at v4.16 37 kB view raw
1#ifndef __KVM_HOST_H 2#define __KVM_HOST_H 3 4/* 5 * This work is licensed under the terms of the GNU GPL, version 2. See 6 * the COPYING file in the top-level directory. 7 */ 8 9#include <linux/types.h> 10#include <linux/hardirq.h> 11#include <linux/list.h> 12#include <linux/mutex.h> 13#include <linux/spinlock.h> 14#include <linux/signal.h> 15#include <linux/sched.h> 16#include <linux/bug.h> 17#include <linux/mm.h> 18#include <linux/mmu_notifier.h> 19#include <linux/preempt.h> 20#include <linux/msi.h> 21#include <linux/slab.h> 22#include <linux/rcupdate.h> 23#include <linux/ratelimit.h> 24#include <linux/err.h> 25#include <linux/irqflags.h> 26#include <linux/context_tracking.h> 27#include <linux/irqbypass.h> 28#include <linux/swait.h> 29#include <linux/refcount.h> 30#include <asm/signal.h> 31 32#include <linux/kvm.h> 33#include <linux/kvm_para.h> 34 35#include <linux/kvm_types.h> 36 37#include <asm/kvm_host.h> 38 39#ifndef KVM_MAX_VCPU_ID 40#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 41#endif 42 43/* 44 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 45 * in kvm, other bits are visible for userspace which are defined in 46 * include/linux/kvm_h. 47 */ 48#define KVM_MEMSLOT_INVALID (1UL << 16) 49 50/* Two fragments for cross MMIO pages. */ 51#define KVM_MAX_MMIO_FRAGMENTS 2 52 53#ifndef KVM_ADDRESS_SPACE_NUM 54#define KVM_ADDRESS_SPACE_NUM 1 55#endif 56 57/* 58 * For the normal pfn, the highest 12 bits should be zero, 59 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 60 * mask bit 63 to indicate the noslot pfn. 61 */ 62#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 63#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 64#define KVM_PFN_NOSLOT (0x1ULL << 63) 65 66#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 67#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 68#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 69 70/* 71 * error pfns indicate that the gfn is in slot but faild to 72 * translate it to pfn on host. 73 */ 74static inline bool is_error_pfn(kvm_pfn_t pfn) 75{ 76 return !!(pfn & KVM_PFN_ERR_MASK); 77} 78 79/* 80 * error_noslot pfns indicate that the gfn can not be 81 * translated to pfn - it is not in slot or failed to 82 * translate it to pfn. 83 */ 84static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 85{ 86 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 87} 88 89/* noslot pfn indicates that the gfn is not in slot. */ 90static inline bool is_noslot_pfn(kvm_pfn_t pfn) 91{ 92 return pfn == KVM_PFN_NOSLOT; 93} 94 95/* 96 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 97 * provide own defines and kvm_is_error_hva 98 */ 99#ifndef KVM_HVA_ERR_BAD 100 101#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 102#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 103 104static inline bool kvm_is_error_hva(unsigned long addr) 105{ 106 return addr >= PAGE_OFFSET; 107} 108 109#endif 110 111#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 112 113static inline bool is_error_page(struct page *page) 114{ 115 return IS_ERR(page); 116} 117 118#define KVM_REQUEST_MASK GENMASK(7,0) 119#define KVM_REQUEST_NO_WAKEUP BIT(8) 120#define KVM_REQUEST_WAIT BIT(9) 121/* 122 * Architecture-independent vcpu->requests bit members 123 * Bits 4-7 are reserved for more arch-independent bits. 124 */ 125#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 126#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 127#define KVM_REQ_PENDING_TIMER 2 128#define KVM_REQ_UNHALT 3 129#define KVM_REQUEST_ARCH_BASE 8 130 131#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 132 BUILD_BUG_ON((unsigned)(nr) >= 32 - KVM_REQUEST_ARCH_BASE); \ 133 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 134}) 135#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 136 137#define KVM_USERSPACE_IRQ_SOURCE_ID 0 138#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 139 140extern struct kmem_cache *kvm_vcpu_cache; 141 142extern spinlock_t kvm_lock; 143extern struct list_head vm_list; 144 145struct kvm_io_range { 146 gpa_t addr; 147 int len; 148 struct kvm_io_device *dev; 149}; 150 151#define NR_IOBUS_DEVS 1000 152 153struct kvm_io_bus { 154 int dev_count; 155 int ioeventfd_count; 156 struct kvm_io_range range[]; 157}; 158 159enum kvm_bus { 160 KVM_MMIO_BUS, 161 KVM_PIO_BUS, 162 KVM_VIRTIO_CCW_NOTIFY_BUS, 163 KVM_FAST_MMIO_BUS, 164 KVM_NR_BUSES 165}; 166 167int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 168 int len, const void *val); 169int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 170 gpa_t addr, int len, const void *val, long cookie); 171int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 172 int len, void *val); 173int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 174 int len, struct kvm_io_device *dev); 175void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 