Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PROCESSOR_H
3#define _ASM_X86_PROCESSOR_H
4
5#include <asm/processor-flags.h>
6
7/* Forward declaration, a strange C thing */
8struct task_struct;
9struct mm_struct;
10struct vm86;
11
12#include <asm/math_emu.h>
13#include <asm/segment.h>
14#include <asm/types.h>
15#include <uapi/asm/sigcontext.h>
16#include <asm/current.h>
17#include <asm/cpufeatures.h>
18#include <asm/page.h>
19#include <asm/pgtable_types.h>
20#include <asm/percpu.h>
21#include <asm/msr.h>
22#include <asm/desc_defs.h>
23#include <asm/nops.h>
24#include <asm/special_insns.h>
25#include <asm/fpu/types.h>
26#include <asm/unwind_hints.h>
27
28#include <linux/personality.h>
29#include <linux/cache.h>
30#include <linux/threads.h>
31#include <linux/math64.h>
32#include <linux/err.h>
33#include <linux/irqflags.h>
34#include <linux/mem_encrypt.h>
35
36/*
37 * We handle most unaligned accesses in hardware. On the other hand
38 * unaligned DMA can be quite expensive on some Nehalem processors.
39 *
40 * Based on this we disable the IP header alignment in network drivers.
41 */
42#define NET_IP_ALIGN 0
43
44#define HBP_NUM 4
45/*
46 * Default implementation of macro that returns current
47 * instruction pointer ("program counter").
48 */
49static inline void *current_text_addr(void)
50{
51 void *pc;
52
53 asm volatile("mov $1f, %0; 1:":"=r" (pc));
54
55 return pc;
56}
57
58/*
59 * These alignment constraints are for performance in the vSMP case,
60 * but in the task_struct case we must also meet hardware imposed
61 * alignment requirements of the FPU state:
62 */
63#ifdef CONFIG_X86_VSMP
64# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
65# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
66#else
67# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
68# define ARCH_MIN_MMSTRUCT_ALIGN 0
69#endif
70
71enum tlb_infos {
72 ENTRIES,
73 NR_INFO
74};
75
76extern u16 __read_mostly tlb_lli_4k[NR_INFO];
77extern u16 __read_mostly tlb_lli_2m[NR_INFO];
78extern u16 __read_mostly tlb_lli_4m[NR_INFO];
79extern u16 __read_mostly tlb_lld_4k[NR_INFO];
80extern u16 __read_mostly tlb_lld_2m[NR_INFO];
81extern u16 __read_mostly tlb_lld_4m[NR_INFO];
82extern u16 __read_mostly tlb_lld_1g[NR_INFO];
83
84/*
85 * CPU type and hardware bug flags. Kept separately for each CPU.
86 * Members of this structure are referenced in head_32.S, so think twice
87 * before touching them. [mj]
88 */
89
90struct cpuinfo_x86 {
91 __u8 x86; /* CPU family */
92 __u8 x86_vendor; /* CPU vendor */
93 __u8 x86_model;
94 __u8 x86_stepping;
95#ifdef CONFIG_X86_64
96 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
97 int x86_tlbsize;
98#endif
99 __u8 x86_virt_bits;
100 __u8 x86_phys_bits;
101 /* CPUID returned core id bits: */
102 __u8 x86_coreid_bits;
103 __u8 cu_id;
104 /* Max extended CPUID function supported: */
105 __u32 extended_cpuid_level;
106 /* Maximum supported CPUID level, -1=no CPUID: */
107 int cpuid_level;
108 __u32 x86_capability[NCAPINTS + NBUGINTS];
109 char x86_vendor_id[16];
110 char x86_model_id[64];
111 /* in KB - valid for CPUS which support this call: */
112 unsigned int x86_cache_size;
113 int x86_cache_alignment; /* In bytes */
114 /* Cache QoS architectural values: */
115 int x86_cache_max_rmid; /* max index */
116 int x86_cache_occ_scale; /* scale to bytes */
117 int x86_power;
118 unsigned long loops_per_jiffy;
119 /* cpuid returned max cores value: */
120 u16 x86_max_cores;
121 u16 apicid;
122 u16 initial_apicid;
123 u16 x86_clflush_size;
124 /* number of cores as seen by the OS: */
125 u16 booted_cores;
126 /* Physical processor id: */
127 u16 phys_proc_id;
128 /* Logical processor id: */
129 u16 logical_proc_id;
130 /* Core id: */
131 u16 cpu_core_id;
132 /* Index into per_cpu list: */
133 u16 cpu_index;
134 u32 microcode;
