Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/pm_wakeup.h>
27#include <linux/suspend.h>
28#include <linux/fault-inject.h>
29#include <linux/random.h>
30#include <linux/slab.h>
31#include <linux/of.h>
32
33#include <linux/mmc/card.h>
34#include <linux/mmc/host.h>
35#include <linux/mmc/mmc.h>
36#include <linux/mmc/sd.h>
37#include <linux/mmc/slot-gpio.h>
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/mmc.h>
41
42#include "core.h"
43#include "card.h"
44#include "bus.h"
45#include "host.h"
46#include "sdio_bus.h"
47#include "pwrseq.h"
48
49#include "mmc_ops.h"
50#include "sd_ops.h"
51#include "sdio_ops.h"
52
53/* If the device is not responding */
54#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
55
56/* The max erase timeout, used when host->max_busy_timeout isn't specified */
57#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
58
59static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
60
61/*
62 * Enabling software CRCs on the data blocks can be a significant (30%)
63 * performance cost, and for other reasons may not always be desired.
64 * So we allow it it to be disabled.
65 */
66bool use_spi_crc = 1;
67module_param(use_spi_crc, bool, 0);
68
69static int mmc_schedule_delayed_work(struct delayed_work *work,
70 unsigned long delay)
71{
72 /*
73 * We use the system_freezable_wq, because of two reasons.
74 * First, it allows several works (not the same work item) to be
75 * executed simultaneously. Second, the queue becomes frozen when
76 * userspace becomes frozen during system PM.
77 */
78 return queue_delayed_work(system_freezable_wq, work, delay);
79}
80
81#ifdef CONFIG_FAIL_MMC_REQUEST
82
83/*
84 * Internal function. Inject random data errors.
85 * If mmc_data is NULL no errors are injected.
86 */
87static void mmc_should_fail_request(struct mmc_host *host,
88 struct mmc_request *mrq)
89{
90 struct mmc_command *cmd = mrq->cmd;
91 struct mmc_data *data = mrq->data;
92 static const int data_errors[] = {
93 -ETIMEDOUT,
94 -EILSEQ,
95 -EIO,
96 };
97
98 if (!data)
99 return;
100
101 if (cmd->error || data->error ||
102 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
103 return;
104
105 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
106 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
107}
108
109#else /* CONFIG_FAIL_MMC_REQUEST */
110
111static inline void mmc_should_fail_request(struct mmc_host *host,
112 struct mmc_request *mrq)
113{
114}
115
116#endif /* CONFIG_FAIL_MMC_REQUEST */
117
118static inline void mmc_complete_cmd(struct mmc_request *mrq)
119{
120 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
121 complete_all(&mrq->cmd_completion);
122}
123
124void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
125{
126 if (!mrq->cap_cmd_during_tfr)
127 return;
128
129 mmc_complete_cmd(mrq);
130
131 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
132 mmc_hostname(host), mrq->cmd->opcode);
133}
134EXPORT_SYMBOL(mmc_command_done);
135
136/**
137 * mmc_request_done - finish processing an MMC request
138 * @host: MMC host which completed request
139 * @mrq: MMC request which request
140 *
141 * MMC drivers should call this function when they have completed
142 * their processing of a request.
143 */
144void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
145{
146 struct mmc_command *cmd = mrq->cmd;
147 int err = cmd->error;
148
149 /* Flag re-tuning needed on CRC errors */
150 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
151 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
152 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
153 (mrq->data && mrq->data->error == -EILSEQ) ||
154 (mrq->stop && mrq->stop->error == -EILSEQ)))
155 mmc_retune_needed(host);
156
157 if (err && cmd->retries && mmc_host_is_spi(host)) {
158 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
159 cmd->retries = 0;
160 }
161
162 if (host->ongoing_mrq == mrq)
163 host->ongoing_mrq = NULL;
164
165 mmc_complete_cmd(mrq);
166
167 trace_mmc_request_done(host, mrq);
168
169 /*
170 * We list various conditions for the command to be considered
171 * properly done:
172 *
173 * - There was no error, OK fine then
174 * - We are not doing some kind of retry
175 * - The card was removed (...so just complete everything no matter
176 * if there are errors or retries)
177 */
178 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
179 mmc_should_fail_request(host, mrq);
180
181 if (!host->ongoing_mrq)
182 led_trigger_event(host->led, LED_OFF);
183
184 if (mrq->sbc) {
185 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
186 mmc_hostname(host), mrq->sbc->opcode,
187 mrq->sbc->error,
188 mrq->sbc->resp[0], mrq->sbc->resp[1],
189 mrq->sbc->resp[2], mrq->sbc->resp[3]);
190 }
191
192 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
193 mmc_hostname(host), cmd->opcode, err,
194 cmd->resp[0], cmd->resp[1],
195 cmd->resp[2], cmd->resp[3]);
196
197 if (mrq->data) {
198 pr_debug("%s: %d bytes transferred: %d\n",
199 mmc_hostname(host),
200 mrq->data->bytes_xfered, mrq->data->error);
201 }
202
203 if (mrq->stop) {
204 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
205 mmc_hostname(host), mrq->stop->opcode,
206 mrq->stop->error,
207 mrq->stop->resp[0], mrq->stop->resp[1],
208 mrq->stop->resp[2], mrq->stop->resp[3]);
209 }
210 }
211 /*
212 * Request starter must handle retries - see
213 * mmc_wait_for_req_done().
214 */
215 if (mrq->done)
216 mrq->done(mrq);
217}
218
219EXPORT_SYMBOL(mmc_request_done);
220
221static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
222{
223 int err;
224
225 /* Assumes host controller has been runtime resumed by mmc_claim_host */
226 err = mmc_retune(host);
227 if (err) {
228 mrq->cmd->error = err;
229 mmc_request_done(host, mrq);
230 return;
231 }
232
233 /*
234 * For sdio rw commands we must wait for card busy otherwise some
235 * sdio devices won't work properly.
236 * And bypass I/O abort, reset and bus suspend operations.
237 */
238 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
239 host->ops->card_busy) {
240 int tries = 500; /* Wait aprox 500ms at maximum */
241
242 while (host->ops->card_busy(host) && --tries)
243 mmc_delay(1);
244
245 if (tries == 0) {
246 mrq->cmd->error = -EBUSY;
247 mmc_request_done(host, mrq);
248 return;
249 }
250 }
251
252 if (mrq->cap_cmd_during_tfr) {
253 host->ongoing_mrq = mrq;
254 /*
255 * Retry path could come through here without having waiting on
256 * cmd_completion, so ensure it is reinitialised.
257 */
258 reinit_completion(&mrq->cmd_completion);
259 }
260
261 trace_mmc_request_start(host, mrq);
262
263 if (host->cqe_on)
264 host->cqe_ops->cqe_off(host);
265
266 host->ops->request(host, mrq);
267}
268
269static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
270 bool cqe)
271{
272 if (mrq->sbc) {
273 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
274 mmc_hostname(host), mrq->sbc->opcode,
275 mrq->sbc->arg, mrq->sbc->flags);
276 }
277
278 if (mrq->cmd) {
279 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
280 mmc_hostname(host), cqe ? "CQE direct " : "",
281 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
282 } else if (cqe) {
283 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
284 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
285 }
286
287 if (mrq->data) {
288 pr_debug("%s: blksz %d blocks %d flags %08x "
289 "tsac %d ms nsac %d\n",
290 mmc_hostname(host), mrq->data->blksz,
291 mrq->data->blocks, mrq->data->flags,
292 mrq->data->timeout_ns / 1000000,
293 mrq->data->timeout_clks);
294 }
295
296 if (mrq->stop) {
297 pr_debug("%s: CMD%u arg %08x flags %08x\n",
298 mmc_hostname(host), mrq->stop->opcode,
299 mrq->stop->arg, mrq->stop->flags);
300 }
301}
302
303static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
304{
305 unsigned int i, sz = 0;
306 struct scatterlist *sg;
307
308 if (mrq->cmd) {
309 mrq->cmd->error = 0;
310 mrq->cmd->mrq = mrq;
311 mrq->cmd->data = mrq->data;
312 }
313 if (mrq->sbc) {
314 mrq->sbc->error = 0;
315 mrq->sbc->mrq = mrq;
316 }
317 if (mrq->data) {
318 if (mrq->data->blksz > host->max_blk_size ||
319 mrq->data->blocks > host->max_blk_count ||
320 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
321 return -EINVAL;
322
323 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
324 sz += sg->length;
325 if (sz != mrq->data->blocks * mrq->data->blksz)
326 return -EINVAL;
327
328 mrq->data->error = 0;
329 mrq->data->mrq = mrq;
330 if (mrq->stop) {
331 mrq->data->stop = mrq->stop;
332 mrq->stop->error = 0;
333 mrq->stop->mrq = mrq;
334 }
335 }
336
337 return 0;
338}
339
340int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
341{
342 int err;
343
344 init_completion(&mrq->cmd_completion);
345
346 mmc_retune_hold(host);
347
348 if (mmc_card_removed(host->card))
349 return -ENOMEDIUM;
350
351 mmc_mrq_pr_debug(host, mrq, false);
352
353 WARN_ON(!host->claimed);
354
355 err = mmc_mrq_prep(host, mrq);
356 if (err)
357 return err;
358
359 led_trigger_event(host->led, LED_FULL);
360 __mmc_start_request(host, mrq);
361
362 return 0;
363}
364EXPORT_SYMBOL(mmc_start_request);
365
366static void mmc_wait_done(struct mmc_request *mrq)
367{
368 complete(&mrq->completion);
369}
370
371static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
372{
373 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
374
375 /*
376 * If there is an ongoing transfer, wait for the command line to become
377 * available.
378 */
379 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
380 wait_for_completion(&ongoing_mrq->cmd_completion);
381}
382
383static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
384{
385 int err;
386
387 mmc_wait_ongoing_tfr_cmd(host);
388
389 init_completion(&mrq->completion);
390 mrq->done = mmc_wait_done;
391
392 err = mmc_start_request(host, mrq);
393 if (err) {
394 mrq->cmd->error = err;
395 mmc_complete_cmd(mrq);
396 complete(&mrq->completion);
397 }
398
399 return err;
400}
401
402void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
403{
404 struct mmc_command *cmd;
405
406 while (1) {
407 wait_for_completion(&mrq->completion);
408
409 cmd = mrq->cmd;
410
411 /*
412 * If host has timed out waiting for the sanitize
413 * to complete, card might be still in programming state
414 * so let's try to bring the card out of programming
415 * state.
