at v4.16 39 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18#include <uapi/linux/bpf_perf_event.h> 19 20/* 21 * Kernel-internal data types and definitions: 22 */ 23 24#ifdef CONFIG_PERF_EVENTS 25# include <asm/perf_event.h> 26# include <asm/local64.h> 27#endif 28 29struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33}; 34 35#ifdef CONFIG_HAVE_HW_BREAKPOINT 36#include <asm/hw_breakpoint.h> 37#endif 38 39#include <linux/list.h> 40#include <linux/mutex.h> 41#include <linux/rculist.h> 42#include <linux/rcupdate.h> 43#include <linux/spinlock.h> 44#include <linux/hrtimer.h> 45#include <linux/fs.h> 46#include <linux/pid_namespace.h> 47#include <linux/workqueue.h> 48#include <linux/ftrace.h> 49#include <linux/cpu.h> 50#include <linux/irq_work.h> 51#include <linux/static_key.h> 52#include <linux/jump_label_ratelimit.h> 53#include <linux/atomic.h> 54#include <linux/sysfs.h> 55#include <linux/perf_regs.h> 56#include <linux/workqueue.h> 57#include <linux/cgroup.h> 58#include <asm/local.h> 59 60struct perf_callchain_entry { 61 __u64 nr; 62 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 63}; 64 65struct perf_callchain_entry_ctx { 66 struct perf_callchain_entry *entry; 67 u32 max_stack; 68 u32 nr; 69 short contexts; 70 bool contexts_maxed; 71}; 72 73typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 74 unsigned long off, unsigned long len); 75 76struct perf_raw_frag { 77 union { 78 struct perf_raw_frag *next; 79 unsigned long pad; 80 }; 81 perf_copy_f copy; 82 void *data; 83 u32 size; 84} __packed; 85 86struct perf_raw_record { 87 struct perf_raw_frag frag; 88 u32 size; 89}; 90 91/* 92 * branch stack layout: 93 * nr: number of taken branches stored in entries[] 94 * 95 * Note that nr can vary from sample to sample 96 * branches (to, from) are stored from most recent 97 * to least recent, i.e., entries[0] contains the most 98 * recent branch. 99 */ 100struct perf_branch_stack { 101 __u64 nr; 102 struct perf_branch_entry entries[0]; 103}; 104 105struct task_struct; 106 107/* 108 * extra PMU register associated with an event 109 */ 110struct hw_perf_event_extra { 111 u64 config; /* register value */ 112 unsigned int reg; /* register address or index */ 113 int alloc; /* extra register already allocated */ 114 int idx; /* index in shared_regs->regs[] */ 115}; 116 117/** 118 * struct hw_perf_event - performance event hardware details: 119 */ 120struct hw_perf_event { 121#ifdef CONFIG_PERF_EVENTS 122 union { 123 struct { /* hardware */ 124 u64 config; 125 u64 last_tag; 126 unsigned long config_base; 127 unsigned long event_base; 128 int event_base_rdpmc; 129 int idx; 130 int last_cpu; 131 int flags; 132 133 struct hw_perf_event_extra extra_reg; 134 struct hw_perf_event_extra branch_reg; 135 }; 136 struct { /* software */ 137 struct hrtimer hrtimer; 138 }; 139 struct { /* tracepoint */ 140 /* for tp_event->class */ 141 struct list_head tp_list; 142 }; 143 struct { /* amd_power */ 144 u64 pwr_acc; 145 u64 ptsc; 146 }; 147#ifdef CONFIG_HAVE_HW_BREAKPOINT 148 struct { /* breakpoint */ 149 /* 150 * Crufty hack to avoid the chicken and egg 151 * problem hw_breakpoint has with context 152 * creation and event initalization. 153 */ 154 struct arch_hw_breakpoint info; 155 struct list_head bp_list; 156 }; 157#endif 158 struct { /* amd_iommu */ 159 u8 iommu_bank; 160 u8 iommu_cntr; 161 u16 padding; 162 u64 conf; 163 u64 conf1; 164 }; 165 }; 166 /* 167 * If the event is a per task event, this will point to the task in 168 * question. See the comment in perf_event_alloc(). 169 */ 170 struct task_struct *target; 171 172 /* 173 * PMU would store hardware filter configuration 174 * here. 175 */ 176 void *addr_filters; 177 178 /* Last sync'ed generation of filters */ 179 unsigned long addr_filters_gen; 180 181/* 182 * hw_perf_event::state flags; used to track the PERF_EF_* state. 183 */ 184#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 185#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 186#define PERF_HES_ARCH 0x04 187 188 int state; 189 190 /* 191 * The last observed hardware counter value, updated with a 192 * local64_cmpxchg() such that pmu::read() can be called nested. 193 */ 194 local64_t prev_count; 195 196 /* 197 * The period to start the next sample with. 198 */ 199 u64 sample_period; 200 201 /* 202 * The period we started this sample with. 203 */ 204 u64 last_period; 205 206 /* 207 * However much is left of the current period; note that this is 208 * a full 64bit value and allows for generation of periods longer 209 * than hardware might allow. 210 */ 211 local64_t period_left; 212 213 /* 214 * State for throttling the event, see __perf_event_overflow() and 215 * perf_adjust_freq_unthr_context(). 216 */ 217 u64 interrupts_seq; 218 u64 interrupts; 219 220 /* 221 * State for freq target events, see __perf_event_overflow() and 222 * perf_adjust_freq_unthr_context(). 