Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
16
17#include <uapi/linux/perf_event.h>
18#include <uapi/linux/bpf_perf_event.h>
19
20/*
21 * Kernel-internal data types and definitions:
22 */
23
24#ifdef CONFIG_PERF_EVENTS
25# include <asm/perf_event.h>
26# include <asm/local64.h>
27#endif
28
29struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33};
34
35#ifdef CONFIG_HAVE_HW_BREAKPOINT
36#include <asm/hw_breakpoint.h>
37#endif
38
39#include <linux/list.h>
40#include <linux/mutex.h>
41#include <linux/rculist.h>
42#include <linux/rcupdate.h>
43#include <linux/spinlock.h>
44#include <linux/hrtimer.h>
45#include <linux/fs.h>
46#include <linux/pid_namespace.h>
47#include <linux/workqueue.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/irq_work.h>
51#include <linux/static_key.h>
52#include <linux/jump_label_ratelimit.h>
53#include <linux/atomic.h>
54#include <linux/sysfs.h>
55#include <linux/perf_regs.h>
56#include <linux/workqueue.h>
57#include <linux/cgroup.h>
58#include <asm/local.h>
59
60struct perf_callchain_entry {
61 __u64 nr;
62 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
63};
64
65struct perf_callchain_entry_ctx {
66 struct perf_callchain_entry *entry;
67 u32 max_stack;
68 u32 nr;
69 short contexts;
70 bool contexts_maxed;
71};
72
73typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
74 unsigned long off, unsigned long len);
75
76struct perf_raw_frag {
77 union {
78 struct perf_raw_frag *next;
79 unsigned long pad;
80 };
81 perf_copy_f copy;
82 void *data;
83 u32 size;
84} __packed;
85
86struct perf_raw_record {
87 struct perf_raw_frag frag;
88 u32 size;
89};
90
91/*
92 * branch stack layout:
93 * nr: number of taken branches stored in entries[]
94 *
95 * Note that nr can vary from sample to sample
96 * branches (to, from) are stored from most recent
97 * to least recent, i.e., entries[0] contains the most
98 * recent branch.
99 */
100struct perf_branch_stack {
101 __u64 nr;
102 struct perf_branch_entry entries[0];
103};
104
105struct task_struct;
106
107/*
108 * extra PMU register associated with an event
109 */
110struct hw_perf_event_extra {
111 u64 config; /* register value */
112 unsigned int reg; /* register address or index */
113 int alloc; /* extra register already allocated */
114 int idx; /* index in shared_regs->regs[] */
115};
116
117/**
118 * struct hw_perf_event - performance event hardware details:
119 */
120struct hw_perf_event {
121#ifdef CONFIG_PERF_EVENTS
122 union {
123 struct { /* hardware */
124 u64 config;
125 u64 last_tag;
126 unsigned long config_base;
127 unsigned long event_base;
128 int event_base_rdpmc;
129 int idx;
130 int last_cpu;
131 int flags;
132
133 struct hw_perf_event_extra extra_reg;
134 struct hw_perf_event_extra branch_reg;
135 };
136 struct { /* software */
137 struct hrtimer hrtimer;
138 };
139 struct { /* tracepoint */
140 /* for tp_event->class */
141 struct list_head tp_list;
142 };
143 struct { /* amd_power */
144 u64 pwr_acc;
145 u64 ptsc;
146 };
147#ifdef CONFIG_HAVE_HW_BREAKPOINT
148 struct { /* breakpoint */
149 /*
150 * Crufty hack to avoid the chicken and egg
151 * problem hw_breakpoint has with context
152 * creation and event initalization.
153 */
154 struct arch_hw_breakpoint info;
155 struct list_head bp_list;
156 };
157#endif
158 struct { /* amd_iommu */
159 u8 iommu_bank;
160 u8 iommu_cntr;
161 u16 padding;
162 u64 conf;
163 u64 conf1;
164 };
165 };
166 /*
167 * If the event is a per task event, this will point to the task in
168 * question. See the comment in perf_event_alloc().
169 */
170 struct task_struct *target;
171
172 /*
173 * PMU would store hardware filter configuration
174 * here.
175 */
176 void *addr_filters;
177
178 /* Last sync'ed generation of filters */
179 unsigned long addr_filters_gen;
180
181/*
182 * hw_perf_event::state flags; used to track the PERF_EF_* state.
183 */
184#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
185#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
186#define PERF_HES_ARCH 0x04
187
188 int state;
189
190 /*
191 * The last observed hardware counter value, updated with a
192 * local64_cmpxchg() such that pmu::read() can be called nested.
193 */
194 local64_t prev_count;
195
196 /*
197 * The period to start the next sample with.
198 */
199 u64 sample_period;
200
201 /*
202 * The period we started this sample with.
203 */
204 u64 last_period;
205
206 /*
207 * However much is left of the current period; note that this is
208 * a full 64bit value and allows for generation of periods longer
209 * than hardware might allow.
210 */
211 local64_t period_left;
212
213 /*
214 * State for throttling the event, see __perf_event_overflow() and
215 * perf_adjust_freq_unthr_context().
