at v4.16 78 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_USB_H 3#define __LINUX_USB_H 4 5#include <linux/mod_devicetable.h> 6#include <linux/usb/ch9.h> 7 8#define USB_MAJOR 180 9#define USB_DEVICE_MAJOR 189 10 11 12#ifdef __KERNEL__ 13 14#include <linux/errno.h> /* for -ENODEV */ 15#include <linux/delay.h> /* for mdelay() */ 16#include <linux/interrupt.h> /* for in_interrupt() */ 17#include <linux/list.h> /* for struct list_head */ 18#include <linux/kref.h> /* for struct kref */ 19#include <linux/device.h> /* for struct device */ 20#include <linux/fs.h> /* for struct file_operations */ 21#include <linux/completion.h> /* for struct completion */ 22#include <linux/sched.h> /* for current && schedule_timeout */ 23#include <linux/mutex.h> /* for struct mutex */ 24#include <linux/pm_runtime.h> /* for runtime PM */ 25 26struct usb_device; 27struct usb_driver; 28struct wusb_dev; 29 30/*-------------------------------------------------------------------------*/ 31 32/* 33 * Host-side wrappers for standard USB descriptors ... these are parsed 34 * from the data provided by devices. Parsing turns them from a flat 35 * sequence of descriptors into a hierarchy: 36 * 37 * - devices have one (usually) or more configs; 38 * - configs have one (often) or more interfaces; 39 * - interfaces have one (usually) or more settings; 40 * - each interface setting has zero or (usually) more endpoints. 41 * - a SuperSpeed endpoint has a companion descriptor 42 * 43 * And there might be other descriptors mixed in with those. 44 * 45 * Devices may also have class-specific or vendor-specific descriptors. 46 */ 47 48struct ep_device; 49 50/** 51 * struct usb_host_endpoint - host-side endpoint descriptor and queue 52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 55 * @urb_list: urbs queued to this endpoint; maintained by usbcore 56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 57 * with one or more transfer descriptors (TDs) per urb 58 * @ep_dev: ep_device for sysfs info 59 * @extra: descriptors following this endpoint in the configuration 60 * @extralen: how many bytes of "extra" are valid 61 * @enabled: URBs may be submitted to this endpoint 62 * @streams: number of USB-3 streams allocated on the endpoint 63 * 64 * USB requests are always queued to a given endpoint, identified by a 65 * descriptor within an active interface in a given USB configuration. 66 */ 67struct usb_host_endpoint { 68 struct usb_endpoint_descriptor desc; 69 struct usb_ss_ep_comp_descriptor ss_ep_comp; 70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 71 struct list_head urb_list; 72 void *hcpriv; 73 struct ep_device *ep_dev; /* For sysfs info */ 74 75 unsigned char *extra; /* Extra descriptors */ 76 int extralen; 77 int enabled; 78 int streams; 79}; 80 81/* host-side wrapper for one interface setting's parsed descriptors */ 82struct usb_host_interface { 83 struct usb_interface_descriptor desc; 84 85 int extralen; 86 unsigned char *extra; /* Extra descriptors */ 87 88 /* array of desc.bNumEndpoints endpoints associated with this 89 * interface setting. these will be in no particular order. 90 */ 91 struct usb_host_endpoint *endpoint; 92 93 char *string; /* iInterface string, if present */ 94}; 95 96enum usb_interface_condition { 97 USB_INTERFACE_UNBOUND = 0, 98 USB_INTERFACE_BINDING, 99 USB_INTERFACE_BOUND, 100 USB_INTERFACE_UNBINDING, 101}; 102 103int __must_check 104usb_find_common_endpoints(struct usb_host_interface *alt, 105 struct usb_endpoint_descriptor **bulk_in, 106 struct usb_endpoint_descriptor **bulk_out, 107 struct usb_endpoint_descriptor **int_in, 108 struct usb_endpoint_descriptor **int_out); 109 110int __must_check 111usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 112 struct usb_endpoint_descriptor **bulk_in, 113 struct usb_endpoint_descriptor **bulk_out, 114 struct usb_endpoint_descriptor **int_in, 115 struct usb_endpoint_descriptor **int_out); 116 117static inline int __must_check 118usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 119 struct usb_endpoint_descriptor **bulk_in) 120{ 121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 122} 123 124static inline int __must_check 125usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 126 struct usb_endpoint_descriptor **bulk_out) 127{ 128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 129} 130 131static inline int __must_check 132usb_find_int_in_endpoint(struct usb_host_interface *alt, 133 struct usb_endpoint_descriptor **int_in) 134{ 135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 136} 137 138static inline int __must_check 139usb_find_int_out_endpoint(struct usb_host_interface *alt, 140 struct usb_endpoint_descriptor **int_out) 141{ 142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 143} 144 145static inline int __must_check 146usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 147 struct usb_endpoint_descriptor **bulk_in) 148{ 149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 150} 151 152static inline int __must_check 153usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 154 struct usb_endpoint_descriptor **bulk_out) 155{ 156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 157} 158 159static inline int __must_check 160usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 161 struct usb_endpoint_descriptor **int_in) 162{ 163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 164} 165 166static inline int __must_check 167usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 168 struct usb_endpoint_descriptor **int_out) 169{ 170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 171} 172 173/** 174 * struct usb_interface - what usb device drivers talk to 175 * @altsetting: array of interface structures, one for each alternate 176 * setting that may be selected. Each one includes a set of 177 * endpoint configurations. They will be in no particular order. 178 * @cur_altsetting: the current altsetting. 179 * @num_altsetting: number of altsettings defined. 180 * @intf_assoc: interface association descriptor 181 * @minor: the minor number assigned to this interface, if this 182 * interface is bound to a driver that uses the USB major number. 183 * If this interface does not use the USB major, this field should 184 * be unused. The driver should set this value in the probe() 185 * function of the driver, after it has been assigned a minor 186 * number from the USB core by calling usb_register_dev(). 187 * @condition: binding state of the interface: not bound, binding 188 * (in probe()), bound to a driver, or unbinding (in disconnect()) 189 * @sysfs_files_created: sysfs attributes exist 190 * @ep_devs_created: endpoint child pseudo-devices exist 191 * @unregistering: flag set when the interface is being unregistered 192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 193 * capability during autosuspend. 194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 195 * has been deferred. 196 * @needs_binding: flag set when the driver should be re-probed or unbound 197 * following a reset or suspend operation it doesn't support. 198 * @authorized: This allows to (de)authorize individual interfaces instead 199 * a whole device in contrast to the device authorization. 200 * @dev: driver model's view of this device 201 * @usb_dev: if an interface is bound to the USB major, this will point 202 * to the sysfs representation for that device. 203 * @pm_usage_cnt: PM usage counter for this interface 204 * @reset_ws: Used for scheduling resets from atomic context. 205 * @resetting_device: USB core reset the device, so use alt setting 0 as 206 * current; needs bandwidth alloc after reset. 207 * 208 * USB device drivers attach to interfaces on a physical device. Each 209 * interface encapsulates a single high level function, such as feeding 210 * an audio stream to a speaker or reporting a change in a volume control. 211 * Many USB devices only have one interface. The protocol used to talk to 212 * an interface's endpoints can be defined in a usb "class" specification, 213 * or by a product's vendor. The (default) control endpoint is part of 214 * every interface, but is never listed among the interface's descriptors. 215 * 216 * The driver that is bound to the interface can use standard driver model 217 * calls such as dev_get_drvdata() on the dev member of this structure. 218 * 219 * Each interface may have alternate settings. The initial configuration 220 * of a device sets altsetting 0, but the device driver can change 221 * that setting using usb_set_interface(). Alternate settings are often 222 * used to control the use of periodic endpoints, such as by having 223 * different endpoints use different amounts of reserved USB bandwidth. 224 * All standards-conformant USB devices that use isochronous endpoints 225 * will use them in non-default settings. 226 * 227 * The USB specification says that alternate setting numbers must run from 228 * 0 to one less than the total number of alternate settings. But some 229 * devices manage to mess this up, and the structures aren't necessarily 230 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 231 * look up an alternate setting in the altsetting array based on its number. 