at v4.16 24 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Macros for manipulating and testing page->flags 4 */ 5 6#ifndef PAGE_FLAGS_H 7#define PAGE_FLAGS_H 8 9#include <linux/types.h> 10#include <linux/bug.h> 11#include <linux/mmdebug.h> 12#ifndef __GENERATING_BOUNDS_H 13#include <linux/mm_types.h> 14#include <generated/bounds.h> 15#endif /* !__GENERATING_BOUNDS_H */ 16 17/* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages, which can never be swapped out. Some 21 * of them might not even exist... 22 * 23 * The PG_private bitflag is set on pagecache pages if they contain filesystem 24 * specific data (which is normally at page->private). It can be used by 25 * private allocations for its own usage. 26 * 27 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 28 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 29 * is set before writeback starts and cleared when it finishes. 30 * 31 * PG_locked also pins a page in pagecache, and blocks truncation of the file 32 * while it is held. 33 * 34 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 35 * to become unlocked. 36 * 37 * PG_uptodate tells whether the page's contents is valid. When a read 38 * completes, the page becomes uptodate, unless a disk I/O error happened. 39 * 40 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 41 * file-backed pagecache (see mm/vmscan.c). 42 * 43 * PG_error is set to indicate that an I/O error occurred on this page. 44 * 45 * PG_arch_1 is an architecture specific page state bit. The generic code 46 * guarantees that this bit is cleared for a page when it first is entered into 47 * the page cache. 48 * 49 * PG_hwpoison indicates that a page got corrupted in hardware and contains 50 * data with incorrect ECC bits that triggered a machine check. Accessing is 51 * not safe since it may cause another machine check. Don't touch! 52 */ 53 54/* 55 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 56 * locked- and dirty-page accounting. 57 * 58 * The page flags field is split into two parts, the main flags area 59 * which extends from the low bits upwards, and the fields area which 60 * extends from the high bits downwards. 61 * 62 * | FIELD | ... | FLAGS | 63 * N-1 ^ 0 64 * (NR_PAGEFLAGS) 65 * 66 * The fields area is reserved for fields mapping zone, node (for NUMA) and 67 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 68 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 69 */ 70enum pageflags { 71 PG_locked, /* Page is locked. Don't touch. */ 72 PG_error, 73 PG_referenced, 74 PG_uptodate, 75 PG_dirty, 76 PG_lru, 77 PG_active, 78 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 79 PG_slab, 80 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 81 PG_arch_1, 82 PG_reserved, 83 PG_private, /* If pagecache, has fs-private data */ 84 PG_private_2, /* If pagecache, has fs aux data */ 85 PG_writeback, /* Page is under writeback */ 86 PG_head, /* A head page */ 87 PG_mappedtodisk, /* Has blocks allocated on-disk */ 88 PG_reclaim, /* To be reclaimed asap */ 89 PG_swapbacked, /* Page is backed by RAM/swap */ 90 PG_unevictable, /* Page is "unevictable" */ 91#ifdef CONFIG_MMU 92 PG_mlocked, /* Page is vma mlocked */ 93#endif 94#ifdef CONFIG_ARCH_USES_PG_UNCACHED 95 PG_uncached, /* Page has been mapped as uncached */ 96#endif 97#ifdef CONFIG_MEMORY_FAILURE 98 PG_hwpoison, /* hardware poisoned page. Don't touch */ 99#endif 100#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 101 PG_young, 102 PG_idle, 103#endif 104 __NR_PAGEFLAGS, 105 106 /* Filesystems */ 107 PG_checked = PG_owner_priv_1, 108 109 /* SwapBacked */ 110 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 111 112 /* Two page bits are conscripted by FS-Cache to maintain local caching 113 * state. These bits are set on pages belonging to the netfs's inodes 114 * when those inodes are being locally cached. 