216 */
217 u64 interrupts_seq;
218 u64 interrupts;
219
220 /*
221 * State for freq target events, see __perf_event_overflow() and
222 * perf_adjust_freq_unthr_context().
223 */
224 u64 freq_time_stamp;
225 u64 freq_count_stamp;
226#endif
227};
228
229struct perf_event;
230
231/*
232 * Common implementation detail of pmu::{start,commit,cancel}_txn
233 */
234#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
235#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
236
237/**
238 * pmu::capabilities flags
239 */
240#define PERF_PMU_CAP_NO_INTERRUPT 0x01
241#define PERF_PMU_CAP_NO_NMI 0x02
242#define PERF_PMU_CAP_AUX_NO_SG 0x04
243#define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
244#define PERF_PMU_CAP_EXCLUSIVE 0x10
245#define PERF_PMU_CAP_ITRACE 0x20
246#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
247
248/**
249 * struct pmu - generic performance monitoring unit
250 */
251struct pmu {
252 struct list_head entry;
253
254 struct module *module;
255 struct device *dev;
256 const struct attribute_group **attr_groups;
257 const char *name;
258 int type;
259
260 /*
261 * various common per-pmu feature flags
262 */
263 int capabilities;
264
265 int * __percpu pmu_disable_count;
266 struct perf_cpu_context * __percpu pmu_cpu_context;
267 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
268 int task_ctx_nr;
269 int hrtimer_interval_ms;
270
271 /* number of address filters this PMU can do */
272 unsigned int nr_addr_filters;
273
274 /*
275 * Fully disable/enable this PMU, can be used to protect from the PMI
276 * as well as for lazy/batch writing of the MSRs.
277 */
278 void (*pmu_enable) (struct pmu *pmu); /* optional */
279 void (*pmu_disable) (struct pmu *pmu); /* optional */
280
281 /*
282 * Try and initialize the event for this PMU.
283 *
284 * Returns:
285 * -ENOENT -- @event is not for this PMU
286 *
287 * -ENODEV -- @event is for this PMU but PMU not present
288 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
289 * -EINVAL -- @event is for this PMU but @event is not valid
290 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
291 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges
292 *
293 * 0 -- @event is for this PMU and valid
294 *
295 * Other error return values are allowed.
296 */
297 int (*event_init) (struct perf_event *event);
298
299 /*
300 * Notification that the event was mapped or unmapped. Called
301 * in the context of the mapping task.
302 */
303 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
304 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
305
306 /*
307 * Flags for ->add()/->del()/ ->start()/->stop(). There are
308 * matching hw_perf_event::state flags.
309 */
310#define PERF_EF_START 0x01 /* start the counter when adding */
311#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
312#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
313
314 /*
315 * Adds/Removes a counter to/from the PMU, can be done inside a
316 * transaction, see the ->*_txn() methods.
317 *
318 * The add/del callbacks will reserve all hardware resources required
319 * to service the event, this includes any counter constraint
320 * scheduling etc.
321 *
322 * Called with IRQs disabled and the PMU disabled on the CPU the event
323 * is on.
324 *
325 * ->add() called without PERF_EF_START should result in the same state
326 * as ->add() followed by ->stop().
327 *
328 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
329 * ->stop() that must deal with already being stopped without
330 * PERF_EF_UPDATE.
331 */
332 int (*add) (struct perf_event *event, int flags);
333 void (*del) (struct perf_event *event, int flags);
334
335 /*
336 * Starts/Stops a counter present on the PMU.
337 *
338 * The PMI handler should stop the counter when perf_event_overflow()
339 * returns !0. ->start() will be used to continue.
340 *
341 * Also used to change the sample period.
342 *
343 * Called with IRQs disabled and the PMU disabled on the CPU the event
344 * is on -- will be called from NMI context with the PMU generates
345 * NMIs.
346 *
347 * ->stop() with PERF_EF_UPDATE will read the counter and update
348 * period/count values like ->read() would.
349 *
350 * ->start() with PERF_EF_RELOAD will reprogram the the counter
351 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
352 */
353 void (*start) (struct perf_event *event, int flags);
354 void (*stop) (struct perf_event *event, int flags);
355
356 /*
357 * Updates the counter value of the event.
358 *
359 * For sampling capable PMUs this will also update the software period
360 * hw_perf_event::period_left field.
361 */
362 void (*read) (struct perf_event *event);
363
364 /*
365 * Group events scheduling is treated as a transaction, add
366 * group events as a whole and perform one schedulability test.
367 * If the test fails, roll back the whole group
368 *
369 * Start the transaction, after this ->add() doesn't need to
370 * do schedulability tests.
371 *
372 * Optional.
373 */
374 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
375 /*
376 * If ->start_txn() disabled the ->add() schedulability test
377 * then ->commit_txn() is required to perform one. On success
378 * the transaction is closed. On error the transaction is kept
379 * open until ->cancel_txn() is called.
380 *
381 * Optional.
382 */
383 int (*commit_txn) (struct pmu *pmu);
384 /*
385 * Will cancel the transaction, assumes ->del() is called
386 * for each successful ->add() during the transaction.
387 *
388 * Optional.
389 */
390 void (*cancel_txn) (struct pmu *pmu);
391
392 /*
393 * Will return the value for perf_event_mmap_page::index for this event,
394 * if no implementation is provided it will default to: event->hw.idx + 1.