416 */
417 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
418 if (!mmc_interrupt_hpi(host->card)) {
419 pr_warn("%s: %s: Interrupted sanitize\n",
420 mmc_hostname(host), __func__);
421 cmd->error = 0;
422 break;
423 } else {
424 pr_err("%s: %s: Failed to interrupt sanitize\n",
425 mmc_hostname(host), __func__);
426 }
427 }
428 if (!cmd->error || !cmd->retries ||
429 mmc_card_removed(host->card))
430 break;
431
432 mmc_retune_recheck(host);
433
434 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
435 mmc_hostname(host), cmd->opcode, cmd->error);
436 cmd->retries--;
437 cmd->error = 0;
438 __mmc_start_request(host, mrq);
439 }
440
441 mmc_retune_release(host);
442}
443EXPORT_SYMBOL(mmc_wait_for_req_done);
444
445/*
446 * mmc_cqe_start_req - Start a CQE request.
447 * @host: MMC host to start the request
448 * @mrq: request to start
449 *
450 * Start the request, re-tuning if needed and it is possible. Returns an error
451 * code if the request fails to start or -EBUSY if CQE is busy.
452 */
453int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
454{
455 int err;
456
457 /*
458 * CQE cannot process re-tuning commands. Caller must hold retuning
459 * while CQE is in use. Re-tuning can happen here only when CQE has no
460 * active requests i.e. this is the first. Note, re-tuning will call
461 * ->cqe_off().
462 */
463 err = mmc_retune(host);
464 if (err)
465 goto out_err;
466
467 mrq->host = host;
468
469 mmc_mrq_pr_debug(host, mrq, true);
470
471 err = mmc_mrq_prep(host, mrq);
472 if (err)
473 goto out_err;
474
475 err = host->cqe_ops->cqe_request(host, mrq);
476 if (err)
477 goto out_err;
478
479 trace_mmc_request_start(host, mrq);
480
481 return 0;
482
483out_err:
484 if (mrq->cmd) {
485 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
486 mmc_hostname(host), mrq->cmd->opcode, err);
487 } else {
488 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
489 mmc_hostname(host), mrq->tag, err);
490 }
491 return err;
492}
493EXPORT_SYMBOL(mmc_cqe_start_req);
494
495/**
496 * mmc_cqe_request_done - CQE has finished processing an MMC request
497 * @host: MMC host which completed request
498 * @mrq: MMC request which completed
499 *
500 * CQE drivers should call this function when they have completed
501 * their processing of a request.
502 */
503void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
504{
505 mmc_should_fail_request(host, mrq);
506
507 /* Flag re-tuning needed on CRC errors */
508 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
509 (mrq->data && mrq->data->error == -EILSEQ))
510 mmc_retune_needed(host);
511
512 trace_mmc_request_done(host, mrq);
513
514 if (mrq->cmd) {
515 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
516 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
517 } else {
518 pr_debug("%s: CQE transfer done tag %d\n",
519 mmc_hostname(host), mrq->tag);
520 }
521
522 if (mrq->data) {
523 pr_debug("%s: %d bytes transferred: %d\n",
524 mmc_hostname(host),
525 mrq->data->bytes_xfered, mrq->data->error);
526 }
527
528 mrq->done(mrq);
529}
530EXPORT_SYMBOL(mmc_cqe_request_done);
531
532/**
533 * mmc_cqe_post_req - CQE post process of a completed MMC request
534 * @host: MMC host
535 * @mrq: MMC request to be processed
536 */
537void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
538{
539 if (host->cqe_ops->cqe_post_req)
540 host->cqe_ops->cqe_post_req(host, mrq);
541}
542EXPORT_SYMBOL(mmc_cqe_post_req);
543
544/* Arbitrary 1 second timeout */
545#define MMC_CQE_RECOVERY_TIMEOUT 1000
546
547/*
548 * mmc_cqe_recovery - Recover from CQE errors.
549 * @host: MMC host to recover
550 *
551 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
552 * in eMMC, and discarding the queue in CQE. CQE must call
553 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
554 * fails to discard its queue.
555 */
556int mmc_cqe_recovery(struct mmc_host *host)
557{
558 struct mmc_command cmd;
559 int err;
560
561 mmc_retune_hold_now(host);
562
563 /*
564 * Recovery is expected seldom, if at all, but it reduces performance,
565 * so make sure it is not completely silent.
566 */
567 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
568
569 host->cqe_ops->cqe_recovery_start(host);
570
571 memset(&cmd, 0, sizeof(cmd));
572 cmd.opcode = MMC_STOP_TRANSMISSION,
573 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC,
574 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
575 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
576 mmc_wait_for_cmd(host, &cmd, 0);
577
578 memset(&cmd, 0, sizeof(cmd));
579 cmd.opcode = MMC_CMDQ_TASK_MGMT;
580 cmd.arg = 1; /* Discard entire queue */
581 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
582 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
583 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
584 err = mmc_wait_for_cmd(host, &cmd, 0);
585
586 host->cqe_ops->cqe_recovery_finish(host);
587
588 mmc_retune_release(host);
589
590 return err;
591}
592EXPORT_SYMBOL(mmc_cqe_recovery);
593
594/**
595 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
596 * @host: MMC host
597 * @mrq: MMC request
598 *
599 * mmc_is_req_done() is used with requests that have
600 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
601 * starting a request and before waiting for it to complete. That is,
602 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
603 * and before mmc_wait_for_req_done(). If it is called at other times the
604 * result is not meaningful.
605 */
606bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
607{
608 return completion_done(&mrq->completion);
609}
610EXPORT_SYMBOL(mmc_is_req_done);
611
612/**
613 * mmc_wait_for_req - start a request and wait for completion
614 * @host: MMC host to start command
615 * @mrq: MMC request to start
616 *
617 * Start a new MMC custom command request for a host, and wait
618 * for the command to complete. In the case of 'cap_cmd_during_tfr'
619 * requests, the transfer is ongoing and the caller can issue further
620 * commands that do not use the data lines, and then wait by calling
621 * mmc_wait_for_req_done().
622 * Does not attempt to parse the response.
623 */
624void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
625{
626 __mmc_start_req(host, mrq);
627
628 if (!mrq->cap_cmd_during_tfr)
629 mmc_wait_for_req_done(host, mrq);
630}
631EXPORT_SYMBOL(mmc_wait_for_req);
632
633/**
634 * mmc_wait_for_cmd - start a command and wait for completion
635 * @host: MMC host to start command
636 * @cmd: MMC command to start
637 * @retries: maximum number of retries
638 *
639 * Start a new MMC command for a host, and wait for the command
640 * to complete. Return any error that occurred while the command
641 * was executing. Do not attempt to parse the response.
642 */
643int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
644{
645 struct mmc_request mrq = {};
646
647 WARN_ON(!host->claimed);
648
649 memset(cmd->resp, 0, sizeof(cmd->resp));
650 cmd->retries = retries;
651
652 mrq.cmd = cmd;
653 cmd->data = NULL;
654
655 mmc_wait_for_req(host, &mrq);
656
657 return cmd->error;
658}
659
660EXPORT_SYMBOL(mmc_wait_for_cmd);
661
662/**
663 * mmc_set_data_timeout - set the timeout for a data command
664 * @data: data phase for command
665 * @card: the MMC card associated with the data transfer
666 *
667 * Computes the data timeout parameters according to the
668 * correct algorithm given the card type.
669 */
670void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
671{
672 unsigned int mult;
673
674 /*
675 * SDIO cards only define an upper 1 s limit on access.
676 */
677 if (mmc_card_sdio(card)) {
678 data->timeout_ns = 1000000000;
679 data->timeout_clks = 0;
680 return;
681 }
682
683 /*
684 * SD cards use a 100 multiplier rather than 10
685 */
686 mult = mmc_card_sd(card) ? 100 : 10;
687
688 /*
689 * Scale up the multiplier (and therefore the timeout) by
690 * the r2w factor for writes.
691 */
692 if (data->flags & MMC_DATA_WRITE)
693 mult <<= card->csd.r2w_factor;
694
695 data->timeout_ns = card->csd.taac_ns * mult;
696 data->timeout_clks = card->csd.taac_clks * mult;
697
698 /*
699 * SD cards also have an upper limit on the timeout.
700 */
701 if (mmc_card_sd(card)) {
702 unsigned int timeout_us, limit_us;
703
704 timeout_us = data->timeout_ns / 1000;
705 if (card->host->ios.clock)
706 timeout_us += data->timeout_clks * 1000 /
707 (card->host->ios.clock / 1000);
708
709 if (data->flags & MMC_DATA_WRITE)
710 /*
711 * The MMC spec "It is strongly recommended
712 * for hosts to implement more than 500ms
713 * timeout value even if the card indicates
714 * the 250ms maximum busy length." Even the
715 * previous value of 300ms is known to be
716 * insufficient for some cards.
717 */
718 limit_us = 3000000;
719 else
720 limit_us = 100000;
721
722 /*
723 * SDHC cards always use these fixed values.
724 */
725 if (timeout_us > limit_us) {
726 data->timeout_ns = limit_us * 1000;
727 data->timeout_clks = 0;
728 }
729
730 /* assign limit value if invalid */
731 if (timeout_us == 0)
732 data->timeout_ns = limit_us * 1000;
733 }
734
735 /*
736 * Some cards require longer data read timeout than indicated in CSD.
737 * Address this by setting the read timeout to a "reasonably high"
738 * value. For the cards tested, 600ms has proven enough. If necessary,
739 * this value can be increased if other problematic cards require this.
740 */
741 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
742 data->timeout_ns = 600000000;
743 data->timeout_clks = 0;
744 }
745
746 /*
747 * Some cards need very high timeouts if driven in SPI mode.
748 * The worst observed timeout was 900ms after writing a
749 * continuous stream of data until the internal logic
750 * overflowed.
751 */
752 if (mmc_host_is_spi(card->host)) {
753 if (data->flags & MMC_DATA_WRITE) {
754 if (data->timeout_ns < 1000000000)
755 data->timeout_ns = 1000000000; /* 1s */
756 } else {
757 if (data->timeout_ns < 100000000)
758 data->timeout_ns = 100000000; /* 100ms */
759 }
760 }
761}
762EXPORT_SYMBOL(mmc_set_data_timeout);
763
764/**
765 * mmc_align_data_size - pads a transfer size to a more optimal value
766 * @card: the MMC card associated with the data transfer
767 * @sz: original transfer size
768 *
769 * Pads the original data size with a number of extra bytes in
770 * order to avoid controller bugs and/or performance hits
771 * (e.g. some controllers revert to PIO for certain sizes).