223 */ 224 u64 freq_time_stamp; 225 u64 freq_count_stamp; 226#endif 227}; 228 229struct perf_event; 230 231/* 232 * Common implementation detail of pmu::{start,commit,cancel}_txn 233 */ 234#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 235#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 236 237/** 238 * pmu::capabilities flags 239 */ 240#define PERF_PMU_CAP_NO_INTERRUPT 0x01 241#define PERF_PMU_CAP_NO_NMI 0x02 242#define PERF_PMU_CAP_AUX_NO_SG 0x04 243#define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 244#define PERF_PMU_CAP_EXCLUSIVE 0x10 245#define PERF_PMU_CAP_ITRACE 0x20 246#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 247 248/** 249 * struct pmu - generic performance monitoring unit 250 */ 251struct pmu { 252 struct list_head entry; 253 254 struct module *module; 255 struct device *dev; 256 const struct attribute_group **attr_groups; 257 const char *name; 258 int type; 259 260 /* 261 * various common per-pmu feature flags 262 */ 263 int capabilities; 264 265 int * __percpu pmu_disable_count; 266 struct perf_cpu_context * __percpu pmu_cpu_context; 267 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 268 int task_ctx_nr; 269 int hrtimer_interval_ms; 270 271 /* number of address filters this PMU can do */ 272 unsigned int nr_addr_filters; 273 274 /* 275 * Fully disable/enable this PMU, can be used to protect from the PMI 276 * as well as for lazy/batch writing of the MSRs. 277 */ 278 void (*pmu_enable) (struct pmu *pmu); /* optional */ 279 void (*pmu_disable) (struct pmu *pmu); /* optional */ 280 281 /* 282 * Try and initialize the event for this PMU. 283 * 284 * Returns: 285 * -ENOENT -- @event is not for this PMU 286 * 287 * -ENODEV -- @event is for this PMU but PMU not present 288 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 289 * -EINVAL -- @event is for this PMU but @event is not valid 290 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 291 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 292 * 293 * 0 -- @event is for this PMU and valid 294 * 295 * Other error return values are allowed. 296 */ 297 int (*event_init) (struct perf_event *event); 298 299 /* 300 * Notification that the event was mapped or unmapped. Called 301 * in the context of the mapping task. 302 */ 303 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 304 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 305 306 /* 307 * Flags for ->add()/->del()/ ->start()/->stop(). There are 308 * matching hw_perf_event::state flags. 309 */ 310#define PERF_EF_START 0x01 /* start the counter when adding */ 311#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 312#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 313 314 /* 315 * Adds/Removes a counter to/from the PMU, can be done inside a 316 * transaction, see the ->*_txn() methods. 317 * 318 * The add/del callbacks will reserve all hardware resources required 319 * to service the event, this includes any counter constraint 320 * scheduling etc. 321 * 322 * Called with IRQs disabled and the PMU disabled on the CPU the event 323 * is on. 324 * 325 * ->add() called without PERF_EF_START should result in the same state 326 * as ->add() followed by ->stop(). 327 * 328 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 329 * ->stop() that must deal with already being stopped without 330 * PERF_EF_UPDATE. 331 */ 332 int (*add) (struct perf_event *event, int flags); 333 void (*del) (struct perf_event *event, int flags); 334 335 /* 336 * Starts/Stops a counter present on the PMU. 337 * 338 * The PMI handler should stop the counter when perf_event_overflow() 339 * returns !0. ->start() will be used to continue. 340 * 341 * Also used to change the sample period. 342 * 343 * Called with IRQs disabled and the PMU disabled on the CPU the event 344 * is on -- will be called from NMI context with the PMU generates 345 * NMIs. 346 * 347 * ->stop() with PERF_EF_UPDATE will read the counter and update 348 * period/count values like ->read() would. 349 * 350 * ->start() with PERF_EF_RELOAD will reprogram the the counter 351 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 352 */ 353 void (*start) (struct perf_event *event, int flags); 354 void (*stop) (struct perf_event *event, int flags); 355 356 /* 357 * Updates the counter value of the event. 358 * 359 * For sampling capable PMUs this will also update the software period 360 * hw_perf_event::period_left field. 361 */ 362 void (*read) (struct perf_event *event); 363 364 /* 365 * Group events scheduling is treated as a transaction, add 366 * group events as a whole and perform one schedulability test. 367 * If the test fails, roll back the whole group 368 * 369 * Start the transaction, after this ->add() doesn't need to 370 * do schedulability tests. 371 * 372 * Optional. 373 */ 374 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 375 /* 376 * If ->start_txn() disabled the ->add() schedulability test 377 * then ->commit_txn() is required to perform one. On success 378 * the transaction is closed. On error the transaction is kept 379 * open until ->cancel_txn() is called. 380 * 381 * Optional. 382 */ 383 int (*commit_txn) (struct pmu *pmu); 384 /* 385 * Will cancel the transaction, assumes ->del() is called 386 * for each successful ->add() during the transaction. 387 * 388 * Optional. 