115 */ 116 PG_fscache = PG_private_2, /* page backed by cache */ 117 118 /* XEN */ 119 /* Pinned in Xen as a read-only pagetable page. */ 120 PG_pinned = PG_owner_priv_1, 121 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 122 PG_savepinned = PG_dirty, 123 /* Has a grant mapping of another (foreign) domain's page. */ 124 PG_foreign = PG_owner_priv_1, 125 126 /* SLOB */ 127 PG_slob_free = PG_private, 128 129 /* Compound pages. Stored in first tail page's flags */ 130 PG_double_map = PG_private_2, 131 132 /* non-lru isolated movable page */ 133 PG_isolated = PG_reclaim, 134}; 135 136#ifndef __GENERATING_BOUNDS_H 137 138struct page; /* forward declaration */ 139 140static inline struct page *compound_head(struct page *page) 141{ 142 unsigned long head = READ_ONCE(page->compound_head); 143 144 if (unlikely(head & 1)) 145 return (struct page *) (head - 1); 146 return page; 147} 148 149static __always_inline int PageTail(struct page *page) 150{ 151 return READ_ONCE(page->compound_head) & 1; 152} 153 154static __always_inline int PageCompound(struct page *page) 155{ 156 return test_bit(PG_head, &page->flags) || PageTail(page); 157} 158 159/* 160 * Page flags policies wrt compound pages 161 * 162 * PF_ANY: 163 * the page flag is relevant for small, head and tail pages. 164 * 165 * PF_HEAD: 166 * for compound page all operations related to the page flag applied to 167 * head page. 168 * 169 * PF_ONLY_HEAD: 170 * for compound page, callers only ever operate on the head page. 171 * 172 * PF_NO_TAIL: 173 * modifications of the page flag must be done on small or head pages, 174 * checks can be done on tail pages too. 175 * 176 * PF_NO_COMPOUND: 177 * the page flag is not relevant for compound pages. 178 */ 179#define PF_ANY(page, enforce) page 180#define PF_HEAD(page, enforce) compound_head(page) 181#define PF_ONLY_HEAD(page, enforce) ({ \ 182 VM_BUG_ON_PGFLAGS(PageTail(page), page); \ 183 page;}) 184#define PF_NO_TAIL(page, enforce) ({ \ 185 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 186 compound_head(page);}) 187#define PF_NO_COMPOUND(page, enforce) ({ \ 188 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 189 page;}) 190 191/* 192 * Macros to create function definitions for page flags 193 */ 194#define TESTPAGEFLAG(uname, lname, policy) \ 195static __always_inline int Page##uname(struct page *page) \ 196 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 197 198#define SETPAGEFLAG(uname, lname, policy) \ 199static __always_inline void SetPage##uname(struct page *page) \ 200 { set_bit(PG_##lname, &policy(page, 1)->flags); } 201 202#define CLEARPAGEFLAG(uname, lname, policy) \ 203static __always_inline void ClearPage##uname(struct page *page) \ 204 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 205 206#define __SETPAGEFLAG(uname, lname, policy) \ 207static __always_inline void __SetPage##uname(struct page *page) \ 208 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 209 210#define __CLEARPAGEFLAG(uname, lname, policy) \ 211static __always_inline void __ClearPage##uname(struct page *page) \ 212 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 213 214#define TESTSETFLAG(uname, lname, policy) \ 215static __always_inline int TestSetPage##uname(struct page *page) \ 216 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 217 218#define TESTCLEARFLAG(uname, lname, policy) \ 219static __always_inline int TestClearPage##uname(struct page *page) \ 220 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 221 222#define PAGEFLAG(uname, lname, policy) \ 223 TESTPAGEFLAG(uname, lname, policy) \ 224 SETPAGEFLAG(uname, lname, policy) \ 225 CLEARPAGEFLAG(uname, lname, policy) 226 227#define __PAGEFLAG(uname, lname, policy) \ 228 TESTPAGEFLAG(uname, lname, policy) \ 229 __SETPAGEFLAG(uname, lname, policy) \ 230 __CLEARPAGEFLAG(uname, lname, policy) 231 232#define TESTSCFLAG(uname, lname, policy) \ 233 TESTSETFLAG(uname, lname, policy) \ 234 TESTCLEARFLAG(uname, lname, policy) 235 236#define TESTPAGEFLAG_FALSE(uname) \ 237static inline int Page##uname(const struct page *page) { return 0; } 238 239#define SETPAGEFLAG_NOOP(uname) \ 240static inline void SetPage##uname(struct page *page) { } 241 242#define CLEARPAGEFLAG_NOOP(uname) \ 243static inline void ClearPage##uname(struct page *page) { } 244 245#define __CLEARPAGEFLAG_NOOP(uname) \ 246static inline void __ClearPage##uname(struct page *page) { } 247 248#define TESTSETFLAG_FALSE(uname) \ 249static inline int TestSetPage##uname(struct page *page) { return 0; } 250 251#define