772 *
773 * Returns the improved size, which might be unmodified.
774 *
775 * Note that this function is only relevant when issuing a
776 * single scatter gather entry.
777 */
778unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
779{
780 /*
781 * FIXME: We don't have a system for the controller to tell
782 * the core about its problems yet, so for now we just 32-bit
783 * align the size.
784 */
785 sz = ((sz + 3) / 4) * 4;
786
787 return sz;
788}
789EXPORT_SYMBOL(mmc_align_data_size);
790
791/*
792 * Allow claiming an already claimed host if the context is the same or there is
793 * no context but the task is the same.
794 */
795static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
796 struct task_struct *task)
797{
798 return host->claimer == ctx ||
799 (!ctx && task && host->claimer->task == task);
800}
801
802static inline void mmc_ctx_set_claimer(struct mmc_host *host,
803 struct mmc_ctx *ctx,
804 struct task_struct *task)
805{
806 if (!host->claimer) {
807 if (ctx)
808 host->claimer = ctx;
809 else
810 host->claimer = &host->default_ctx;
811 }
812 if (task)
813 host->claimer->task = task;
814}
815
816/**
817 * __mmc_claim_host - exclusively claim a host
818 * @host: mmc host to claim
819 * @ctx: context that claims the host or NULL in which case the default
820 * context will be used
821 * @abort: whether or not the operation should be aborted
822 *
823 * Claim a host for a set of operations. If @abort is non null and
824 * dereference a non-zero value then this will return prematurely with
825 * that non-zero value without acquiring the lock. Returns zero
826 * with the lock held otherwise.
827 */
828int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
829 atomic_t *abort)
830{
831 struct task_struct *task = ctx ? NULL : current;
832 DECLARE_WAITQUEUE(wait, current);
833 unsigned long flags;
834 int stop;
835 bool pm = false;
836
837 might_sleep();
838
839 add_wait_queue(&host->wq, &wait);
840 spin_lock_irqsave(&host->lock, flags);
841 while (1) {
842 set_current_state(TASK_UNINTERRUPTIBLE);
843 stop = abort ? atomic_read(abort) : 0;
844 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
845 break;
846 spin_unlock_irqrestore(&host->lock, flags);
847 schedule();
848 spin_lock_irqsave(&host->lock, flags);
849 }
850 set_current_state(TASK_RUNNING);
851 if (!stop) {
852 host->claimed = 1;
853 mmc_ctx_set_claimer(host, ctx, task);
854 host->claim_cnt += 1;
855 if (host->claim_cnt == 1)
856 pm = true;
857 } else
858 wake_up(&host->wq);
859 spin_unlock_irqrestore(&host->lock, flags);
860 remove_wait_queue(&host->wq, &wait);
861
862 if (pm)
863 pm_runtime_get_sync(mmc_dev(host));
864
865 return stop;
866}
867EXPORT_SYMBOL(__mmc_claim_host);
868
869/**
870 * mmc_release_host - release a host
871 * @host: mmc host to release
872 *
873 * Release a MMC host, allowing others to claim the host
874 * for their operations.
875 */
876void mmc_release_host(struct mmc_host *host)
877{
878 unsigned long flags;
879
880 WARN_ON(!host->claimed);
881
882 spin_lock_irqsave(&host->lock, flags);
883 if (--host->claim_cnt) {
884 /* Release for nested claim */
885 spin_unlock_irqrestore(&host->lock, flags);
886 } else {
887 host->claimed = 0;
888 host->claimer->task = NULL;
889 host->claimer = NULL;
890 spin_unlock_irqrestore(&host->lock, flags);
891 wake_up(&host->wq);
892 pm_runtime_mark_last_busy(mmc_dev(host));
893 pm_runtime_put_autosuspend(mmc_dev(host));
894 }
895}
896EXPORT_SYMBOL(mmc_release_host);
897
898/*
899 * This is a helper function, which fetches a runtime pm reference for the
900 * card device and also claims the host.
901 */
902void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
903{
904 pm_runtime_get_sync(&card->dev);
905 __mmc_claim_host(card->host, ctx, NULL);
906}
907EXPORT_SYMBOL(mmc_get_card);
908
909/*
910 * This is a helper function, which releases the host and drops the runtime
911 * pm reference for the card device.
912 */
913void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
914{
915 struct mmc_host *host = card->host;
916
917 WARN_ON(ctx && host->claimer != ctx);
918
919 mmc_release_host(host);
920 pm_runtime_mark_last_busy(&card->dev);
921 pm_runtime_put_autosuspend(&card->dev);
922}
923EXPORT_SYMBOL(mmc_put_card);
924
925/*
926 * Internal function that does the actual ios call to the host driver,
927 * optionally printing some debug output.
928 */
929static inline void mmc_set_ios(struct mmc_host *host)
930{
931 struct mmc_ios *ios = &host->ios;
932
933 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
934 "width %u timing %u\n",
935 mmc_hostname(host), ios->clock, ios->bus_mode,
936 ios->power_mode, ios->chip_select, ios->vdd,
937 1 << ios->bus_width, ios->timing);
938
939 host->ops->set_ios(host, ios);
940}
941
942/*
943 * Control chip select pin on a host.
944 */
945void mmc_set_chip_select(struct mmc_host *host, int mode)
946{
947 host->ios.chip_select = mode;
948 mmc_set_ios(host);
949}
950
951/*
952 * Sets the host clock to the highest possible frequency that
953 * is below "hz".
954 */
955void mmc_set_clock(struct mmc_host *host, unsigned int hz)
956{
957 WARN_ON(hz && hz < host->f_min);
958
959 if (hz > host->f_max)
960 hz = host->f_max;
961
962 host->ios.clock = hz;
963 mmc_set_ios(host);
964}
965
966int mmc_execute_tuning(struct mmc_card *card)
967{
968 struct mmc_host *host = card->host;
969 u32 opcode;
970 int err;
971
972 if (!host->ops->execute_tuning)
973 return 0;
974
975 if (host->cqe_on)
976 host->cqe_ops->cqe_off(host);
977
978 if (mmc_card_mmc(card))
979 opcode = MMC_SEND_TUNING_BLOCK_HS200;
980 else
981 opcode = MMC_SEND_TUNING_BLOCK;
982
983 err = host->ops->execute_tuning(host, opcode);
984
985 if (err)
986 pr_err("%s: tuning execution failed: %d\n",
987 mmc_hostname(host), err);
988 else
989 mmc_retune_enable(host);
990
991 return err;
992}
993
994/*
995 * Change the bus mode (open drain/push-pull) of a host.
996 */
997void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
998{
999 host->ios.bus_mode = mode;
1000 mmc_set_ios(host);
1001}
1002
1003/*
1004 * Change data bus width of a host.
1005 */
1006void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1007{
1008 host->ios.bus_width = width;
1009 mmc_set_ios(host);
1010}
1011
1012/*
1013 * Set initial state after a power cycle or a hw_reset.
1014 */
1015void mmc_set_initial_state(struct mmc_host *host)
1016{
1017 if (host->cqe_on)
1018 host->cqe_ops->cqe_off(host);
1019
1020 mmc_retune_disable(host);
1021
1022 if (mmc_host_is_spi(host))
1023 host->ios.chip_select = MMC_CS_HIGH;
1024 else
1025 host->ios.chip_select = MMC_CS_DONTCARE;
1026 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1027 host->ios.bus_width = MMC_BUS_WIDTH_1;
1028 host->ios.timing = MMC_TIMING_LEGACY;
1029 host->ios.drv_type = 0;
1030 host->ios.enhanced_strobe = false;
1031
1032 /*
1033 * Make sure we are in non-enhanced strobe mode before we
1034 * actually enable it in ext_csd.
1035 */
1036 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1037 host->ops->hs400_enhanced_strobe)
1038 host->ops->hs400_enhanced_strobe(host, &host->ios);
1039
1040 mmc_set_ios(host);
1041}
1042
1043/**
1044 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1045 * @vdd: voltage (mV)
1046 * @low_bits: prefer low bits in boundary cases
1047 *
1048 * This function returns the OCR bit number according to the provided @vdd
1049 * value. If conversion is not possible a negative errno value returned.
1050 *
1051 * Depending on the @low_bits flag the function prefers low or high OCR bits
1052 * on boundary voltages. For example,
1053 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1054 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1055 *
1056 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1057 */
1058static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1059{
1060 const int max_bit = ilog2(MMC_VDD_35_36);
1061 int bit;
1062
1063 if (vdd < 1650 || vdd > 3600)
1064 return -EINVAL;
1065
1066 if (vdd >= 1650 && vdd <= 1950)
1067 return ilog2(MMC_VDD_165_195);
1068
1069 if (low_bits)
1070 vdd -= 1;
1071
1072 /* Base 2000 mV, step 100 mV, bit's base 8. */
1073 bit = (vdd - 2000) / 100 + 8;
1074 if (bit > max_bit)
1075 return max_bit;
1076 return bit;
1077}
1078
1079/**
1080 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1081 * @vdd_min: minimum voltage value (mV)
1082 * @vdd_max: maximum voltage value (mV)
1083 *
1084 * This function returns the OCR mask bits according to the provided @vdd_min
1085 * and @vdd_max values. If conversion is not possible the function returns 0.
1086 *
1087 * Notes wrt boundary cases:
1088 * This function sets the OCR bits for all boundary voltages, for example
1089 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1090 * MMC_VDD_34_35 mask.
1091 */
1092u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1093{
1094 u32 mask = 0;
1095
1096 if (vdd_max < vdd_min)
1097 return 0;
1098
1099 /* Prefer high bits for the boundary vdd_max values. */
1100 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1101 if (vdd_max < 0)
1102 return 0;
1103
1104 /* Prefer low bits for the boundary vdd_min values. */
1105 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1106 if (vdd_min < 0)
1107 return 0;
1108
1109 /* Fill the mask, from max bit to min bit. */
1110 while (vdd_max >= vdd_min)
1111 mask |= 1 << vdd_max--;
1112
1113 return mask;
1114}
1115EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1116
1117#ifdef CONFIG_OF
1118
1119/**
1120 * mmc_of_parse_voltage - return mask of supported voltages
1121 * @np: The device node need to be parsed.