389 */ 390 void (*cancel_txn) (struct pmu *pmu); 391 392 /* 393 * Will return the value for perf_event_mmap_page::index for this event, 394 * if no implementation is provided it will default to: event->hw.idx + 1. 395 */ 396 int (*event_idx) (struct perf_event *event); /*optional */ 397 398 /* 399 * context-switches callback 400 */ 401 void (*sched_task) (struct perf_event_context *ctx, 402 bool sched_in); 403 /* 404 * PMU specific data size 405 */ 406 size_t task_ctx_size; 407 408 409 /* 410 * Set up pmu-private data structures for an AUX area 411 */ 412 void *(*setup_aux) (int cpu, void **pages, 413 int nr_pages, bool overwrite); 414 /* optional */ 415 416 /* 417 * Free pmu-private AUX data structures 418 */ 419 void (*free_aux) (void *aux); /* optional */ 420 421 /* 422 * Validate address range filters: make sure the HW supports the 423 * requested configuration and number of filters; return 0 if the 424 * supplied filters are valid, -errno otherwise. 425 * 426 * Runs in the context of the ioctl()ing process and is not serialized 427 * with the rest of the PMU callbacks. 428 */ 429 int (*addr_filters_validate) (struct list_head *filters); 430 /* optional */ 431 432 /* 433 * Synchronize address range filter configuration: 434 * translate hw-agnostic filters into hardware configuration in 435 * event::hw::addr_filters. 436 * 437 * Runs as a part of filter sync sequence that is done in ->start() 438 * callback by calling perf_event_addr_filters_sync(). 439 * 440 * May (and should) traverse event::addr_filters::list, for which its 441 * caller provides necessary serialization. 442 */ 443 void (*addr_filters_sync) (struct perf_event *event); 444 /* optional */ 445 446 /* 447 * Filter events for PMU-specific reasons. 448 */ 449 int (*filter_match) (struct perf_event *event); /* optional */ 450}; 451 452/** 453 * struct perf_addr_filter - address range filter definition 454 * @entry: event's filter list linkage 455 * @inode: object file's inode for file-based filters 456 * @offset: filter range offset 457 * @size: filter range size 458 * @range: 1: range, 0: address 459 * @filter: 1: filter/start, 0: stop 460 * 461 * This is a hardware-agnostic filter configuration as specified by the user. 462 */ 463struct perf_addr_filter { 464 struct list_head entry; 465 struct inode *inode; 466 unsigned long offset; 467 unsigned long size; 468 unsigned int range : 1, 469 filter : 1; 470}; 471 472/** 473 * struct perf_addr_filters_head - container for address range filters 474 * @list: list of filters for this event 475 * @lock: spinlock that serializes accesses to the @list and event's 476 * (and its children's) filter generations. 477 * @nr_file_filters: number of file-based filters 478 * 479 * A child event will use parent's @list (and therefore @lock), so they are 480 * bundled together; see perf_event_addr_filters(). 481 */ 482struct perf_addr_filters_head { 483 struct list_head list; 484 raw_spinlock_t lock; 485 unsigned int nr_file_filters; 486}; 487 488/** 489 * enum perf_event_state - the states of a event 490 */ 491enum perf_event_state { 492 PERF_EVENT_STATE_DEAD = -4, 493 PERF_EVENT_STATE_EXIT = -3, 494 PERF_EVENT_STATE_ERROR = -2, 495 PERF_EVENT_STATE_OFF = -1, 496 PERF_EVENT_STATE_INACTIVE = 0, 497 PERF_EVENT_STATE_ACTIVE = 1, 498}; 499 500struct file; 501struct perf_sample_data; 502 503typedef void (*perf_overflow_handler_t)(struct perf_event *, 504 struct perf_sample_data *, 505 struct pt_regs *regs); 506 507/* 508 * Event capabilities. For event_caps and groups caps. 509 * 510 * PERF_EV_CAP_SOFTWARE: Is a software event. 511 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 512 * from any CPU in the package where it is active. 513 */ 514#define PERF_EV_CAP_SOFTWARE BIT(0) 515#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 516 517#define SWEVENT_HLIST_BITS 8 518#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 519 520struct swevent_hlist { 521 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 522 struct rcu_head rcu_head; 523}; 524 525#define PERF_ATTACH_CONTEXT 0x01 526#define PERF_ATTACH_GROUP 0x02 527#define PERF_ATTACH_TASK 0x04 528#define PERF_ATTACH_TASK_DATA 0x08 529#define PERF_ATTACH_ITRACE 0x10 530 531struct perf_cgroup; 532struct ring_buffer; 533 534struct pmu_event_list { 535 raw_spinlock_t lock; 536 struct list_head list; 537}; 538 539/** 540 * struct perf_event - performance event kernel representation: 541 */ 542struct perf_event { 543#ifdef CONFIG_PERF_EVENTS 544 /* 545 * entry onto perf_event_context::event_list; 546 * modifications require ctx->lock 547 * RCU safe iterations. 548 */ 549 struct list_head event_entry; 550 551 /* 552 * XXX: group_entry and sibling_list should be mutually exclusive; 553 * either you're a sibling on a group, or you're the group leader. 554 * Rework the code to always use the same list element. 555 * 556 * Locked for modification by both ctx->mutex and ctx->lock; holding 557 * either sufficies for read. 558 */ 559 struct list_head group_entry; 560 struct list_head sibling_list; 561 562 /* 563 * We need storage to track the entries in perf_pmu_migrate_context; we 564 * cannot use the event_entry because of RCU and we want to keep the 565 * group in tact which avoids us using the other two entries. 