176 struct kvm_io_device *dev); 177struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 178 gpa_t addr); 179 180#ifdef CONFIG_KVM_ASYNC_PF 181struct kvm_async_pf { 182 struct work_struct work; 183 struct list_head link; 184 struct list_head queue; 185 struct kvm_vcpu *vcpu; 186 struct mm_struct *mm; 187 gva_t gva; 188 unsigned long addr; 189 struct kvm_arch_async_pf arch; 190 bool wakeup_all; 191}; 192 193void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 194void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 195int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 196 struct kvm_arch_async_pf *arch); 197int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 198#endif 199 200enum { 201 OUTSIDE_GUEST_MODE, 202 IN_GUEST_MODE, 203 EXITING_GUEST_MODE, 204 READING_SHADOW_PAGE_TABLES, 205}; 206 207/* 208 * Sometimes a large or cross-page mmio needs to be broken up into separate 209 * exits for userspace servicing. 210 */ 211struct kvm_mmio_fragment { 212 gpa_t gpa; 213 void *data; 214 unsigned len; 215}; 216 217struct kvm_vcpu { 218 struct kvm *kvm; 219#ifdef CONFIG_PREEMPT_NOTIFIERS 220 struct preempt_notifier preempt_notifier; 221#endif 222 int cpu; 223 int vcpu_id; 224 int srcu_idx; 225 int mode; 226 unsigned long requests; 227 unsigned long guest_debug; 228 229 int pre_pcpu; 230 struct list_head blocked_vcpu_list; 231 232 struct mutex mutex; 233 struct kvm_run *run; 234 235 int guest_xcr0_loaded; 236 struct swait_queue_head wq; 237 struct pid __rcu *pid; 238 int sigset_active; 239 sigset_t sigset; 240 struct kvm_vcpu_stat stat; 241 unsigned int halt_poll_ns; 242 bool valid_wakeup; 243 244#ifdef CONFIG_HAS_IOMEM 245 int mmio_needed; 246 int mmio_read_completed; 247 int mmio_is_write; 248 int mmio_cur_fragment; 249 int mmio_nr_fragments; 250 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 251#endif 252 253#ifdef CONFIG_KVM_ASYNC_PF 254 struct { 255 u32 queued; 256 struct list_head queue; 257 struct list_head done; 258 spinlock_t lock; 259 } async_pf; 260#endif 261 262#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 263 /* 264 * Cpu relax intercept or pause loop exit optimization 265 * in_spin_loop: set when a vcpu does a pause loop exit 266 * or cpu relax intercepted. 267 * dy_eligible: indicates whether vcpu is eligible for directed yield. 268 */ 269 struct { 270 bool in_spin_loop; 271 bool dy_eligible; 272 } spin_loop; 273#endif 274 bool preempted; 275 struct kvm_vcpu_arch arch; 276 struct dentry *debugfs_dentry; 277}; 278 279static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 280{ 281 /* 282 * The memory barrier ensures a previous write to vcpu->requests cannot 283 * be reordered with the read of vcpu->mode. It pairs with the general 284 * memory barrier following the write of vcpu->mode in VCPU RUN. 285 */ 286 smp_mb__before_atomic(); 287 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 288} 289 290/* 291 * Some of the bitops functions do not support too long bitmaps. 292 * This number must be determined not to exceed such limits. 293 */ 294#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 295 296struct kvm_memory_slot { 297 gfn_t base_gfn; 298 unsigned long npages; 299 unsigned long *dirty_bitmap; 300 struct kvm_arch_memory_slot arch; 301 unsigned long userspace_addr; 302 u32 flags; 303 short id; 304}; 305 306static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 307{ 308 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 309} 310 311struct kvm_s390_adapter_int { 312 u64 ind_addr; 313 u64 summary_addr; 314 u64 ind_offset; 315 u32 summary_offset; 316 u32 adapter_id; 317}; 318 319struct kvm_hv_sint { 320 u32 vcpu; 321 u32 sint; 322}; 323 324struct kvm_kernel_irq_routing_entry { 325 u32 gsi; 326 u32 type; 327 int (*set)(struct kvm_kernel_irq_routing_entry *e, 328 struct kvm *kvm, int irq_source_id, int level, 329 bool line_status); 330 union { 331 struct { 332 unsigned irqchip; 333 unsigned pin; 334 } irqchip; 335 struct { 336 u32 address_lo; 337 u32 address_hi; 338 u32 data; 339 u32 flags; 340 u32 devid; 341 } msi; 342 struct kvm_s390_adapter_int adapter; 343 struct kvm_hv_sint hv_sint; 344 }; 345 struct hlist_node link; 346}; 347 348#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 349struct kvm_irq_routing_table { 350 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 351 u32 nr_rt_entries; 352 /* 353 * Array indexed by gsi. Each entry contains list of irq chips 354 * the gsi is connected to. 355 */ 356 struct hlist_head map[0]; 357}; 358#endif 359 360#ifndef KVM_PRIVATE_MEM_SLOTS 361#define KVM_PRIVATE_MEM_SLOTS 0 362#endif 363 364#ifndef KVM_MEM_SLOTS_NUM 365#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 366#endif 367 368#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 369static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 370{ 371 return 0; 372} 