395 */
396 int (*event_idx) (struct perf_event *event); /*optional */
397
398 /*
399 * context-switches callback
400 */
401 void (*sched_task) (struct perf_event_context *ctx,
402 bool sched_in);
403 /*
404 * PMU specific data size
405 */
406 size_t task_ctx_size;
407
408
409 /*
410 * Set up pmu-private data structures for an AUX area
411 */
412 void *(*setup_aux) (int cpu, void **pages,
413 int nr_pages, bool overwrite);
414 /* optional */
415
416 /*
417 * Free pmu-private AUX data structures
418 */
419 void (*free_aux) (void *aux); /* optional */
420
421 /*
422 * Validate address range filters: make sure the HW supports the
423 * requested configuration and number of filters; return 0 if the
424 * supplied filters are valid, -errno otherwise.
425 *
426 * Runs in the context of the ioctl()ing process and is not serialized
427 * with the rest of the PMU callbacks.
428 */
429 int (*addr_filters_validate) (struct list_head *filters);
430 /* optional */
431
432 /*
433 * Synchronize address range filter configuration:
434 * translate hw-agnostic filters into hardware configuration in
435 * event::hw::addr_filters.
436 *
437 * Runs as a part of filter sync sequence that is done in ->start()
438 * callback by calling perf_event_addr_filters_sync().
439 *
440 * May (and should) traverse event::addr_filters::list, for which its
441 * caller provides necessary serialization.
442 */
443 void (*addr_filters_sync) (struct perf_event *event);
444 /* optional */
445
446 /*
447 * Filter events for PMU-specific reasons.
448 */
449 int (*filter_match) (struct perf_event *event); /* optional */
450};
451
452/**
453 * struct perf_addr_filter - address range filter definition
454 * @entry: event's filter list linkage
455 * @inode: object file's inode for file-based filters
456 * @offset: filter range offset
457 * @size: filter range size
458 * @range: 1: range, 0: address
459 * @filter: 1: filter/start, 0: stop
460 *
461 * This is a hardware-agnostic filter configuration as specified by the user.
462 */
463struct perf_addr_filter {
464 struct list_head entry;
465 struct inode *inode;
466 unsigned long offset;
467 unsigned long size;
468 unsigned int range : 1,
469 filter : 1;
470};
471
472/**
473 * struct perf_addr_filters_head - container for address range filters
474 * @list: list of filters for this event
475 * @lock: spinlock that serializes accesses to the @list and event's
476 * (and its children's) filter generations.
477 * @nr_file_filters: number of file-based filters
478 *
479 * A child event will use parent's @list (and therefore @lock), so they are
480 * bundled together; see perf_event_addr_filters().
481 */
482struct perf_addr_filters_head {
483 struct list_head list;
484 raw_spinlock_t lock;
485 unsigned int nr_file_filters;
486};
487
488/**
489 * enum perf_event_state - the states of a event
490 */
491enum perf_event_state {
492 PERF_EVENT_STATE_DEAD = -4,
493 PERF_EVENT_STATE_EXIT = -3,
494 PERF_EVENT_STATE_ERROR = -2,
495 PERF_EVENT_STATE_OFF = -1,
496 PERF_EVENT_STATE_INACTIVE = 0,
497 PERF_EVENT_STATE_ACTIVE = 1,
498};
499
500struct file;
501struct perf_sample_data;
502
503typedef void (*perf_overflow_handler_t)(struct perf_event *,
504 struct perf_sample_data *,
505 struct pt_regs *regs);
506
507/*
508 * Event capabilities. For event_caps and groups caps.
509 *
510 * PERF_EV_CAP_SOFTWARE: Is a software event.
511 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
512 * from any CPU in the package where it is active.
513 */
514#define PERF_EV_CAP_SOFTWARE BIT(0)
515#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
516
517#define SWEVENT_HLIST_BITS 8
518#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
519
520struct swevent_hlist {
521 struct hlist_head heads[SWEVENT_HLIST_SIZE];
522 struct rcu_head rcu_head;
523};
524
525#define PERF_ATTACH_CONTEXT 0x01
526#define PERF_ATTACH_GROUP 0x02
527#define PERF_ATTACH_TASK 0x04
528#define PERF_ATTACH_TASK_DATA 0x08
529#define PERF_ATTACH_ITRACE 0x10
530
531struct perf_cgroup;
532struct ring_buffer;
533
534struct pmu_event_list {
535 raw_spinlock_t lock;
536 struct list_head list;
537};
538
539/**
540 * struct perf_event - performance event kernel representation:
541 */
542struct perf_event {
543#ifdef CONFIG_PERF_EVENTS
544 /*
545 * entry onto perf_event_context::event_list;
546 * modifications require ctx->lock
547 * RCU safe iterations.
548 */
549 struct list_head event_entry;
550
551 /*
552 * XXX: group_entry and sibling_list should be mutually exclusive;
553 * either you're a sibling on a group, or you're the group leader.
554 * Rework the code to always use the same list element.
555 *
556 * Locked for modification by both ctx->mutex and ctx->lock; holding
557 * either sufficies for read.