566 */ 567 struct list_head migrate_entry; 568 569 struct hlist_node hlist_entry; 570 struct list_head active_entry; 571 int nr_siblings; 572 573 /* Not serialized. Only written during event initialization. */ 574 int event_caps; 575 /* The cumulative AND of all event_caps for events in this group. */ 576 int group_caps; 577 578 struct perf_event *group_leader; 579 struct pmu *pmu; 580 void *pmu_private; 581 582 enum perf_event_state state; 583 unsigned int attach_state; 584 local64_t count; 585 atomic64_t child_count; 586 587 /* 588 * These are the total time in nanoseconds that the event 589 * has been enabled (i.e. eligible to run, and the task has 590 * been scheduled in, if this is a per-task event) 591 * and running (scheduled onto the CPU), respectively. 592 */ 593 u64 total_time_enabled; 594 u64 total_time_running; 595 u64 tstamp; 596 597 /* 598 * timestamp shadows the actual context timing but it can 599 * be safely used in NMI interrupt context. It reflects the 600 * context time as it was when the event was last scheduled in. 601 * 602 * ctx_time already accounts for ctx->timestamp. Therefore to 603 * compute ctx_time for a sample, simply add perf_clock(). 604 */ 605 u64 shadow_ctx_time; 606 607 struct perf_event_attr attr; 608 u16 header_size; 609 u16 id_header_size; 610 u16 read_size; 611 struct hw_perf_event hw; 612 613 struct perf_event_context *ctx; 614 atomic_long_t refcount; 615 616 /* 617 * These accumulate total time (in nanoseconds) that children 618 * events have been enabled and running, respectively. 619 */ 620 atomic64_t child_total_time_enabled; 621 atomic64_t child_total_time_running; 622 623 /* 624 * Protect attach/detach and child_list: 625 */ 626 struct mutex child_mutex; 627 struct list_head child_list; 628 struct perf_event *parent; 629 630 int oncpu; 631 int cpu; 632 633 struct list_head owner_entry; 634 struct task_struct *owner; 635 636 /* mmap bits */ 637 struct mutex mmap_mutex; 638 atomic_t mmap_count; 639 640 struct ring_buffer *rb; 641 struct list_head rb_entry; 642 unsigned long rcu_batches; 643 int rcu_pending; 644 645 /* poll related */ 646 wait_queue_head_t waitq; 647 struct fasync_struct *fasync; 648 649 /* delayed work for NMIs and such */ 650 int pending_wakeup; 651 int pending_kill; 652 int pending_disable; 653 struct irq_work pending; 654 655 atomic_t event_limit; 656 657 /* address range filters */ 658 struct perf_addr_filters_head addr_filters; 659 /* vma address array for file-based filders */ 660 unsigned long *addr_filters_offs; 661 unsigned long addr_filters_gen; 662 663 void (*destroy)(struct perf_event *); 664 struct rcu_head rcu_head; 665 666 struct pid_namespace *ns; 667 u64 id; 668 669 u64 (*clock)(void); 670 perf_overflow_handler_t overflow_handler; 671 void *overflow_handler_context; 672#ifdef CONFIG_BPF_SYSCALL 673 perf_overflow_handler_t orig_overflow_handler; 674 struct bpf_prog *prog; 675#endif 676 677#ifdef CONFIG_EVENT_TRACING 678 struct trace_event_call *tp_event; 679 struct event_filter *filter; 680#ifdef CONFIG_FUNCTION_TRACER 681 struct ftrace_ops ftrace_ops; 682#endif 683#endif 684 685#ifdef CONFIG_CGROUP_PERF 686 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 687#endif 688 689 struct list_head sb_list; 690#endif /* CONFIG_PERF_EVENTS */ 691}; 692 693/** 694 * struct perf_event_context - event context structure 695 * 696 * Used as a container for task events and CPU events as well: 697 */ 698struct perf_event_context { 699 struct pmu *pmu; 700 /* 701 * Protect the states of the events in the list, 702 * nr_active, and the list: 703 */ 704 raw_spinlock_t lock; 705 /* 706 * Protect the list of events. Locking either mutex or lock 707 * is sufficient to ensure the list doesn't change; to change 708 * the list you need to lock both the mutex and the spinlock. 709 */ 710 struct mutex mutex; 711 712 struct list_head active_ctx_list; 713 struct list_head pinned_groups; 714 struct list_head flexible_groups; 715 struct list_head event_list; 716 int nr_events; 717 int nr_active; 718 int is_active; 719 int nr_stat; 720 int nr_freq; 721 int rotate_disable; 722 atomic_t refcount; 723 struct task_struct *task; 724 725 /* 726 * Context clock, runs when context enabled. 727 */ 728 u64 time; 729 u64 timestamp; 730 731 /* 732 * These fields let us detect when two contexts have both 733 * been cloned (inherited) from a common ancestor. 