373#endif 374 375/* 376 * Note: 377 * memslots are not sorted by id anymore, please use id_to_memslot() 378 * to get the memslot by its id. 379 */ 380struct kvm_memslots { 381 u64 generation; 382 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 383 /* The mapping table from slot id to the index in memslots[]. */ 384 short id_to_index[KVM_MEM_SLOTS_NUM]; 385 atomic_t lru_slot; 386 int used_slots; 387}; 388 389struct kvm { 390 spinlock_t mmu_lock; 391 struct mutex slots_lock; 392 struct mm_struct *mm; /* userspace tied to this vm */ 393 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 394 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 395 396 /* 397 * created_vcpus is protected by kvm->lock, and is incremented 398 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 399 * incremented after storing the kvm_vcpu pointer in vcpus, 400 * and is accessed atomically. 401 */ 402 atomic_t online_vcpus; 403 int created_vcpus; 404 int last_boosted_vcpu; 405 struct list_head vm_list; 406 struct mutex lock; 407 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 408#ifdef CONFIG_HAVE_KVM_EVENTFD 409 struct { 410 spinlock_t lock; 411 struct list_head items; 412 struct list_head resampler_list; 413 struct mutex resampler_lock; 414 } irqfds; 415 struct list_head ioeventfds; 416#endif 417 struct kvm_vm_stat stat; 418 struct kvm_arch arch; 419 refcount_t users_count; 420#ifdef CONFIG_KVM_MMIO 421 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 422 spinlock_t ring_lock; 423 struct list_head coalesced_zones; 424#endif 425 426 struct mutex irq_lock; 427#ifdef CONFIG_HAVE_KVM_IRQCHIP 428 /* 429 * Update side is protected by irq_lock. 430 */ 431 struct kvm_irq_routing_table __rcu *irq_routing; 432#endif 433#ifdef CONFIG_HAVE_KVM_IRQFD 434 struct hlist_head irq_ack_notifier_list; 435#endif 436 437#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 438 struct mmu_notifier mmu_notifier; 439 unsigned long mmu_notifier_seq; 440 long mmu_notifier_count; 441#endif 442 long tlbs_dirty; 443 struct list_head devices; 444 struct dentry *debugfs_dentry; 445 struct kvm_stat_data **debugfs_stat_data; 446 struct srcu_struct srcu; 447 struct srcu_struct irq_srcu; 448 pid_t userspace_pid; 449}; 450 451#define kvm_err(fmt, ...) \ 452 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 453#define kvm_info(fmt, ...) \ 454 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 455#define kvm_debug(fmt, ...) \ 456 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 457#define kvm_debug_ratelimited(fmt, ...) \ 458 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 459 ## __VA_ARGS__) 460#define kvm_pr_unimpl(fmt, ...) \ 461 pr_err_ratelimited("kvm [%i]: " fmt, \ 462 task_tgid_nr(current), ## __VA_ARGS__) 463 464/* The guest did something we don't support. */ 465#define vcpu_unimpl(vcpu, fmt, ...) \ 466 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 467 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 468 469#define vcpu_debug(vcpu, fmt, ...) \ 470 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 471#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 472 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 473 ## __VA_ARGS__) 474#define vcpu_err(vcpu, fmt, ...) \ 475 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 476 477static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 478{ 479 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 480 lockdep_is_held(&kvm->slots_lock) || 481 !refcount_read(&kvm->users_count)); 482} 483 484static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 485{ 486 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu, in case 487 * the caller has read kvm->online_vcpus before (as is the case 488 * for kvm_for_each_vcpu, for example). 489 */ 490 smp_rmb(); 491 return kvm->vcpus[i]; 492} 493 494#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 495 for (idx = 0; \ 496 idx < atomic_read(&kvm->online_vcpus) && \ 497 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 498 idx++) 499 500static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 501{ 502 struct kvm_vcpu *vcpu = NULL; 503 int i; 504 505 if (id < 0) 506 return NULL; 507 if (id < KVM_MAX_VCPUS) 508 vcpu = kvm_get_vcpu(kvm, id); 509 if (vcpu && vcpu->vcpu_id == id) 510 return vcpu; 511 kvm_for_each_vcpu(i, vcpu, kvm) 512 if (vcpu->vcpu_id == id) 513 return vcpu; 514 return NULL; 515} 516 517static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 518{ 519 struct kvm_vcpu *tmp; 520 int idx; 521 522 kvm_for_each_vcpu(idx, tmp, vcpu->kvm) 523 if (tmp == vcpu) 524 return idx; 525 BUG(); 526} 527 528#define kvm_for_each_memslot(memslot, slots) \ 529 for (memslot = &slots->memslots[0]; \ 530 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 531 memslot++) 532 533int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 