558 */
559 struct list_head group_entry;
560 struct list_head sibling_list;
561
562 /*
563 * We need storage to track the entries in perf_pmu_migrate_context; we
564 * cannot use the event_entry because of RCU and we want to keep the
565 * group in tact which avoids us using the other two entries.
566 */
567 struct list_head migrate_entry;
568
569 struct hlist_node hlist_entry;
570 struct list_head active_entry;
571 int nr_siblings;
572
573 /* Not serialized. Only written during event initialization. */
574 int event_caps;
575 /* The cumulative AND of all event_caps for events in this group. */
576 int group_caps;
577
578 struct perf_event *group_leader;
579 struct pmu *pmu;
580 void *pmu_private;
581
582 enum perf_event_state state;
583 unsigned int attach_state;
584 local64_t count;
585 atomic64_t child_count;
586
587 /*
588 * These are the total time in nanoseconds that the event
589 * has been enabled (i.e. eligible to run, and the task has
590 * been scheduled in, if this is a per-task event)
591 * and running (scheduled onto the CPU), respectively.
592 */
593 u64 total_time_enabled;
594 u64 total_time_running;
595 u64 tstamp;
596
597 /*
598 * timestamp shadows the actual context timing but it can
599 * be safely used in NMI interrupt context. It reflects the
600 * context time as it was when the event was last scheduled in.
601 *
602 * ctx_time already accounts for ctx->timestamp. Therefore to
603 * compute ctx_time for a sample, simply add perf_clock().
604 */
605 u64 shadow_ctx_time;
606
607 struct perf_event_attr attr;
608 u16 header_size;
609 u16 id_header_size;
610 u16 read_size;
611 struct hw_perf_event hw;
612
613 struct perf_event_context *ctx;
614 atomic_long_t refcount;
615
616 /*
617 * These accumulate total time (in nanoseconds) that children
618 * events have been enabled and running, respectively.
619 */
620 atomic64_t child_total_time_enabled;
621 atomic64_t child_total_time_running;
622
623 /*
624 * Protect attach/detach and child_list:
625 */
626 struct mutex child_mutex;
627 struct list_head child_list;
628 struct perf_event *parent;
629
630 int oncpu;
631 int cpu;
632
633 struct list_head owner_entry;
634 struct task_struct *owner;
635
636 /* mmap bits */
637 struct mutex mmap_mutex;
638 atomic_t mmap_count;
639
640 struct ring_buffer *rb;
641 struct list_head rb_entry;
642 unsigned long rcu_batches;
643 int rcu_pending;
644
645 /* poll related */
646 wait_queue_head_t waitq;
647 struct fasync_struct *fasync;
648
649 /* delayed work for NMIs and such */
650 int pending_wakeup;
651 int pending_kill;
652 int pending_disable;
653 struct irq_work pending;
654
655 atomic_t event_limit;
656
657 /* address range filters */
658 struct perf_addr_filters_head addr_filters;
659 /* vma address array for file-based filders */
660 unsigned long *addr_filters_offs;
661 unsigned long addr_filters_gen;
662
663 void (*destroy)(struct perf_event *);
664 struct rcu_head rcu_head;
665
666 struct pid_namespace *ns;
667 u64 id;
668
669 u64 (*clock)(void);
670 perf_overflow_handler_t overflow_handler;
671 void *overflow_handler_context;
672#ifdef CONFIG_BPF_SYSCALL
673 perf_overflow_handler_t orig_overflow_handler;
674 struct bpf_prog *prog;
675#endif
676
677#ifdef CONFIG_EVENT_TRACING
678 struct trace_event_call *tp_event;
679 struct event_filter *filter;
680#ifdef CONFIG_FUNCTION_TRACER
681 struct ftrace_ops ftrace_ops;
682#endif
683#endif
684
685#ifdef CONFIG_CGROUP_PERF
686 struct perf_cgroup *cgrp; /* cgroup event is attach to */
687#endif
688
689 struct list_head sb_list;
690#endif /* CONFIG_PERF_EVENTS */
691};
692
693/**
694 * struct perf_event_context - event context structure
695 *
696 * Used as a container for task events and CPU events as well:
697 */
698struct perf_event_context {
699 struct pmu *pmu;
700 /*
701 * Protect the states of the events in the list,
702 * nr_active, and the list:
703 */
704 raw_spinlock_t lock;
705 /*
706 * Protect the list of events. Locking either mutex or lock
707 * is sufficient to ensure the list doesn't change; to change
708 * the list you need to lock both the mutex and the spinlock.
709 */
710 struct mutex mutex;
711
712 struct list_head active_ctx_list;
713 struct list_head pinned_groups;
714 struct list_head flexible_groups;
715 struct list_head event_list;
716 int nr_events;
717 int nr_active;
718 int is_active;
719 int nr_stat;
720 int nr_freq;
721 int rotate_disable;
722 atomic_t refcount;
723 struct task_struct *task;
724
725 /*
726 * Context clock, runs when context enabled.
727 */
728 u64 time;
729 u64 timestamp;
730
731 /*
732 * These fields let us detect when two contexts have both
733 * been cloned (inherited) from a common ancestor.