TESTCLEARFLAG_FALSE(uname) \ 252static inline int TestClearPage##uname(struct page *page) { return 0; } 253 254#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 255 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 256 257#define TESTSCFLAG_FALSE(uname) \ 258 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 259 260__PAGEFLAG(Locked, locked, PF_NO_TAIL) 261PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) 262PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND) 263PAGEFLAG(Referenced, referenced, PF_HEAD) 264 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 265 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 266PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 267 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 268PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 269PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 270 TESTCLEARFLAG(Active, active, PF_HEAD) 271__PAGEFLAG(Slab, slab, PF_NO_TAIL) 272__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 273PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 274 275/* Xen */ 276PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 277 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 278PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 279PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 280 281PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 282 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 283PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 284 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 285 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 286 287/* 288 * Private page markings that may be used by the filesystem that owns the page 289 * for its own purposes. 290 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 291 */ 292PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) 293 __CLEARPAGEFLAG(Private, private, PF_ANY) 294PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 295PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 296 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 297 298/* 299 * Only test-and-set exist for PG_writeback. The unconditional operators are 300 * risky: they bypass page accounting. 301 */ 302TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 303 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 304PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 305 306/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 307PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 308 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 309PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) 310 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) 311 312#ifdef CONFIG_HIGHMEM 313/* 314 * Must use a macro here due to header dependency issues. page_zone() is not 315 * available at this point. 316 */ 317#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 318#else 319PAGEFLAG_FALSE(HighMem) 320#endif 321 322#ifdef CONFIG_SWAP 323static __always_inline int PageSwapCache(struct page *page) 324{ 325#ifdef CONFIG_THP_SWAP 326 page = compound_head(page); 327#endif 328 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags); 329 330} 331SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 332CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 333#else 334PAGEFLAG_FALSE(SwapCache) 335#endif 336 337PAGEFLAG(Unevictable, unevictable, PF_HEAD) 338 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 339 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 340 341#ifdef CONFIG_MMU 342PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 343 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 344 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 345#else 346PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 347 TESTSCFLAG_FALSE(Mlocked) 348#endif 349 350#ifdef CONFIG_ARCH_USES_PG_UNCACHED 351PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 352#else 353PAGEFLAG_FALSE(Uncached) 354#endif 355 356#ifdef CONFIG_MEMORY_FAILURE 357PAGEFLAG(HWPoison, hwpoison, PF_ANY) 358TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 359#define __PG_HWPOISON (1UL << PG_hwpoison) 360#else 361PAGEFLAG_FALSE(HWPoison) 362#define __PG_HWPOISON 0 363#endif 364 365#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 366TESTPAGEFLAG(Young, young, PF_ANY) 367SETPAGEFLAG(Young, young, PF_ANY) 368TESTCLEARFLAG(Young, young, PF_ANY) 369PAGEFLAG(Idle, idle, PF_ANY) 370#endif 371 372/* 373 * On an anonymous page mapped into a user virtual memory area, 374 * page->mapping points to its anon_vma, not to a struct address_space; 375 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 376 * 377 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 378 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 379 * bit; and then page->mapping points, not to an anon_vma, but to a private 380 * structure which KSM associates with that merged page. See ksm.h. 381 * 382 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 383 * page and then page->mapping points a struct address_space. 384 * 385 * Please note that, confusingly, "page_mapping" refers to the inode 386 * address_space which maps the page from disk; whereas "page_mapped" 387 * refers to user virtual address space into which the page is mapped. 388 */ 389#define PAGE_MAPPING_ANON 0x1 390#define PAGE_MAPPING_MOVABLE 0x2 391#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 392#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 393 394static __always_inline int PageMappingFlags(struct page *page) 395{ 396 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 397} 398 399static __always_inline int PageAnon(struct page *page) 400{ 401 page = compound_head(page); 402 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 403} 404 405static __always_inline int __PageMovable(struct page *page) 406{ 407 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 408 PAGE_MAPPING_MOVABLE; 409} 410 411#ifdef CONFIG_KSM 412/* 413 * A KSM page is one of those write-protected "shared pages" or "merged pages" 414 * which KSM maps into multiple mms, wherever identical anonymous page content 415 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 416 * anon_vma, but to that page's node of the stable tree. 417 */ 418static __always_inline int PageKsm(struct page *page) 419{ 420 page = compound_head(page); 421 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 422 PAGE_MAPPING_KSM; 423} 424#else 425TESTPAGEFLAG_FALSE(Ksm) 426#endif 427 428u64 stable_page_flags(struct page *page); 429 430static inline int PageUptodate(struct page *page) 431{ 432 int ret; 433 page = compound_head(page); 434 ret = test_bit(PG_uptodate, &(page)->flags); 435 /* 436 * Must ensure that the data we read out of the page is loaded 437 * _after_ we've loaded page->flags to check for PageUptodate. 438 * We can skip the barrier if the page is not uptodate, because 439 * we wouldn't be reading anything from it. 440 * 441 * See SetPageUptodate() for the other side of the story. 442 */ 443 if (ret) 444 smp_rmb(); 445 446 return ret; 447} 448 449static __always_inline void __SetPageUptodate(struct page *page) 450{ 451 VM_BUG_ON_PAGE(PageTail(page), page); 452 smp_wmb(); 453 __set_bit(PG_uptodate, &page->flags); 454} 455 456static __always_inline void SetPageUptodate(struct page *page) 457{ 458 VM_BUG_ON_PAGE(PageTail(page), page); 459 /* 460 * Memory barrier must be issued before setting the PG_uptodate bit, 461 * so that all previous stores issued in order to bring the page 462 * uptodate are actually visible before PageUptodate becomes true. 463 */ 464 smp_wmb(); 465 set_bit(PG_uptodate, &page->flags); 466} 467 468CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 469 470int test_clear_page_writeback(struct page *page); 471int __test_set_page_writeback(struct page *page, bool keep_write); 472 473#define test_set_page_writeback(page) \ 474 __test_set_page_writeback(page, false) 475#define test_set_page_writeback_keepwrite(page) \ 476 __test_set_page_writeback(page, true) 477 478static inline void set_page_writeback(struct page *page) 479{ 480 test_set_page_writeback(page); 481} 482 483static inline void set_page_writeback_keepwrite(struct page *page) 484{ 485 test_set_page_writeback_keepwrite(page); 486} 487 488__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 489 490static __always_inline void set_compound_head(struct page *page, struct