Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2006 Nick Piggin
5 * Copyright (C) 2012 Konstantin Khlebnikov
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2, or (at
10 * your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21#ifndef _LINUX_RADIX_TREE_H
22#define _LINUX_RADIX_TREE_H
23
24#include <linux/bitops.h>
25#include <linux/kernel.h>
26#include <linux/list.h>
27#include <linux/preempt.h>
28#include <linux/rcupdate.h>
29#include <linux/spinlock.h>
30#include <linux/types.h>
31
32/*
33 * The bottom two bits of the slot determine how the remaining bits in the
34 * slot are interpreted:
35 *
36 * 00 - data pointer
37 * 01 - internal entry
38 * 10 - exceptional entry
39 * 11 - this bit combination is currently unused/reserved
40 *
41 * The internal entry may be a pointer to the next level in the tree, a
42 * sibling entry, or an indicator that the entry in this slot has been moved
43 * to another location in the tree and the lookup should be restarted. While
44 * NULL fits the 'data pointer' pattern, it means that there is no entry in
45 * the tree for this index (no matter what level of the tree it is found at).
46 * This means that you cannot store NULL in the tree as a value for the index.
47 */
48#define RADIX_TREE_ENTRY_MASK 3UL
49#define RADIX_TREE_INTERNAL_NODE 1UL
50
51/*
52 * Most users of the radix tree store pointers but shmem/tmpfs stores swap
53 * entries in the same tree. They are marked as exceptional entries to
54 * distinguish them from pointers to struct page.
55 * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it.
56 */
57#define RADIX_TREE_EXCEPTIONAL_ENTRY 2
58#define RADIX_TREE_EXCEPTIONAL_SHIFT 2
59
60static inline bool radix_tree_is_internal_node(void *ptr)
61{
62 return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) ==
63 RADIX_TREE_INTERNAL_NODE;
64}
65
66/*** radix-tree API starts here ***/
67
68#define RADIX_TREE_MAX_TAGS 3
69
70#ifndef RADIX_TREE_MAP_SHIFT
71#define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
72#endif
73
74#define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
75#define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
76
77#define RADIX_TREE_TAG_LONGS \
78 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
79
80#define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
81#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
82 RADIX_TREE_MAP_SHIFT))
83
84/*
85 * @count is the count of every non-NULL element in the ->slots array
86 * whether that is an exceptional entry, a retry entry, a user pointer,
87 * a sibling entry or a pointer to the next level of the tree.
88 * @exceptional is the count of every element in ->slots which is
89 * either radix_tree_exceptional_entry() or is a sibling entry for an
90 * exceptional entry.
91 */
92struct radix_tree_node {
93 unsigned char shift; /* Bits remaining in each slot */
94 unsigned char offset; /* Slot offset in parent */
95 unsigned char count; /* Total entry count */
96 unsigned char exceptional; /* Exceptional entry count */
97 struct radix_tree_node *parent; /* Used when ascending tree */
98 struct radix_tree_root *root; /* The tree we belong to */
99 union {
100 struct list_head private_list; /* For tree user */
101 struct rcu_head rcu_head; /* Used when freeing node */
102 };
103 void __rcu *slots[RADIX_TREE_MAP_SIZE];
104 unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
105};
106
107/* The top bits of gfp_mask are used to store the root tags and the IDR flag */
108#define ROOT_IS_IDR ((__force gfp_t)(1 << __GFP_BITS_SHIFT))
109#define ROOT_TAG_SHIFT (__GFP_BITS_SHIFT + 1)
110
111struct radix_tree_root {
112 gfp_t gfp_mask;
113 struct radix_tree_node __rcu *rnode;
114};
115
116#define RADIX_TREE_INIT(mask) { \
117 .gfp_mask = (mask), \
118 .rnode = NULL, \
119}
120
121#define RADIX_TREE(name, mask) \
122 struct radix_tree_root name = RADIX_TREE_INIT(mask)
123
124#define INIT_RADIX_TREE(root, mask) \
125do { \
126 (root)->gfp_mask = (mask); \
127 (root)->rnode = NULL; \
128} while (0)
129
130static inline bool radix_tree_empty(const struct radix_tree_root *root)
131{
132 return root->rnode == NULL;
133}
134
135/**
136 * struct radix_tree_iter - radix tree iterator state
137 *
138 * @index: index of current slot
139 * @next_index: one beyond the last index for this chunk
140 * @tags: bit-mask for tag-iterating
141 * @node: node that contains current slot
142 * @shift: shift for the node that holds our slots
143 *
144 * This radix tree iterator works in terms of "chunks" of slots. A chunk is a
145 * subinterval of slots contained within one radix tree leaf node. It is
146 * described by a pointer to its first slot and a struct radix_tree_iter
147 * which holds the chunk's position in the tree and its size. For tagged
148 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
149 * radix tree tag.
