Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Macros for manipulating and testing page->flags
4 */
5
6#ifndef PAGE_FLAGS_H
7#define PAGE_FLAGS_H
8
9#include <linux/types.h>
10#include <linux/bug.h>
11#include <linux/mmdebug.h>
12#ifndef __GENERATING_BOUNDS_H
13#include <linux/mm_types.h>
14#include <generated/bounds.h>
15#endif /* !__GENERATING_BOUNDS_H */
16
17/*
18 * Various page->flags bits:
19 *
20 * PG_reserved is set for special pages, which can never be swapped out. Some
21 * of them might not even exist...
22 *
23 * The PG_private bitflag is set on pagecache pages if they contain filesystem
24 * specific data (which is normally at page->private). It can be used by
25 * private allocations for its own usage.
26 *
27 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
28 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
29 * is set before writeback starts and cleared when it finishes.
30 *
31 * PG_locked also pins a page in pagecache, and blocks truncation of the file
32 * while it is held.
33 *
34 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
35 * to become unlocked.
36 *
37 * PG_uptodate tells whether the page's contents is valid. When a read
38 * completes, the page becomes uptodate, unless a disk I/O error happened.
39 *
40 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
41 * file-backed pagecache (see mm/vmscan.c).
42 *
43 * PG_error is set to indicate that an I/O error occurred on this page.
44 *
45 * PG_arch_1 is an architecture specific page state bit. The generic code
46 * guarantees that this bit is cleared for a page when it first is entered into
47 * the page cache.
48 *
49 * PG_hwpoison indicates that a page got corrupted in hardware and contains
50 * data with incorrect ECC bits that triggered a machine check. Accessing is
51 * not safe since it may cause another machine check. Don't touch!
52 */
53
54/*
55 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
56 * locked- and dirty-page accounting.
57 *
58 * The page flags field is split into two parts, the main flags area
59 * which extends from the low bits upwards, and the fields area which
60 * extends from the high bits downwards.
61 *
62 * | FIELD | ... | FLAGS |
63 * N-1 ^ 0
64 * (NR_PAGEFLAGS)
65 *
66 * The fields area is reserved for fields mapping zone, node (for NUMA) and
67 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
68 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
69 */
70enum pageflags {
71 PG_locked, /* Page is locked. Don't touch. */
72 PG_error,
73 PG_referenced,
74 PG_uptodate,
75 PG_dirty,
76 PG_lru,
77 PG_active,
78 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
79 PG_slab,
80 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
81 PG_arch_1,
82 PG_reserved,
83 PG_private, /* If pagecache, has fs-private data */
84 PG_private_2, /* If pagecache, has fs aux data */
85 PG_writeback, /* Page is under writeback */
86 PG_head, /* A head page */
87 PG_mappedtodisk, /* Has blocks allocated on-disk */
88 PG_reclaim, /* To be reclaimed asap */
89 PG_swapbacked, /* Page is backed by RAM/swap */
90 PG_unevictable, /* Page is "unevictable" */
91#ifdef CONFIG_MMU
92 PG_mlocked, /* Page is vma mlocked */
93#endif
94#ifdef CONFIG_ARCH_USES_PG_UNCACHED
95 PG_uncached, /* Page has been mapped as uncached */
96#endif
97#ifdef CONFIG_MEMORY_FAILURE
98 PG_hwpoison, /* hardware poisoned page. Don't touch */
99#endif
100#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
101 PG_young,
102 PG_idle,
103#endif
104 __NR_PAGEFLAGS,
105
106 /* Filesystems */
107 PG_checked = PG_owner_priv_1,
108
109 /* SwapBacked */
110 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
111
112 /* Two page bits are conscripted by FS-Cache to maintain local caching
113 * state. These bits are set on pages belonging to the netfs's inodes
114 * when those inodes are being locally cached.