734 */
735 struct perf_event_context *parent_ctx;
736 u64 parent_gen;
737 u64 generation;
738 int pin_count;
739#ifdef CONFIG_CGROUP_PERF
740 int nr_cgroups; /* cgroup evts */
741#endif
742 void *task_ctx_data; /* pmu specific data */
743 struct rcu_head rcu_head;
744};
745
746/*
747 * Number of contexts where an event can trigger:
748 * task, softirq, hardirq, nmi.
749 */
750#define PERF_NR_CONTEXTS 4
751
752/**
753 * struct perf_event_cpu_context - per cpu event context structure
754 */
755struct perf_cpu_context {
756 struct perf_event_context ctx;
757 struct perf_event_context *task_ctx;
758 int active_oncpu;
759 int exclusive;
760
761 raw_spinlock_t hrtimer_lock;
762 struct hrtimer hrtimer;
763 ktime_t hrtimer_interval;
764 unsigned int hrtimer_active;
765
766#ifdef CONFIG_CGROUP_PERF
767 struct perf_cgroup *cgrp;
768 struct list_head cgrp_cpuctx_entry;
769#endif
770
771 struct list_head sched_cb_entry;
772 int sched_cb_usage;
773
774 int online;
775};
776
777struct perf_output_handle {
778 struct perf_event *event;
779 struct ring_buffer *rb;
780 unsigned long wakeup;
781 unsigned long size;
782 u64 aux_flags;
783 union {
784 void *addr;
785 unsigned long head;
786 };
787 int page;
788};
789
790struct bpf_perf_event_data_kern {
791 bpf_user_pt_regs_t *regs;
792 struct perf_sample_data *data;
793 struct perf_event *event;
794};
795
796#ifdef CONFIG_CGROUP_PERF
797
798/*
799 * perf_cgroup_info keeps track of time_enabled for a cgroup.
800 * This is a per-cpu dynamically allocated data structure.
801 */
802struct perf_cgroup_info {
803 u64 time;
804 u64 timestamp;
805};
806
807struct perf_cgroup {
808 struct cgroup_subsys_state css;
809 struct perf_cgroup_info __percpu *info;
810};
811
812/*
813 * Must ensure cgroup is pinned (css_get) before calling
814 * this function. In other words, we cannot call this function
815 * if there is no cgroup event for the current CPU context.
816 */
817static inline struct perf_cgroup *
818perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
819{
820 return container_of(task_css_check(task, perf_event_cgrp_id,
821 ctx ? lockdep_is_held(&ctx->lock)
822 : true),
823 struct perf_cgroup, css);
824}
825#endif /* CONFIG_CGROUP_PERF */
826
827#ifdef CONFIG_PERF_EVENTS
828
829extern void *perf_aux_output_begin(struct perf_output_handle *handle,
830 struct perf_event *event);
831extern void perf_aux_output_end(struct perf_output_handle *handle,
832 unsigned long size);
833extern int perf_aux_output_skip(struct perf_output_handle *handle,
834 unsigned long size);
835extern void *perf_get_aux(struct perf_output_handle *handle);
836extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
837extern void perf_event_itrace_started(struct perf_event *event);
838
839extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
840extern void perf_pmu_unregister(struct pmu *pmu);
841
842extern int perf_num_counters(void);
843extern const char *perf_pmu_name(void);
844extern void __perf_event_task_sched_in(struct task_struct *prev,
845 struct task_struct *task);
846extern void __perf_event_task_sched_out(struct task_struct *prev,
847 struct task_struct *next);
848extern int perf_event_init_task(struct task_struct *child);
849extern void perf_event_exit_task(struct task_struct *child);
850extern void perf_event_free_task(struct task_struct *task);
851extern void perf_event_delayed_put(struct task_struct *task);
852extern struct file *perf_event_get(unsigned int fd);
853extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
854extern void perf_event_print_debug(void);
855extern void perf_pmu_disable(struct pmu *pmu);
856extern void perf_pmu_enable(struct pmu *pmu);
857extern void perf_sched_cb_dec(struct pmu *pmu);
858extern void perf_sched_cb_inc(struct pmu *pmu);
859extern int perf_event_task_disable(void);
860extern int perf_event_task_enable(void);
861extern int perf_event_refresh(struct perf_event *event, int refresh);
862extern void perf_event_update_userpage(struct perf_event *event);
863extern int perf_event_release_kernel(struct perf_event *event);
864extern struct perf_event *
865perf_event_create_kernel_counter(struct perf_event_attr *attr,
866 int cpu,
867 struct task_struct *task,
868 perf_overflow_handler_t callback,
869 void *context);
870extern void perf_pmu_migrate_context(struct pmu *pmu,
871 int src_cpu, int dst_cpu);
872int perf_event_read_local(struct perf_event *event, u64 *value,
873 u64 *enabled, u64 *running);
874extern u64 perf_event_read_value(struct perf_event *event,
875 u64 *enabled, u64 *running);
876
877
878struct perf_sample_data {
879 /*
880 * Fields set by perf_sample_data_init(), group so as to
881 * minimize the cachelines touched.