150 */
151struct radix_tree_iter {
152 unsigned long index;
153 unsigned long next_index;
154 unsigned long tags;
155 struct radix_tree_node *node;
156#ifdef CONFIG_RADIX_TREE_MULTIORDER
157 unsigned int shift;
158#endif
159};
160
161static inline unsigned int iter_shift(const struct radix_tree_iter *iter)
162{
163#ifdef CONFIG_RADIX_TREE_MULTIORDER
164 return iter->shift;
165#else
166 return 0;
167#endif
168}
169
170/**
171 * Radix-tree synchronization
172 *
173 * The radix-tree API requires that users provide all synchronisation (with
174 * specific exceptions, noted below).
175 *
176 * Synchronization of access to the data items being stored in the tree, and
177 * management of their lifetimes must be completely managed by API users.
178 *
179 * For API usage, in general,
180 * - any function _modifying_ the tree or tags (inserting or deleting
181 * items, setting or clearing tags) must exclude other modifications, and
182 * exclude any functions reading the tree.
183 * - any function _reading_ the tree or tags (looking up items or tags,
184 * gang lookups) must exclude modifications to the tree, but may occur
185 * concurrently with other readers.
186 *
187 * The notable exceptions to this rule are the following functions:
188 * __radix_tree_lookup
189 * radix_tree_lookup
190 * radix_tree_lookup_slot
191 * radix_tree_tag_get
192 * radix_tree_gang_lookup
193 * radix_tree_gang_lookup_slot
194 * radix_tree_gang_lookup_tag
195 * radix_tree_gang_lookup_tag_slot
196 * radix_tree_tagged
197 *
198 * The first 8 functions are able to be called locklessly, using RCU. The
199 * caller must ensure calls to these functions are made within rcu_read_lock()
200 * regions. Other readers (lock-free or otherwise) and modifications may be
201 * running concurrently.
202 *
203 * It is still required that the caller manage the synchronization and lifetimes
204 * of the items. So if RCU lock-free lookups are used, typically this would mean
205 * that the items have their own locks, or are amenable to lock-free access; and
206 * that the items are freed by RCU (or only freed after having been deleted from
207 * the radix tree *and* a synchronize_rcu() grace period).
208 *
209 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
210 * access to data items when inserting into or looking up from the radix tree)
211 *
212 * Note that the value returned by radix_tree_tag_get() may not be relied upon
213 * if only the RCU read lock is held. Functions to set/clear tags and to
214 * delete nodes running concurrently with it may affect its result such that
215 * two consecutive reads in the same locked section may return different
216 * values. If reliability is required, modification functions must also be
217 * excluded from concurrency.
218 *
219 * radix_tree_tagged is able to be called without locking or RCU.
220 */
221
222/**
223 * radix_tree_deref_slot - dereference a slot
224 * @slot: slot pointer, returned by radix_tree_lookup_slot
225 *
226 * For use with radix_tree_lookup_slot(). Caller must hold tree at least read
227 * locked across slot lookup and dereference. Not required if write lock is
228 * held (ie. items cannot be concurrently inserted).
229 *
230 * radix_tree_deref_retry must be used to confirm validity of the pointer if
231 * only the read lock is held.
232 *
233 * Return: entry stored in that slot.
234 */
235static inline void *radix_tree_deref_slot(void __rcu **slot)
236{
237 return rcu_dereference(*slot);
238}
239
240/**
241 * radix_tree_deref_slot_protected - dereference a slot with tree lock held
242 * @slot: slot pointer, returned by radix_tree_lookup_slot
243 *
244 * Similar to radix_tree_deref_slot. The caller does not hold the RCU read
245 * lock but it must hold the tree lock to prevent parallel updates.
246 *
247 * Return: entry stored in that slot.
248 */
249static inline void *radix_tree_deref_slot_protected(void __rcu **slot,
250 spinlock_t *treelock)
251{
252 return rcu_dereference_protected(*slot, lockdep_is_held(treelock));
253}
254
255/**
256 * radix_tree_deref_retry - check radix_tree_deref_slot
257 * @arg: pointer returned by radix_tree_deref_slot
258 * Returns: 0 if retry is not required, otherwise retry is required
259 *
260 * radix_tree_deref_retry must be used with radix_tree_deref_slot.