page *head) 491{ 492 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 493} 494 495static __always_inline void clear_compound_head(struct page *page) 496{ 497 WRITE_ONCE(page->compound_head, 0); 498} 499 500#ifdef CONFIG_TRANSPARENT_HUGEPAGE 501static inline void ClearPageCompound(struct page *page) 502{ 503 BUG_ON(!PageHead(page)); 504 ClearPageHead(page); 505} 506#endif 507 508#define PG_head_mask ((1UL << PG_head)) 509 510#ifdef CONFIG_HUGETLB_PAGE 511int PageHuge(struct page *page); 512int PageHeadHuge(struct page *page); 513bool page_huge_active(struct page *page); 514#else 515TESTPAGEFLAG_FALSE(Huge) 516TESTPAGEFLAG_FALSE(HeadHuge) 517 518static inline bool page_huge_active(struct page *page) 519{ 520 return 0; 521} 522#endif 523 524 525#ifdef CONFIG_TRANSPARENT_HUGEPAGE 526/* 527 * PageHuge() only returns true for hugetlbfs pages, but not for 528 * normal or transparent huge pages. 529 * 530 * PageTransHuge() returns true for both transparent huge and 531 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 532 * called only in the core VM paths where hugetlbfs pages can't exist. 533 */ 534static inline int PageTransHuge(struct page *page) 535{ 536 VM_BUG_ON_PAGE(PageTail(page), page); 537 return PageHead(page); 538} 539 540/* 541 * PageTransCompound returns true for both transparent huge pages 542 * and hugetlbfs pages, so it should only be called when it's known 543 * that hugetlbfs pages aren't involved. 544 */ 545static inline int PageTransCompound(struct page *page) 546{ 547 return PageCompound(page); 548} 549 550/* 551 * PageTransCompoundMap is the same as PageTransCompound, but it also 552 * guarantees the primary MMU has the entire compound page mapped 553 * through pmd_trans_huge, which in turn guarantees the secondary MMUs 554 * can also map the entire compound page. This allows the secondary 555 * MMUs to call get_user_pages() only once for each compound page and 556 * to immediately map the entire compound page with a single secondary 557 * MMU fault. If there will be a pmd split later, the secondary MMUs 558 * will get an update through the MMU notifier invalidation through 559 * split_huge_pmd(). 560 * 561 * Unlike PageTransCompound, this is safe to be called only while 562 * split_huge_pmd() cannot run from under us, like if protected by the 563 * MMU notifier, otherwise it may result in page->_mapcount < 0 false 564 * positives. 565 */ 566static inline int PageTransCompoundMap(struct page *page) 567{ 568 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0; 569} 570 571/* 572 * PageTransTail returns true for both transparent huge pages 573 * and hugetlbfs pages, so it should only be called when it's known 574 * that hugetlbfs pages aren't involved. 575 */ 576static inline int PageTransTail(struct page *page) 577{ 578 return PageTail(page); 579} 580 581/* 582 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 583 * as PMDs. 584 * 585 * This is required for optimization of rmap operations for THP: we can postpone 586 * per small page mapcount accounting (and its overhead from atomic operations) 587 * until the first PMD split. 588 * 589 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 590 * by one. This reference will go away with last compound_mapcount. 591 * 592 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 593 */ 594static inline int PageDoubleMap(struct page *page) 595{ 596 return PageHead(page) && test_bit(PG_double_map, &page[1].flags); 597} 598 599static inline void SetPageDoubleMap(struct page *page) 600{ 601 VM_BUG_ON_PAGE(!PageHead(page), page); 602 set_bit(PG_double_map, &page[1].flags); 603} 604 605static inline void ClearPageDoubleMap(struct page *page) 606{ 607 VM_BUG_ON_PAGE(!PageHead(page), page); 608 clear_bit(PG_double_map, &page[1].flags); 609} 610static inline int TestSetPageDoubleMap(struct page *page) 611{ 612 VM_BUG_ON_PAGE(!PageHead(page), page); 613 return test_and_set_bit(PG_double_map, &page[1].flags); 614} 615 616static inline int TestClearPageDoubleMap(struct page *page) 617{ 618 VM_BUG_ON_PAGE(!PageHead(page), page); 619 return test_and_clear_bit(PG_double_map, &page[1].flags); 620} 621 622#else 623TESTPAGEFLAG_FALSE(TransHuge) 