882 */
883 u64 addr;
884 struct perf_raw_record *raw;
885 struct perf_branch_stack *br_stack;
886 u64 period;
887 u64 weight;
888 u64 txn;
889 union perf_mem_data_src data_src;
890
891 /*
892 * The other fields, optionally {set,used} by
893 * perf_{prepare,output}_sample().
894 */
895 u64 type;
896 u64 ip;
897 struct {
898 u32 pid;
899 u32 tid;
900 } tid_entry;
901 u64 time;
902 u64 id;
903 u64 stream_id;
904 struct {
905 u32 cpu;
906 u32 reserved;
907 } cpu_entry;
908 struct perf_callchain_entry *callchain;
909
910 /*
911 * regs_user may point to task_pt_regs or to regs_user_copy, depending
912 * on arch details.
913 */
914 struct perf_regs regs_user;
915 struct pt_regs regs_user_copy;
916
917 struct perf_regs regs_intr;
918 u64 stack_user_size;
919
920 u64 phys_addr;
921} ____cacheline_aligned;
922
923/* default value for data source */
924#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
925 PERF_MEM_S(LVL, NA) |\
926 PERF_MEM_S(SNOOP, NA) |\
927 PERF_MEM_S(LOCK, NA) |\
928 PERF_MEM_S(TLB, NA))
929
930static inline void perf_sample_data_init(struct perf_sample_data *data,
931 u64 addr, u64 period)
932{
933 /* remaining struct members initialized in perf_prepare_sample() */
934 data->addr = addr;
935 data->raw = NULL;
936 data->br_stack = NULL;
937 data->period = period;
938 data->weight = 0;
939 data->data_src.val = PERF_MEM_NA;
940 data->txn = 0;
941}
942
943extern void perf_output_sample(struct perf_output_handle *handle,
944 struct perf_event_header *header,
945 struct perf_sample_data *data,
946 struct perf_event *event);
947extern void perf_prepare_sample(struct perf_event_header *header,
948 struct perf_sample_data *data,
949 struct perf_event *event,
950 struct pt_regs *regs);
951
952extern int perf_event_overflow(struct perf_event *event,
953 struct perf_sample_data *data,
954 struct pt_regs *regs);
955
956extern void perf_event_output_forward(struct perf_event *event,
957 struct perf_sample_data *data,
958 struct pt_regs *regs);
959extern void perf_event_output_backward(struct perf_event *event,
960 struct perf_sample_data *data,
961 struct pt_regs *regs);
962extern void perf_event_output(struct perf_event *event,
963 struct perf_sample_data *data,
964 struct pt_regs *regs);
965
966static inline bool
967is_default_overflow_handler(struct perf_event *event)
968{
969 if (likely(event->overflow_handler == perf_event_output_forward))
970 return true;
971 if (unlikely(event->overflow_handler == perf_event_output_backward))
972 return true;
973 return false;
974}
975
976extern void
977perf_event_header__init_id(struct perf_event_header *header,
978 struct perf_sample_data *data,
979 struct perf_event *event);
980extern void
981perf_event__output_id_sample(struct perf_event *event,
982 struct perf_output_handle *handle,
983 struct perf_sample_data *sample);
984
985extern void
986perf_log_lost_samples(struct perf_event *event, u64 lost);
987
988static inline bool is_sampling_event(struct perf_event *event)
989{
990 return event->attr.sample_period != 0;
991}
992
993/*
994 * Return 1 for a software event, 0 for a hardware event
995 */
996static inline int is_software_event(struct perf_event *event)
997{
998 return event->event_caps & PERF_EV_CAP_SOFTWARE;
999}
1000
1001extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1002
1003extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1004extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1005
1006#ifndef perf_arch_fetch_caller_regs
1007static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1008#endif
1009
1010/*
1011 * Take a snapshot of the regs. Skip ip and frame pointer to
1012 * the nth caller. We only need a few of the regs:
1013 * - ip for PERF_SAMPLE_IP
1014 * - cs for user_mode() tests
1015 * - bp for callchains
1016 * - eflags, for future purposes, just in case
1017 */
1018static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1019{
1020 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1021}
1022
1023static __always_inline void
1024perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1025{
1026 if (static_key_false(&perf_swevent_enabled[event_id]))
1027 __perf_sw_event(event_id, nr, regs, addr);
1028}
1029
1030DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1031
1032/*
1033 * 'Special' version for the scheduler, it hard assumes no recursion,
1034 * which is guaranteed by us not actually scheduling inside other swevents
1035 * because those disable preemption.