1122 * @mask: mask of voltages available for MMC/SD/SDIO
1123 *
1124 * Parse the "voltage-ranges" DT property, returning zero if it is not
1125 * found, negative errno if the voltage-range specification is invalid,
1126 * or one if the voltage-range is specified and successfully parsed.
1127 */
1128int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1129{
1130 const u32 *voltage_ranges;
1131 int num_ranges, i;
1132
1133 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1134 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1135 if (!voltage_ranges) {
1136 pr_debug("%pOF: voltage-ranges unspecified\n", np);
1137 return 0;
1138 }
1139 if (!num_ranges) {
1140 pr_err("%pOF: voltage-ranges empty\n", np);
1141 return -EINVAL;
1142 }
1143
1144 for (i = 0; i < num_ranges; i++) {
1145 const int j = i * 2;
1146 u32 ocr_mask;
1147
1148 ocr_mask = mmc_vddrange_to_ocrmask(
1149 be32_to_cpu(voltage_ranges[j]),
1150 be32_to_cpu(voltage_ranges[j + 1]));
1151 if (!ocr_mask) {
1152 pr_err("%pOF: voltage-range #%d is invalid\n",
1153 np, i);
1154 return -EINVAL;
1155 }
1156 *mask |= ocr_mask;
1157 }
1158
1159 return 1;
1160}
1161EXPORT_SYMBOL(mmc_of_parse_voltage);
1162
1163#endif /* CONFIG_OF */
1164
1165static int mmc_of_get_func_num(struct device_node *node)
1166{
1167 u32 reg;
1168 int ret;
1169
1170 ret = of_property_read_u32(node, "reg", ®);
1171 if (ret < 0)
1172 return ret;
1173
1174 return reg;
1175}
1176
1177struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1178 unsigned func_num)
1179{
1180 struct device_node *node;
1181
1182 if (!host->parent || !host->parent->of_node)
1183 return NULL;
1184
1185 for_each_child_of_node(host->parent->of_node, node) {
1186 if (mmc_of_get_func_num(node) == func_num)
1187 return node;
1188 }
1189
1190 return NULL;
1191}
1192
1193#ifdef CONFIG_REGULATOR
1194
1195/**
1196 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1197 * @vdd_bit: OCR bit number
1198 * @min_uV: minimum voltage value (mV)
1199 * @max_uV: maximum voltage value (mV)
1200 *
1201 * This function returns the voltage range according to the provided OCR
1202 * bit number. If conversion is not possible a negative errno value returned.
1203 */
1204static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1205{
1206 int tmp;
1207
1208 if (!vdd_bit)
1209 return -EINVAL;
1210
1211 /*
1212 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1213 * bits this regulator doesn't quite support ... don't
1214 * be too picky, most cards and regulators are OK with
1215 * a 0.1V range goof (it's a small error percentage).
1216 */
1217 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1218 if (tmp == 0) {
1219 *min_uV = 1650 * 1000;
1220 *max_uV = 1950 * 1000;
1221 } else {
1222 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1223 *max_uV = *min_uV + 100 * 1000;
1224 }
1225
1226 return 0;
1227}
1228
1229/**
1230 * mmc_regulator_get_ocrmask - return mask of supported voltages
1231 * @supply: regulator to use
1232 *
1233 * This returns either a negative errno, or a mask of voltages that
1234 * can be provided to MMC/SD/SDIO devices using the specified voltage
1235 * regulator. This would normally be called before registering the
1236 * MMC host adapter.
1237 */
1238int mmc_regulator_get_ocrmask(struct regulator *supply)
1239{
1240 int result = 0;
1241 int count;
1242 int i;
1243 int vdd_uV;
1244 int vdd_mV;
1245
1246 count = regulator_count_voltages(supply);
1247 if (count < 0)
1248 return count;
1249
1250 for (i = 0; i < count; i++) {
1251 vdd_uV = regulator_list_voltage(supply, i);
1252 if (vdd_uV <= 0)
1253 continue;
1254
1255 vdd_mV = vdd_uV / 1000;
1256 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1257 }
1258
1259 if (!result) {
1260 vdd_uV = regulator_get_voltage(supply);
1261 if (vdd_uV <= 0)
1262 return vdd_uV;
1263
1264 vdd_mV = vdd_uV / 1000;
1265 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1266 }
1267
1268 return result;
1269}
1270EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1271
1272/**
1273 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1274 * @mmc: the host to regulate
1275 * @supply: regulator to use
1276 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1277 *
1278 * Returns zero on success, else negative errno.
1279 *
1280 * MMC host drivers may use this to enable or disable a regulator using
1281 * a particular supply voltage. This would normally be called from the
1282 * set_ios() method.
1283 */
1284int mmc_regulator_set_ocr(struct mmc_host *mmc,
1285 struct regulator *supply,
1286 unsigned short vdd_bit)
1287{
1288 int result = 0;
1289 int min_uV, max_uV;
1290
1291 if (vdd_bit) {
1292 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1293
1294 result = regulator_set_voltage(supply, min_uV, max_uV);
1295 if (result == 0 && !mmc->regulator_enabled) {
1296 result = regulator_enable(supply);
1297 if (!result)
1298 mmc->regulator_enabled = true;
1299 }
1300 } else if (mmc->regulator_enabled) {
1301 result = regulator_disable(supply);
1302 if (result == 0)
1303 mmc->regulator_enabled = false;
1304 }
1305
1306 if (result)
1307 dev_err(mmc_dev(mmc),
1308 "could not set regulator OCR (%d)\n", result);
1309 return result;
1310}
1311EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312
1313static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1314 int min_uV, int target_uV,
1315 int max_uV)
1316{
1317 /*
1318 * Check if supported first to avoid errors since we may try several
1319 * signal levels during power up and don't want to show errors.
1320 */
1321 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1322 return -EINVAL;
1323
1324 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1325 max_uV);
1326}
1327
1328/**
1329 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1330 *
1331 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1332 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1333 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1334 * SD card spec also define VQMMC in terms of VMMC.
1335 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1336 *
1337 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1338 * requested voltage. This is definitely a good idea for UHS where there's a
1339 * separate regulator on the card that's trying to make 1.8V and it's best if
1340 * we match.
1341 *
1342 * This function is expected to be used by a controller's
1343 * start_signal_voltage_switch() function.
1344 */
1345int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1346{
1347 struct device *dev = mmc_dev(mmc);
1348 int ret, volt, min_uV, max_uV;
1349
1350 /* If no vqmmc supply then we can't change the voltage */
1351 if (IS_ERR(mmc->supply.vqmmc))
1352 return -EINVAL;
1353
1354 switch (ios->signal_voltage) {
1355 case MMC_SIGNAL_VOLTAGE_120:
1356 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1357 1100000, 1200000, 1300000);
1358 case MMC_SIGNAL_VOLTAGE_180:
1359 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1360 1700000, 1800000, 1950000);
1361 case MMC_SIGNAL_VOLTAGE_330:
1362 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1363 if (ret < 0)
1364 return ret;
1365
1366 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1367 __func__, volt, max_uV);
1368
1369 min_uV = max(volt - 300000, 2700000);
1370 max_uV = min(max_uV + 200000, 3600000);
1371
1372 /*
1373 * Due to a limitation in the current implementation of
1374 * regulator_set_voltage_triplet() which is taking the lowest
1375 * voltage possible if below the target, search for a suitable
1376 * voltage in two steps and try to stay close to vmmc
1377 * with a 0.3V tolerance at first.
1378 */
1379 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1380 min_uV, volt, max_uV))
1381 return 0;
1382
1383 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1384 2700000, volt, 3600000);
1385 default:
1386 return -EINVAL;
1387 }
1388}
1389EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1390
1391#endif /* CONFIG_REGULATOR */
1392
1393/**
1394 * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1395 * @mmc: the host to regulate
1396 *
1397 * Returns 0 or errno. errno should be handled, it is either a critical error
1398 * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1399 * regulators have been found because they all are optional. If you require
1400 * certain regulators, you need to check separately in your driver if they got
1401 * populated after calling this function.
1402 */
1403int mmc_regulator_get_supply(struct mmc_host *mmc)
1404{
1405 struct device *dev = mmc_dev(mmc);
1406 int ret;
1407
1408 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1409 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1410
1411 if (IS_ERR(mmc->supply.vmmc)) {
1412 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1413 return -EPROBE_DEFER;
1414 dev_dbg(dev, "No vmmc regulator found\n");
1415 } else {
1416 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1417 if (ret > 0)
1418 mmc->ocr_avail = ret;
1419 else
1420 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1421 }
1422
1423 if (IS_ERR(mmc->supply.vqmmc)) {
1424 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1425 return -EPROBE_DEFER;
1426 dev_dbg(dev, "No vqmmc regulator found\n");
1427 }
1428
1429 return 0;
1430}
1431EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1432
1433/*
1434 * Mask off any voltages we don't support and select
1435 * the lowest voltage
1436 */
1437u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1438{
1439 int bit;
1440
1441 /*
1442 * Sanity check the voltages that the card claims to
1443 * support.