135 unsigned initialized : 1;
136} __randomize_layout;
137
138struct cpuid_regs {
139 u32 eax, ebx, ecx, edx;
140};
141
142enum cpuid_regs_idx {
143 CPUID_EAX = 0,
144 CPUID_EBX,
145 CPUID_ECX,
146 CPUID_EDX,
147};
148
149#define X86_VENDOR_INTEL 0
150#define X86_VENDOR_CYRIX 1
151#define X86_VENDOR_AMD 2
152#define X86_VENDOR_UMC 3
153#define X86_VENDOR_CENTAUR 5
154#define X86_VENDOR_TRANSMETA 7
155#define X86_VENDOR_NSC 8
156#define X86_VENDOR_NUM 9
157
158#define X86_VENDOR_UNKNOWN 0xff
159
160/*
161 * capabilities of CPUs
162 */
163extern struct cpuinfo_x86 boot_cpu_data;
164extern struct cpuinfo_x86 new_cpu_data;
165
166extern struct x86_hw_tss doublefault_tss;
167extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
168extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
169
170#ifdef CONFIG_SMP
171DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
172#define cpu_data(cpu) per_cpu(cpu_info, cpu)
173#else
174#define cpu_info boot_cpu_data
175#define cpu_data(cpu) boot_cpu_data
176#endif
177
178extern const struct seq_operations cpuinfo_op;
179
180#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
181
182extern void cpu_detect(struct cpuinfo_x86 *c);
183
184extern void early_cpu_init(void);
185extern void identify_boot_cpu(void);
186extern void identify_secondary_cpu(struct cpuinfo_x86 *);
187extern void print_cpu_info(struct cpuinfo_x86 *);
188void print_cpu_msr(struct cpuinfo_x86 *);
189extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
190extern u32 get_scattered_cpuid_leaf(unsigned int level,
191 unsigned int sub_leaf,
192 enum cpuid_regs_idx reg);
193extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
194extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
195
196extern void detect_extended_topology(struct cpuinfo_x86 *c);
197extern void detect_ht(struct cpuinfo_x86 *c);
198
199#ifdef CONFIG_X86_32
200extern int have_cpuid_p(void);
201#else
202static inline int have_cpuid_p(void)
203{
204 return 1;
205}
206#endif
207static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
208 unsigned int *ecx, unsigned int *edx)
209{
210 /* ecx is often an input as well as an output. */
211 asm volatile("cpuid"
212 : "=a" (*eax),
213 "=b" (*ebx),
214 "=c" (*ecx),
215 "=d" (*edx)
216 : "0" (*eax), "2" (*ecx)
217 : "memory");
218}
219
220#define native_cpuid_reg(reg) \
221static inline unsigned int native_cpuid_##reg(unsigned int op) \
222{ \
223 unsigned int eax = op, ebx, ecx = 0, edx; \
224 \
225 native_cpuid(&eax, &ebx, &ecx, &edx); \
226 \
227 return reg; \
228}
229
230/*
231 * Native CPUID functions returning a single datum.
232 */
233native_cpuid_reg(eax)
234native_cpuid_reg(ebx)
235native_cpuid_reg(ecx)
236native_cpuid_reg(edx)
237
238/*
239 * Friendlier CR3 helpers.
240 */
241static inline unsigned long read_cr3_pa(void)
242{
243 return __read_cr3() & CR3_ADDR_MASK;
244}
245
246static inline unsigned long native_read_cr3_pa(void)
247{
248 return __native_read_cr3() & CR3_ADDR_MASK;
249}
250
251static inline void load_cr3(pgd_t *pgdir)
252{
253 write_cr3(__sme_pa(pgdir));
254}
255
256/*
257 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
258 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
259 * unrelated to the task-switch mechanism:
260 */
261#ifdef CONFIG_X86_32
262/* This is the TSS defined by the hardware. */
263struct x86_hw_tss {
264 unsigned short back_link, __blh;
265 unsigned long sp0;
266 unsigned short ss0, __ss0h;
267 unsigned long sp1;
268
269 /*
270 * We don't use ring 1, so ss1 is a convenient scratch space in
271 * the same cacheline as sp0. We use ss1 to cache the value in
272 * MSR_IA32_SYSENTER_CS. When we context switch
273 * MSR_IA32_SYSENTER_CS, we first check if the new value being
274 * written matches ss1, and, if it's not, then we wrmsr the new
275 * value and update ss1.