734 */ 735 struct perf_event_context *parent_ctx; 736 u64 parent_gen; 737 u64 generation; 738 int pin_count; 739#ifdef CONFIG_CGROUP_PERF 740 int nr_cgroups; /* cgroup evts */ 741#endif 742 void *task_ctx_data; /* pmu specific data */ 743 struct rcu_head rcu_head; 744}; 745 746/* 747 * Number of contexts where an event can trigger: 748 * task, softirq, hardirq, nmi. 749 */ 750#define PERF_NR_CONTEXTS 4 751 752/** 753 * struct perf_event_cpu_context - per cpu event context structure 754 */ 755struct perf_cpu_context { 756 struct perf_event_context ctx; 757 struct perf_event_context *task_ctx; 758 int active_oncpu; 759 int exclusive; 760 761 raw_spinlock_t hrtimer_lock; 762 struct hrtimer hrtimer; 763 ktime_t hrtimer_interval; 764 unsigned int hrtimer_active; 765 766#ifdef CONFIG_CGROUP_PERF 767 struct perf_cgroup *cgrp; 768 struct list_head cgrp_cpuctx_entry; 769#endif 770 771 struct list_head sched_cb_entry; 772 int sched_cb_usage; 773 774 int online; 775}; 776 777struct perf_output_handle { 778 struct perf_event *event; 779 struct ring_buffer *rb; 780 unsigned long wakeup; 781 unsigned long size; 782 u64 aux_flags; 783 union { 784 void *addr; 785 unsigned long head; 786 }; 787 int page; 788}; 789 790struct bpf_perf_event_data_kern { 791 bpf_user_pt_regs_t *regs; 792 struct perf_sample_data *data; 793 struct perf_event *event; 794}; 795 796#ifdef CONFIG_CGROUP_PERF 797 798/* 799 * perf_cgroup_info keeps track of time_enabled for a cgroup. 800 * This is a per-cpu dynamically allocated data structure. 801 */ 802struct perf_cgroup_info { 803 u64 time; 804 u64 timestamp; 805}; 806 807struct perf_cgroup { 808 struct cgroup_subsys_state css; 809 struct perf_cgroup_info __percpu *info; 810}; 811 812/* 813 * Must ensure cgroup is pinned (css_get) before calling 814 * this function. In other words, we cannot call this function 815 * if there is no cgroup event for the current CPU context. 816 */ 817static inline struct perf_cgroup * 818perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 819{ 820 return container_of(task_css_check(task, perf_event_cgrp_id, 821 ctx ? lockdep_is_held(&ctx->lock) 822 : true), 823 struct perf_cgroup, css); 824} 825#endif /* CONFIG_CGROUP_PERF */ 826 827#ifdef CONFIG_PERF_EVENTS 828 829extern void *perf_aux_output_begin(struct perf_output_handle *handle, 830 struct perf_event *event); 831extern void perf_aux_output_end(struct perf_output_handle *handle, 832 unsigned long size); 833extern int perf_aux_output_skip(struct perf_output_handle *handle, 834 unsigned long size); 835extern void *perf_get_aux(struct perf_output_handle *handle); 836extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 837extern void perf_event_itrace_started(struct perf_event *event); 838 839extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 840extern void perf_pmu_unregister(struct pmu *pmu); 841 842extern int perf_num_counters(void); 843extern const char *perf_pmu_name(void); 844extern void __perf_event_task_sched_in(struct task_struct *prev, 845 struct task_struct *task); 846extern void __perf_event_task_sched_out(struct task_struct *prev, 847 struct task_struct *next); 848extern int perf_event_init_task(struct task_struct *child); 849extern void perf_event_exit_task(struct task_struct *child); 850extern void perf_event_free_task(struct task_struct *task); 851extern void perf_event_delayed_put(struct task_struct *task); 852extern struct file *perf_event_get(unsigned int fd); 853extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 854extern void perf_event_print_debug(void); 855extern void perf_pmu_disable(struct pmu *pmu); 856extern void perf_pmu_enable(struct pmu *pmu); 857extern void perf_sched_cb_dec(struct pmu *pmu); 858extern void perf_sched_cb_inc(struct pmu *pmu); 859extern int perf_event_task_disable(void); 860extern int perf_event_task_enable(void); 861extern int perf_event_refresh(struct perf_event *event, int refresh); 862extern void perf_event_update_userpage(struct perf_event *event); 863extern int perf_event_release_kernel(struct perf_event *event); 864extern struct perf_event * 865perf_event_create_kernel_counter(struct perf_event_attr *attr, 866 int cpu, 867 struct task_struct *task, 868 perf_overflow_handler_t callback, 869 void *context); 870extern void perf_pmu_migrate_context(struct pmu *pmu, 871 int src_cpu, int dst_cpu); 872int perf_event_read_local(struct perf_event *event, u64 *value, 873 u64 *enabled, u64 *running); 874extern u64 perf_event_read_value(struct perf_event *event, 875 u64 *enabled, u64 *running); 876 877 878struct perf_sample_data { 879 /* 880 * Fields set by perf_sample_data_init(), group so as to 881 * minimize the cachelines touched. 882 */ 883 u64 addr; 884 struct perf_raw_record *raw; 885 struct perf_branch_stack *br_stack; 886 u64 period; 887 u64 weight; 888 u64 txn; 889 union perf_mem_data_src data_src; 890 891 /* 892 * The other fields, optionally {set,used} by 893 * perf_{prepare,output}_sample(). 894 */ 895 u64 type; 896 u64 ip; 897 struct { 898 u32 pid; 899 u32 tid; 900 } tid_entry; 901 u64 time; 902 u64 id; 903 u64 stream_id; 904 struct { 905 u32 cpu; 906 u32 reserved; 907 } cpu_entry; 908 struct perf_callchain_entry *callchain; 909 910 /* 911 * regs_user may point to task_pt_regs or to regs_user_copy, depending 912 * on arch details. 