232 */ 233struct usb_interface { 234 /* array of alternate settings for this interface, 235 * stored in no particular order */ 236 struct usb_host_interface *altsetting; 237 238 struct usb_host_interface *cur_altsetting; /* the currently 239 * active alternate setting */ 240 unsigned num_altsetting; /* number of alternate settings */ 241 242 /* If there is an interface association descriptor then it will list 243 * the associated interfaces */ 244 struct usb_interface_assoc_descriptor *intf_assoc; 245 246 int minor; /* minor number this interface is 247 * bound to */ 248 enum usb_interface_condition condition; /* state of binding */ 249 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 250 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 251 unsigned unregistering:1; /* unregistration is in progress */ 252 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 253 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 254 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 255 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 256 unsigned authorized:1; /* used for interface authorization */ 257 258 struct device dev; /* interface specific device info */ 259 struct device *usb_dev; 260 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 261 struct work_struct reset_ws; /* for resets in atomic context */ 262}; 263#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 264 265static inline void *usb_get_intfdata(struct usb_interface *intf) 266{ 267 return dev_get_drvdata(&intf->dev); 268} 269 270static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 271{ 272 dev_set_drvdata(&intf->dev, data); 273} 274 275struct usb_interface *usb_get_intf(struct usb_interface *intf); 276void usb_put_intf(struct usb_interface *intf); 277 278/* Hard limit */ 279#define USB_MAXENDPOINTS 30 280/* this maximum is arbitrary */ 281#define USB_MAXINTERFACES 32 282#define USB_MAXIADS (USB_MAXINTERFACES/2) 283 284/* 285 * USB Resume Timer: Every Host controller driver should drive the resume 286 * signalling on the bus for the amount of time defined by this macro. 287 * 288 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 289 * 290 * Note that the USB Specification states we should drive resume for *at least* 291 * 20 ms, but it doesn't give an upper bound. This creates two possible 292 * situations which we want to avoid: 293 * 294 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 295 * us to fail USB Electrical Tests, thus failing Certification 296 * 297 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 298 * and while we can argue that's against the USB Specification, we don't have 299 * control over which devices a certification laboratory will be using for 300 * certification. If CertLab uses a device which was tested against Windows and 301 * that happens to have relaxed resume signalling rules, we might fall into 302 * situations where we fail interoperability and electrical tests. 303 * 304 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 305 * should cope with both LPJ calibration errors and devices not following every 306 * detail of the USB Specification. 307 */ 308#define USB_RESUME_TIMEOUT 40 /* ms */ 309 310/** 311 * struct usb_interface_cache - long-term representation of a device interface 312 * @num_altsetting: number of altsettings defined. 313 * @ref: reference counter. 314 * @altsetting: variable-length array of interface structures, one for 315 * each alternate setting that may be selected. Each one includes a 316 * set of endpoint configurations. They will be in no particular order. 317 * 318 * These structures persist for the lifetime of a usb_device, unlike 319 * struct usb_interface (which persists only as long as its configuration 320 * is installed). The altsetting arrays can be accessed through these 321 * structures at any time, permitting comparison of configurations and 322 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 323 */ 324struct usb_interface_cache { 325 unsigned num_altsetting; /* number of alternate settings */ 326 struct kref ref; /* reference counter */ 327 328 /* variable-length array of alternate settings for this interface, 329 * stored in no particular order */ 330 struct usb_host_interface altsetting[0]; 331}; 332#define ref_to_usb_interface_cache(r) \ 333 container_of(r, struct usb_interface_cache, ref) 334#define altsetting_to_usb_interface_cache(a) \ 335 container_of(a, struct usb_interface_cache, altsetting[0]) 336 337/** 338 * struct usb_host_config - representation of a device's configuration 339 * @desc: the device's configuration descriptor. 340 * @string: pointer to the cached version of the iConfiguration string, if 341 * present for this configuration. 342 * @intf_assoc: list of any interface association descriptors in this config 343 * @interface: array of pointers to usb_interface structures, one for each 344 * interface in the configuration. The number of interfaces is stored 345 * in desc.bNumInterfaces. These pointers are valid only while the 346 * the configuration is active. 347 * @intf_cache: array of pointers to usb_interface_cache structures, one 348 * for each interface in the configuration. These structures exist 349 * for the entire life of the device. 350 * @extra: pointer to buffer containing all extra descriptors associated 351 * with this configuration (those preceding the first interface 352 * descriptor). 353 * @extralen: length of the extra descriptors buffer. 354 * 355 * USB devices may have multiple configurations, but only one can be active 356 * at any time. Each encapsulates a different operational environment; 357 * for example, a dual-speed device would have separate configurations for 358 * full-speed and high-speed operation. The number of configurations 359 * available is stored in the device descriptor as bNumConfigurations. 360 * 361 * A configuration can contain multiple interfaces. Each corresponds to 362 * a different function of the USB device, and all are available whenever 363 * the configuration is active. The USB standard says that interfaces 364 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 365 * of devices get this wrong. In addition, the interface array is not 366 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 367 * look up an interface entry based on its number. 368 * 369 * Device drivers should not attempt to activate configurations. The choice 370 * of which configuration to install is a policy decision based on such 371 * considerations as available power, functionality provided, and the user's 372 * desires (expressed through userspace tools). However, drivers can call 373 * usb_reset_configuration() to reinitialize the current configuration and 374 * all its interfaces. 375 */ 376struct usb_host_config { 377 struct usb_config_descriptor desc; 378 379 char *string; /* iConfiguration string, if present */ 380 381 /* List of any Interface Association Descriptors in this 382 * configuration. */ 383 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 384 385 /* the interfaces associated with this configuration, 386 * stored in no particular order */ 387 struct usb_interface *interface[USB_MAXINTERFACES]; 388 389 /* Interface information available even when this is not the 390 * active configuration */ 391 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 392 393 unsigned char *extra; /* Extra descriptors */ 394 int extralen; 395}; 396 397/* USB2.0 and USB3.0 device BOS descriptor set */ 398struct usb_host_bos { 399 struct usb_bos_descriptor *desc; 400 401 /* wireless cap descriptor is handled by wusb */ 402 struct usb_ext_cap_descriptor *ext_cap; 403 struct usb_ss_cap_descriptor *ss_cap; 404 struct usb_ssp_cap_descriptor *ssp_cap; 405 struct usb_ss_container_id_descriptor *ss_id; 406 struct usb_ptm_cap_descriptor *ptm_cap; 407}; 408 409int __usb_get_extra_descriptor(char *buffer, unsigned size, 410 unsigned char type, void **ptr); 411#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 412 __usb_get_extra_descriptor((ifpoint)->extra, \ 413 (ifpoint)->extralen, \ 414 type, (void **)ptr) 415 416/* ----------------------------------------------------------------------- */ 417 418/* USB device number allocation bitmap */ 419struct usb_devmap { 420 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 421}; 422 423/* 424 * Allocated per bus (tree of devices) we have: 425 */ 426struct usb_bus { 427 struct device *controller; /* host/master side hardware */ 428 struct device *sysdev; /* as seen from firmware or bus */ 429 int busnum; /* Bus number (in order of reg) */ 430 const char *bus_name; /* stable id (PCI slot_name etc) */ 431 u8 uses_dma; /* Does the host controller use DMA? */ 432 u8 uses_pio_for_control; /* 433 * Does the host controller use PIO 434 * for control transfers? 435 */ 436 u8 otg_port; /* 0, or number of OTG/HNP port */ 437 unsigned is_b_host:1; /* true during some HNP roleswitches */ 438 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 439 unsigned no_stop_on_short:1; /* 440 * Quirk: some controllers don't stop 441 * the ep queue on a short transfer 442 * with the URB_SHORT_NOT_OK flag set. 443 */ 444 unsigned no_sg_constraint:1; /* no sg constraint */ 445 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 446 447 int devnum_next; /* Next open device number in 448 * round-robin allocation */ 449 struct mutex devnum_next_mutex; /* devnum_next mutex */ 450 451 struct usb_devmap devmap; /* device address allocation map */ 452 struct usb_device *root_hub; /* Root hub */ 453 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 454 455 int bandwidth_allocated; /* on this bus: how much of the time 456 * reserved for periodic (intr/iso) 457 * requests is used, on average? 458 * Units: microseconds/frame. 459 * Limits: Full/low speed reserve 90%, 460 * while high speed reserves 80%. 461 */ 462 int bandwidth_int_reqs; /* number of Interrupt requests */ 463 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 464 465 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 466 467#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 468 struct mon_bus *mon_bus; /* non-null when associated */ 469 int monitored; /* non-zero when monitored */ 470#endif 471}; 472 473struct usb_dev_state; 474 475/* ----------------------------------------------------------------------- */ 476 477struct usb_tt; 478 479enum usb_device_removable { 480 USB_DEVICE_REMOVABLE_UNKNOWN = 0, 481 USB_DEVICE_REMOVABLE, 482 USB_DEVICE_FIXED, 483}; 484 485enum usb_port_connect_type { 486 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 487 USB_PORT_CONNECT_TYPE_HOT_PLUG, 488 USB_PORT_CONNECT_TYPE_HARD_WIRED, 489 USB_PORT_NOT_USED, 490}; 491 492/* 493 * USB 2.0 Link Power Management (LPM) parameters. 494 */ 495struct usb2_lpm_parameters { 496 /* Best effort service latency indicate how long the host will drive 497 * resume on an exit from L1. 