624TESTPAGEFLAG_FALSE(TransCompound) 625TESTPAGEFLAG_FALSE(TransCompoundMap) 626TESTPAGEFLAG_FALSE(TransTail) 627PAGEFLAG_FALSE(DoubleMap) 628 TESTSETFLAG_FALSE(DoubleMap) 629 TESTCLEARFLAG_FALSE(DoubleMap) 630#endif 631 632/* 633 * For pages that are never mapped to userspace, page->mapcount may be 634 * used for storing extra information about page type. Any value used 635 * for this purpose must be <= -2, but it's better start not too close 636 * to -2 so that an underflow of the page_mapcount() won't be mistaken 637 * for a special page. 638 */ 639#define PAGE_MAPCOUNT_OPS(uname, lname) \ 640static __always_inline int Page##uname(struct page *page) \ 641{ \ 642 return atomic_read(&page->_mapcount) == \ 643 PAGE_##lname##_MAPCOUNT_VALUE; \ 644} \ 645static __always_inline void __SetPage##uname(struct page *page) \ 646{ \ 647 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); \ 648 atomic_set(&page->_mapcount, PAGE_##lname##_MAPCOUNT_VALUE); \ 649} \ 650static __always_inline void __ClearPage##uname(struct page *page) \ 651{ \ 652 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 653 atomic_set(&page->_mapcount, -1); \ 654} 655 656/* 657 * PageBuddy() indicate that the page is free and in the buddy system 658 * (see mm/page_alloc.c). 659 */ 660#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 661PAGE_MAPCOUNT_OPS(Buddy, BUDDY) 662 663/* 664 * PageBalloon() is set on pages that are on the balloon page list 665 * (see mm/balloon_compaction.c). 666 */ 667#define PAGE_BALLOON_MAPCOUNT_VALUE (-256) 668PAGE_MAPCOUNT_OPS(Balloon, BALLOON) 669 670/* 671 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on 672 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free. 673 */ 674#define PAGE_KMEMCG_MAPCOUNT_VALUE (-512) 675PAGE_MAPCOUNT_OPS(Kmemcg, KMEMCG) 676 677extern bool is_free_buddy_page(struct page *page); 678 679__PAGEFLAG(Isolated, isolated, PF_ANY); 680 681/* 682 * If network-based swap is enabled, sl*b must keep track of whether pages 683 * were allocated from pfmemalloc reserves. 684 */ 685static inline int PageSlabPfmemalloc(struct page *page) 686{ 687 VM_BUG_ON_PAGE(!PageSlab(page), page); 688 return PageActive(page); 689} 690 691static inline void SetPageSlabPfmemalloc(struct page *page) 692{ 693 VM_BUG_ON_PAGE(!PageSlab(page), page); 694 SetPageActive(page); 695} 696 697static inline void __ClearPageSlabPfmemalloc(struct page *page) 698{ 699 VM_BUG_ON_PAGE(!PageSlab(page), page); 700 __ClearPageActive(page); 701} 702 703static inline void ClearPageSlabPfmemalloc(struct page *page) 704{ 705 VM_BUG_ON_PAGE(!PageSlab(page), page); 706 ClearPageActive(page); 707} 708 709#ifdef CONFIG_MMU 710#define __PG_MLOCKED (1UL << PG_mlocked) 711#else 712#define __PG_MLOCKED 0 713#endif 714 715/* 716 * Flags checked when a page is freed. Pages being freed should not have 717 * these flags set. It they are, there is a problem. 718 */ 719#define PAGE_FLAGS_CHECK_AT_FREE \ 720 (1UL << PG_lru | 1UL << PG_locked | \ 721 1UL << PG_private | 1UL << PG_private_2 | \ 722 1UL << PG_writeback | 1UL << PG_reserved | \ 723 1UL << PG_slab | 1UL << PG_active | \ 724 1UL << PG_unevictable | __PG_MLOCKED) 725 726/* 727 * Flags checked when a page is prepped for return by the page allocator. 728 * Pages being prepped should not have these flags set. It they are set, 729 * there has been a kernel bug or struct page corruption. 730 * 731 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 732 * alloc-free cycle to prevent from reusing the page. 733 */ 734#define PAGE_FLAGS_CHECK_AT_PREP \ 735 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 736 737#define PAGE_FLAGS_PRIVATE \ 738 (1UL << PG_private | 1UL << PG_private_2) 739/** 740 * page_has_private - Determine if page has private stuff 741 * @page: The page to be checked 742 * 743 * Determine if a page has private stuff, indicating that release routines 744 * should be invoked upon it. 745 */ 746static inline int page_has_private(struct page *page) 747{ 748 return !!(page->flags & PAGE_FLAGS_PRIVATE); 749} 750 751#undef PF_ANY 752#undef PF_HEAD 753#undef PF_ONLY_HEAD 754#undef PF_NO_TAIL 755#undef PF_NO_COMPOUND 756#endif /* !__GENERATING_BOUNDS_H */ 757 758#endif /* PAGE_FLAGS_H */