115 */
116 PG_fscache = PG_private_2, /* page backed by cache */
117
118 /* XEN */
119 /* Pinned in Xen as a read-only pagetable page. */
120 PG_pinned = PG_owner_priv_1,
121 /* Pinned as part of domain save (see xen_mm_pin_all()). */
122 PG_savepinned = PG_dirty,
123 /* Has a grant mapping of another (foreign) domain's page. */
124 PG_foreign = PG_owner_priv_1,
125
126 /* SLOB */
127 PG_slob_free = PG_private,
128
129 /* Compound pages. Stored in first tail page's flags */
130 PG_double_map = PG_private_2,
131
132 /* non-lru isolated movable page */
133 PG_isolated = PG_reclaim,
134};
135
136#ifndef __GENERATING_BOUNDS_H
137
138struct page; /* forward declaration */
139
140static inline struct page *compound_head(struct page *page)
141{
142 unsigned long head = READ_ONCE(page->compound_head);
143
144 if (unlikely(head & 1))
145 return (struct page *) (head - 1);
146 return page;
147}
148
149static __always_inline int PageTail(struct page *page)
150{
151 return READ_ONCE(page->compound_head) & 1;
152}
153
154static __always_inline int PageCompound(struct page *page)
155{
156 return test_bit(PG_head, &page->flags) || PageTail(page);
157}
158
159/*
160 * Page flags policies wrt compound pages
161 *
162 * PF_ANY:
163 * the page flag is relevant for small, head and tail pages.
164 *
165 * PF_HEAD:
166 * for compound page all operations related to the page flag applied to
167 * head page.
168 *
169 * PF_ONLY_HEAD:
170 * for compound page, callers only ever operate on the head page.
171 *
172 * PF_NO_TAIL:
173 * modifications of the page flag must be done on small or head pages,
174 * checks can be done on tail pages too.
175 *
176 * PF_NO_COMPOUND:
177 * the page flag is not relevant for compound pages.
178 */
179#define PF_ANY(page, enforce) page
180#define PF_HEAD(page, enforce) compound_head(page)
181#define PF_ONLY_HEAD(page, enforce) ({ \
182 VM_BUG_ON_PGFLAGS(PageTail(page), page); \
183 page;})
184#define PF_NO_TAIL(page, enforce) ({ \
185 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
186 compound_head(page);})
187#define PF_NO_COMPOUND(page, enforce) ({ \
188 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
189 page;})
190
191/*
192 * Macros to create function definitions for page flags
193 */
194#define TESTPAGEFLAG(uname, lname, policy) \
195static __always_inline int Page##uname(struct page *page) \
196 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
197
198#define SETPAGEFLAG(uname, lname, policy) \
199static __always_inline void SetPage##uname(struct page *page) \
200 { set_bit(PG_##lname, &policy(page, 1)->flags); }
201
202#define CLEARPAGEFLAG(uname, lname, policy) \
203static __always_inline void ClearPage##uname(struct page *page) \
204 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
205
206#define __SETPAGEFLAG(uname, lname, policy) \
207static __always_inline void __SetPage##uname(struct page *page) \
208 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
209
210#define __CLEARPAGEFLAG(uname, lname, policy) \
211static __always_inline void __ClearPage##uname(struct page *page) \
212 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
213
214#define TESTSETFLAG(uname, lname, policy) \
215static __always_inline int TestSetPage##uname(struct page *page) \
216 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
217
218#define TESTCLEARFLAG(uname, lname, policy) \
219static __always_inline int TestClearPage##uname(struct page *page) \
220 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
221
222#define PAGEFLAG(uname, lname, policy) \
223 TESTPAGEFLAG(uname, lname, policy) \
224 SETPAGEFLAG(uname, lname, policy) \
225 CLEARPAGEFLAG(uname, lname, policy)
226
227#define __PAGEFLAG(uname, lname, policy) \
228 TESTPAGEFLAG(uname, lname, policy) \
229 __SETPAGEFLAG(uname, lname, policy) \
230 __CLEARPAGEFLAG(uname, lname, policy)
231
232#define TESTSCFLAG(uname, lname, policy) \
233 TESTSETFLAG(uname, lname, policy) \
234 TESTCLEARFLAG(uname, lname, policy)
235
236#define TESTPAGEFLAG_FALSE(uname) \
237static inline int Page##uname(const struct page *page) { return 0; }
238
239#define SETPAGEFLAG_NOOP(uname) \
240static inline void SetPage##uname(struct page *page) { }
241
242#define CLEARPAGEFLAG_NOOP(uname) \
243static inline void ClearPage##uname(struct page *page) { }
244
245#define __CLEARPAGEFLAG_NOOP(uname) \
246static inline void __ClearPage##uname(struct page *page) { }
247
248#define TESTSETFLAG_FALSE(uname) \
249static inline int TestSetPage##uname(struct page *page) { return 0; }
250
251#define TESTCLEARFLAG_FALSE(uname) \
252static inline int TestClearPage##uname(struct page *page) { return 0; }
253
254#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \
255 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
256
257#define TESTSCFLAG_FALSE(uname) \
258 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
259
260__PAGEFLAG(Locked, locked, PF_NO_TAIL)
261PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
262PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND)
263PAGEFLAG(Referenced, referenced, PF_HEAD)
264 TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
265 __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
266PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
267 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
268PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
269PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
270 TESTCLEARFLAG(Active, active, PF_HEAD)
271__PAGEFLAG(Slab, slab, PF_NO_TAIL)
272__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
273PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
274
275/* Xen */
276PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
277 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
278PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
279PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
280
281PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
282 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
283PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
284 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
285 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
286
287/*
288 * Private page markings that may be used by the filesystem that owns the page
289 * for its own purposes.
290 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
291 */
292PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
293 __CLEARPAGEFLAG(Private, private, PF_ANY)
294PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
295PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
296 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
297
298/*
299 * Only test-and-set exist for PG_writeback. The unconditional operators are
300 * risky: they bypass page accounting.
301 */
302TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
303 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
304PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
305
306/* PG_readahead is only used for reads; PG_reclaim is only for writes */
307PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
308 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
309PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
310 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
311
312#ifdef CONFIG_HIGHMEM
313/*
314 * Must use a macro here due to header dependency issues. page_zone() is not
315 * available at this point.
316 */
317#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
318#else
319PAGEFLAG_FALSE(HighMem)
320#endif
321
322#ifdef CONFIG_SWAP
323static __always_inline int PageSwapCache(struct page *page)
324{
325#ifdef CONFIG_THP_SWAP
326 page = compound_head(page);
327#endif
328 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
329
330}
331SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
332CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
333#else
334PAGEFLAG_FALSE(SwapCache)
335#endif
336
337PAGEFLAG(Unevictable, unevictable, PF_HEAD)
338 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
339 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
340
341#ifdef CONFIG_MMU
342PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
343 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
344 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
345#else
346PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
347 TESTSCFLAG_FALSE(Mlocked)
348#endif
349
350#ifdef CONFIG_ARCH_USES_PG_UNCACHED
351PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
352#else
353PAGEFLAG_FALSE(Uncached)
354#endif
355
356#ifdef CONFIG_MEMORY_FAILURE
357PAGEFLAG(HWPoison, hwpoison, PF_ANY)
358TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
359#define __PG_HWPOISON (1UL << PG_hwpoison)
360#else
361PAGEFLAG_FALSE(HWPoison)
362#define __PG_HWPOISON 0
363#endif
364
365#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
366TESTPAGEFLAG(Young, young, PF_ANY)
367SETPAGEFLAG(Young, young, PF_ANY)
368TESTCLEARFLAG(Young, young, PF_ANY)
369PAGEFLAG(Idle, idle, PF_ANY)
370#endif
371
372/*
373 * On an anonymous page mapped into a user virtual memory area,
374 * page->mapping points to its anon_vma, not to a struct address_space;
375 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
376 *
377 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
378 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
379 * bit; and then page->mapping points, not to an anon_vma, but to a private
380 * structure which KSM associates with that merged page. See ksm.h.
381 *
382 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
383 * page and then page->mapping points a struct address_space.
384 *
385 * Please note that, confusingly, "page_mapping" refers to the inode
386 * address_space which maps the page from disk; whereas "page_mapped"
387 * refers to user virtual address space into which the page is mapped.