276 *
277 * The only reason we context switch MSR_IA32_SYSENTER_CS is
278 * that we set it to zero in vm86 tasks to avoid corrupting the
279 * stack if we were to go through the sysenter path from vm86
280 * mode.
281 */
282 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
283
284 unsigned short __ss1h;
285 unsigned long sp2;
286 unsigned short ss2, __ss2h;
287 unsigned long __cr3;
288 unsigned long ip;
289 unsigned long flags;
290 unsigned long ax;
291 unsigned long cx;
292 unsigned long dx;
293 unsigned long bx;
294 unsigned long sp;
295 unsigned long bp;
296 unsigned long si;
297 unsigned long di;
298 unsigned short es, __esh;
299 unsigned short cs, __csh;
300 unsigned short ss, __ssh;
301 unsigned short ds, __dsh;
302 unsigned short fs, __fsh;
303 unsigned short gs, __gsh;
304 unsigned short ldt, __ldth;
305 unsigned short trace;
306 unsigned short io_bitmap_base;
307
308} __attribute__((packed));
309#else
310struct x86_hw_tss {
311 u32 reserved1;
312 u64 sp0;
313
314 /*
315 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
316 * Linux does not use ring 1, so sp1 is not otherwise needed.
317 */
318 u64 sp1;
319
320 u64 sp2;
321 u64 reserved2;
322 u64 ist[7];
323 u32 reserved3;
324 u32 reserved4;
325 u16 reserved5;
326 u16 io_bitmap_base;
327
328} __attribute__((packed));
329#endif
330
331/*
332 * IO-bitmap sizes:
333 */
334#define IO_BITMAP_BITS 65536
335#define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
336#define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
337#define IO_BITMAP_OFFSET (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
338#define INVALID_IO_BITMAP_OFFSET 0x8000
339
340struct entry_stack {
341 unsigned long words[64];
342};
343
344struct entry_stack_page {
345 struct entry_stack stack;
346} __aligned(PAGE_SIZE);
347
348struct tss_struct {
349 /*
350 * The fixed hardware portion. This must not cross a page boundary
351 * at risk of violating the SDM's advice and potentially triggering
352 * errata.
353 */
354 struct x86_hw_tss x86_tss;
355
356 /*
357 * The extra 1 is there because the CPU will access an
358 * additional byte beyond the end of the IO permission
359 * bitmap. The extra byte must be all 1 bits, and must
360 * be within the limit.
361 */
362 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
363} __aligned(PAGE_SIZE);
364
365DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
366
367/*
368 * sizeof(unsigned long) coming from an extra "long" at the end
369 * of the iobitmap.
370 *
371 * -1? seg base+limit should be pointing to the address of the
372 * last valid byte
373 */
374#define __KERNEL_TSS_LIMIT \
375 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
376
377#ifdef CONFIG_X86_32
378DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
379#else
380/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
381#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
382#endif
383
384/*
385 * Save the original ist values for checking stack pointers during debugging
386 */
387struct orig_ist {
388 unsigned long ist[7];
389};
390
391#ifdef CONFIG_X86_64
392DECLARE_PER_CPU(struct orig_ist, orig_ist);
393
394union irq_stack_union {
395 char irq_stack[IRQ_STACK_SIZE];
396 /*
397 * GCC hardcodes the stack canary as %gs:40. Since the
398 * irq_stack is the object at %gs:0, we reserve the bottom
399 * 48 bytes of the irq stack for the canary.