1444 */
1445 if (ocr & 0x7F) {
1446 dev_warn(mmc_dev(host),
1447 "card claims to support voltages below defined range\n");
1448 ocr &= ~0x7F;
1449 }
1450
1451 ocr &= host->ocr_avail;
1452 if (!ocr) {
1453 dev_warn(mmc_dev(host), "no support for card's volts\n");
1454 return 0;
1455 }
1456
1457 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1458 bit = ffs(ocr) - 1;
1459 ocr &= 3 << bit;
1460 mmc_power_cycle(host, ocr);
1461 } else {
1462 bit = fls(ocr) - 1;
1463 ocr &= 3 << bit;
1464 if (bit != host->ios.vdd)
1465 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1466 }
1467
1468 return ocr;
1469}
1470
1471int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1472{
1473 int err = 0;
1474 int old_signal_voltage = host->ios.signal_voltage;
1475
1476 host->ios.signal_voltage = signal_voltage;
1477 if (host->ops->start_signal_voltage_switch)
1478 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1479
1480 if (err)
1481 host->ios.signal_voltage = old_signal_voltage;
1482
1483 return err;
1484
1485}
1486
1487int mmc_host_set_uhs_voltage(struct mmc_host *host)
1488{
1489 u32 clock;
1490
1491 /*
1492 * During a signal voltage level switch, the clock must be gated
1493 * for 5 ms according to the SD spec
1494 */
1495 clock = host->ios.clock;
1496 host->ios.clock = 0;
1497 mmc_set_ios(host);
1498
1499 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1500 return -EAGAIN;
1501
1502 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1503 mmc_delay(10);
1504 host->ios.clock = clock;
1505 mmc_set_ios(host);
1506
1507 return 0;
1508}
1509
1510int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1511{
1512 struct mmc_command cmd = {};
1513 int err = 0;
1514
1515 /*
1516 * If we cannot switch voltages, return failure so the caller
1517 * can continue without UHS mode
1518 */
1519 if (!host->ops->start_signal_voltage_switch)
1520 return -EPERM;
1521 if (!host->ops->card_busy)
1522 pr_warn("%s: cannot verify signal voltage switch\n",
1523 mmc_hostname(host));
1524
1525 cmd.opcode = SD_SWITCH_VOLTAGE;
1526 cmd.arg = 0;
1527 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1528
1529 err = mmc_wait_for_cmd(host, &cmd, 0);
1530 if (err)
1531 return err;
1532
1533 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1534 return -EIO;
1535
1536 /*
1537 * The card should drive cmd and dat[0:3] low immediately
1538 * after the response of cmd11, but wait 1 ms to be sure
1539 */
1540 mmc_delay(1);
1541 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1542 err = -EAGAIN;
1543 goto power_cycle;
1544 }
1545
1546 if (mmc_host_set_uhs_voltage(host)) {
1547 /*
1548 * Voltages may not have been switched, but we've already
1549 * sent CMD11, so a power cycle is required anyway
1550 */
1551 err = -EAGAIN;
1552 goto power_cycle;
1553 }
1554
1555 /* Wait for at least 1 ms according to spec */
1556 mmc_delay(1);
1557
1558 /*
1559 * Failure to switch is indicated by the card holding
1560 * dat[0:3] low
1561 */
1562 if (host->ops->card_busy && host->ops->card_busy(host))
1563 err = -EAGAIN;
1564
1565power_cycle:
1566 if (err) {
1567 pr_debug("%s: Signal voltage switch failed, "
1568 "power cycling card\n", mmc_hostname(host));
1569 mmc_power_cycle(host, ocr);
1570 }
1571
1572 return err;
1573}
1574
1575/*
1576 * Select timing parameters for host.
1577 */
1578void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1579{
1580 host->ios.timing = timing;
1581 mmc_set_ios(host);
1582}
1583
1584/*
1585 * Select appropriate driver type for host.
1586 */
1587void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1588{
1589 host->ios.drv_type = drv_type;
1590 mmc_set_ios(host);
1591}
1592
1593int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1594 int card_drv_type, int *drv_type)
1595{
1596 struct mmc_host *host = card->host;
1597 int host_drv_type = SD_DRIVER_TYPE_B;
1598
1599 *drv_type = 0;
1600
1601 if (!host->ops->select_drive_strength)
1602 return 0;
1603
1604 /* Use SD definition of driver strength for hosts */
1605 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1606 host_drv_type |= SD_DRIVER_TYPE_A;
1607
1608 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1609 host_drv_type |= SD_DRIVER_TYPE_C;
1610
1611 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1612 host_drv_type |= SD_DRIVER_TYPE_D;
1613
1614 /*
1615 * The drive strength that the hardware can support
1616 * depends on the board design. Pass the appropriate
1617 * information and let the hardware specific code
1618 * return what is possible given the options
1619 */
1620 return host->ops->select_drive_strength(card, max_dtr,
1621 host_drv_type,
1622 card_drv_type,
1623 drv_type);
1624}
1625
1626/*
1627 * Apply power to the MMC stack. This is a two-stage process.
1628 * First, we enable power to the card without the clock running.
1629 * We then wait a bit for the power to stabilise. Finally,
1630 * enable the bus drivers and clock to the card.
1631 *
1632 * We must _NOT_ enable the clock prior to power stablising.
1633 *
1634 * If a host does all the power sequencing itself, ignore the
1635 * initial MMC_POWER_UP stage.
1636 */
1637void mmc_power_up(struct mmc_host *host, u32 ocr)
1638{
1639 if (host->ios.power_mode == MMC_POWER_ON)
1640 return;
1641
1642 mmc_pwrseq_pre_power_on(host);
1643
1644 host->ios.vdd = fls(ocr) - 1;
1645 host->ios.power_mode = MMC_POWER_UP;
1646 /* Set initial state and call mmc_set_ios */
1647 mmc_set_initial_state(host);
1648
1649 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1650 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1651 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1652 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1653 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1654 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1655 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1656
1657 /*
1658 * This delay should be sufficient to allow the power supply
1659 * to reach the minimum voltage.
1660 */
1661 mmc_delay(10);
1662
1663 mmc_pwrseq_post_power_on(host);
1664
1665 host->ios.clock = host->f_init;
1666
1667 host->ios.power_mode = MMC_POWER_ON;
1668 mmc_set_ios(host);
1669
1670 /*
1671 * This delay must be at least 74 clock sizes, or 1 ms, or the
1672 * time required to reach a stable voltage.
1673 */
1674 mmc_delay(10);
1675}
1676
1677void mmc_power_off(struct mmc_host *host)
1678{
1679 if (host->ios.power_mode == MMC_POWER_OFF)
1680 return;
1681
1682 mmc_pwrseq_power_off(host);
1683
1684 host->ios.clock = 0;
1685 host->ios.vdd = 0;
1686
1687 host->ios.power_mode = MMC_POWER_OFF;
1688 /* Set initial state and call mmc_set_ios */
1689 mmc_set_initial_state(host);
1690
1691 /*
1692 * Some configurations, such as the 802.11 SDIO card in the OLPC
1693 * XO-1.5, require a short delay after poweroff before the card
1694 * can be successfully turned on again.
1695 */
1696 mmc_delay(1);
1697}
1698
1699void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1700{
1701 mmc_power_off(host);
1702 /* Wait at least 1 ms according to SD spec */
1703 mmc_delay(1);
1704 mmc_power_up(host, ocr);
1705}
1706
1707/*
1708 * Cleanup when the last reference to the bus operator is dropped.
1709 */
1710static void __mmc_release_bus(struct mmc_host *host)
1711{
1712 WARN_ON(!host->bus_dead);
1713
1714 host->bus_ops = NULL;
1715}
1716
1717/*
1718 * Increase reference count of bus operator
1719 */
1720static inline void mmc_bus_get(struct mmc_host *host)
1721{
1722 unsigned long flags;
1723
1724 spin_lock_irqsave(&host->lock, flags);
1725 host->bus_refs++;
1726 spin_unlock_irqrestore(&host->lock, flags);
1727}
1728
1729/*
1730 * Decrease reference count of bus operator and free it if
1731 * it is the last reference.
1732 */
1733static inline void mmc_bus_put(struct mmc_host *host)
1734{
1735 unsigned long flags;
1736
1737 spin_lock_irqsave(&host->lock, flags);
1738 host->bus_refs--;
1739 if ((host->bus_refs == 0) && host->bus_ops)
1740 __mmc_release_bus(host);
1741 spin_unlock_irqrestore(&host->lock, flags);
1742}
1743
1744/*
1745 * Assign a mmc bus handler to a host. Only one bus handler may control a
1746 * host at any given time.
1747 */
1748void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1749{
1750 unsigned long flags;
1751
1752 WARN_ON(!host->claimed);
1753
1754 spin_lock_irqsave(&host->lock, flags);
1755
1756 WARN_ON(host->bus_ops);
1757 WARN_ON(host->bus_refs);
1758
1759 host->bus_ops = ops;
1760 host->bus_refs = 1;
1761 host->bus_dead = 0;
1762
1763 spin_unlock_irqrestore(&host->lock, flags);
1764}
1765
1766/*
1767 * Remove the current bus handler from a host.
1768 */
1769void mmc_detach_bus(struct mmc_host *host)
1770{
1771 unsigned long flags;
1772
1773 WARN_ON(!host->claimed);
1774 WARN_ON(!host->bus_ops);
1775
1776 spin_lock_irqsave(&host->lock, flags);
1777
1778 host->bus_dead = 1;
1779
1780 spin_unlock_irqrestore(&host->lock, flags);
1781
1782 mmc_bus_put(host);
1783}
1784
1785static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1786 bool cd_irq)
1787{
1788 /*
1789 * If the device is configured as wakeup, we prevent a new sleep for
1790 * 5 s to give provision for user space to consume the event.
1791 */
1792 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1793 device_can_wakeup(mmc_dev(host)))
1794 pm_wakeup_event(mmc_dev(host), 5000);
1795
1796 host->detect_change = 1;
1797 mmc_schedule_delayed_work(&host->detect, delay);
1798}
1799
1800/**
1801 * mmc_detect_change - process change of state on a MMC socket
1802 * @host: host which changed state.
1803 * @delay: optional delay to wait before detection (jiffies)
1804 *
1805 * MMC drivers should call this when they detect a card has been
1806 * inserted or removed. The MMC layer will confirm that any
1807 * present card is still functional, and initialize any newly
1808 * inserted.
1809 */
1810void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1811{
1812 _mmc_detect_change(host, delay, true);
1813}
1814EXPORT_SYMBOL(mmc_detect_change);
1815
1816void mmc_init_erase(struct mmc_card *card)
1817{
1818 unsigned int sz;
1819
1820 if (is_power_of_2(card->erase_size))
1821 card->erase_shift = ffs(card->erase_size) - 1;
1822 else
1823 card->erase_shift = 0;
1824
1825 /*
1826 * It is possible to erase an arbitrarily large area of an SD or MMC
1827 * card. That is not desirable because it can take a long time
1828 * (minutes) potentially delaying more important I/O, and also the
1829 * timeout calculations become increasingly hugely over-estimated.
1830 * Consequently, 'pref_erase' is defined as a guide to limit erases
1831 * to that size and alignment.
1832 *
1833 * For SD cards that define Allocation Unit size, limit erases to one
1834 * Allocation Unit at a time.
1835 * For MMC, have a stab at ai good value and for modern cards it will
1836 * end up being 4MiB. Note that if the value is too small, it can end
1837 * up taking longer to erase. Also note, erase_size is already set to
1838 * High Capacity Erase Size if available when this function is called.