913 */ 914 struct perf_regs regs_user; 915 struct pt_regs regs_user_copy; 916 917 struct perf_regs regs_intr; 918 u64 stack_user_size; 919 920 u64 phys_addr; 921} ____cacheline_aligned; 922 923/* default value for data source */ 924#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 925 PERF_MEM_S(LVL, NA) |\ 926 PERF_MEM_S(SNOOP, NA) |\ 927 PERF_MEM_S(LOCK, NA) |\ 928 PERF_MEM_S(TLB, NA)) 929 930static inline void perf_sample_data_init(struct perf_sample_data *data, 931 u64 addr, u64 period) 932{ 933 /* remaining struct members initialized in perf_prepare_sample() */ 934 data->addr = addr; 935 data->raw = NULL; 936 data->br_stack = NULL; 937 data->period = period; 938 data->weight = 0; 939 data->data_src.val = PERF_MEM_NA; 940 data->txn = 0; 941} 942 943extern void perf_output_sample(struct perf_output_handle *handle, 944 struct perf_event_header *header, 945 struct perf_sample_data *data, 946 struct perf_event *event); 947extern void perf_prepare_sample(struct perf_event_header *header, 948 struct perf_sample_data *data, 949 struct perf_event *event, 950 struct pt_regs *regs); 951 952extern int perf_event_overflow(struct perf_event *event, 953 struct perf_sample_data *data, 954 struct pt_regs *regs); 955 956extern void perf_event_output_forward(struct perf_event *event, 957 struct perf_sample_data *data, 958 struct pt_regs *regs); 959extern void perf_event_output_backward(struct perf_event *event, 960 struct perf_sample_data *data, 961 struct pt_regs *regs); 962extern void perf_event_output(struct perf_event *event, 963 struct perf_sample_data *data, 964 struct pt_regs *regs); 965 966static inline bool 967is_default_overflow_handler(struct perf_event *event) 968{ 969 if (likely(event->overflow_handler == perf_event_output_forward)) 970 return true; 971 if (unlikely(event->overflow_handler == perf_event_output_backward)) 972 return true; 973 return false; 974} 975 976extern void 977perf_event_header__init_id(struct perf_event_header *header, 978 struct perf_sample_data *data, 979 struct perf_event *event); 980extern void 981perf_event__output_id_sample(struct perf_event *event, 982 struct perf_output_handle *handle, 983 struct perf_sample_data *sample); 984 985extern void 986perf_log_lost_samples(struct perf_event *event, u64 lost); 987 988static inline bool is_sampling_event(struct perf_event *event) 989{ 990 return event->attr.sample_period != 0; 991} 992 993/* 994 * Return 1 for a software event, 0 for a hardware event 995 */ 996static inline int is_software_event(struct perf_event *event) 997{ 998 return event->event_caps & PERF_EV_CAP_SOFTWARE; 999} 1000 1001extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1002 1003extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1004extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1005 1006#ifndef perf_arch_fetch_caller_regs 1007static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1008#endif 1009 1010/* 1011 * Take a snapshot of the regs. Skip ip and frame pointer to 1012 * the nth caller. We only need a few of the regs: 1013 * - ip for PERF_SAMPLE_IP 1014 * - cs for user_mode() tests 1015 * - bp for callchains 1016 * - eflags, for future purposes, just in case 1017 */ 1018static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1019{ 1020 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1021} 1022 1023static __always_inline void 1024perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1025{ 1026 if (static_key_false(&perf_swevent_enabled[event_id])) 1027 __perf_sw_event(event_id, nr, regs, addr); 1028} 1029 1030DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1031 1032/* 1033 * 'Special' version for the scheduler, it hard assumes no recursion, 1034 * which is guaranteed by us not actually scheduling inside other swevents 1035 * because those disable preemption. 1036 */ 1037static __always_inline void 1038perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1039{ 1040 if (static_key_false(&perf_swevent_enabled[event_id])) { 1041 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1042 1043 perf_fetch_caller_regs(regs); 1044 ___perf_sw_event(event_id, nr, regs, addr); 1045 } 1046} 1047 1048extern struct static_key_false perf_sched_events; 1049 1050static __always_inline bool 1051perf_sw_migrate_enabled(void) 1052{ 1053 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1054 return true; 1055 return false; 1056} 1057 1058static inline void perf_event_task_migrate(struct task_struct *task) 1059{ 1060 if (perf_sw_migrate_enabled()) 1061 task->sched_migrated = 1; 1062} 1063 1064static inline void perf_event_task_sched_in(struct task_struct *prev, 1065 struct task_struct *task) 1066{ 1067 if (static_branch_unlikely(&perf_sched_events)) 1068 __perf_event_task_sched_in(prev, task); 1069 1070 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1071 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1072 1073 perf_fetch_caller_regs(regs); 1074 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1075 task->sched_migrated = 0; 1076 } 1077} 1078 1079static inline void perf_event_task_sched_out(struct task_struct *prev, 1080 struct task_struct *next) 1081{ 1082 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1083 1084 if (static_branch_unlikely(&perf_sched_events)) 1085 __perf_event_task_sched_out(prev, next); 1086} 1087 1088extern void perf_event_mmap(struct vm_area_struct *vma); 1089extern struct perf_guest_info_callbacks *perf_guest_cbs; 1090extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1091extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1092 1093extern void perf_event_exec(void); 