534void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 535 536void vcpu_load(struct kvm_vcpu *vcpu); 537void vcpu_put(struct kvm_vcpu *vcpu); 538 539#ifdef __KVM_HAVE_IOAPIC 540void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 541void kvm_arch_post_irq_routing_update(struct kvm *kvm); 542#else 543static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 544{ 545} 546static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 547{ 548} 549#endif 550 551#ifdef CONFIG_HAVE_KVM_IRQFD 552int kvm_irqfd_init(void); 553void kvm_irqfd_exit(void); 554#else 555static inline int kvm_irqfd_init(void) 556{ 557 return 0; 558} 559 560static inline void kvm_irqfd_exit(void) 561{ 562} 563#endif 564int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 565 struct module *module); 566void kvm_exit(void); 567 568void kvm_get_kvm(struct kvm *kvm); 569void kvm_put_kvm(struct kvm *kvm); 570 571static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 572{ 573 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 574 lockdep_is_held(&kvm->slots_lock) || 575 !refcount_read(&kvm->users_count)); 576} 577 578static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 579{ 580 return __kvm_memslots(kvm, 0); 581} 582 583static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 584{ 585 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 586 587 return __kvm_memslots(vcpu->kvm, as_id); 588} 589 590static inline struct kvm_memory_slot * 591id_to_memslot(struct kvm_memslots *slots, int id) 592{ 593 int index = slots->id_to_index[id]; 594 struct kvm_memory_slot *slot; 595 596 slot = &slots->memslots[index]; 597 598 WARN_ON(slot->id != id); 599 return slot; 600} 601 602/* 603 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 604 * - create a new memory slot 605 * - delete an existing memory slot 606 * - modify an existing memory slot 607 * -- move it in the guest physical memory space 608 * -- just change its flags 609 * 610 * Since flags can be changed by some of these operations, the following 611 * differentiation is the best we can do for __kvm_set_memory_region(): 612 */ 613enum kvm_mr_change { 614 KVM_MR_CREATE, 615 KVM_MR_DELETE, 616 KVM_MR_MOVE, 617 KVM_MR_FLAGS_ONLY, 618}; 619 620int kvm_set_memory_region(struct kvm *kvm, 621 const struct kvm_userspace_memory_region *mem); 622int __kvm_set_memory_region(struct kvm *kvm, 623 const struct kvm_userspace_memory_region *mem); 624void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 625 struct kvm_memory_slot *dont); 626int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 627 unsigned long npages); 628void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots); 629int kvm_arch_prepare_memory_region(struct kvm *kvm, 630 struct kvm_memory_slot *memslot, 631 const struct kvm_userspace_memory_region *mem, 632 enum kvm_mr_change change); 633void kvm_arch_commit_memory_region(struct kvm *kvm, 634 const struct kvm_userspace_memory_region *mem, 635 const struct kvm_memory_slot *old, 636 const struct kvm_memory_slot *new, 637 enum kvm_mr_change change); 638bool kvm_largepages_enabled(void); 639void kvm_disable_largepages(void); 640/* flush all memory translations */ 641void kvm_arch_flush_shadow_all(struct kvm *kvm); 642/* flush memory translations pointing to 'slot' */ 643void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 644 struct kvm_memory_slot *slot); 645 646int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 647 struct page **pages, int nr_pages); 648 649struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 650unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 651unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 652unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 653unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 654 bool *writable); 655void kvm_release_page_clean(struct page *page); 656void kvm_release_page_dirty(struct page *page); 657void kvm_set_page_accessed(struct page *page); 658 659kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 660kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 661kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 662 bool *writable); 663kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 664kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 665kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 666 bool atomic, bool *async, bool write_fault, 667 bool *writable); 668 669void kvm_release_pfn_clean(kvm_pfn_t pfn); 670void kvm_release_pfn_dirty(kvm_pfn_t pfn); 671void kvm_set_pfn_dirty(kvm_pfn_t pfn); 672void kvm_set_pfn_accessed(kvm_pfn_t pfn); 673void kvm_get_pfn(kvm_pfn_t pfn); 674 675int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 676 int len); 677int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 678 unsigned long len); 679int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 680int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 