1839 */
1840 if (mmc_card_sd(card) && card->ssr.au) {
1841 card->pref_erase = card->ssr.au;
1842 card->erase_shift = ffs(card->ssr.au) - 1;
1843 } else if (card->erase_size) {
1844 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1845 if (sz < 128)
1846 card->pref_erase = 512 * 1024 / 512;
1847 else if (sz < 512)
1848 card->pref_erase = 1024 * 1024 / 512;
1849 else if (sz < 1024)
1850 card->pref_erase = 2 * 1024 * 1024 / 512;
1851 else
1852 card->pref_erase = 4 * 1024 * 1024 / 512;
1853 if (card->pref_erase < card->erase_size)
1854 card->pref_erase = card->erase_size;
1855 else {
1856 sz = card->pref_erase % card->erase_size;
1857 if (sz)
1858 card->pref_erase += card->erase_size - sz;
1859 }
1860 } else
1861 card->pref_erase = 0;
1862}
1863
1864static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1865 unsigned int arg, unsigned int qty)
1866{
1867 unsigned int erase_timeout;
1868
1869 if (arg == MMC_DISCARD_ARG ||
1870 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1871 erase_timeout = card->ext_csd.trim_timeout;
1872 } else if (card->ext_csd.erase_group_def & 1) {
1873 /* High Capacity Erase Group Size uses HC timeouts */
1874 if (arg == MMC_TRIM_ARG)
1875 erase_timeout = card->ext_csd.trim_timeout;
1876 else
1877 erase_timeout = card->ext_csd.hc_erase_timeout;
1878 } else {
1879 /* CSD Erase Group Size uses write timeout */
1880 unsigned int mult = (10 << card->csd.r2w_factor);
1881 unsigned int timeout_clks = card->csd.taac_clks * mult;
1882 unsigned int timeout_us;
1883
1884 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1885 if (card->csd.taac_ns < 1000000)
1886 timeout_us = (card->csd.taac_ns * mult) / 1000;
1887 else
1888 timeout_us = (card->csd.taac_ns / 1000) * mult;
1889
1890 /*
1891 * ios.clock is only a target. The real clock rate might be
1892 * less but not that much less, so fudge it by multiplying by 2.
1893 */
1894 timeout_clks <<= 1;
1895 timeout_us += (timeout_clks * 1000) /
1896 (card->host->ios.clock / 1000);
1897
1898 erase_timeout = timeout_us / 1000;
1899
1900 /*
1901 * Theoretically, the calculation could underflow so round up
1902 * to 1ms in that case.
1903 */
1904 if (!erase_timeout)
1905 erase_timeout = 1;
1906 }
1907
1908 /* Multiplier for secure operations */
1909 if (arg & MMC_SECURE_ARGS) {
1910 if (arg == MMC_SECURE_ERASE_ARG)
1911 erase_timeout *= card->ext_csd.sec_erase_mult;
1912 else
1913 erase_timeout *= card->ext_csd.sec_trim_mult;
1914 }
1915
1916 erase_timeout *= qty;
1917
1918 /*
1919 * Ensure at least a 1 second timeout for SPI as per
1920 * 'mmc_set_data_timeout()'
1921 */
1922 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1923 erase_timeout = 1000;
1924
1925 return erase_timeout;
1926}
1927
1928static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1929 unsigned int arg,
1930 unsigned int qty)
1931{
1932 unsigned int erase_timeout;
1933
1934 if (card->ssr.erase_timeout) {
1935 /* Erase timeout specified in SD Status Register (SSR) */
1936 erase_timeout = card->ssr.erase_timeout * qty +
1937 card->ssr.erase_offset;
1938 } else {
1939 /*
1940 * Erase timeout not specified in SD Status Register (SSR) so
1941 * use 250ms per write block.
1942 */
1943 erase_timeout = 250 * qty;
1944 }
1945
1946 /* Must not be less than 1 second */
1947 if (erase_timeout < 1000)
1948 erase_timeout = 1000;
1949
1950 return erase_timeout;
1951}
1952
1953static unsigned int mmc_erase_timeout(struct mmc_card *card,
1954 unsigned int arg,
1955 unsigned int qty)
1956{
1957 if (mmc_card_sd(card))
1958 return mmc_sd_erase_timeout(card, arg, qty);
1959 else
1960 return mmc_mmc_erase_timeout(card, arg, qty);
1961}
1962
1963static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1964 unsigned int to, unsigned int arg)
1965{
1966 struct mmc_command cmd = {};
1967 unsigned int qty = 0, busy_timeout = 0;
1968 bool use_r1b_resp = false;
1969 unsigned long timeout;
1970 int err;
1971
1972 mmc_retune_hold(card->host);
1973
1974 /*
1975 * qty is used to calculate the erase timeout which depends on how many
1976 * erase groups (or allocation units in SD terminology) are affected.
1977 * We count erasing part of an erase group as one erase group.
1978 * For SD, the allocation units are always a power of 2. For MMC, the
1979 * erase group size is almost certainly also power of 2, but it does not
1980 * seem to insist on that in the JEDEC standard, so we fall back to
1981 * division in that case. SD may not specify an allocation unit size,
1982 * in which case the timeout is based on the number of write blocks.
1983 *
1984 * Note that the timeout for secure trim 2 will only be correct if the
1985 * number of erase groups specified is the same as the total of all
1986 * preceding secure trim 1 commands. Since the power may have been
1987 * lost since the secure trim 1 commands occurred, it is generally
1988 * impossible to calculate the secure trim 2 timeout correctly.
1989 */
1990 if (card->erase_shift)
1991 qty += ((to >> card->erase_shift) -
1992 (from >> card->erase_shift)) + 1;
1993 else if (mmc_card_sd(card))
1994 qty += to - from + 1;
1995 else
1996 qty += ((to / card->erase_size) -
1997 (from / card->erase_size)) + 1;
1998
1999 if (!mmc_card_blockaddr(card)) {
2000 from <<= 9;
2001 to <<= 9;
2002 }
2003
2004 if (mmc_card_sd(card))
2005 cmd.opcode = SD_ERASE_WR_BLK_START;
2006 else
2007 cmd.opcode = MMC_ERASE_GROUP_START;
2008 cmd.arg = from;
2009 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2010 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2011 if (err) {
2012 pr_err("mmc_erase: group start error %d, "
2013 "status %#x\n", err, cmd.resp[0]);
2014 err = -EIO;
2015 goto out;
2016 }
2017
2018 memset(&cmd, 0, sizeof(struct mmc_command));
2019 if (mmc_card_sd(card))
2020 cmd.opcode = SD_ERASE_WR_BLK_END;
2021 else
2022 cmd.opcode = MMC_ERASE_GROUP_END;
2023 cmd.arg = to;
2024 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2025 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2026 if (err) {
2027 pr_err("mmc_erase: group end error %d, status %#x\n",
2028 err, cmd.resp[0]);
2029 err = -EIO;
2030 goto out;
2031 }
2032
2033 memset(&cmd, 0, sizeof(struct mmc_command));
2034 cmd.opcode = MMC_ERASE;
2035 cmd.arg = arg;
2036 busy_timeout = mmc_erase_timeout(card, arg, qty);
2037 /*
2038 * If the host controller supports busy signalling and the timeout for
2039 * the erase operation does not exceed the max_busy_timeout, we should
2040 * use R1B response. Or we need to prevent the host from doing hw busy
2041 * detection, which is done by converting to a R1 response instead.
2042 */
2043 if (card->host->max_busy_timeout &&
2044 busy_timeout > card->host->max_busy_timeout) {
2045 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2046 } else {
2047 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2048 cmd.busy_timeout = busy_timeout;
2049 use_r1b_resp = true;
2050 }
2051
2052 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2053 if (err) {
2054 pr_err("mmc_erase: erase error %d, status %#x\n",
2055 err, cmd.resp[0]);
2056 err = -EIO;
2057 goto out;
2058 }
2059
2060 if (mmc_host_is_spi(card->host))
2061 goto out;
2062
2063 /*
2064 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2065 * shall be avoided.
2066 */
2067 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2068 goto out;
2069
2070 timeout = jiffies + msecs_to_jiffies(busy_timeout);
2071 do {
2072 memset(&cmd, 0, sizeof(struct mmc_command));
2073 cmd.opcode = MMC_SEND_STATUS;
2074 cmd.arg = card->rca << 16;
2075 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2076 /* Do not retry else we can't see errors */
2077 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2078 if (err || (cmd.resp[0] & 0xFDF92000)) {
2079 pr_err("error %d requesting status %#x\n",
2080 err, cmd.resp[0]);
2081 err = -EIO;
2082 goto out;
2083 }
2084
2085 /* Timeout if the device never becomes ready for data and
2086 * never leaves the program state.
2087 */
2088 if (time_after(jiffies, timeout)) {
2089 pr_err("%s: Card stuck in programming state! %s\n",
2090 mmc_hostname(card->host), __func__);
2091 err = -EIO;
2092 goto out;
2093 }
2094
2095 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2096 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2097out:
2098 mmc_retune_release(card->host);
2099 return err;
2100}
2101
2102static unsigned int mmc_align_erase_size(struct mmc_card *card,
2103 unsigned int *from,
2104 unsigned int *to,
2105 unsigned int nr)
2106{
2107 unsigned int from_new = *from, nr_new = nr, rem;
2108
2109 /*
2110 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2111 * to align the erase size efficiently.
2112 */
2113 if (is_power_of_2(card->erase_size)) {
2114 unsigned int temp = from_new;
2115
2116 from_new = round_up(temp, card->erase_size);
2117 rem = from_new - temp;
2118
2119 if (nr_new > rem)
2120 nr_new -= rem;
2121 else
2122 return 0;
2123
2124 nr_new = round_down(nr_new, card->erase_size);
2125 } else {
2126 rem = from_new % card->erase_size;
2127 if (rem) {
2128 rem = card->erase_size - rem;
2129 from_new += rem;
2130 if (nr_new > rem)
2131 nr_new -= rem;
2132 else
2133 return 0;
2134 }
2135
2136 rem = nr_new % card->erase_size;
2137 if (rem)
2138 nr_new -= rem;
2139 }
2140
2141 if (nr_new == 0)
2142 return 0;
2143
2144 *to = from_new + nr_new;
2145 *from = from_new;
2146
2147 return nr_new;
2148}
2149
2150/**
2151 * mmc_erase - erase sectors.