388 */
389#define PAGE_MAPPING_ANON 0x1
390#define PAGE_MAPPING_MOVABLE 0x2
391#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
392#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
393
394static __always_inline int PageMappingFlags(struct page *page)
395{
396 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
397}
398
399static __always_inline int PageAnon(struct page *page)
400{
401 page = compound_head(page);
402 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
403}
404
405static __always_inline int __PageMovable(struct page *page)
406{
407 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
408 PAGE_MAPPING_MOVABLE;
409}
410
411#ifdef CONFIG_KSM
412/*
413 * A KSM page is one of those write-protected "shared pages" or "merged pages"
414 * which KSM maps into multiple mms, wherever identical anonymous page content
415 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
416 * anon_vma, but to that page's node of the stable tree.
417 */
418static __always_inline int PageKsm(struct page *page)
419{
420 page = compound_head(page);
421 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
422 PAGE_MAPPING_KSM;
423}
424#else
425TESTPAGEFLAG_FALSE(Ksm)
426#endif
427
428u64 stable_page_flags(struct page *page);
429
430static inline int PageUptodate(struct page *page)
431{
432 int ret;
433 page = compound_head(page);
434 ret = test_bit(PG_uptodate, &(page)->flags);
435 /*
436 * Must ensure that the data we read out of the page is loaded
437 * _after_ we've loaded page->flags to check for PageUptodate.
438 * We can skip the barrier if the page is not uptodate, because
439 * we wouldn't be reading anything from it.
440 *
441 * See SetPageUptodate() for the other side of the story.
442 */
443 if (ret)
444 smp_rmb();
445
446 return ret;
447}
448
449static __always_inline void __SetPageUptodate(struct page *page)
450{
451 VM_BUG_ON_PAGE(PageTail(page), page);
452 smp_wmb();
453 __set_bit(PG_uptodate, &page->flags);
454}
455
456static __always_inline void SetPageUptodate(struct page *page)
457{
458 VM_BUG_ON_PAGE(PageTail(page), page);
459 /*
460 * Memory barrier must be issued before setting the PG_uptodate bit,
461 * so that all previous stores issued in order to bring the page
462 * uptodate are actually visible before PageUptodate becomes true.
463 */
464 smp_wmb();
465 set_bit(PG_uptodate, &page->flags);
466}
467
468CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
469
470int test_clear_page_writeback(struct page *page);
471int __test_set_page_writeback(struct page *page, bool keep_write);
472
473#define test_set_page_writeback(page) \
474 __test_set_page_writeback(page, false)
475#define test_set_page_writeback_keepwrite(page) \
476 __test_set_page_writeback(page, true)
477
478static inline void set_page_writeback(struct page *page)
479{
480 test_set_page_writeback(page);
481}
482
483static inline void set_page_writeback_keepwrite(struct page *page)
484{
485 test_set_page_writeback_keepwrite(page);
486}
487
488__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
489
490static __always_inline void set_compound_head(struct page *page, struct page *head)
491{
492 WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
493}
494
495static __always_inline void clear_compound_head(struct page *page)
496{
497 WRITE_ONCE(page->compound_head, 0);
498}
499
500#ifdef CONFIG_TRANSPARENT_HUGEPAGE
501static inline void ClearPageCompound(struct page *page)
502{
503 BUG_ON(!PageHead(page));
504 ClearPageHead(page);
505}
506#endif
507
508#define PG_head_mask ((1UL << PG_head))
509
510#ifdef CONFIG_HUGETLB_PAGE
511int PageHuge(struct page *page);
512int PageHeadHuge(struct page *page);
513bool page_huge_active(struct page *page);
514#else
515TESTPAGEFLAG_FALSE(Huge)
516TESTPAGEFLAG_FALSE(HeadHuge)
517
518static inline bool page_huge_active(struct page *page)
519{
520 return 0;
521}
522#endif
523
524
525#ifdef CONFIG_TRANSPARENT_HUGEPAGE
526/*
527 * PageHuge() only returns true for hugetlbfs pages, but not for
528 * normal or transparent huge pages.