1036 */
1037static __always_inline void
1038perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1039{
1040 if (static_key_false(&perf_swevent_enabled[event_id])) {
1041 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1042
1043 perf_fetch_caller_regs(regs);
1044 ___perf_sw_event(event_id, nr, regs, addr);
1045 }
1046}
1047
1048extern struct static_key_false perf_sched_events;
1049
1050static __always_inline bool
1051perf_sw_migrate_enabled(void)
1052{
1053 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1054 return true;
1055 return false;
1056}
1057
1058static inline void perf_event_task_migrate(struct task_struct *task)
1059{
1060 if (perf_sw_migrate_enabled())
1061 task->sched_migrated = 1;
1062}
1063
1064static inline void perf_event_task_sched_in(struct task_struct *prev,
1065 struct task_struct *task)
1066{
1067 if (static_branch_unlikely(&perf_sched_events))
1068 __perf_event_task_sched_in(prev, task);
1069
1070 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1071 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1072
1073 perf_fetch_caller_regs(regs);
1074 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1075 task->sched_migrated = 0;
1076 }
1077}
1078
1079static inline void perf_event_task_sched_out(struct task_struct *prev,
1080 struct task_struct *next)
1081{
1082 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1083
1084 if (static_branch_unlikely(&perf_sched_events))
1085 __perf_event_task_sched_out(prev, next);
1086}
1087
1088extern void perf_event_mmap(struct vm_area_struct *vma);
1089extern struct perf_guest_info_callbacks *perf_guest_cbs;
1090extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1091extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1092
1093extern void perf_event_exec(void);
1094extern void perf_event_comm(struct task_struct *tsk, bool exec);
1095extern void perf_event_namespaces(struct task_struct *tsk);
1096extern void perf_event_fork(struct task_struct *tsk);
1097
1098/* Callchains */
1099DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1100
1101extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1102extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1103extern struct perf_callchain_entry *
1104get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1105 u32 max_stack, bool crosstask, bool add_mark);
1106extern int get_callchain_buffers(int max_stack);
1107extern void put_callchain_buffers(void);
1108
1109extern int sysctl_perf_event_max_stack;
1110extern int sysctl_perf_event_max_contexts_per_stack;
1111
1112static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1113{
1114 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1115 struct perf_callchain_entry *entry = ctx->entry;
1116 entry->ip[entry->nr++] = ip;
1117 ++ctx->contexts;
1118 return 0;
1119 } else {
1120 ctx->contexts_maxed = true;
1121 return -1; /* no more room, stop walking the stack */
1122 }
1123}
1124
1125static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1126{
1127 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1128 struct perf_callchain_entry *entry = ctx->entry;
1129 entry->ip[entry->nr++] = ip;
1130 ++ctx->nr;
1131 return 0;
1132 } else {
1133 return -1; /* no more room, stop walking the stack */
1134 }
1135}
1136
1137extern int sysctl_perf_event_paranoid;
1138extern int sysctl_perf_event_mlock;
1139extern int sysctl_perf_event_sample_rate;
1140extern int sysctl_perf_cpu_time_max_percent;
1141
1142extern void perf_sample_event_took(u64 sample_len_ns);
1143
1144extern int perf_proc_update_handler(struct ctl_table *table, int write,
1145 void __user *buffer, size_t *lenp,
1146 loff_t *ppos);
1147extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1148 void __user *buffer, size_t *lenp,
1149 loff_t *ppos);
1150
1151int perf_event_max_stack_handler(struct ctl_table *table, int write,
1152 void __user *buffer, size_t *lenp, loff_t *ppos);
1153
1154static inline bool perf_paranoid_tracepoint_raw(void)
1155{
1156 return sysctl_perf_event_paranoid > -1;
1157}
1158
1159static inline bool perf_paranoid_cpu(void)
1160{
1161 return sysctl_perf_event_paranoid > 0;
1162}
1163
1164static inline bool perf_paranoid_kernel(void)
1165{
1166 return sysctl_perf_event_paranoid > 1;
1167}
1168
1169extern void perf_event_init(void);
1170extern void perf_tp_event(u16 event_type, u64 count, void *record,
1171 int entry_size, struct pt_regs *regs,
1172 struct hlist_head *head, int rctx,
1173 struct task_struct *task);
1174extern void perf_bp_event(struct perf_event *event, void *data);
1175
1176#ifndef perf_misc_flags
1177# define perf_misc_flags(regs) \
1178 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1179# define perf_instruction_pointer(regs) instruction_pointer(regs)
1180#endif
1181#ifndef perf_arch_bpf_user_pt_regs
1182# define perf_arch_bpf_user_pt_regs(regs) regs
1183#endif
1184
1185static inline bool has_branch_stack(struct perf_event *event)
1186{
1187 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1188}
1189
1190static inline bool needs_branch_stack(struct perf_event *event)
1191{
1192 return event->attr.branch_sample_type != 0;
1193}
1194
1195static inline bool has_aux(struct perf_event *event)
1196{
1197 return event->pmu->setup_aux;
1198}
1199
1200static inline bool is_write_backward(struct perf_event *event)
1201{
1202 return !!event->attr.write_backward;
1203}
1204
1205static inline bool has_addr_filter(struct perf_event *event)
1206{
1207 return event->pmu->nr_addr_filters;
1208}
1209
1210/*
1211 * An inherited event uses parent's filters
1212 */
1213static inline struct perf_addr_filters_head *
1214perf_event_addr_filters(struct perf_event *event)
1215{
1216 struct perf_addr_filters_head *ifh = &event->addr_filters;
1217
1218 if (event->parent)
1219 ifh = &event->parent->addr_filters;
1220
1221 return ifh;
1222}
1223
1224extern void perf_event_addr_filters_sync(struct perf_event *event);
1225
1226extern int perf_output_begin(struct perf_output_handle *handle,
1227 struct perf_event *event, unsigned int size);