2152 * @card: card to erase
2153 * @from: first sector to erase
2154 * @nr: number of sectors to erase
2155 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2156 *
2157 * Caller must claim host before calling this function.
2158 */
2159int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2160 unsigned int arg)
2161{
2162 unsigned int rem, to = from + nr;
2163 int err;
2164
2165 if (!(card->host->caps & MMC_CAP_ERASE) ||
2166 !(card->csd.cmdclass & CCC_ERASE))
2167 return -EOPNOTSUPP;
2168
2169 if (!card->erase_size)
2170 return -EOPNOTSUPP;
2171
2172 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2173 return -EOPNOTSUPP;
2174
2175 if ((arg & MMC_SECURE_ARGS) &&
2176 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2177 return -EOPNOTSUPP;
2178
2179 if ((arg & MMC_TRIM_ARGS) &&
2180 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2181 return -EOPNOTSUPP;
2182
2183 if (arg == MMC_SECURE_ERASE_ARG) {
2184 if (from % card->erase_size || nr % card->erase_size)
2185 return -EINVAL;
2186 }
2187
2188 if (arg == MMC_ERASE_ARG)
2189 nr = mmc_align_erase_size(card, &from, &to, nr);
2190
2191 if (nr == 0)
2192 return 0;
2193
2194 if (to <= from)
2195 return -EINVAL;
2196
2197 /* 'from' and 'to' are inclusive */
2198 to -= 1;
2199
2200 /*
2201 * Special case where only one erase-group fits in the timeout budget:
2202 * If the region crosses an erase-group boundary on this particular
2203 * case, we will be trimming more than one erase-group which, does not
2204 * fit in the timeout budget of the controller, so we need to split it
2205 * and call mmc_do_erase() twice if necessary. This special case is
2206 * identified by the card->eg_boundary flag.
2207 */
2208 rem = card->erase_size - (from % card->erase_size);
2209 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2210 err = mmc_do_erase(card, from, from + rem - 1, arg);
2211 from += rem;
2212 if ((err) || (to <= from))
2213 return err;
2214 }
2215
2216 return mmc_do_erase(card, from, to, arg);
2217}
2218EXPORT_SYMBOL(mmc_erase);
2219
2220int mmc_can_erase(struct mmc_card *card)
2221{
2222 if ((card->host->caps & MMC_CAP_ERASE) &&
2223 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2224 return 1;
2225 return 0;
2226}
2227EXPORT_SYMBOL(mmc_can_erase);
2228
2229int mmc_can_trim(struct mmc_card *card)
2230{
2231 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2232 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2233 return 1;
2234 return 0;
2235}
2236EXPORT_SYMBOL(mmc_can_trim);
2237
2238int mmc_can_discard(struct mmc_card *card)
2239{
2240 /*
2241 * As there's no way to detect the discard support bit at v4.5
2242 * use the s/w feature support filed.
2243 */
2244 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2245 return 1;
2246 return 0;
2247}
2248EXPORT_SYMBOL(mmc_can_discard);
2249
2250int mmc_can_sanitize(struct mmc_card *card)
2251{
2252 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2253 return 0;
2254 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2255 return 1;
2256 return 0;
2257}
2258EXPORT_SYMBOL(mmc_can_sanitize);
2259
2260int mmc_can_secure_erase_trim(struct mmc_card *card)
2261{
2262 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2263 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2264 return 1;
2265 return 0;
2266}
2267EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2268
2269int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2270 unsigned int nr)
2271{
2272 if (!card->erase_size)
2273 return 0;
2274 if (from % card->erase_size || nr % card->erase_size)
2275 return 0;
2276 return 1;
2277}
2278EXPORT_SYMBOL(mmc_erase_group_aligned);
2279
2280static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2281 unsigned int arg)
2282{
2283 struct mmc_host *host = card->host;
2284 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2285 unsigned int last_timeout = 0;
2286 unsigned int max_busy_timeout = host->max_busy_timeout ?
2287 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2288
2289 if (card->erase_shift) {
2290 max_qty = UINT_MAX >> card->erase_shift;
2291 min_qty = card->pref_erase >> card->erase_shift;
2292 } else if (mmc_card_sd(card)) {
2293 max_qty = UINT_MAX;
2294 min_qty = card->pref_erase;
2295 } else {
2296 max_qty = UINT_MAX / card->erase_size;
2297 min_qty = card->pref_erase / card->erase_size;
2298 }
2299
2300 /*
2301 * We should not only use 'host->max_busy_timeout' as the limitation
2302 * when deciding the max discard sectors. We should set a balance value
2303 * to improve the erase speed, and it can not get too long timeout at
2304 * the same time.
2305 *
2306 * Here we set 'card->pref_erase' as the minimal discard sectors no
2307 * matter what size of 'host->max_busy_timeout', but if the
2308 * 'host->max_busy_timeout' is large enough for more discard sectors,
2309 * then we can continue to increase the max discard sectors until we
2310 * get a balance value. In cases when the 'host->max_busy_timeout'
2311 * isn't specified, use the default max erase timeout.
2312 */
2313 do {
2314 y = 0;
2315 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2316 timeout = mmc_erase_timeout(card, arg, qty + x);
2317
2318 if (qty + x > min_qty && timeout > max_busy_timeout)
2319 break;
2320
2321 if (timeout < last_timeout)
2322 break;
2323 last_timeout = timeout;
2324 y = x;
2325 }
2326 qty += y;
2327 } while (y);
2328
2329 if (!qty)
2330 return 0;
2331
2332 /*
2333 * When specifying a sector range to trim, chances are we might cross
2334 * an erase-group boundary even if the amount of sectors is less than
2335 * one erase-group.
2336 * If we can only fit one erase-group in the controller timeout budget,
2337 * we have to care that erase-group boundaries are not crossed by a
2338 * single trim operation. We flag that special case with "eg_boundary".
2339 * In all other cases we can just decrement qty and pretend that we
2340 * always touch (qty + 1) erase-groups as a simple optimization.
2341 */
2342 if (qty == 1)
2343 card->eg_boundary = 1;
2344 else
2345 qty--;
2346
2347 /* Convert qty to sectors */
2348 if (card->erase_shift)
2349 max_discard = qty << card->erase_shift;
2350 else if (mmc_card_sd(card))
2351 max_discard = qty + 1;
2352 else
2353 max_discard = qty * card->erase_size;
2354
2355 return max_discard;
2356}
2357
2358unsigned int mmc_calc_max_discard(struct mmc_card *card)
2359{
2360 struct mmc_host *host = card->host;
2361 unsigned int max_discard, max_trim;
2362
2363 /*
2364 * Without erase_group_def set, MMC erase timeout depends on clock
2365 * frequence which can change. In that case, the best choice is
2366 * just the preferred erase size.
2367 */
2368 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2369 return card->pref_erase;
2370
2371 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2372 if (mmc_can_trim(card)) {
2373 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2374 if (max_trim < max_discard)
2375 max_discard = max_trim;
2376 } else if (max_discard < card->erase_size) {
2377 max_discard = 0;
2378 }
2379 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2380 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2381 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2382 return max_discard;
2383}
2384EXPORT_SYMBOL(mmc_calc_max_discard);
2385
2386bool mmc_card_is_blockaddr(struct mmc_card *card)
2387{
2388 return card ? mmc_card_blockaddr(card) : false;
2389}
2390EXPORT_SYMBOL(mmc_card_is_blockaddr);
2391
2392int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2393{
2394 struct mmc_command cmd = {};
2395
2396 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2397 mmc_card_hs400(card) || mmc_card_hs400es(card))
2398 return 0;
2399
2400 cmd.opcode = MMC_SET_BLOCKLEN;
2401 cmd.arg = blocklen;
2402 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2403 return mmc_wait_for_cmd(card->host, &cmd, 5);
2404}
2405EXPORT_SYMBOL(mmc_set_blocklen);
2406
2407int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2408 bool is_rel_write)
2409{
2410 struct mmc_command cmd = {};
2411
2412 cmd.opcode = MMC_SET_BLOCK_COUNT;
2413 cmd.arg = blockcount & 0x0000FFFF;
2414 if (is_rel_write)
2415 cmd.arg |= 1 << 31;
2416 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2417 return mmc_wait_for_cmd(card->host, &cmd, 5);
2418}
2419EXPORT_SYMBOL(mmc_set_blockcount);
2420
2421static void mmc_hw_reset_for_init(struct mmc_host *host)
2422{
2423 mmc_pwrseq_reset(host);
2424
2425 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2426 return;
2427 host->ops->hw_reset(host);
2428}
2429
2430int mmc_hw_reset(struct mmc_host *host)
2431{
2432 int ret;
2433
2434 if (!host->card)
2435 return -EINVAL;
2436
2437 mmc_bus_get(host);
2438 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2439 mmc_bus_put(host);
2440 return -EOPNOTSUPP;
2441 }
2442
2443 ret = host->bus_ops->reset(host);
2444 mmc_bus_put(host);
2445
2446 if (ret)
2447 pr_warn("%s: tried to reset card, got error %d\n",
2448 mmc_hostname(host), ret);
2449
2450 return ret;
2451}
2452EXPORT_SYMBOL(mmc_hw_reset);
2453
2454static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2455{
2456 host->f_init = freq;
2457
2458 pr_debug("%s: %s: trying to init card at %u Hz\n",
2459 mmc_hostname(host), __func__, host->f_init);
2460
2461 mmc_power_up(host, host->ocr_avail);
2462
2463 /*
2464 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2465 * do a hardware reset if possible.
2466 */
2467 mmc_hw_reset_for_init(host);
2468
2469 /*
2470 * sdio_reset sends CMD52 to reset card. Since we do not know
2471 * if the card is being re-initialized, just send it. CMD52
2472 * should be ignored by SD/eMMC cards.