400 */
401 struct {
402 char gs_base[40];
403 unsigned long stack_canary;
404 };
405};
406
407DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
408DECLARE_INIT_PER_CPU(irq_stack_union);
409
410DECLARE_PER_CPU(char *, irq_stack_ptr);
411DECLARE_PER_CPU(unsigned int, irq_count);
412extern asmlinkage void ignore_sysret(void);
413#else /* X86_64 */
414#ifdef CONFIG_CC_STACKPROTECTOR
415/*
416 * Make sure stack canary segment base is cached-aligned:
417 * "For Intel Atom processors, avoid non zero segment base address
418 * that is not aligned to cache line boundary at all cost."
419 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
420 */
421struct stack_canary {
422 char __pad[20]; /* canary at %gs:20 */
423 unsigned long canary;
424};
425DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
426#endif
427/*
428 * per-CPU IRQ handling stacks
429 */
430struct irq_stack {
431 u32 stack[THREAD_SIZE/sizeof(u32)];
432} __aligned(THREAD_SIZE);
433
434DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
435DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
436#endif /* X86_64 */
437
438extern unsigned int fpu_kernel_xstate_size;
439extern unsigned int fpu_user_xstate_size;
440
441struct perf_event;
442
443typedef struct {
444 unsigned long seg;
445} mm_segment_t;
446
447struct thread_struct {
448 /* Cached TLS descriptors: */
449 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
450#ifdef CONFIG_X86_32
451 unsigned long sp0;
452#endif
453 unsigned long sp;
454#ifdef CONFIG_X86_32
455 unsigned long sysenter_cs;
456#else
457 unsigned short es;
458 unsigned short ds;
459 unsigned short fsindex;
460 unsigned short gsindex;
461#endif
462
463#ifdef CONFIG_X86_64
464 unsigned long fsbase;
465 unsigned long gsbase;
466#else
467 /*
468 * XXX: this could presumably be unsigned short. Alternatively,
469 * 32-bit kernels could be taught to use fsindex instead.
470 */
471 unsigned long fs;
472 unsigned long gs;
473#endif
474
475 /* Save middle states of ptrace breakpoints */
476 struct perf_event *ptrace_bps[HBP_NUM];
477 /* Debug status used for traps, single steps, etc... */
478 unsigned long debugreg6;
479 /* Keep track of the exact dr7 value set by the user */
480 unsigned long ptrace_dr7;
481 /* Fault info: */
482 unsigned long cr2;
483 unsigned long trap_nr;
484 unsigned long error_code;
485#ifdef CONFIG_VM86
486 /* Virtual 86 mode info */
487 struct vm86 *vm86;
488#endif
489 /* IO permissions: */
490 unsigned long *io_bitmap_ptr;
491 unsigned long iopl;
492 /* Max allowed port in the bitmap, in bytes: */
493 unsigned io_bitmap_max;
494
495 mm_segment_t addr_limit;
496
497 unsigned int sig_on_uaccess_err:1;
498 unsigned int uaccess_err:1; /* uaccess failed */
499
500 /* Floating point and extended processor state */
501 struct fpu fpu;
502 /*
503 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
504 * the end.
505 */
506};
507
508/* Whitelist the FPU state from the task_struct for hardened usercopy. */
509static inline void arch_thread_struct_whitelist(unsigned long *offset,
510 unsigned long *size)
511{
512 *offset = offsetof(struct thread_struct, fpu.state);
513 *size = fpu_kernel_xstate_size;
514}
515
516/*
517 * Thread-synchronous status.
518 *
519 * This is different from the flags in that nobody else
520 * ever touches our thread-synchronous status, so we don't
521 * have to worry about atomic accesses.
522 */
523#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
524
525/*
526 * Set IOPL bits in EFLAGS from given mask
527 */
528static inline void native_set_iopl_mask(unsigned mask)
529{
530#ifdef CONFIG_X86_32
531 unsigned int reg;
532
533 asm volatile ("pushfl;"
534 "popl %0;"
535 "andl %1, %0;"
536 "orl %2, %0;"
537 "pushl %0;"
538 "popfl"
539 : "=&r" (reg)
540 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
541#endif
542}
543
544static inline void
545native_load_sp0(unsigned long sp0)
546{
547 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
548}
549
550static inline void native_swapgs(void)
551{
552#ifdef CONFIG_X86_64
553 asm volatile("swapgs" ::: "memory");
554#endif
555}
556
557static inline unsigned long current_top_of_stack(void)
558{
559 /*
560 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
561 * and around vm86 mode and sp0 on x86_64 is special because of the
562 * entry trampoline.