261 */
262static inline int radix_tree_deref_retry(void *arg)
263{
264 return unlikely(radix_tree_is_internal_node(arg));
265}
266
267/**
268 * radix_tree_exceptional_entry - radix_tree_deref_slot gave exceptional entry?
269 * @arg: value returned by radix_tree_deref_slot
270 * Returns: 0 if well-aligned pointer, non-0 if exceptional entry.
271 */
272static inline int radix_tree_exceptional_entry(void *arg)
273{
274 /* Not unlikely because radix_tree_exception often tested first */
275 return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY;
276}
277
278/**
279 * radix_tree_exception - radix_tree_deref_slot returned either exception?
280 * @arg: value returned by radix_tree_deref_slot
281 * Returns: 0 if well-aligned pointer, non-0 if either kind of exception.
282 */
283static inline int radix_tree_exception(void *arg)
284{
285 return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK);
286}
287
288int __radix_tree_create(struct radix_tree_root *, unsigned long index,
289 unsigned order, struct radix_tree_node **nodep,
290 void __rcu ***slotp);
291int __radix_tree_insert(struct radix_tree_root *, unsigned long index,
292 unsigned order, void *);
293static inline int radix_tree_insert(struct radix_tree_root *root,
294 unsigned long index, void *entry)
295{
296 return __radix_tree_insert(root, index, 0, entry);
297}
298void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index,
299 struct radix_tree_node **nodep, void __rcu ***slotp);
300void *radix_tree_lookup(const struct radix_tree_root *, unsigned long);
301void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *,
302 unsigned long index);
303typedef void (*radix_tree_update_node_t)(struct radix_tree_node *);
304void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *,
305 void __rcu **slot, void *entry,
306 radix_tree_update_node_t update_node);
307void radix_tree_iter_replace(struct radix_tree_root *,
308 const struct radix_tree_iter *, void __rcu **slot, void *entry);
309void radix_tree_replace_slot(struct radix_tree_root *,
310 void __rcu **slot, void *entry);
311void __radix_tree_delete_node(struct radix_tree_root *,
312 struct radix_tree_node *,
313 radix_tree_update_node_t update_node);
314void radix_tree_iter_delete(struct radix_tree_root *,
315 struct radix_tree_iter *iter, void __rcu **slot);
316void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *);
317void *radix_tree_delete(struct radix_tree_root *, unsigned long);
318void radix_tree_clear_tags(struct radix_tree_root *, struct radix_tree_node *,
319 void __rcu **slot);
320unsigned int radix_tree_gang_lookup(const struct radix_tree_root *,
321 void **results, unsigned long first_index,
322 unsigned int max_items);
323unsigned int radix_tree_gang_lookup_slot(const struct radix_tree_root *,
324 void __rcu ***results, unsigned long *indices,
325 unsigned long first_index, unsigned int max_items);
326int radix_tree_preload(gfp_t gfp_mask);
327int radix_tree_maybe_preload(gfp_t gfp_mask);
328int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order);
329void radix_tree_init(void);
330void *radix_tree_tag_set(struct radix_tree_root *,
331 unsigned long index, unsigned int tag);
332void *radix_tree_tag_clear(struct radix_tree_root *,
333 unsigned long index, unsigned int tag);
334int radix_tree_tag_get(const struct radix_tree_root *,
335 unsigned long index, unsigned int tag);
336void radix_tree_iter_tag_set(struct radix_tree_root *,
337 const struct radix_tree_iter *iter, unsigned int tag);
338void radix_tree_iter_tag_clear(struct radix_tree_root *,
339 const struct radix_tree_iter *iter, unsigned int tag);
340unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *,
341 void **results, unsigned long first_index,
342 unsigned int max_items, unsigned int tag);
343unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *,
344 void __rcu ***results, unsigned long first_index,
345 unsigned int max_items, unsigned int tag);
346int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag);
347
348static inline void radix_tree_preload_end(void)
349{
350 preempt_enable();
351}
352
353int radix_tree_split_preload(unsigned old_order, unsigned new_order, gfp_t);
354int radix_tree_split(struct radix_tree_root *, unsigned long index,
355 unsigned new_order);
356int radix_tree_join(struct radix_tree_root *, unsigned long index,
357 unsigned new_order, void *);
358
359void __rcu **idr_get_free(struct radix_tree_root *root,
360 struct radix_tree_iter *iter, gfp_t gfp,
361 unsigned long max);
362
363enum {
364 RADIX_TREE_ITER_TAG_MASK = 0x0f, /* tag index in lower nybble */
365 RADIX_TREE_ITER_TAGGED = 0x10, /* lookup tagged slots */
366 RADIX_TREE_ITER_CONTIG = 0x20, /* stop at first hole */
367};
368
369/**
370 * radix_tree_iter_init - initialize radix tree iterator
371 *
372 * @iter: pointer to iterator state
373 * @start: iteration starting index
374 * Returns: NULL
375 */
376static __always_inline void __rcu **
377radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
378{
379 /*
380 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
381 * in the case of a successful tagged chunk lookup. If the lookup was
382 * unsuccessful or non-tagged then nobody cares about ->tags.