681 void *data, unsigned long len); 682int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 683 int offset, int len); 684int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 685 unsigned long len); 686int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 687 void *data, unsigned long len); 688int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 689 void *data, int offset, unsigned long len); 690int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 691 gpa_t gpa, unsigned long len); 692int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 693int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 694struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 695bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 696unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 697void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 698 699struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 700struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 701kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 702kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 703struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 704unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 705unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 706int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 707 int len); 708int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 709 unsigned long len); 710int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 711 unsigned long len); 712int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 713 int offset, int len); 714int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 715 unsigned long len); 716void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 717 718void kvm_sigset_activate(struct kvm_vcpu *vcpu); 719void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 720 721void kvm_vcpu_block(struct kvm_vcpu *vcpu); 722void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 723void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 724bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 725void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 726int kvm_vcpu_yield_to(struct kvm_vcpu *target); 727void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 728void kvm_load_guest_fpu(struct kvm_vcpu *vcpu); 729void kvm_put_guest_fpu(struct kvm_vcpu *vcpu); 730 731void kvm_flush_remote_tlbs(struct kvm *kvm); 732void kvm_reload_remote_mmus(struct kvm *kvm); 733bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 734 735long kvm_arch_dev_ioctl(struct file *filp, 736 unsigned int ioctl, unsigned long arg); 737long kvm_arch_vcpu_ioctl(struct file *filp, 738 unsigned int ioctl, unsigned long arg); 739int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 740 741int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 742 743int kvm_get_dirty_log(struct kvm *kvm, 744 struct kvm_dirty_log *log, int *is_dirty); 745 746int kvm_get_dirty_log_protect(struct kvm *kvm, 747 struct kvm_dirty_log *log, bool *is_dirty); 748 749void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 750 struct kvm_memory_slot *slot, 751 gfn_t gfn_offset, 752 unsigned long mask); 753 754int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 755 struct kvm_dirty_log *log); 756 757int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 758 bool line_status); 759long kvm_arch_vm_ioctl(struct file *filp, 760 unsigned int ioctl, unsigned long arg); 761 762int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 763int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 764 765int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 766 struct kvm_translation *tr); 767 768int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 769int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 770int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 771 struct kvm_sregs *sregs); 772int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 773 struct kvm_sregs *sregs); 774int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 775 struct kvm_mp_state *mp_state); 776int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 777 struct kvm_mp_state *mp_state); 778int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 779 struct kvm_guest_debug *dbg); 780int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 781 782int kvm_arch_init(void *opaque); 783void kvm_arch_exit(void); 784 785int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 786void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 787 788void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 789 790void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 791void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 792void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 793struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 