1094extern void perf_event_comm(struct task_struct *tsk, bool exec); 1095extern void perf_event_namespaces(struct task_struct *tsk); 1096extern void perf_event_fork(struct task_struct *tsk); 1097 1098/* Callchains */ 1099DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1100 1101extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1102extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1103extern struct perf_callchain_entry * 1104get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1105 u32 max_stack, bool crosstask, bool add_mark); 1106extern int get_callchain_buffers(int max_stack); 1107extern void put_callchain_buffers(void); 1108 1109extern int sysctl_perf_event_max_stack; 1110extern int sysctl_perf_event_max_contexts_per_stack; 1111 1112static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1113{ 1114 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1115 struct perf_callchain_entry *entry = ctx->entry; 1116 entry->ip[entry->nr++] = ip; 1117 ++ctx->contexts; 1118 return 0; 1119 } else { 1120 ctx->contexts_maxed = true; 1121 return -1; /* no more room, stop walking the stack */ 1122 } 1123} 1124 1125static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1126{ 1127 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1128 struct perf_callchain_entry *entry = ctx->entry; 1129 entry->ip[entry->nr++] = ip; 1130 ++ctx->nr; 1131 return 0; 1132 } else { 1133 return -1; /* no more room, stop walking the stack */ 1134 } 1135} 1136 1137extern int sysctl_perf_event_paranoid; 1138extern int sysctl_perf_event_mlock; 1139extern int sysctl_perf_event_sample_rate; 1140extern int sysctl_perf_cpu_time_max_percent; 1141 1142extern void perf_sample_event_took(u64 sample_len_ns); 1143 1144extern int perf_proc_update_handler(struct ctl_table *table, int write, 1145 void __user *buffer, size_t *lenp, 1146 loff_t *ppos); 1147extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1148 void __user *buffer, size_t *lenp, 1149 loff_t *ppos); 1150 1151int perf_event_max_stack_handler(struct ctl_table *table, int write, 1152 void __user *buffer, size_t *lenp, loff_t *ppos); 1153 1154static inline bool perf_paranoid_tracepoint_raw(void) 1155{ 1156 return sysctl_perf_event_paranoid > -1; 1157} 1158 1159static inline bool perf_paranoid_cpu(void) 1160{ 1161 return sysctl_perf_event_paranoid > 0; 1162} 1163 1164static inline bool perf_paranoid_kernel(void) 1165{ 1166 return sysctl_perf_event_paranoid > 1; 1167} 1168 1169extern void perf_event_init(void); 1170extern void perf_tp_event(u16 event_type, u64 count, void *record, 1171 int entry_size, struct pt_regs *regs, 1172 struct hlist_head *head, int rctx, 1173 struct task_struct *task); 1174extern void perf_bp_event(struct perf_event *event, void *data); 1175 1176#ifndef perf_misc_flags 1177# define perf_misc_flags(regs) \ 1178 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1179# define perf_instruction_pointer(regs) instruction_pointer(regs) 1180#endif 1181#ifndef perf_arch_bpf_user_pt_regs 1182# define perf_arch_bpf_user_pt_regs(regs) regs 1183#endif 1184 1185static inline bool has_branch_stack(struct perf_event *event) 1186{ 1187 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1188} 1189 1190static inline bool needs_branch_stack(struct perf_event *event) 1191{ 1192 return event->attr.branch_sample_type != 0; 1193} 1194 1195static inline bool has_aux(struct perf_event *event) 1196{ 1197 return event->pmu->setup_aux; 1198} 1199 1200static inline bool is_write_backward(struct perf_event *event) 1201{ 1202 return !!event->attr.write_backward; 1203} 1204 1205static inline bool has_addr_filter(struct perf_event *event) 1206{ 1207 return event->pmu->nr_addr_filters; 1208} 1209 1210/* 1211 * An inherited event uses parent's filters 1212 */ 1213static inline struct perf_addr_filters_head * 1214perf_event_addr_filters(struct perf_event *event) 1215{ 1216 struct perf_addr_filters_head *ifh = &event->addr_filters; 1217 1218 if (event->parent) 1219 ifh = &event->parent->addr_filters; 1220 1221 return ifh; 1222} 1223 1224extern void perf_event_addr_filters_sync(struct perf_event *event); 1225 1226extern int perf_output_begin(struct perf_output_handle *handle, 1227 struct perf_event *event, unsigned int size); 1228extern int perf_output_begin_forward(struct perf_output_handle *handle, 1229 struct perf_event *event, 1230 unsigned int size); 1231extern int perf_output_begin_backward(struct perf_output_handle *handle, 1232 struct perf_event *event, 1233 unsigned int size); 1234 1235extern void perf_output_end(struct perf_output_handle *handle); 1236extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1237 const void *buf, unsigned int len); 1238extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1239 unsigned int len); 1240extern int perf_swevent_get_recursion_context(void); 1241extern void perf_swevent_put_recursion_context(int rctx); 1242extern u64 perf_swevent_set_period(struct perf_event *event); 1243extern void perf_event_enable(struct perf_event *event); 1244extern void perf_event_disable(struct perf_event *event); 1245extern void perf_event_disable_local(struct