383 *
384 * Set index to zero to bypass next_index overflow protection.
385 * See the comment in radix_tree_next_chunk() for details.
386 */
387 iter->index = 0;
388 iter->next_index = start;
389 return NULL;
390}
391
392/**
393 * radix_tree_next_chunk - find next chunk of slots for iteration
394 *
395 * @root: radix tree root
396 * @iter: iterator state
397 * @flags: RADIX_TREE_ITER_* flags and tag index
398 * Returns: pointer to chunk first slot, or NULL if there no more left
399 *
400 * This function looks up the next chunk in the radix tree starting from
401 * @iter->next_index. It returns a pointer to the chunk's first slot.
402 * Also it fills @iter with data about chunk: position in the tree (index),
403 * its end (next_index), and constructs a bit mask for tagged iterating (tags).
404 */
405void __rcu **radix_tree_next_chunk(const struct radix_tree_root *,
406 struct radix_tree_iter *iter, unsigned flags);
407
408/**
409 * radix_tree_iter_lookup - look up an index in the radix tree
410 * @root: radix tree root
411 * @iter: iterator state
412 * @index: key to look up
413 *
414 * If @index is present in the radix tree, this function returns the slot
415 * containing it and updates @iter to describe the entry. If @index is not
416 * present, it returns NULL.
417 */
418static inline void __rcu **
419radix_tree_iter_lookup(const struct radix_tree_root *root,
420 struct radix_tree_iter *iter, unsigned long index)
421{
422 radix_tree_iter_init(iter, index);
423 return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG);
424}
425
426/**
427 * radix_tree_iter_find - find a present entry
428 * @root: radix tree root
429 * @iter: iterator state
430 * @index: start location
431 *
432 * This function returns the slot containing the entry with the lowest index
433 * which is at least @index. If @index is larger than any present entry, this
434 * function returns NULL. The @iter is updated to describe the entry found.
435 */
436static inline void __rcu **
437radix_tree_iter_find(const struct radix_tree_root *root,
438 struct radix_tree_iter *iter, unsigned long index)
439{
440 radix_tree_iter_init(iter, index);
441 return radix_tree_next_chunk(root, iter, 0);
442}
443
444/**
445 * radix_tree_iter_retry - retry this chunk of the iteration
446 * @iter: iterator state
447 *
448 * If we iterate over a tree protected only by the RCU lock, a race
449 * against deletion or creation may result in seeing a slot for which
450 * radix_tree_deref_retry() returns true. If so, call this function
451 * and continue the iteration.
452 */
453static inline __must_check
454void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter)
455{
456 iter->next_index = iter->index;
457 iter->tags = 0;
458 return NULL;
459}
460
461static inline unsigned long
462__radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots)
463{
464 return iter->index + (slots << iter_shift(iter));
465}
466
467/**
468 * radix_tree_iter_resume - resume iterating when the chunk may be invalid
469 * @slot: pointer to current slot
470 * @iter: iterator state
471 * Returns: New slot pointer
472 *
473 * If the iterator needs to release then reacquire a lock, the chunk may
474 * have been invalidated by an insertion or deletion. Call this function
475 * before releasing the lock to continue the iteration from the next index.
476 */
477void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot,
478 struct radix_tree_iter *iter);
479
480/**
481 * radix_tree_chunk_size - get current chunk size
482 *
483 * @iter: pointer to radix tree iterator
484 * Returns: current chunk size
485 */
486static __always_inline long
487radix_tree_chunk_size(struct radix_tree_iter *iter)
488{
489 return (iter->next_index - iter->index) >> iter_shift(iter);
490}
491
492#ifdef CONFIG_RADIX_TREE_MULTIORDER
493void __rcu **__radix_tree_next_slot(void __rcu **slot,
494 struct radix_tree_iter *iter, unsigned flags);
495#else
496/* Can't happen without sibling entries, but the compiler can't tell that */
497static inline void __rcu **__radix_tree_next_slot(void __rcu **slot,
498 struct radix_tree_iter *iter, unsigned flags)
499{
500 return slot;
501}
502#endif
503
504/**
505 * radix_tree_next_slot - find next slot in chunk
506 *
507 * @slot: pointer to current slot
508 * @iter: pointer to interator state
509 * @flags: RADIX_TREE_ITER_*, should be constant
510 * Returns: pointer to next slot, or NULL if there no more left
511 *
512 * This function updates @iter->index in the case of a successful lookup.