563 */
564 return this_cpu_read_stable(cpu_current_top_of_stack);
565}
566
567static inline bool on_thread_stack(void)
568{
569 return (unsigned long)(current_top_of_stack() -
570 current_stack_pointer) < THREAD_SIZE;
571}
572
573#ifdef CONFIG_PARAVIRT
574#include <asm/paravirt.h>
575#else
576#define __cpuid native_cpuid
577
578static inline void load_sp0(unsigned long sp0)
579{
580 native_load_sp0(sp0);
581}
582
583#define set_iopl_mask native_set_iopl_mask
584#endif /* CONFIG_PARAVIRT */
585
586/* Free all resources held by a thread. */
587extern void release_thread(struct task_struct *);
588
589unsigned long get_wchan(struct task_struct *p);
590
591/*
592 * Generic CPUID function
593 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
594 * resulting in stale register contents being returned.
595 */
596static inline void cpuid(unsigned int op,
597 unsigned int *eax, unsigned int *ebx,
598 unsigned int *ecx, unsigned int *edx)
599{
600 *eax = op;
601 *ecx = 0;
602 __cpuid(eax, ebx, ecx, edx);
603}
604
605/* Some CPUID calls want 'count' to be placed in ecx */
606static inline void cpuid_count(unsigned int op, int count,
607 unsigned int *eax, unsigned int *ebx,
608 unsigned int *ecx, unsigned int *edx)
609{
610 *eax = op;
611 *ecx = count;
612 __cpuid(eax, ebx, ecx, edx);
613}
614
615/*
616 * CPUID functions returning a single datum
617 */
618static inline unsigned int cpuid_eax(unsigned int op)
619{
620 unsigned int eax, ebx, ecx, edx;
621
622 cpuid(op, &eax, &ebx, &ecx, &edx);
623
624 return eax;
625}
626
627static inline unsigned int cpuid_ebx(unsigned int op)
628{
629 unsigned int eax, ebx, ecx, edx;
630
631 cpuid(op, &eax, &ebx, &ecx, &edx);
632
633 return ebx;
634}
635
636static inline unsigned int cpuid_ecx(unsigned int op)
637{
638 unsigned int eax, ebx, ecx, edx;
639
640 cpuid(op, &eax, &ebx, &ecx, &edx);
641
642 return ecx;
643}
644
645static inline unsigned int cpuid_edx(unsigned int op)
646{
647 unsigned int eax, ebx, ecx, edx;
648
649 cpuid(op, &eax, &ebx, &ecx, &edx);
650
651 return edx;
652}
653
654/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
655static __always_inline void rep_nop(void)
656{
657 asm volatile("rep; nop" ::: "memory");
658}
659
660static __always_inline void cpu_relax(void)
661{
662 rep_nop();
663}
664
665/*
666 * This function forces the icache and prefetched instruction stream to
667 * catch up with reality in two very specific cases:
668 *
669 * a) Text was modified using one virtual address and is about to be executed
670 * from the same physical page at a different virtual address.
671 *
672 * b) Text was modified on a different CPU, may subsequently be
673 * executed on this CPU, and you want to make sure the new version
674 * gets executed. This generally means you're calling this in a IPI.
675 *
676 * If you're calling this for a different reason, you're probably doing
677 * it wrong.
678 */
679static inline void sync_core(void)
680{
681 /*
682 * There are quite a few ways to do this. IRET-to-self is nice
683 * because it works on every CPU, at any CPL (so it's compatible
684 * with paravirtualization), and it never exits to a hypervisor.
685 * The only down sides are that it's a bit slow (it seems to be
686 * a bit more than 2x slower than the fastest options) and that
687 * it unmasks NMIs. The "push %cs" is needed because, in
688 * paravirtual environments, __KERNEL_CS may not be a valid CS
689 * value when we do IRET directly.
690 *
691 * In case NMI unmasking or performance ever becomes a problem,
692 * the next best option appears to be MOV-to-CR2 and an
693 * unconditional jump. That sequence also works on all CPUs,
694 * but it will fault at CPL3 (i.e. Xen PV).
695 *
696 * CPUID is the conventional way, but it's nasty: it doesn't
697 * exist on some 486-like CPUs, and it usually exits to a
698 * hypervisor.