1228extern int perf_output_begin_forward(struct perf_output_handle *handle,
1229 struct perf_event *event,
1230 unsigned int size);
1231extern int perf_output_begin_backward(struct perf_output_handle *handle,
1232 struct perf_event *event,
1233 unsigned int size);
1234
1235extern void perf_output_end(struct perf_output_handle *handle);
1236extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1237 const void *buf, unsigned int len);
1238extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1239 unsigned int len);
1240extern int perf_swevent_get_recursion_context(void);
1241extern void perf_swevent_put_recursion_context(int rctx);
1242extern u64 perf_swevent_set_period(struct perf_event *event);
1243extern void perf_event_enable(struct perf_event *event);
1244extern void perf_event_disable(struct perf_event *event);
1245extern void perf_event_disable_local(struct perf_event *event);
1246extern void perf_event_disable_inatomic(struct perf_event *event);
1247extern void perf_event_task_tick(void);
1248extern int perf_event_account_interrupt(struct perf_event *event);
1249#else /* !CONFIG_PERF_EVENTS: */
1250static inline void *
1251perf_aux_output_begin(struct perf_output_handle *handle,
1252 struct perf_event *event) { return NULL; }
1253static inline void
1254perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1255 { }
1256static inline int
1257perf_aux_output_skip(struct perf_output_handle *handle,
1258 unsigned long size) { return -EINVAL; }
1259static inline void *
1260perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1261static inline void
1262perf_event_task_migrate(struct task_struct *task) { }
1263static inline void
1264perf_event_task_sched_in(struct task_struct *prev,
1265 struct task_struct *task) { }
1266static inline void
1267perf_event_task_sched_out(struct task_struct *prev,
1268 struct task_struct *next) { }
1269static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1270static inline void perf_event_exit_task(struct task_struct *child) { }
1271static inline void perf_event_free_task(struct task_struct *task) { }
1272static inline void perf_event_delayed_put(struct task_struct *task) { }
1273static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1274static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1275{
1276 return ERR_PTR(-EINVAL);
1277}
1278static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1279 u64 *enabled, u64 *running)
1280{
1281 return -EINVAL;
1282}
1283static inline void perf_event_print_debug(void) { }
1284static inline int perf_event_task_disable(void) { return -EINVAL; }
1285static inline int perf_event_task_enable(void) { return -EINVAL; }
1286static inline int perf_event_refresh(struct perf_event *event, int refresh)
1287{
1288 return -EINVAL;
1289}
1290
1291static inline void
1292perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1293static inline void
1294perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1295static inline void
1296perf_bp_event(struct perf_event *event, void *data) { }
1297
1298static inline int perf_register_guest_info_callbacks
1299(struct perf_guest_info_callbacks *callbacks) { return 0; }
1300static inline int perf_unregister_guest_info_callbacks
1301(struct perf_guest_info_callbacks *callbacks) { return 0; }
1302
1303static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1304static inline void perf_event_exec(void) { }
1305static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1306static inline void perf_event_namespaces(struct task_struct *tsk) { }
1307static inline void perf_event_fork(struct task_struct *tsk) { }
1308static inline void perf_event_init(void) { }
1309static inline int perf_swevent_get_recursion_context(void) { return -1; }
1310static inline void perf_swevent_put_recursion_context(int rctx) { }
1311static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1312static inline void perf_event_enable(struct perf_event *event) { }
1313static inline void perf_event_disable(struct perf_event *event) { }
1314static inline int __perf_event_disable(void *info) { return -1; }
1315static inline void perf_event_task_tick(void) { }
1316static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1317#endif
1318
1319#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1320extern void perf_restore_debug_store(void);
1321#else
1322static inline void perf_restore_debug_store(void) { }
1323#endif
1324
1325static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1326{
1327 return frag->pad < sizeof(u64);
1328}
1329
1330#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1331
1332struct perf_pmu_events_attr {
1333 struct device_attribute attr;
1334 u64 id;
1335 const char *event_str;
1336};
1337
1338struct perf_pmu_events_ht_attr {
1339 struct device_attribute attr;
1340 u64 id;
1341 const char *event_str_ht;
1342 const char *event_str_noht;
1343};
1344
1345ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1346 char *page);
1347
1348#define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1349static struct perf_pmu_events_attr _var = { \
1350 .attr = __ATTR(_name, 0444, _show, NULL), \
1351 .id = _id, \
1352};
1353
1354#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1355static struct perf_pmu_events_attr _var = { \
1356 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1357 .id = 0, \
1358 .event_str = _str, \
1359};
1360
1361#define PMU_FORMAT_ATTR(_name, _format) \
1362static ssize_t \
1363_name##_show(struct device *dev, \
1364 struct device_attribute *attr, \
1365 char *page) \
1366{ \
1367 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1368 return sprintf(page, _format "\n"); \
1369} \
1370 \
1371static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1372
1373/* Performance counter hotplug functions */
1374#ifdef CONFIG_PERF_EVENTS
1375int perf_event_init_cpu(unsigned int cpu);
1376int perf_event_exit_cpu(unsigned int cpu);
1377#else
1378#define perf_event_init_cpu NULL
1379#define perf_event_exit_cpu NULL
1380#endif
1381
1382#endif /* _LINUX_PERF_EVENT_H */