513 * For tagged lookup it also eats @iter->tags.
514 *
515 * There are several cases where 'slot' can be passed in as NULL to this
516 * function. These cases result from the use of radix_tree_iter_resume() or
517 * radix_tree_iter_retry(). In these cases we don't end up dereferencing
518 * 'slot' because either:
519 * a) we are doing tagged iteration and iter->tags has been set to 0, or
520 * b) we are doing non-tagged iteration, and iter->index and iter->next_index
521 * have been set up so that radix_tree_chunk_size() returns 1 or 0.
522 */
523static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot,
524 struct radix_tree_iter *iter, unsigned flags)
525{
526 if (flags & RADIX_TREE_ITER_TAGGED) {
527 iter->tags >>= 1;
528 if (unlikely(!iter->tags))
529 return NULL;
530 if (likely(iter->tags & 1ul)) {
531 iter->index = __radix_tree_iter_add(iter, 1);
532 slot++;
533 goto found;
534 }
535 if (!(flags & RADIX_TREE_ITER_CONTIG)) {
536 unsigned offset = __ffs(iter->tags);
537
538 iter->tags >>= offset++;
539 iter->index = __radix_tree_iter_add(iter, offset);
540 slot += offset;
541 goto found;
542 }
543 } else {
544 long count = radix_tree_chunk_size(iter);
545
546 while (--count > 0) {
547 slot++;
548 iter->index = __radix_tree_iter_add(iter, 1);
549
550 if (likely(*slot))
551 goto found;
552 if (flags & RADIX_TREE_ITER_CONTIG) {
553 /* forbid switching to the next chunk */
554 iter->next_index = 0;
555 break;
556 }
557 }
558 }
559 return NULL;
560
561 found:
562 if (unlikely(radix_tree_is_internal_node(rcu_dereference_raw(*slot))))
563 return __radix_tree_next_slot(slot, iter, flags);
564 return slot;
565}
566
567/**
568 * radix_tree_for_each_slot - iterate over non-empty slots
569 *
570 * @slot: the void** variable for pointer to slot
571 * @root: the struct radix_tree_root pointer
572 * @iter: the struct radix_tree_iter pointer
573 * @start: iteration starting index
574 *
575 * @slot points to radix tree slot, @iter->index contains its index.
576 */
577#define radix_tree_for_each_slot(slot, root, iter, start) \
578 for (slot = radix_tree_iter_init(iter, start) ; \
579 slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \
580 slot = radix_tree_next_slot(slot, iter, 0))
581
582/**
583 * radix_tree_for_each_contig - iterate over contiguous slots
584 *
585 * @slot: the void** variable for pointer to slot
586 * @root: the struct radix_tree_root pointer
587 * @iter: the struct radix_tree_iter pointer
588 * @start: iteration starting index
589 *
590 * @slot points to radix tree slot, @iter->index contains its index.
591 */
592#define radix_tree_for_each_contig(slot, root, iter, start) \
593 for (slot = radix_tree_iter_init(iter, start) ; \
594 slot || (slot = radix_tree_next_chunk(root, iter, \
595 RADIX_TREE_ITER_CONTIG)) ; \
596 slot = radix_tree_next_slot(slot, iter, \
597 RADIX_TREE_ITER_CONTIG))
598
599/**
600 * radix_tree_for_each_tagged - iterate over tagged slots
601 *
602 * @slot: the void** variable for pointer to slot
603 * @root: the struct radix_tree_root pointer
604 * @iter: the struct radix_tree_iter pointer
605 * @start: iteration starting index
606 * @tag: tag index
607 *
608 * @slot points to radix tree slot, @iter->index contains its index.
609 */
610#define radix_tree_for_each_tagged(slot, root, iter, start, tag) \
611 for (slot = radix_tree_iter_init(iter, start) ; \
612 slot || (slot = radix_tree_next_chunk(root, iter, \
613 RADIX_TREE_ITER_TAGGED | tag)) ; \
614 slot = radix_tree_next_slot(slot, iter, \
615 RADIX_TREE_ITER_TAGGED | tag))
616
617#endif /* _LINUX_RADIX_TREE_H */