498 */ 499 unsigned int besl; 500 501 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 502 * When the timer counts to zero, the parent hub will initiate a LPM 503 * transition to L1. 504 */ 505 int timeout; 506}; 507 508/* 509 * USB 3.0 Link Power Management (LPM) parameters. 510 * 511 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 512 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 513 * All three are stored in nanoseconds. 514 */ 515struct usb3_lpm_parameters { 516 /* 517 * Maximum exit latency (MEL) for the host to send a packet to the 518 * device (either a Ping for isoc endpoints, or a data packet for 519 * interrupt endpoints), the hubs to decode the packet, and for all hubs 520 * in the path to transition the links to U0. 521 */ 522 unsigned int mel; 523 /* 524 * Maximum exit latency for a device-initiated LPM transition to bring 525 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 526 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 527 */ 528 unsigned int pel; 529 530 /* 531 * The System Exit Latency (SEL) includes PEL, and three other 532 * latencies. After a device initiates a U0 transition, it will take 533 * some time from when the device sends the ERDY to when it will finally 534 * receive the data packet. Basically, SEL should be the worse-case 535 * latency from when a device starts initiating a U0 transition to when 536 * it will get data. 537 */ 538 unsigned int sel; 539 /* 540 * The idle timeout value that is currently programmed into the parent 541 * hub for this device. When the timer counts to zero, the parent hub 542 * will initiate an LPM transition to either U1 or U2. 543 */ 544 int timeout; 545}; 546 547/** 548 * struct usb_device - kernel's representation of a USB device 549 * @devnum: device number; address on a USB bus 550 * @devpath: device ID string for use in messages (e.g., /port/...) 551 * @route: tree topology hex string for use with xHCI 552 * @state: device state: configured, not attached, etc. 553 * @speed: device speed: high/full/low (or error) 554 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 555 * @ttport: device port on that tt hub 556 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 557 * @parent: our hub, unless we're the root 558 * @bus: bus we're part of 559 * @ep0: endpoint 0 data (default control pipe) 560 * @dev: generic device interface 561 * @descriptor: USB device descriptor 562 * @bos: USB device BOS descriptor set 563 * @config: all of the device's configs 564 * @actconfig: the active configuration 565 * @ep_in: array of IN endpoints 566 * @ep_out: array of OUT endpoints 567 * @rawdescriptors: raw descriptors for each config 568 * @bus_mA: Current available from the bus 569 * @portnum: parent port number (origin 1) 570 * @level: number of USB hub ancestors 571 * @can_submit: URBs may be submitted 572 * @persist_enabled: USB_PERSIST enabled for this device 573 * @have_langid: whether string_langid is valid 574 * @authorized: policy has said we can use it; 575 * (user space) policy determines if we authorize this device to be 576 * used or not. By default, wired USB devices are authorized. 577 * WUSB devices are not, until we authorize them from user space. 578 * FIXME -- complete doc 579 * @authenticated: Crypto authentication passed 580 * @wusb: device is Wireless USB 581 * @lpm_capable: device supports LPM 582 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 583 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 584 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 585 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 586 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 587 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 588 * @string_langid: language ID for strings 589 * @product: iProduct string, if present (static) 590 * @manufacturer: iManufacturer string, if present (static) 591 * @serial: iSerialNumber string, if present (static) 592 * @filelist: usbfs files that are open to this device 593 * @maxchild: number of ports if hub 594 * @quirks: quirks of the whole device 595 * @urbnum: number of URBs submitted for the whole device 596 * @active_duration: total time device is not suspended 597 * @connect_time: time device was first connected 598 * @do_remote_wakeup: remote wakeup should be enabled 599 * @reset_resume: needs reset instead of resume 600 * @port_is_suspended: the upstream port is suspended (L2 or U3) 601 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 602 * specific data for the device. 603 * @slot_id: Slot ID assigned by xHCI 604 * @removable: Device can be physically removed from this port 605 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 606 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 607 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 608 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 609 * to keep track of the number of functions that require USB 3.0 Link Power 610 * Management to be disabled for this usb_device. This count should only 611 * be manipulated by those functions, with the bandwidth_mutex is held. 612 * @hub_delay: cached value consisting of: 613 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns) 614 * 615 * Will be used as wValue for SetIsochDelay requests. 616 * 617 * Notes: 618 * Usbcore drivers should not set usbdev->state directly. Instead use 619 * usb_set_device_state(). 620 */ 621struct usb_device { 622 int devnum; 623 char devpath[16]; 624 u32 route; 625 enum usb_device_state state; 626 enum usb_device_speed speed; 627 628 struct usb_tt *tt; 629 int ttport; 630 631 unsigned int toggle[2]; 632 633 struct usb_device *parent; 634 struct usb_bus *bus; 635 struct usb_host_endpoint ep0; 636 637 struct device dev; 638 639 struct usb_device_descriptor descriptor; 640 struct usb_host_bos *bos; 641 struct usb_host_config *config; 642 643 struct usb_host_config *actconfig; 644 struct usb_host_endpoint *ep_in[16]; 645 struct usb_host_endpoint *ep_out[16]; 646 647 char **rawdescriptors; 648 649 unsigned short bus_mA; 650 u8 portnum; 651 u8 level; 652 653 unsigned can_submit:1; 654 unsigned persist_enabled:1; 655 unsigned have_langid:1; 656 unsigned authorized:1; 657 unsigned authenticated:1; 658 unsigned wusb:1; 659 unsigned lpm_capable:1; 660 unsigned usb2_hw_lpm_capable:1; 661 unsigned usb2_hw_lpm_besl_capable:1; 662 unsigned usb2_hw_lpm_enabled:1; 663 unsigned usb2_hw_lpm_allowed:1; 664 unsigned usb3_lpm_u1_enabled:1; 665 unsigned usb3_lpm_u2_enabled:1; 666 int string_langid; 667 668 /* static strings from the device */ 669 char *product; 670 char *manufacturer; 671 char *serial; 672 673 struct list_head filelist; 674 675 int maxchild; 676 677 u32 quirks; 678 atomic_t urbnum; 679 680 unsigned long active_duration; 681 682#ifdef CONFIG_PM 683 unsigned long connect_time; 684 685 unsigned do_remote_wakeup:1; 686 unsigned reset_resume:1; 687 unsigned port_is_suspended:1; 688#endif 689 struct wusb_dev *wusb_dev; 690 int slot_id; 691 enum usb_device_removable removable; 692 struct usb2_lpm_parameters l1_params; 693 struct usb3_lpm_parameters u1_params; 694 struct usb3_lpm_parameters u2_params; 695 unsigned lpm_disable_count; 696 697 u16 hub_delay; 698}; 699#define to_usb_device(d) container_of(d, struct usb_device, dev) 700 701static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 702{ 703 return to_usb_device(intf->dev.parent); 704} 705 706extern struct usb_device *usb_get_dev(struct usb_device *dev); 707extern void usb_put_dev(struct usb_device *dev); 708extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 709 int port1); 710 711/** 712 * usb_hub_for_each_child - iterate over all child devices on the hub 713 * @hdev: USB device belonging to the usb hub 714 * @port1: portnum associated with child device 715 * @child: child device pointer 716 */ 717#define usb_hub_for_each_child(hdev, port1, child) \ 718 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 719 port1 <= hdev->maxchild; \ 720 child = usb_hub_find_child(hdev, ++port1)) \ 721 if (!child) continue; else 722 723/* USB device locking */ 724#define usb_lock_device(udev) device_lock(&(udev)->dev) 725#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 726#define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 727#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 728extern int usb_lock_device_for_reset(struct usb_device *udev, 729 const struct usb_interface *iface); 730 731/* USB port reset for device reinitialization */ 732extern int usb_reset_device(struct usb_device *dev); 733extern void usb_queue_reset_device(struct usb_interface *dev); 734 735#ifdef CONFIG_ACPI 736extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 737 bool enable); 738extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 739#else 740static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 741 bool enable) { return 0; } 742static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 743 { return true; } 744#endif 745 746/* USB autosuspend and autoresume */ 747#ifdef CONFIG_PM 748extern void usb_enable_autosuspend(struct usb_device *udev); 749extern void usb_disable_autosuspend(struct usb_device *udev); 750 751extern int usb_autopm_get_interface(struct usb_interface *intf); 752extern void usb_autopm_put_interface(struct usb_interface *intf); 753extern int usb_autopm_get_interface_async(struct usb_interface *intf); 754extern void usb_autopm_put_interface_async(struct usb_interface *intf); 755extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 756extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 757 758static inline void usb_mark_last_busy(struct usb_device *udev) 759{ 760 pm_runtime_mark_last_busy(&udev->dev); 761} 762 763#else 764 765static inline int usb_enable_autosuspend(struct usb_device *udev) 766{ return 0; } 767static inline int usb_disable_autosuspend(struct usb_device *udev) 768{ return 0; } 769 770static inline int usb_autopm_get_interface(struct usb_interface *intf) 771{ return 0; } 772static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 773{ return 0; } 774 775static inline void usb_autopm_put_interface(struct