794int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 795void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 796void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 797 798bool kvm_arch_has_vcpu_debugfs(void); 799int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 800 801int kvm_arch_hardware_enable(void); 802void kvm_arch_hardware_disable(void); 803int kvm_arch_hardware_setup(void); 804void kvm_arch_hardware_unsetup(void); 805void kvm_arch_check_processor_compat(void *rtn); 806int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 807bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 808int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 809 810#ifndef __KVM_HAVE_ARCH_VM_ALLOC 811static inline struct kvm *kvm_arch_alloc_vm(void) 812{ 813 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 814} 815 816static inline void kvm_arch_free_vm(struct kvm *kvm) 817{ 818 kfree(kvm); 819} 820#endif 821 822#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 823void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 824void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 825bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 826#else 827static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 828{ 829} 830 831static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 832{ 833} 834 835static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 836{ 837 return false; 838} 839#endif 840#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 841void kvm_arch_start_assignment(struct kvm *kvm); 842void kvm_arch_end_assignment(struct kvm *kvm); 843bool kvm_arch_has_assigned_device(struct kvm *kvm); 844#else 845static inline void kvm_arch_start_assignment(struct kvm *kvm) 846{ 847} 848 849static inline void kvm_arch_end_assignment(struct kvm *kvm) 850{ 851} 852 853static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 854{ 855 return false; 856} 857#endif 858 859static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 860{ 861#ifdef __KVM_HAVE_ARCH_WQP 862 return vcpu->arch.wqp; 863#else 864 return &vcpu->wq; 865#endif 866} 867 868#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 869/* 870 * returns true if the virtual interrupt controller is initialized and 871 * ready to accept virtual IRQ. On some architectures the virtual interrupt 872 * controller is dynamically instantiated and this is not always true. 873 */ 874bool kvm_arch_intc_initialized(struct kvm *kvm); 875#else 876static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 877{ 878 return true; 879} 880#endif 881 882int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 883void kvm_arch_destroy_vm(struct kvm *kvm); 884void kvm_arch_sync_events(struct kvm *kvm); 885 886int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 887void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 888 889bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 890 891struct kvm_irq_ack_notifier { 892 struct hlist_node link; 893 unsigned gsi; 894 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 895}; 896 897int kvm_irq_map_gsi(struct kvm *kvm, 898 struct kvm_kernel_irq_routing_entry *entries, int gsi); 899int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 900 901int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 902 bool line_status); 903int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 904 int irq_source_id, int level, bool line_status); 905int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 906 struct kvm *kvm, int irq_source_id, 907 int level, bool line_status); 908bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 909void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 910void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 911void kvm_register_irq_ack_notifier(struct kvm *kvm, 912 struct kvm_irq_ack_notifier *kian); 913void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 914 struct kvm_irq_ack_notifier *kian); 915int kvm_request_irq_source_id(struct kvm *kvm); 916void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 917 918/* 919 * search_memslots() and __gfn_to_memslot() are here because they are 920 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 921 * gfn_to_memslot() itself isn't here as an inline because that would 922 * bloat other code too much. 923 */ 924static inline struct kvm_memory_slot * 925search_memslots(struct kvm_memslots *slots, gfn_t gfn) 926{ 927 int start = 0, end = slots->used_slots; 928 int slot = atomic_read(&slots->lru_slot); 929 struct kvm_memory_slot *memslots = slots->memslots; 930 931 if (gfn >= memslots[slot].base_gfn && 932 gfn < memslots[slot].base_gfn + memslots[slot].npages) 933 return &memslots[slot]; 934 935 while (start < end) { 936 slot = start + (end - start) / 2; 937 938 if (gfn >= memslots[slot].base_gfn) 939 end = slot; 940 else 941 start = slot + 1; 942 } 943 944 if (gfn >= memslots[start].base_gfn && 945 gfn < memslots[start].base_gfn + memslots[start].npages) { 946 atomic_set(&slots->lru_slot, start); 947 return &memslots[start]; 948 } 949 950 return NULL; 951} 952 953static inline struct kvm_memory_slot * 954__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 955{ 956 return search_memslots(slots, gfn); 957} 958 959static inline unsigned long 960__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 961{ 962 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 963} 964 965static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 966{ 967 return gfn_to_memslot(kvm, gfn)->id; 968} 969 970static inline gfn_t 971hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 972{ 973 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 974 975 return slot->base_gfn + gfn_offset; 976} 977 978static inline gpa_t gfn_to_gpa(gfn_t gfn) 979{ 980 return (gpa_t)gfn << PAGE_SHIFT; 981} 982 983static inline gfn_t gpa_to_gfn(gpa_t gpa) 984{ 985 return (gfn_t)(gpa >> PAGE_SHIFT); 986} 987 988static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 989{ 990 return (hpa_t)pfn << PAGE_SHIFT; 991} 992 993static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 994 gpa_t gpa) 995{ 996 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 997} 998 999static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1000{ 1001 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1002 1003 return kvm_is_error_hva(hva); 1004} 1005 1006enum kvm_stat_kind { 1007 KVM_STAT_VM, 1008 KVM_STAT_VCPU, 1009}; 1010 1011struct kvm_stat_data { 1012 int offset; 1013 struct kvm *kvm; 1014}; 1015 1016struct kvm_stats_debugfs_item { 1017 const char *name; 1018 int offset; 1019 enum kvm_stat_kind kind; 1020}; 1021extern struct kvm_stats_debugfs_item debugfs_entries[]; 1022extern struct dentry *kvm_debugfs_dir; 1023 1024#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1025static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1026{ 1027 if (unlikely(kvm->mmu_notifier_count)) 1028 return 1; 1029 /* 1030 * Ensure the read of mmu_notifier_count happens before the read 1031 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1032 * mmu_notifier_invalidate_range_end to make sure that the caller 1033 * either sees the old (non-zero) value of mmu_notifier_count or 1034 * the new (incremented) value of mmu_notifier_seq. 1035 * PowerPC Book3s HV KVM calls this under a per-page lock 1036 * rather than under kvm->mmu_lock, for scalability, so 1037 * can't rely on kvm->mmu_lock to keep things ordered. 1038 */ 1039 smp_rmb(); 1040 if (kvm->mmu_notifier_seq != mmu_seq) 1041 return 1; 1042 return 0; 1043} 1044#endif 1045 1046#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1047 1048#ifdef CONFIG_S390 1049#define KVM_MAX_IRQ_ROUTES 4096 //FIXME: we can have more than that... 1050#elif defined(CONFIG_ARM64) 1051#define KVM_MAX_IRQ_ROUTES 4096 1052#else 1053#define KVM_MAX_IRQ_ROUTES 1024 1054#endif 1055 1056bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1057int kvm_set_irq_routing(struct kvm *kvm, 1058 const struct kvm_irq_routing_entry *entries, 1059 unsigned nr, 1060 unsigned flags); 1061int kvm_set_routing_entry(struct kvm *kvm, 1062 struct kvm_kernel_irq_routing_entry *e, 1063 const struct kvm_irq_routing_entry *ue); 1064void kvm_free_irq_routing(struct kvm *kvm); 1065 1066#else 1067 1068static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1069 1070#endif 1071 1072int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1073 1074#ifdef CONFIG_HAVE_KVM_EVENTFD 1075 1076void kvm_eventfd_init(struct kvm *kvm); 1077int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1078 1079#ifdef CONFIG_HAVE_KVM_IRQFD 1080int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1081void kvm_irqfd_release(struct kvm *kvm); 1082void kvm_irq_routing_update(struct kvm *); 1083#else 1084static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1085{ 1086 return -EINVAL; 1087} 1088 1089static inline void kvm_irqfd_release(struct kvm *kvm) {} 1090#endif 1091 1092#else 1093 1094static inline void kvm_eventfd_init(struct kvm *kvm) {} 1095 1096static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1097{ 1098 return -EINVAL; 1099} 1100 1101static inline void kvm_irqfd_release(struct kvm *kvm) {} 1102 1103#ifdef CONFIG_HAVE_KVM_IRQCHIP 1104static inline void kvm_irq_routing_update(struct kvm *kvm) 1105{ 1106} 1107#endif 1108 1109static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1110{ 1111 return -ENOSYS; 1112} 1113 1114#endif /* CONFIG_HAVE_KVM_EVENTFD */ 1115 1116void kvm_arch_irq_routing_update(struct kvm *kvm); 1117 1118static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1119{ 1120 /* 1121 * Ensure the rest of the request is published to kvm_check_request's 1122 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1123 */ 