529 *
530 * PageTransHuge() returns true for both transparent huge and
531 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
532 * called only in the core VM paths where hugetlbfs pages can't exist.
533 */
534static inline int PageTransHuge(struct page *page)
535{
536 VM_BUG_ON_PAGE(PageTail(page), page);
537 return PageHead(page);
538}
539
540/*
541 * PageTransCompound returns true for both transparent huge pages
542 * and hugetlbfs pages, so it should only be called when it's known
543 * that hugetlbfs pages aren't involved.
544 */
545static inline int PageTransCompound(struct page *page)
546{
547 return PageCompound(page);
548}
549
550/*
551 * PageTransCompoundMap is the same as PageTransCompound, but it also
552 * guarantees the primary MMU has the entire compound page mapped
553 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
554 * can also map the entire compound page. This allows the secondary
555 * MMUs to call get_user_pages() only once for each compound page and
556 * to immediately map the entire compound page with a single secondary
557 * MMU fault. If there will be a pmd split later, the secondary MMUs
558 * will get an update through the MMU notifier invalidation through
559 * split_huge_pmd().
560 *
561 * Unlike PageTransCompound, this is safe to be called only while
562 * split_huge_pmd() cannot run from under us, like if protected by the
563 * MMU notifier, otherwise it may result in page->_mapcount < 0 false
564 * positives.
565 */
566static inline int PageTransCompoundMap(struct page *page)
567{
568 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0;
569}
570
571/*
572 * PageTransTail returns true for both transparent huge pages
573 * and hugetlbfs pages, so it should only be called when it's known
574 * that hugetlbfs pages aren't involved.
575 */
576static inline int PageTransTail(struct page *page)
577{
578 return PageTail(page);
579}
580
581/*
582 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
583 * as PMDs.
584 *
585 * This is required for optimization of rmap operations for THP: we can postpone
586 * per small page mapcount accounting (and its overhead from atomic operations)
587 * until the first PMD split.
588 *
589 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
590 * by one. This reference will go away with last compound_mapcount.
591 *
592 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
593 */
594static inline int PageDoubleMap(struct page *page)
595{
596 return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
597}
598
599static inline void SetPageDoubleMap(struct page *page)
600{
601 VM_BUG_ON_PAGE(!PageHead(page), page);
602 set_bit(PG_double_map, &page[1].flags);
603}
604
605static inline void ClearPageDoubleMap(struct page *page)
606{
607 VM_BUG_ON_PAGE(!PageHead(page), page);
608 clear_bit(PG_double_map, &page[1].flags);
609}
610static inline int TestSetPageDoubleMap(struct page *page)
611{
612 VM_BUG_ON_PAGE(!PageHead(page), page);
613 return test_and_set_bit(PG_double_map, &page[1].flags);
614}
615
616static inline int TestClearPageDoubleMap(struct page *page)
617{
618 VM_BUG_ON_PAGE(!PageHead(page), page);
619 return test_and_clear_bit(PG_double_map, &page[1].flags);
620}
621
622#else
623TESTPAGEFLAG_FALSE(TransHuge)
624TESTPAGEFLAG_FALSE(TransCompound)
625TESTPAGEFLAG_FALSE(TransCompoundMap)
626TESTPAGEFLAG_FALSE(TransTail)
627PAGEFLAG_FALSE(DoubleMap)
628 TESTSETFLAG_FALSE(DoubleMap)
629 TESTCLEARFLAG_FALSE(DoubleMap)
630#endif
631
632/*
633 * For pages that are never mapped to userspace, page->mapcount may be
634 * used for storing extra information about page type. Any value used
635 * for this purpose must be <= -2, but it's better start not too close
636 * to -2 so that an underflow of the page_mapcount() won't be mistaken
637 * for a special page.