usb_interface *intf) 776{ } 777static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 778{ } 779static inline void usb_autopm_get_interface_no_resume( 780 struct usb_interface *intf) 781{ } 782static inline void usb_autopm_put_interface_no_suspend( 783 struct usb_interface *intf) 784{ } 785static inline void usb_mark_last_busy(struct usb_device *udev) 786{ } 787#endif 788 789extern int usb_disable_lpm(struct usb_device *udev); 790extern void usb_enable_lpm(struct usb_device *udev); 791/* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 792extern int usb_unlocked_disable_lpm(struct usb_device *udev); 793extern void usb_unlocked_enable_lpm(struct usb_device *udev); 794 795extern int usb_disable_ltm(struct usb_device *udev); 796extern void usb_enable_ltm(struct usb_device *udev); 797 798static inline bool usb_device_supports_ltm(struct usb_device *udev) 799{ 800 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 801 return false; 802 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 803} 804 805static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 806{ 807 return udev && udev->bus && udev->bus->no_sg_constraint; 808} 809 810 811/*-------------------------------------------------------------------------*/ 812 813/* for drivers using iso endpoints */ 814extern int usb_get_current_frame_number(struct usb_device *usb_dev); 815 816/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 817extern int usb_alloc_streams(struct usb_interface *interface, 818 struct usb_host_endpoint **eps, unsigned int num_eps, 819 unsigned int num_streams, gfp_t mem_flags); 820 821/* Reverts a group of bulk endpoints back to not using stream IDs. */ 822extern int usb_free_streams(struct usb_interface *interface, 823 struct usb_host_endpoint **eps, unsigned int num_eps, 824 gfp_t mem_flags); 825 826/* used these for multi-interface device registration */ 827extern int usb_driver_claim_interface(struct usb_driver *driver, 828 struct usb_interface *iface, void *priv); 829 830/** 831 * usb_interface_claimed - returns true iff an interface is claimed 832 * @iface: the interface being checked 833 * 834 * Return: %true (nonzero) iff the interface is claimed, else %false 835 * (zero). 836 * 837 * Note: 838 * Callers must own the driver model's usb bus readlock. So driver 839 * probe() entries don't need extra locking, but other call contexts 840 * may need to explicitly claim that lock. 841 * 842 */ 843static inline int usb_interface_claimed(struct usb_interface *iface) 844{ 845 return (iface->dev.driver != NULL); 846} 847 848extern void usb_driver_release_interface(struct usb_driver *driver, 849 struct usb_interface *iface); 850const struct usb_device_id *usb_match_id(struct usb_interface *interface, 851 const struct usb_device_id *id); 852extern int usb_match_one_id(struct usb_interface *interface, 853 const struct usb_device_id *id); 854 855extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 856extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 857 int minor); 858extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 859 unsigned ifnum); 860extern struct usb_host_interface *usb_altnum_to_altsetting( 861 const struct usb_interface *intf, unsigned int altnum); 862extern struct usb_host_interface *usb_find_alt_setting( 863 struct usb_host_config *config, 864 unsigned int iface_num, 865 unsigned int alt_num); 866 867/* port claiming functions */ 868int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 869 struct usb_dev_state *owner); 870int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 871 struct usb_dev_state *owner); 872 873/** 874 * usb_make_path - returns stable device path in the usb tree 875 * @dev: the device whose path is being constructed 876 * @buf: where to put the string 877 * @size: how big is "buf"? 878 * 879 * Return: Length of the string (> 0) or negative if size was too small. 880 * 881 * Note: 882 * This identifier is intended to be "stable", reflecting physical paths in 883 * hardware such as physical bus addresses for host controllers or ports on 884 * USB hubs. That makes it stay the same until systems are physically 885 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 886 * controllers. Adding and removing devices, including virtual root hubs 887 * in host controller driver modules, does not change these path identifiers; 888 * neither does rebooting or re-enumerating. These are more useful identifiers 889 * than changeable ("unstable") ones like bus numbers or device addresses. 890 * 891 * With a partial exception for devices connected to USB 2.0 root hubs, these 892 * identifiers are also predictable. So long as the device tree isn't changed, 893 * plugging any USB device into a given hub port always gives it the same path. 894 * Because of the use of "companion" controllers, devices connected to ports on 895 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 896 * high speed, and a different one if they are full or low speed. 897 */ 898static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 899{ 900 int actual; 901 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 902 dev->devpath); 903 return (actual >= (int)size) ? -1 : actual; 904} 905 906/*-------------------------------------------------------------------------*/ 907 908#define USB_DEVICE_ID_MATCH_DEVICE \ 909 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 910#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 911 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 912#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 913 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 914#define USB_DEVICE_ID_MATCH_DEV_INFO \ 915 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 916 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 917 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 918#define USB_DEVICE_ID_MATCH_INT_INFO \ 919 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 920 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 921 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 922 923/** 924 * USB_DEVICE - macro used to describe a specific usb device 925 * @vend: the 16 bit USB Vendor ID 926 * @prod: the 16 bit USB Product ID 927 * 928 * This macro is used to create a struct usb_device_id that matches a 929 * specific device. 930 */ 931#define USB_DEVICE(vend, prod) \ 932 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 933 .idVendor = (vend), \ 934 .idProduct = (prod) 935/** 936 * USB_DEVICE_VER - describe a specific usb device with a version range 937 * @vend: the 16 bit USB Vendor ID 938 * @prod: the 16 bit USB Product ID 939 * @lo: the bcdDevice_lo value 940 * @hi: the bcdDevice_hi value 941 * 942 * This macro is used to create a struct usb_device_id that matches a 943 * specific device, with a version range. 944 */ 945#define USB_DEVICE_VER(vend, prod, lo, hi) \ 946 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 947 .idVendor = (vend), \ 948 .idProduct = (prod), \ 949 .bcdDevice_lo = (lo), \ 950 .bcdDevice_hi = (hi) 951 952/** 953 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 954 * @vend: the 16 bit USB Vendor ID 955 * @prod: the 16 bit USB Product ID 956 * @cl: bInterfaceClass value 957 * 958 * This macro is used to create a struct usb_device_id that matches a 959 * specific interface class of devices. 960 */ 961#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 962 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 963 USB_DEVICE_ID_MATCH_INT_CLASS, \ 964 .idVendor = (vend), \ 965 .idProduct = (prod), \ 966 .bInterfaceClass = (cl) 967 968/** 969 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 970 * @vend: the 16 bit USB Vendor ID 971 * @prod: the 16 bit USB Product ID 972 * @pr: bInterfaceProtocol value 973 * 974 * This macro is used to create a struct usb_device_id that matches a 975 * specific interface protocol of devices. 976 */ 977#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 978 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 979 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 980 .idVendor = (vend), \ 981 .idProduct = (prod), \ 982 .bInterfaceProtocol = (pr) 983 984/** 985 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 986 * @vend: the 16 bit USB Vendor ID 987 * @prod: the 16 bit USB Product ID 988 * @num: bInterfaceNumber value 989 * 990 * This macro is used to create a struct usb_device_id that matches a 991 * specific interface number of devices. 992 */ 993#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 994 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 995 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 996 .idVendor = (vend), \ 997 .idProduct = (prod), \ 998 .bInterfaceNumber = (num) 999 1000/** 1001 * USB_DEVICE_INFO - macro used to describe a class of usb devices 1002 * @cl: bDeviceClass value 1003 * @sc: bDeviceSubClass value 1004 * @pr: bDeviceProtocol value 1005 * 1006 * This macro is used to create a struct usb_device_id that matches a 1007 * specific class of devices. 1008 */ 1009#define USB_DEVICE_INFO(cl, sc, pr) \ 1010 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1011 .bDeviceClass = (cl), \ 1012 .bDeviceSubClass = (sc), \ 1013 .bDeviceProtocol = (pr) 1014 1015/** 1016 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1017 * @cl: bInterfaceClass value 1018 * @sc: bInterfaceSubClass value 1019 * @pr: bInterfaceProtocol value 1020 * 1021 * This macro is used to create a struct usb_device_id that matches a 1022 * specific class of interfaces. 1023 */ 1024#define USB_INTERFACE_INFO(cl, sc, pr) \ 1025 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1026 .bInterfaceClass = (cl), \ 1027 .bInterfaceSubClass = (sc), \ 1028 .bInterfaceProtocol = (pr) 1029 1030/** 1031 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1032 * @vend: the 16 bit USB Vendor ID 1033 * @prod: the 16 bit USB Product ID 1034 * @cl: bInterfaceClass value 1035 * @sc: bInterfaceSubClass value 1036 * @pr: bInterfaceProtocol value 1037 * 1038 * This macro is used to create a struct usb_device_id that matches a 1039 * specific device with a specific class of interfaces. 