1124 smp_wmb(); 1125 set_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1126} 1127 1128static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1129{ 1130 return READ_ONCE(vcpu->requests); 1131} 1132 1133static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1134{ 1135 return test_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1136} 1137 1138static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1139{ 1140 clear_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1141} 1142 1143static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1144{ 1145 if (kvm_test_request(req, vcpu)) { 1146 kvm_clear_request(req, vcpu); 1147 1148 /* 1149 * Ensure the rest of the request is visible to kvm_check_request's 1150 * caller. Paired with the smp_wmb in kvm_make_request. 1151 */ 1152 smp_mb__after_atomic(); 1153 return true; 1154 } else { 1155 return false; 1156 } 1157} 1158 1159extern bool kvm_rebooting; 1160 1161extern unsigned int halt_poll_ns; 1162extern unsigned int halt_poll_ns_grow; 1163extern unsigned int halt_poll_ns_shrink; 1164 1165struct kvm_device { 1166 struct kvm_device_ops *ops; 1167 struct kvm *kvm; 1168 void *private; 1169 struct list_head vm_node; 1170}; 1171 1172/* create, destroy, and name are mandatory */ 1173struct kvm_device_ops { 1174 const char *name; 1175 1176 /* 1177 * create is called holding kvm->lock and any operations not suitable 1178 * to do while holding the lock should be deferred to init (see 1179 * below). 1180 */ 1181 int (*create)(struct kvm_device *dev, u32 type); 1182 1183 /* 1184 * init is called after create if create is successful and is called 1185 * outside of holding kvm->lock. 1186 */ 1187 void (*init)(struct kvm_device *dev); 1188 1189 /* 1190 * Destroy is responsible for freeing dev. 1191 * 1192 * Destroy may be called before or after destructors are called 1193 * on emulated I/O regions, depending on whether a reference is 1194 * held by a vcpu or other kvm component that gets destroyed 1195 * after the emulated I/O. 1196 */ 1197 void (*destroy)(struct kvm_device *dev); 1198 1199 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1200 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1201 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1202 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1203 unsigned long arg); 1204}; 1205 1206void kvm_device_get(struct kvm_device *dev); 1207void kvm_device_put(struct kvm_device *dev); 1208struct kvm_device *kvm_device_from_filp(struct file *filp); 1209int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1210void kvm_unregister_device_ops(u32 type); 1211 1212extern struct kvm_device_ops kvm_mpic_ops; 1213extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1214extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1215 1216#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1217 1218static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1219{ 1220 vcpu->spin_loop.in_spin_loop = val; 1221} 1222static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1223{ 1224 vcpu->spin_loop.dy_eligible = val; 1225} 1226 1227#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1228 1229static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1230{ 1231} 1232 1233static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1234{ 1235} 1236#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1237 1238#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1239bool kvm_arch_has_irq_bypass(void); 1240int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1241 struct irq_bypass_producer *); 1242void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1243 struct irq_bypass_producer *); 1244void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1245void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1246int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1247 uint32_t guest_irq, bool set); 1248#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1249 1250#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1251/* If we wakeup during the poll time, was it a sucessful poll? */ 1252static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1253{ 1254 return vcpu->valid_wakeup; 1255} 1256 1257#else 1258static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1259{ 1260 return true; 1261} 1262#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1263 1264#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1265long kvm_arch_vcpu_async_ioctl(struct file *filp, 1266 unsigned int ioctl, unsigned long arg); 1267#else 1268static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1269 unsigned int ioctl, 1270 unsigned long arg) 1271{ 1272 return -ENOIOCTLCMD; 1273} 1274#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1275 1276void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1277 unsigned long start, unsigned long end); 1278 1279#endif