perf_event *event); 1246extern void perf_event_disable_inatomic(struct perf_event *event); 1247extern void perf_event_task_tick(void); 1248extern int perf_event_account_interrupt(struct perf_event *event); 1249#else /* !CONFIG_PERF_EVENTS: */ 1250static inline void * 1251perf_aux_output_begin(struct perf_output_handle *handle, 1252 struct perf_event *event) { return NULL; } 1253static inline void 1254perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1255 { } 1256static inline int 1257perf_aux_output_skip(struct perf_output_handle *handle, 1258 unsigned long size) { return -EINVAL; } 1259static inline void * 1260perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1261static inline void 1262perf_event_task_migrate(struct task_struct *task) { } 1263static inline void 1264perf_event_task_sched_in(struct task_struct *prev, 1265 struct task_struct *task) { } 1266static inline void 1267perf_event_task_sched_out(struct task_struct *prev, 1268 struct task_struct *next) { } 1269static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1270static inline void perf_event_exit_task(struct task_struct *child) { } 1271static inline void perf_event_free_task(struct task_struct *task) { } 1272static inline void perf_event_delayed_put(struct task_struct *task) { } 1273static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1274static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1275{ 1276 return ERR_PTR(-EINVAL); 1277} 1278static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1279 u64 *enabled, u64 *running) 1280{ 1281 return -EINVAL; 1282} 1283static inline void perf_event_print_debug(void) { } 1284static inline int perf_event_task_disable(void) { return -EINVAL; } 1285static inline int perf_event_task_enable(void) { return -EINVAL; } 1286static inline int perf_event_refresh(struct perf_event *event, int refresh) 1287{ 1288 return -EINVAL; 1289} 1290 1291static inline void 1292perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1293static inline void 1294perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1295static inline void 1296perf_bp_event(struct perf_event *event, void *data) { } 1297 1298static inline int perf_register_guest_info_callbacks 1299(struct perf_guest_info_callbacks *callbacks) { return 0; } 1300static inline int perf_unregister_guest_info_callbacks 1301(struct perf_guest_info_callbacks *callbacks) { return 0; } 1302 1303static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1304static inline void perf_event_exec(void) { } 1305static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1306static inline void perf_event_namespaces(struct task_struct *tsk) { } 1307static inline void perf_event_fork(struct task_struct *tsk) { } 1308static inline void perf_event_init(void) { } 1309static inline int perf_swevent_get_recursion_context(void) { return -1; } 1310static inline void perf_swevent_put_recursion_context(int rctx) { } 1311static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1312static inline void perf_event_enable(struct perf_event *event) { } 1313static inline void perf_event_disable(struct perf_event *event) { } 1314static inline int __perf_event_disable(void *info) { return -1; } 1315static inline void perf_event_task_tick(void) { } 1316static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1317#endif 1318 1319#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1320extern void perf_restore_debug_store(void); 1321#else 1322static inline void perf_restore_debug_store(void) { } 1323#endif 1324 1325static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1326{ 1327 return frag->pad < sizeof(u64); 1328} 1329 1330#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1331 1332struct perf_pmu_events_attr { 1333 struct device_attribute attr; 1334 u64 id; 1335 const char *event_str; 1336}; 1337 1338struct perf_pmu_events_ht_attr { 1339 struct device_attribute attr; 1340 u64 id; 1341 const char *event_str_ht; 1342 const char *event_str_noht; 1343}; 1344 1345ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1346 char *page); 1347 1348#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1349static struct perf_pmu_events_attr _var = { \ 1350 .attr = __ATTR(_name, 0444, _show, NULL), \ 1351 .id = _id, \ 1352}; 1353 1354#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1355static struct perf_pmu_events_attr _var = { \ 1356 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1357 .id = 0, \ 1358 .event_str = _str, \ 1359}; 1360 1361#define PMU_FORMAT_ATTR(_name, _format) \ 1362static ssize_t \ 1363_name##_show(struct device *dev, \ 1364 struct device_attribute *attr, \ 1365 char *page) \ 1366{ \ 1367 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1368 return sprintf(page, _format "\n"); \ 1369} \ 1370 \ 1371static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1372 1373/* Performance counter hotplug functions */ 1374#ifdef CONFIG_PERF_EVENTS 1375int perf_event_init_cpu(unsigned int cpu); 1376int perf_event_exit_cpu(unsigned int cpu); 1377#else 1378#define perf_event_init_cpu NULL 1379#define perf_event_exit_cpu NULL 1380#endif 1381 1382#endif /* _LINUX_PERF_EVENT_H */