1040 * 1041 * This is especially useful when explicitly matching devices that have 1042 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1043 */ 1044#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1045 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1046 | USB_DEVICE_ID_MATCH_DEVICE, \ 1047 .idVendor = (vend), \ 1048 .idProduct = (prod), \ 1049 .bInterfaceClass = (cl), \ 1050 .bInterfaceSubClass = (sc), \ 1051 .bInterfaceProtocol = (pr) 1052 1053/** 1054 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1055 * @vend: the 16 bit USB Vendor ID 1056 * @cl: bInterfaceClass value 1057 * @sc: bInterfaceSubClass value 1058 * @pr: bInterfaceProtocol value 1059 * 1060 * This macro is used to create a struct usb_device_id that matches a 1061 * specific vendor with a specific class of interfaces. 1062 * 1063 * This is especially useful when explicitly matching devices that have 1064 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1065 */ 1066#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1067 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1068 | USB_DEVICE_ID_MATCH_VENDOR, \ 1069 .idVendor = (vend), \ 1070 .bInterfaceClass = (cl), \ 1071 .bInterfaceSubClass = (sc), \ 1072 .bInterfaceProtocol = (pr) 1073 1074/* ----------------------------------------------------------------------- */ 1075 1076/* Stuff for dynamic usb ids */ 1077struct usb_dynids { 1078 spinlock_t lock; 1079 struct list_head list; 1080}; 1081 1082struct usb_dynid { 1083 struct list_head node; 1084 struct usb_device_id id; 1085}; 1086 1087extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1088 const struct usb_device_id *id_table, 1089 struct device_driver *driver, 1090 const char *buf, size_t count); 1091 1092extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1093 1094/** 1095 * struct usbdrv_wrap - wrapper for driver-model structure 1096 * @driver: The driver-model core driver structure. 1097 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1098 */ 1099struct usbdrv_wrap { 1100 struct device_driver driver; 1101 int for_devices; 1102}; 1103 1104/** 1105 * struct usb_driver - identifies USB interface driver to usbcore 1106 * @name: The driver name should be unique among USB drivers, 1107 * and should normally be the same as the module name. 1108 * @probe: Called to see if the driver is willing to manage a particular 1109 * interface on a device. If it is, probe returns zero and uses 1110 * usb_set_intfdata() to associate driver-specific data with the 1111 * interface. It may also use usb_set_interface() to specify the 1112 * appropriate altsetting. If unwilling to manage the interface, 1113 * return -ENODEV, if genuine IO errors occurred, an appropriate 1114 * negative errno value. 1115 * @disconnect: Called when the interface is no longer accessible, usually 1116 * because its device has been (or is being) disconnected or the 1117 * driver module is being unloaded. 1118 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1119 * the "usbfs" filesystem. This lets devices provide ways to 1120 * expose information to user space regardless of where they 1121 * do (or don't) show up otherwise in the filesystem. 1122 * @suspend: Called when the device is going to be suspended by the 1123 * system either from system sleep or runtime suspend context. The 1124 * return value will be ignored in system sleep context, so do NOT 1125 * try to continue using the device if suspend fails in this case. 1126 * Instead, let the resume or reset-resume routine recover from 1127 * the failure. 1128 * @resume: Called when the device is being resumed by the system. 1129 * @reset_resume: Called when the suspended device has been reset instead 1130 * of being resumed. 1131 * @pre_reset: Called by usb_reset_device() when the device is about to be 1132 * reset. This routine must not return until the driver has no active 1133 * URBs for the device, and no more URBs may be submitted until the 1134 * post_reset method is called. 1135 * @post_reset: Called by usb_reset_device() after the device 1136 * has been reset 1137 * @id_table: USB drivers use ID table to support hotplugging. 1138 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1139 * or your driver's probe function will never get called. 1140 * @dynids: used internally to hold the list of dynamically added device 1141 * ids for this driver. 1142 * @drvwrap: Driver-model core structure wrapper. 1143 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1144 * added to this driver by preventing the sysfs file from being created. 1145 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1146 * for interfaces bound to this driver. 1147 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1148 * endpoints before calling the driver's disconnect method. 1149 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1150 * to initiate lower power link state transitions when an idle timeout 1151 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1152 * 1153 * USB interface drivers must provide a name, probe() and disconnect() 1154 * methods, and an id_table. Other driver fields are optional. 1155 * 1156 * The id_table is used in hotplugging. It holds a set of descriptors, 1157 * and specialized data may be associated with each entry. That table 1158 * is used by both user and kernel mode hotplugging support. 1159 * 1160 * The probe() and disconnect() methods are called in a context where 1161 * they can sleep, but they should avoid abusing the privilege. Most 1162 * work to connect to a device should be done when the device is opened, 1163 * and undone at the last close. The disconnect code needs to address 1164 * concurrency issues with respect to open() and close() methods, as 1165 * well as forcing all pending I/O requests to complete (by unlinking 1166 * them as necessary, and blocking until the unlinks complete). 1167 */ 1168struct usb_driver { 1169 const char *name; 1170 1171 int (*probe) (struct usb_interface *intf, 1172 const struct usb_device_id *id); 1173 1174 void (*disconnect) (struct usb_interface *intf); 1175 1176 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1177 void *buf); 1178 1179 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1180 int (*resume) (struct usb_interface *intf); 1181 int (*reset_resume)(struct usb_interface *intf); 1182 1183 int (*pre_reset)(struct usb_interface *intf); 1184 int (*post_reset)(struct usb_interface *intf); 1185 1186 const struct usb_device_id *id_table; 1187 1188 struct usb_dynids dynids; 1189 struct usbdrv_wrap drvwrap; 1190 unsigned int no_dynamic_id:1; 1191 unsigned int supports_autosuspend:1; 1192 unsigned int disable_hub_initiated_lpm:1; 1193 unsigned int soft_unbind:1; 1194}; 1195#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1196 1197/** 1198 * struct usb_device_driver - identifies USB device driver to usbcore 1199 * @name: The driver name should be unique among USB drivers, 1200 * and should normally be the same as the module name. 1201 * @probe: Called to see if the driver is willing to manage a particular 1202 * device. If it is, probe returns zero and uses dev_set_drvdata() 1203 * to associate driver-specific data with the device. If unwilling 1204 * to manage the device, return a negative errno value. 1205 * @disconnect: Called when the device is no longer accessible, usually 1206 * because it has been (or is being) disconnected or the driver's 1207 * module is being unloaded. 1208 * @suspend: Called when the device is going to be suspended by the system. 1209 * @resume: Called when the device is being resumed by the system. 1210 * @drvwrap: Driver-model core structure wrapper. 1211 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1212 * for devices bound to this driver. 1213 * 1214 * USB drivers must provide all the fields listed above except drvwrap. 1215 */ 1216struct usb_device_driver { 1217 const char *name; 1218 1219 int (*probe) (struct usb_device *udev); 1220 void (*disconnect) (struct usb_device *udev); 1221 1222 int (*suspend) (struct usb_device *udev, pm_message_t message); 1223 int (*resume) (struct usb_device *udev, pm_message_t message); 1224 struct usbdrv_wrap drvwrap; 1225 unsigned int supports_autosuspend:1; 1226}; 1227#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1228 drvwrap.driver) 1229 1230extern struct bus_type usb_bus_type; 1231 1232/** 1233 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1234 * @name: the usb class device name for this driver. Will show up in sysfs. 1235 * @devnode: Callback to provide a naming hint for a possible 1236 * device node to create. 1237 * @fops: pointer to the struct file_operations of this driver. 1238 * @minor_base: the start of the minor range for this driver. 