638 */
639#define PAGE_MAPCOUNT_OPS(uname, lname) \
640static __always_inline int Page##uname(struct page *page) \
641{ \
642 return atomic_read(&page->_mapcount) == \
643 PAGE_##lname##_MAPCOUNT_VALUE; \
644} \
645static __always_inline void __SetPage##uname(struct page *page) \
646{ \
647 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); \
648 atomic_set(&page->_mapcount, PAGE_##lname##_MAPCOUNT_VALUE); \
649} \
650static __always_inline void __ClearPage##uname(struct page *page) \
651{ \
652 VM_BUG_ON_PAGE(!Page##uname(page), page); \
653 atomic_set(&page->_mapcount, -1); \
654}
655
656/*
657 * PageBuddy() indicate that the page is free and in the buddy system
658 * (see mm/page_alloc.c).
659 */
660#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
661PAGE_MAPCOUNT_OPS(Buddy, BUDDY)
662
663/*
664 * PageBalloon() is set on pages that are on the balloon page list
665 * (see mm/balloon_compaction.c).
666 */
667#define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
668PAGE_MAPCOUNT_OPS(Balloon, BALLOON)
669
670/*
671 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
672 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
673 */
674#define PAGE_KMEMCG_MAPCOUNT_VALUE (-512)
675PAGE_MAPCOUNT_OPS(Kmemcg, KMEMCG)
676
677extern bool is_free_buddy_page(struct page *page);
678
679__PAGEFLAG(Isolated, isolated, PF_ANY);
680
681/*
682 * If network-based swap is enabled, sl*b must keep track of whether pages
683 * were allocated from pfmemalloc reserves.
684 */
685static inline int PageSlabPfmemalloc(struct page *page)
686{
687 VM_BUG_ON_PAGE(!PageSlab(page), page);
688 return PageActive(page);
689}
690
691static inline void SetPageSlabPfmemalloc(struct page *page)
692{
693 VM_BUG_ON_PAGE(!PageSlab(page), page);
694 SetPageActive(page);
695}
696
697static inline void __ClearPageSlabPfmemalloc(struct page *page)
698{
699 VM_BUG_ON_PAGE(!PageSlab(page), page);
700 __ClearPageActive(page);
701}
702
703static inline void ClearPageSlabPfmemalloc(struct page *page)
704{
705 VM_BUG_ON_PAGE(!PageSlab(page), page);
706 ClearPageActive(page);
707}
708
709#ifdef CONFIG_MMU
710#define __PG_MLOCKED (1UL << PG_mlocked)
711#else
712#define __PG_MLOCKED 0
713#endif
714
715/*
716 * Flags checked when a page is freed. Pages being freed should not have
717 * these flags set. It they are, there is a problem.
718 */
719#define PAGE_FLAGS_CHECK_AT_FREE \
720 (1UL << PG_lru | 1UL << PG_locked | \
721 1UL << PG_private | 1UL << PG_private_2 | \
722 1UL << PG_writeback | 1UL << PG_reserved | \
723 1UL << PG_slab | 1UL << PG_active | \
724 1UL << PG_unevictable | __PG_MLOCKED)
725
726/*
727 * Flags checked when a page is prepped for return by the page allocator.
728 * Pages being prepped should not have these flags set. It they are set,
729 * there has been a kernel bug or struct page corruption.
730 *
731 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
732 * alloc-free cycle to prevent from reusing the page.
733 */
734#define PAGE_FLAGS_CHECK_AT_PREP \
735 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
736
737#define PAGE_FLAGS_PRIVATE \
738 (1UL << PG_private | 1UL << PG_private_2)
739/**
740 * page_has_private - Determine if page has private stuff
741 * @page: The page to be checked
742 *
743 * Determine if a page has private stuff, indicating that release routines
744 * should be invoked upon it.
745 */
746static inline int page_has_private(struct page *page)
747{
748 return !!(page->flags & PAGE_FLAGS_PRIVATE);
749}
750
751#undef PF_ANY
752#undef PF_HEAD
753#undef PF_ONLY_HEAD
754#undef PF_NO_TAIL
755#undef PF_NO_COMPOUND
756#endif /* !__GENERATING_BOUNDS_H */
757
758#endif /* PAGE_FLAGS_H */