u64 val; 981 struct { 982 __u64 mem_op:5, /* type of opcode */ 983 mem_lvl:14, /* memory hierarchy level */ 984 mem_snoop:5, /* snoop mode */ 985 mem_lock:2, /* lock instr */ 986 mem_dtlb:7, /* tlb access */ 987 mem_lvl_num:4, /* memory hierarchy level number */ 988 mem_remote:1, /* remote */ 989 mem_snoopx:2, /* snoop mode, ext */ 990 mem_rsvd:24; 991 }; 992}; 993#elif defined(__BIG_ENDIAN_BITFIELD) 994union perf_mem_data_src { 995 __u64 val; 996 struct { 997 __u64 mem_rsvd:24, 998 mem_snoopx:2, /* snoop mode, ext */ 999 mem_remote:1, /* remote */ 1000 mem_lvl_num:4, /* memory hierarchy level number */ 1001 mem_dtlb:7, /* tlb access */ 1002 mem_lock:2, /* lock instr */ 1003 mem_snoop:5, /* snoop mode */ 1004 mem_lvl:14, /* memory hierarchy level */ 1005 mem_op:5; /* type of opcode */ 1006 }; 1007}; 1008#else 1009#error "Unknown endianness" 1010#endif 1011 1012/* type of opcode (load/store/prefetch,code) */ 1013#define PERF_MEM_OP_NA 0x01 /* not available */ 1014#define PERF_MEM_OP_LOAD 0x02 /* load instruction */ 1015#define PERF_MEM_OP_STORE 0x04 /* store instruction */ 1016#define PERF_MEM_OP_PFETCH 0x08 /* prefetch */ 1017#define PERF_MEM_OP_EXEC 0x10 /* code (execution) */ 1018#define PERF_MEM_OP_SHIFT 0 1019 1020/* memory hierarchy (memory level, hit or miss) */ 1021#define PERF_MEM_LVL_NA 0x01 /* not available */ 1022#define PERF_MEM_LVL_HIT 0x02 /* hit level */ 1023#define PERF_MEM_LVL_MISS 0x04 /* miss level */ 1024#define PERF_MEM_LVL_L1 0x08 /* L1 */ 1025#define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */ 1026#define PERF_MEM_LVL_L2 0x20 /* L2 */ 1027#define PERF_MEM_LVL_L3 0x40 /* L3 */ 1028#define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */ 1029#define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */ 1030#define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */ 1031#define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */ 1032#define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */ 1033#define PERF_MEM_LVL_IO 0x1000 /* I/O memory */ 1034#define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */ 1035#define PERF_MEM_LVL_SHIFT 5 1036 1037#define PERF_MEM_REMOTE_REMOTE 0x01 /* Remote */ 1038#define PERF_MEM_REMOTE_SHIFT 37 1039 1040#define PERF_MEM_LVLNUM_L1 0x01 /* L1 */ 1041#define PERF_MEM_LVLNUM_L2 0x02 /* L2 */ 1042#define PERF_MEM_LVLNUM_L3 0x03 /* L3 */ 1043#define PERF_MEM_LVLNUM_L4 0x04 /* L4 */ 1044/* 5-0xa available */ 1045#define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */ 1046#define PERF_MEM_LVLNUM_LFB 0x0c /* LFB */ 1047#define PERF_MEM_LVLNUM_RAM 0x0d /* RAM */ 1048#define PERF_MEM_LVLNUM_PMEM 0x0e /* PMEM */ 1049#define PERF_MEM_LVLNUM_NA 0x0f /* N/A */ 1050 1051#define PERF_MEM_LVLNUM_SHIFT 33 1052 1053/* snoop mode */ 1054#define PERF_MEM_SNOOP_NA 0x01 /* not available */ 1055#define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */ 1056#define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */ 1057#define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */ 1058#define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */ 1059#define PERF_MEM_SNOOP_SHIFT 19 1060 1061#define PERF_MEM_SNOOPX_FWD 0x01 /* forward */ 1062/* 1 free */ 1063#define PERF_MEM_SNOOPX_SHIFT 37 1064 1065/* locked instruction */ 1066#define PERF_MEM_LOCK_NA 0x01 /* not available */ 1067#define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */ 1068#define PERF_MEM_LOCK_SHIFT 24 1069 1070/* TLB access */ 1071#define PERF_MEM_TLB_NA 0x01 /* not available */ 1072#define PERF_MEM_TLB_HIT 0x02 /* hit level */ 1073#define PERF_MEM_TLB_MISS 0x04 /* miss level */ 1074#define PERF_MEM_TLB_L1 0x08 /* L1 */ 1075#define PERF_MEM_TLB_L2 0x10 /* L2 */ 1076#define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/ 1077#define PERF_MEM_TLB_OS 0x40 /* OS fault handler */ 1078#define PERF_MEM_TLB_SHIFT 26 1079 1080#define PERF_MEM_S(a, s) \ 1081 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT) 1082 1083/* 1084 * single taken branch record layout: 1085 * 1086 * from: source instruction (may not always be a branch insn) 1087 * to: branch target 1088 * mispred: branch target was mispredicted 1089 * predicted: branch target was predicted 1090 * 1091 * support for mispred, predicted is optional. In case it 1092 * is not supported mispred = predicted = 0. 1093 * 1094 * in_tx: running in a hardware transaction 1095 * abort: aborting a hardware transaction 1096 * cycles: cycles from last branch (or 0 if not supported) 1097 * type: branch type 1098 */ 1099struct perf_branch_entry { 1100 __u64 from; 1101 __u64 to; 1102 __u64 mispred:1, /* target mispredicted */ 1103 predicted:1,/* target predicted */ 1104 in_tx:1, /* in transaction */ 1105 abort:1, /* transaction abort */ 1106 cycles:16, /* cycle count to last branch */ 1107 type:4, /* branch type */ 1108 reserved:40; 1109}; 1110 1111#endif /* _UAPI_LINUX_PERF_EVENT_H */