1239 * 1240 * This structure is used for the usb_register_dev() and 1241 * usb_deregister_dev() functions, to consolidate a number of the 1242 * parameters used for them. 1243 */ 1244struct usb_class_driver { 1245 char *name; 1246 char *(*devnode)(struct device *dev, umode_t *mode); 1247 const struct file_operations *fops; 1248 int minor_base; 1249}; 1250 1251/* 1252 * use these in module_init()/module_exit() 1253 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1254 */ 1255extern int usb_register_driver(struct usb_driver *, struct module *, 1256 const char *); 1257 1258/* use a define to avoid include chaining to get THIS_MODULE & friends */ 1259#define usb_register(driver) \ 1260 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1261 1262extern void usb_deregister(struct usb_driver *); 1263 1264/** 1265 * module_usb_driver() - Helper macro for registering a USB driver 1266 * @__usb_driver: usb_driver struct 1267 * 1268 * Helper macro for USB drivers which do not do anything special in module 1269 * init/exit. This eliminates a lot of boilerplate. Each module may only 1270 * use this macro once, and calling it replaces module_init() and module_exit() 1271 */ 1272#define module_usb_driver(__usb_driver) \ 1273 module_driver(__usb_driver, usb_register, \ 1274 usb_deregister) 1275 1276extern int usb_register_device_driver(struct usb_device_driver *, 1277 struct module *); 1278extern void usb_deregister_device_driver(struct usb_device_driver *); 1279 1280extern int usb_register_dev(struct usb_interface *intf, 1281 struct usb_class_driver *class_driver); 1282extern void usb_deregister_dev(struct usb_interface *intf, 1283 struct usb_class_driver *class_driver); 1284 1285extern int usb_disabled(void); 1286 1287/* ----------------------------------------------------------------------- */ 1288 1289/* 1290 * URB support, for asynchronous request completions 1291 */ 1292 1293/* 1294 * urb->transfer_flags: 1295 * 1296 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1297 */ 1298#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1299#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1300 * slot in the schedule */ 1301#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1302#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1303#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1304 * needed */ 1305#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1306 1307/* The following flags are used internally by usbcore and HCDs */ 1308#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1309#define URB_DIR_OUT 0 1310#define URB_DIR_MASK URB_DIR_IN 1311 1312#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1313#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1314#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1315#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1316#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1317#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1318#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1319#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1320 1321struct usb_iso_packet_descriptor { 1322 unsigned int offset; 1323 unsigned int length; /* expected length */ 1324 unsigned int actual_length; 1325 int status; 1326}; 1327 1328struct urb; 1329 1330struct usb_anchor { 1331 struct list_head urb_list; 1332 wait_queue_head_t wait; 1333 spinlock_t lock; 1334 atomic_t suspend_wakeups; 1335 unsigned int poisoned:1; 1336}; 1337 1338static inline void init_usb_anchor(struct usb_anchor *anchor) 1339{ 1340 memset(anchor, 0, sizeof(*anchor)); 1341 INIT_LIST_HEAD(&anchor->urb_list); 1342 init_waitqueue_head(&anchor->wait); 1343 spin_lock_init(&anchor->lock); 1344} 1345 1346typedef void (*usb_complete_t)(struct urb *); 1347 1348/** 1349 * struct urb - USB Request Block 1350 * @urb_list: For use by current owner of the URB. 1351 * @anchor_list: membership in the list of an anchor 1352 * @anchor: to anchor URBs to a common mooring 1353 * @ep: Points to the endpoint's data structure. Will eventually 1354 * replace @pipe. 1355 * @pipe: Holds endpoint number, direction, type, and more. 1356 * Create these values with the eight macros available; 1357 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1358 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1359 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1360 * numbers range from zero to fifteen. Note that "in" endpoint two 1361 * is a different endpoint (and pipe) from "out" endpoint two. 1362 * The current configuration controls the existence, type, and 1363 * maximum packet size of any given endpoint. 1364 * @stream_id: the endpoint's stream ID for bulk streams 1365 * @dev: Identifies the USB device to perform the request. 1366 * @status: This is read in non-iso completion functions to get the 1367 * status of the particular request. ISO requests only use it 1368 * to tell whether the URB was unlinked; detailed status for 1369 * each frame is in the fields of the iso_frame-desc. 1370 * @transfer_flags: A variety of flags may be used to affect how URB 1371 * submission, unlinking, or operation are handled. Different 1372 * kinds of URB can use different flags. 1373 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1374 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1375 * (however, do not leave garbage in transfer_buffer even then). 1376 * This buffer must be suitable for DMA; allocate it with 1377 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1378 * of this buffer will be modified. This buffer is used for the data 1379 * stage of control transfers. 1380 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1381 * the device driver is saying that it provided this DMA address, 1382 * which the host controller driver should use in preference to the 1383 * transfer_buffer. 1384 * @sg: scatter gather buffer list, the buffer size of each element in 1385 * the list (except the last) must be divisible by the endpoint's 1386 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1387 * @num_mapped_sgs: (internal) number of mapped sg entries 1388 * @num_sgs: number of entries in the sg list 1389 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1390 * be broken up into chunks according to the current maximum packet 1391 * size for the endpoint, which is a function of the configuration 1392 * and is encoded in the pipe. When the length is zero, neither 1393 * transfer_buffer nor transfer_dma is used. 1394 * @actual_length: This is read in non-iso completion functions, and 1395 * it tells how many bytes (out of transfer_buffer_length) were 1396 * transferred. It will normally be the same as requested, unless 1397 * either an error was reported or a short read was performed. 1398 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1399 * short reads be reported as errors. 1400 * @setup_packet: Only used for control transfers, this points to eight bytes 1401 * of setup data. Control transfers always start by sending this data 1402 * to the device. Then transfer_buffer is read or written, if needed. 1403 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1404 * this field; setup_packet must point to a valid buffer. 1405 * @start_frame: Returns the initial frame for isochronous transfers. 1406 * @number_of_packets: Lists the number of ISO transfer buffers. 1407 * @interval: Specifies the polling interval for interrupt or isochronous 1408 * transfers. The units are frames (milliseconds) for full and low 1409 * speed devices, and microframes (1/8 millisecond) for highspeed 1410 * and SuperSpeed devices. 1411 * @error_count: Returns the number of ISO transfers that reported errors. 1412 * @context: For use in completion functions. This normally points to 1413 * request-specific driver context. 1414 * @complete: Completion handler. This URB is passed as the parameter to the 1415 * completion function. The completion function may then do what 1416 * it likes with the URB, including resubmitting or freeing it. 1417 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1418 * collect the transfer status for each buffer. 1419 * 1420 * This structure identifies USB transfer requests. URBs must be allocated by 1421 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1422 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1423 * are submitted using usb_submit_urb(), and pending requests may be canceled 1424 * using usb_unlink_urb() or usb_kill_urb(). 1425 * 1426 * Data Transfer Buffers: 1427 * 1428 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1429 * taken from the general page pool. That is provided by transfer_buffer 1430 * (control requests also use setup_packet), and host controller drivers 1431 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1432 * mapping operations can be expensive on some platforms (perhaps using a dma 1433 * bounce buffer or talking to an IOMMU), 1434 * although they're cheap on commodity x86 and ppc hardware. 1435 * 1436 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1437 * which tells the host controller driver that no such mapping is needed for 1438 * the transfer_buffer since 1439 * the device driver is DMA-aware. For example, a device driver might 1440 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1441 * When this transfer flag is provided, host controller drivers will 1442 * attempt to use the dma address found in the transfer_dma 1443 * field rather than determining a dma address themselves. 1444 * 1445 * Note that transfer_buffer must still be set if the controller 1446 * does not support DMA (as indicated by bus.uses_dma) and when talking 1447 * to root hub. If you have to trasfer between highmem zone and the device 1448 * on such controller, create a bounce buffer or bail out with an error. 1449 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1450 * capable, assign NULL to it, so that usbmon knows not to use the value. 1451 * The setup_packet must always be set, so it cannot be located in highmem. 1452 * 1453 * Initialization: 1454 * 1455 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1456 * zero), and complete fields. All URBs must also initialize 1457 * transfer_buffer and transfer_buffer_length. They may provide the 1458 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1459 * to be treated as errors; that flag is invalid for write requests. 1460 * 1461 * Bulk URBs may 1462 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1463 * should always terminate with a short packet, even if it means adding an 1464 * extra zero length packet. 1465 * 1466 * Control URBs must provide a valid pointer in the setup_packet field. 1467 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1468 * beforehand. 1469 * 1470 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1471 * or, for highspeed devices, 125 microsecond units) 1472 * to poll for transfers. After the URB has been submitted, the interval 1473 * field reflects how the transfer was actually scheduled. 1474 * The polling interval may be more frequent than requested. 1475 * For example, some controllers have a maximum interval of 32 milliseconds, 1476 * while others support intervals of up to 1024 milliseconds. 1477 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1478 * endpoints, as well as high speed interrupt endpoints, the encoding of 1479 * the transfer interval in the endpoint descriptor is logarithmic. 