2473 * Skip it if we already know that we do not support SDIO commands
2474 */
2475 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2476 sdio_reset(host);
2477
2478 mmc_go_idle(host);
2479
2480 if (!(host->caps2 & MMC_CAP2_NO_SD))
2481 mmc_send_if_cond(host, host->ocr_avail);
2482
2483 /* Order's important: probe SDIO, then SD, then MMC */
2484 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2485 if (!mmc_attach_sdio(host))
2486 return 0;
2487
2488 if (!(host->caps2 & MMC_CAP2_NO_SD))
2489 if (!mmc_attach_sd(host))
2490 return 0;
2491
2492 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2493 if (!mmc_attach_mmc(host))
2494 return 0;
2495
2496 mmc_power_off(host);
2497 return -EIO;
2498}
2499
2500int _mmc_detect_card_removed(struct mmc_host *host)
2501{
2502 int ret;
2503
2504 if (!host->card || mmc_card_removed(host->card))
2505 return 1;
2506
2507 ret = host->bus_ops->alive(host);
2508
2509 /*
2510 * Card detect status and alive check may be out of sync if card is
2511 * removed slowly, when card detect switch changes while card/slot
2512 * pads are still contacted in hardware (refer to "SD Card Mechanical
2513 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2514 * detect work 200ms later for this case.
2515 */
2516 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2517 mmc_detect_change(host, msecs_to_jiffies(200));
2518 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2519 }
2520
2521 if (ret) {
2522 mmc_card_set_removed(host->card);
2523 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2524 }
2525
2526 return ret;
2527}
2528
2529int mmc_detect_card_removed(struct mmc_host *host)
2530{
2531 struct mmc_card *card = host->card;
2532 int ret;
2533
2534 WARN_ON(!host->claimed);
2535
2536 if (!card)
2537 return 1;
2538
2539 if (!mmc_card_is_removable(host))
2540 return 0;
2541
2542 ret = mmc_card_removed(card);
2543 /*
2544 * The card will be considered unchanged unless we have been asked to
2545 * detect a change or host requires polling to provide card detection.
2546 */
2547 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2548 return ret;
2549
2550 host->detect_change = 0;
2551 if (!ret) {
2552 ret = _mmc_detect_card_removed(host);
2553 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2554 /*
2555 * Schedule a detect work as soon as possible to let a
2556 * rescan handle the card removal.
2557 */
2558 cancel_delayed_work(&host->detect);
2559 _mmc_detect_change(host, 0, false);
2560 }
2561 }
2562
2563 return ret;
2564}
2565EXPORT_SYMBOL(mmc_detect_card_removed);
2566
2567void mmc_rescan(struct work_struct *work)
2568{
2569 struct mmc_host *host =
2570 container_of(work, struct mmc_host, detect.work);
2571 int i;
2572
2573 if (host->rescan_disable)
2574 return;
2575
2576 /* If there is a non-removable card registered, only scan once */
2577 if (!mmc_card_is_removable(host) && host->rescan_entered)
2578 return;
2579 host->rescan_entered = 1;
2580
2581 if (host->trigger_card_event && host->ops->card_event) {
2582 mmc_claim_host(host);
2583 host->ops->card_event(host);
2584 mmc_release_host(host);
2585 host->trigger_card_event = false;
2586 }
2587
2588 mmc_bus_get(host);
2589
2590 /*
2591 * if there is a _removable_ card registered, check whether it is
2592 * still present
2593 */
2594 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2595 host->bus_ops->detect(host);
2596
2597 host->detect_change = 0;
2598
2599 /*
2600 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2601 * the card is no longer present.
2602 */
2603 mmc_bus_put(host);
2604 mmc_bus_get(host);
2605
2606 /* if there still is a card present, stop here */
2607 if (host->bus_ops != NULL) {
2608 mmc_bus_put(host);
2609 goto out;
2610 }
2611
2612 /*
2613 * Only we can add a new handler, so it's safe to
2614 * release the lock here.
2615 */
2616 mmc_bus_put(host);
2617
2618 mmc_claim_host(host);
2619 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2620 host->ops->get_cd(host) == 0) {
2621 mmc_power_off(host);
2622 mmc_release_host(host);
2623 goto out;
2624 }
2625
2626 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2627 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2628 break;
2629 if (freqs[i] <= host->f_min)
2630 break;
2631 }
2632 mmc_release_host(host);
2633
2634 out:
2635 if (host->caps & MMC_CAP_NEEDS_POLL)
2636 mmc_schedule_delayed_work(&host->detect, HZ);
2637}
2638
2639void mmc_start_host(struct mmc_host *host)
2640{
2641 host->f_init = max(freqs[0], host->f_min);
2642 host->rescan_disable = 0;
2643 host->ios.power_mode = MMC_POWER_UNDEFINED;
2644
2645 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2646 mmc_claim_host(host);
2647 mmc_power_up(host, host->ocr_avail);
2648 mmc_release_host(host);
2649 }
2650
2651 mmc_gpiod_request_cd_irq(host);
2652 _mmc_detect_change(host, 0, false);
2653}
2654
2655void mmc_stop_host(struct mmc_host *host)
2656{
2657 if (host->slot.cd_irq >= 0) {
2658 if (host->slot.cd_wake_enabled)
2659 disable_irq_wake(host->slot.cd_irq);
2660 disable_irq(host->slot.cd_irq);
2661 }
2662
2663 host->rescan_disable = 1;
2664 cancel_delayed_work_sync(&host->detect);
2665
2666 /* clear pm flags now and let card drivers set them as needed */
2667 host->pm_flags = 0;
2668
2669 mmc_bus_get(host);
2670 if (host->bus_ops && !host->bus_dead) {
2671 /* Calling bus_ops->remove() with a claimed host can deadlock */
2672 host->bus_ops->remove(host);
2673 mmc_claim_host(host);
2674 mmc_detach_bus(host);
2675 mmc_power_off(host);
2676 mmc_release_host(host);
2677 mmc_bus_put(host);
2678 return;
2679 }
2680 mmc_bus_put(host);
2681
2682 mmc_claim_host(host);
2683 mmc_power_off(host);
2684 mmc_release_host(host);
2685}
2686
2687int mmc_power_save_host(struct mmc_host *host)
2688{
2689 int ret = 0;
2690
2691 pr_debug("%s: %s: powering down\n", mmc_hostname(host), __func__);
2692
2693 mmc_bus_get(host);
2694
2695 if (!host->bus_ops || host->bus_dead) {
2696 mmc_bus_put(host);
2697 return -EINVAL;
2698 }
2699
2700 if (host->bus_ops->power_save)
2701 ret = host->bus_ops->power_save(host);
2702
2703 mmc_bus_put(host);
2704
2705 mmc_power_off(host);
2706
2707 return ret;
2708}
2709EXPORT_SYMBOL(mmc_power_save_host);
2710
2711int mmc_power_restore_host(struct mmc_host *host)
2712{
2713 int ret;
2714
2715 pr_debug("%s: %s: powering up\n", mmc_hostname(host), __func__);
2716
2717 mmc_bus_get(host);
2718
2719 if (!host->bus_ops || host->bus_dead) {
2720 mmc_bus_put(host);
2721 return -EINVAL;
2722 }
2723
2724 mmc_power_up(host, host->card->ocr);
2725 ret = host->bus_ops->power_restore(host);
2726
2727 mmc_bus_put(host);
2728
2729 return ret;
2730}
2731EXPORT_SYMBOL(mmc_power_restore_host);
2732
2733#ifdef CONFIG_PM_SLEEP
2734/* Do the card removal on suspend if card is assumed removeable
2735 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2736 to sync the card.
2737*/
2738static int mmc_pm_notify(struct notifier_block *notify_block,
2739 unsigned long mode, void *unused)
2740{
2741 struct mmc_host *host = container_of(
2742 notify_block, struct mmc_host, pm_notify);
2743 unsigned long flags;
2744 int err = 0;
2745
2746 switch (mode) {
2747 case PM_HIBERNATION_PREPARE:
2748 case PM_SUSPEND_PREPARE:
2749 case PM_RESTORE_PREPARE:
2750 spin_lock_irqsave(&host->lock, flags);
2751 host->rescan_disable = 1;
2752 spin_unlock_irqrestore(&host->lock, flags);
2753 cancel_delayed_work_sync(&host->detect);
2754
2755 if (!host->bus_ops)
2756 break;
2757
2758 /* Validate prerequisites for suspend */
2759 if (host->bus_ops->pre_suspend)
2760 err = host->bus_ops->pre_suspend(host);
2761 if (!err)
2762 break;
2763
2764 if (!mmc_card_is_removable(host)) {
2765 dev_warn(mmc_dev(host),
2766 "pre_suspend failed for non-removable host: "
2767 "%d\n", err);
2768 /* Avoid removing non-removable hosts */
2769 break;
2770 }
2771
2772 /* Calling bus_ops->remove() with a claimed host can deadlock */
2773 host->bus_ops->remove(host);
2774 mmc_claim_host(host);
2775 mmc_detach_bus(host);
2776 mmc_power_off(host);
2777 mmc_release_host(host);
2778 host->pm_flags = 0;
2779 break;
2780
2781 case PM_POST_SUSPEND:
2782 case PM_POST_HIBERNATION:
2783 case PM_POST_RESTORE:
2784
2785 spin_lock_irqsave(&host->lock, flags);
2786 host->rescan_disable = 0;
2787 spin_unlock_irqrestore(&host->lock, flags);
2788 _mmc_detect_change(host, 0, false);
2789
2790 }
2791
2792 return 0;
2793}
2794
2795void mmc_register_pm_notifier(struct mmc_host *host)
2796{
2797 host->pm_notify.notifier_call = mmc_pm_notify;
2798 register_pm_notifier(&host->pm_notify);
2799}
2800
2801void mmc_unregister_pm_notifier(struct mmc_host *host)
2802{
2803 unregister_pm_notifier(&host->pm_notify);
2804}
2805#endif
2806
2807static int __init mmc_init(void)
2808{
2809 int ret;
2810
2811 ret = mmc_register_bus();
2812 if (ret)
2813 return ret;
2814
2815 ret = mmc_register_host_class();
2816 if (ret)
2817 goto unregister_bus;
2818
2819 ret = sdio_register_bus();
2820 if (ret)
2821 goto unregister_host_class;
2822
2823 return 0;
2824
2825unregister_host_class:
2826 mmc_unregister_host_class();
2827unregister_bus:
2828 mmc_unregister_bus();
2829 return ret;
2830}
2831
2832static void __exit mmc_exit(void)
2833{
2834 sdio_unregister_bus();
2835 mmc_unregister_host_class();
2836 mmc_unregister_bus();
2837}
2838
2839subsys_initcall(mmc_init);
2840module_exit(mmc_exit);
2841
2842MODULE_LICENSE("GPL");