1480 * Device drivers must convert that value to linear units themselves.) 1481 * 1482 * If an isochronous endpoint queue isn't already running, the host 1483 * controller will schedule a new URB to start as soon as bandwidth 1484 * utilization allows. If the queue is running then a new URB will be 1485 * scheduled to start in the first transfer slot following the end of the 1486 * preceding URB, if that slot has not already expired. If the slot has 1487 * expired (which can happen when IRQ delivery is delayed for a long time), 1488 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1489 * is clear then the URB will be scheduled to start in the expired slot, 1490 * implying that some of its packets will not be transferred; if the flag 1491 * is set then the URB will be scheduled in the first unexpired slot, 1492 * breaking the queue's synchronization. Upon URB completion, the 1493 * start_frame field will be set to the (micro)frame number in which the 1494 * transfer was scheduled. Ranges for frame counter values are HC-specific 1495 * and can go from as low as 256 to as high as 65536 frames. 1496 * 1497 * Isochronous URBs have a different data transfer model, in part because 1498 * the quality of service is only "best effort". Callers provide specially 1499 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1500 * at the end. Each such packet is an individual ISO transfer. Isochronous 1501 * URBs are normally queued, submitted by drivers to arrange that 1502 * transfers are at least double buffered, and then explicitly resubmitted 1503 * in completion handlers, so 1504 * that data (such as audio or video) streams at as constant a rate as the 1505 * host controller scheduler can support. 1506 * 1507 * Completion Callbacks: 1508 * 1509 * The completion callback is made in_interrupt(), and one of the first 1510 * things that a completion handler should do is check the status field. 1511 * The status field is provided for all URBs. It is used to report 1512 * unlinked URBs, and status for all non-ISO transfers. It should not 1513 * be examined before the URB is returned to the completion handler. 1514 * 1515 * The context field is normally used to link URBs back to the relevant 1516 * driver or request state. 1517 * 1518 * When the completion callback is invoked for non-isochronous URBs, the 1519 * actual_length field tells how many bytes were transferred. This field 1520 * is updated even when the URB terminated with an error or was unlinked. 1521 * 1522 * ISO transfer status is reported in the status and actual_length fields 1523 * of the iso_frame_desc array, and the number of errors is reported in 1524 * error_count. Completion callbacks for ISO transfers will normally 1525 * (re)submit URBs to ensure a constant transfer rate. 1526 * 1527 * Note that even fields marked "public" should not be touched by the driver 1528 * when the urb is owned by the hcd, that is, since the call to 1529 * usb_submit_urb() till the entry into the completion routine. 1530 */ 1531struct urb { 1532 /* private: usb core and host controller only fields in the urb */ 1533 struct kref kref; /* reference count of the URB */ 1534 void *hcpriv; /* private data for host controller */ 1535 atomic_t use_count; /* concurrent submissions counter */ 1536 atomic_t reject; /* submissions will fail */ 1537 int unlinked; /* unlink error code */ 1538 1539 /* public: documented fields in the urb that can be used by drivers */ 1540 struct list_head urb_list; /* list head for use by the urb's 1541 * current owner */ 1542 struct list_head anchor_list; /* the URB may be anchored */ 1543 struct usb_anchor *anchor; 1544 struct usb_device *dev; /* (in) pointer to associated device */ 1545 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1546 unsigned int pipe; /* (in) pipe information */ 1547 unsigned int stream_id; /* (in) stream ID */ 1548 int status; /* (return) non-ISO status */ 1549 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1550 void *transfer_buffer; /* (in) associated data buffer */ 1551 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1552 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1553 int num_mapped_sgs; /* (internal) mapped sg entries */ 1554 int num_sgs; /* (in) number of entries in the sg list */ 1555 u32 transfer_buffer_length; /* (in) data buffer length */ 1556 u32 actual_length; /* (return) actual transfer length */ 1557 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1558 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1559 int start_frame; /* (modify) start frame (ISO) */ 1560 int number_of_packets; /* (in) number of ISO packets */ 1561 int interval; /* (modify) transfer interval 1562 * (INT/ISO) */ 1563 int error_count; /* (return) number of ISO errors */ 1564 void *context; /* (in) context for completion */ 1565 usb_complete_t complete; /* (in) completion routine */ 1566 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1567 /* (in) ISO ONLY */ 1568}; 1569 1570/* ----------------------------------------------------------------------- */ 1571 1572/** 1573 * usb_fill_control_urb - initializes a control urb 1574 * @urb: pointer to the urb to initialize. 1575 * @dev: pointer to the struct usb_device for this urb. 1576 * @pipe: the endpoint pipe 1577 * @setup_packet: pointer to the setup_packet buffer 1578 * @transfer_buffer: pointer to the transfer buffer 1579 * @buffer_length: length of the transfer buffer 1580 * @complete_fn: pointer to the usb_complete_t function 1581 * @context: what to set the urb context to. 1582 * 1583 * Initializes a control urb with the proper information needed to submit 1584 * it to a device. 1585 */ 1586static inline void usb_fill_control_urb(struct urb *urb, 1587 struct usb_device *dev, 1588 unsigned int pipe, 1589 unsigned char *setup_packet, 1590 void *transfer_buffer, 1591 int buffer_length, 1592 usb_complete_t complete_fn, 1593 void *context) 1594{ 1595 urb->dev = dev; 1596 urb->pipe = pipe; 1597 urb->setup_packet = setup_packet; 1598 urb->transfer_buffer = transfer_buffer; 1599 urb->transfer_buffer_length = buffer_length; 1600 urb->complete = complete_fn; 1601 urb->context = context; 1602} 1603 1604/** 1605 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1606 * @urb: pointer to the urb to initialize. 1607 * @dev: pointer to the struct usb_device for this urb. 1608 * @pipe: the endpoint pipe 1609 * @transfer_buffer: pointer to the transfer buffer 1610 * @buffer_length: length of the transfer buffer 1611 * @complete_fn: pointer to the usb_complete_t function 1612 * @context: what to set the urb context to. 1613 * 1614 * Initializes a bulk urb with the proper information needed to submit it 1615 * to a device. 1616 */ 1617static inline void usb_fill_bulk_urb(struct urb *urb, 1618 struct usb_device *dev, 1619 unsigned int pipe, 1620 void *transfer_buffer, 1621 int buffer_length, 1622 usb_complete_t complete_fn, 1623 void *context) 1624{ 1625 urb->dev = dev; 1626 urb->pipe = pipe; 1627 urb->transfer_buffer = transfer_buffer; 1628 urb->transfer_buffer_length = buffer_length; 1629 urb->complete = complete_fn; 1630 urb->context = context; 1631} 1632 1633/** 1634 * usb_fill_int_urb - macro to help initialize a interrupt urb 1635 * @urb: pointer to the urb to initialize. 1636 * @dev: pointer to the struct usb_device for this urb. 1637 * @pipe: the endpoint pipe 1638 * @transfer_buffer: pointer to the transfer buffer 1639 * @buffer_length: length of the transfer buffer 1640 * @complete_fn: pointer to the usb_complete_t function 1641 * @context: what to set the urb context to. 1642 * @interval: what to set the urb interval to, encoded like 1643 * the endpoint descriptor's bInterval value. 1644 * 1645 * Initializes a interrupt urb with the proper information needed to submit 1646 * it to a device. 1647 * 1648 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1649 * encoding of the endpoint interval, and express polling intervals in 1650 * microframes (eight per millisecond) rather than in frames (one per 1651 * millisecond). 1652 * 1653 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1654 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1655 * through to the host controller, rather than being translated into microframe 1656 * units. 1657 */ 1658static inline void usb_fill_int_urb(struct urb *urb, 1659 struct usb_device *dev, 1660 unsigned int pipe, 1661 void *transfer_buffer, 1662 int buffer_length, 1663 usb_complete_t complete_fn, 1664 void *context, 1665 int interval) 1666{ 1667 urb->dev = dev; 1668 urb->pipe = pipe; 1669 urb->transfer_buffer = transfer_buffer; 1670 urb->transfer_buffer_length = buffer_length; 1671 urb->complete = complete_fn; 1672 urb->context = context; 1673 1674 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1675 /* make sure interval is within allowed range */ 1676 interval = clamp(interval, 1, 16); 1677 1678 urb->interval = 1 << (interval - 1); 1679 } else { 1680 urb->interval = interval; 1681 } 1682 1683 urb->start_frame = -1; 1684} 1685 1686extern void usb_init_urb(struct urb *urb); 1687extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1688extern void usb_free_urb(struct urb *urb); 1689#define usb_put_urb usb_free_urb 1690extern struct urb *usb_get_urb(struct urb *urb); 1691extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1692extern int usb_unlink_urb(struct urb *urb); 1693extern void usb_kill_urb(struct urb *urb); 1694extern void usb_poison_urb(struct urb *urb); 1695extern void usb_unpoison_urb(struct urb *urb); 1696extern void usb_block_urb(struct urb *urb); 1697extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1698extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1699extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1700extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1701extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1702extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1703extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1704extern void usb_unanchor_urb(struct urb *urb); 1705extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1706 unsigned int timeout); 1707extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1708extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1709extern int usb_anchor_empty(struct usb_anchor *anchor); 1710 1711#define usb_unblock_urb usb_unpoison_urb 1712 1713/** 1714 * usb_urb_dir_in - check if an URB describes an IN transfer 1715 * @urb: URB to be checked 1716 * 1717 * Return: 1 if @urb describes an IN transfer (device-to-host), 1718 * otherwise 0. 1719 */ 1720static inline int usb_urb_dir_in(struct urb *urb) 1721{ 1722 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1723} 1724 1725/** 1726 * usb_urb_dir_out - check if an URB describes an OUT transfer 1727 * @urb: URB to be checked 1728 * 1729 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1730 * otherwise 0. 1731 */ 1732static inline int usb_urb_dir_out(struct urb *urb) 1733{ 1734 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1735} 1736 1737int usb_urb_ep_type_check(const struct urb *urb); 1738 1739void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1740 gfp_t mem_flags, dma_addr_t *dma); 1741void usb_free_coherent(struct usb_device *dev, size_t size, 1742 void *addr, dma_addr_t dma); 1743 1744#if 0 1745struct urb *usb_buffer_map(struct urb *urb); 1746void usb_buffer_dmasync(struct urb *urb); 1747void usb_buffer_unmap(struct urb *urb); 1748#endif 1749 1750struct scatterlist; 1751int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1752 struct scatterlist *sg, int nents); 1753#if 0 1754void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1755 struct scatterlist *sg, int n_hw_ents); 1756#endif 1757void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1758 struct scatterlist *sg, int n_hw_ents); 1759 1760/*-------------------------------------------------------------------* 1761 * SYNCHRONOUS CALL SUPPORT * 1762 *-------------------------------------------------------------------*/ 1763 1764extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1765 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1766 void *data, __u16 size, int timeout); 1767extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1768 void *data, int len, int *actual_length, int timeout); 1769extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1770 void *data, int len, int *actual_length, 1771 int timeout); 1772 1773/* wrappers around usb_control_msg() for the most common standard requests */ 1774extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1775 unsigned char descindex, void *buf, int size); 1776extern int usb_get_status(struct usb_device *dev, 1777 int recip, int type, int target, void *data); 1778 1779static inline int usb_get_std_status(struct usb_device *dev, 1780 int recip, int target, void *data) 1781{ 1782 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target, 1783 data); 1784} 1785 1786static inline int usb_get_ptm_status(struct usb_device *dev, void *data) 1787{ 1788 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM, 1789 0, data); 1790} 1791 1792extern int usb_string(struct usb_device *dev, int index, 1793 char *buf, size_t size); 1794 1795/* wrappers that also update important state inside usbcore */ 1796extern int usb_clear_halt(struct usb_device *dev, int pipe); 1797extern int usb_reset_configuration(struct usb_device *dev); 1798extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1799extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1800 1801/* this request isn't really synchronous, but it belongs with the others */ 1802extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1803 1804/* choose and set configuration for device */ 1805extern int usb_choose_configuration(struct usb_device *udev); 1806extern int usb_set_configuration(struct usb_device *dev, int configuration); 1807 1808/* 1809 * timeouts, in milliseconds, used for sending/receiving control messages 1810 * they typically complete within a few frames (msec) after they're issued 1811 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1812 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1813 */ 1814#define USB_CTRL_GET_TIMEOUT 5000 1815#define USB_CTRL_SET_TIMEOUT 5000 1816 1817 1818/** 1819 * struct usb_sg_request - support for scatter/gather I/O 1820 * @status: zero indicates success, else negative errno 1821 * @bytes: counts bytes transferred. 1822 * 1823 * These requests are initialized using usb_sg_init(), and then are used 1824 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1825 * members of the request object aren't for driver access. 1826 * 1827 * The status and bytecount values are valid only after usb_sg_wait() 1828 * returns. If the status is zero, then the bytecount matches the total 1829 * from the request. 1830 * 1831 * After an error completion, drivers may need to clear a halt condition 1832 * on the endpoint. 1833 */ 1834struct usb_sg_request { 1835 int status; 1836 size_t bytes; 1837 1838 /* private: 1839 * members below are private to usbcore, 1840 * and are not provided for driver access! 1841 */ 1842 spinlock_t lock; 1843 1844 struct usb_device *dev; 1845 int pipe; 1846 1847 int entries; 1848 struct urb **urbs; 1849 1850 int count; 1851 struct completion complete; 1852}; 1853 1854int usb_sg_init( 1855 struct usb_sg_request *io, 1856 struct usb_device *dev, 1857 unsigned pipe, 1858 unsigned period, 1859 struct scatterlist *sg, 1860 int nents, 1861 size_t length, 1862 gfp_t mem_flags 1863); 1864void usb_sg_cancel(struct usb_sg_request *io); 1865void usb_sg_wait(struct usb_sg_request *io); 1866 1867 1868/* ----------------------------------------------------------------------- */ 1869 1870/* 1871 * For various legacy reasons, Linux has a small cookie that's paired with 1872 * a struct usb_device to identify an endpoint queue. Queue characteristics 1873 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1874 * an unsigned int encoded as: 1875 * 1876 * - direction: bit 7 (0 = Host-to-Device [Out], 1877 * 1 = Device-to-Host [In] ... 1878 * like endpoint bEndpointAddress) 1879 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1880 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1881 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1882 * 10 = control, 11 = bulk) 1883 * 1884 * Given the device address and endpoint descriptor, pipes are redundant. 1885 */ 1886 1887/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1888/* (yet ... they're the values used by usbfs) */ 1889#define PIPE_ISOCHRONOUS 0 1890#define PIPE_INTERRUPT 1 1891#define PIPE_CONTROL 2 1892#define PIPE_BULK 3 1893 1894#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1895#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1896 1897#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1898#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1899 1900#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1901#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1902#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1903#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1904#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1905 1906static inline unsigned int __create_pipe(struct usb_device *dev, 1907 unsigned int endpoint) 1908{ 1909 return (dev->devnum << 8) | (endpoint << 15); 1910} 1911 1912/* Create various pipes... */ 1913#define usb_sndctrlpipe(dev, endpoint) \ 1914 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1915#define usb_rcvctrlpipe(dev, endpoint) \ 1916 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1917#define usb_sndisocpipe(dev, endpoint) \ 1918 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1919#define usb_rcvisocpipe(dev, endpoint) \ 1920 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1921#define usb_sndbulkpipe(dev, endpoint) \ 1922 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1923#define usb_rcvbulkpipe(dev, endpoint) \ 1924 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1925#define usb_sndintpipe(dev, endpoint) \ 1926 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1927#define usb_rcvintpipe(dev, endpoint) \ 1928 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1929 1930static inline struct usb_host_endpoint * 1931usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1932{ 1933 struct usb_host_endpoint **eps; 1934 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1935 return eps[usb_pipeendpoint(pipe)]; 1936} 1937 1938/*-------------------------------------------------------------------------*/ 1939 1940static inline __u16 1941usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1942{ 1943 struct usb_host_endpoint *ep; 1944 unsigned epnum = usb_pipeendpoint(pipe); 1945 1946 if (is_out) { 1947 WARN_ON(usb_pipein(pipe)); 1948 ep = udev->ep_out[epnum]; 1949 } else { 1950 WARN_ON(usb_pipeout(pipe)); 1951 ep = udev->ep_in[epnum]; 1952 } 1953 if (!ep) 1954 return 0; 1955 1956 /* NOTE: only 0x07ff bits are for packet size... */ 1957 return usb_endpoint_maxp(&ep->desc); 1958} 1959 1960/* ----------------------------------------------------------------------- */ 1961 1962/* translate USB error codes to codes user space understands */ 1963static inline int usb_translate_errors(int error_code) 1964{ 1965 switch (error_code) { 1966 case 0: 1967 case -ENOMEM: 1968 case -ENODEV: 1969 case -EOPNOTSUPP: 1970 return error_code; 1971 default: 1972 return -EIO; 1973 } 1974} 1975 1976/* Events from the usb core */ 1977#define USB_DEVICE_ADD 0x0001 1978#define USB_DEVICE_REMOVE 0x0002 1979#define USB_BUS_ADD 0x0003 1980#define USB_BUS_REMOVE 0x0004 1981extern void usb_register_notify(struct notifier_block *nb); 1982extern void usb_unregister_notify(struct notifier_block *nb); 1983 1984/* debugfs stuff */ 1985extern struct dentry *usb_debug_root; 1986 1987/* LED triggers */ 1988enum usb_led_event { 1989 USB_LED_EVENT_HOST = 0, 1990 USB_LED_EVENT_GADGET = 1, 1991}; 1992 1993#ifdef CONFIG_USB_LED_TRIG 1994extern void usb_led_activity(enum usb_led_event ev); 1995#else 1996static inline void usb_led_activity(enum usb_led_event ev) {} 1997#endif 1998 1999#endif /* __KERNEL__ */ 2000 2001#endif