699 *
700 * Like all of Linux's memory ordering operations, this is a
701 * compiler barrier as well.
702 */
703#ifdef CONFIG_X86_32
704 asm volatile (
705 "pushfl\n\t"
706 "pushl %%cs\n\t"
707 "pushl $1f\n\t"
708 "iret\n\t"
709 "1:"
710 : ASM_CALL_CONSTRAINT : : "memory");
711#else
712 unsigned int tmp;
713
714 asm volatile (
715 UNWIND_HINT_SAVE
716 "mov %%ss, %0\n\t"
717 "pushq %q0\n\t"
718 "pushq %%rsp\n\t"
719 "addq $8, (%%rsp)\n\t"
720 "pushfq\n\t"
721 "mov %%cs, %0\n\t"
722 "pushq %q0\n\t"
723 "pushq $1f\n\t"
724 "iretq\n\t"
725 UNWIND_HINT_RESTORE
726 "1:"
727 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
728#endif
729}
730
731extern void select_idle_routine(const struct cpuinfo_x86 *c);
732extern void amd_e400_c1e_apic_setup(void);
733
734extern unsigned long boot_option_idle_override;
735
736enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
737 IDLE_POLL};
738
739extern void enable_sep_cpu(void);
740extern int sysenter_setup(void);
741
742extern void early_trap_init(void);
743void early_trap_pf_init(void);
744
745/* Defined in head.S */
746extern struct desc_ptr early_gdt_descr;
747
748extern void cpu_set_gdt(int);
749extern void switch_to_new_gdt(int);
750extern void load_direct_gdt(int);
751extern void load_fixmap_gdt(int);
752extern void load_percpu_segment(int);
753extern void cpu_init(void);
754
755static inline unsigned long get_debugctlmsr(void)
756{
757 unsigned long debugctlmsr = 0;
758
759#ifndef CONFIG_X86_DEBUGCTLMSR
760 if (boot_cpu_data.x86 < 6)
761 return 0;
762#endif
763 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
764
765 return debugctlmsr;
766}
767
768static inline void update_debugctlmsr(unsigned long debugctlmsr)
769{
770#ifndef CONFIG_X86_DEBUGCTLMSR
771 if (boot_cpu_data.x86 < 6)
772 return;
773#endif
774 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
775}
776
777extern void set_task_blockstep(struct task_struct *task, bool on);
778
779/* Boot loader type from the setup header: */
780extern int bootloader_type;
781extern int bootloader_version;
782
783extern char ignore_fpu_irq;
784
785#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
786#define ARCH_HAS_PREFETCHW
787#define ARCH_HAS_SPINLOCK_PREFETCH
788
789#ifdef CONFIG_X86_32
790# define BASE_PREFETCH ""
791# define ARCH_HAS_PREFETCH
792#else
793# define BASE_PREFETCH "prefetcht0 %P1"
794#endif
795
796/*
797 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
798 *
799 * It's not worth to care about 3dnow prefetches for the K6
800 * because they are microcoded there and very slow.
801 */
802static inline void prefetch(const void *x)
803{
804 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
805 X86_FEATURE_XMM,
806 "m" (*(const char *)x));
807}
808
809/*
810 * 3dnow prefetch to get an exclusive cache line.
811 * Useful for spinlocks to avoid one state transition in the
812 * cache coherency protocol:
813 */
814static inline void prefetchw(const void *x)
815{
816 alternative_input(BASE_PREFETCH, "prefetchw %P1",
817 X86_FEATURE_3DNOWPREFETCH,
818 "m" (*(const char *)x));
819}
820
821static inline void spin_lock_prefetch(const void *x)
822{
823 prefetchw(x);
824}
825
826#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
827 TOP_OF_KERNEL_STACK_PADDING)
828
829#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
830
831#define task_pt_regs(task) \
832({ \
833 unsigned long __ptr = (unsigned long)task_stack_page(task); \
834 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
835 ((struct pt_regs *)__ptr) - 1; \
836})
837
838#ifdef CONFIG_X86_32
839/*
840 * User space process size: 3GB (default).
841 */
842#define IA32_PAGE_OFFSET PAGE_OFFSET
843#define TASK_SIZE PAGE_OFFSET
844#define TASK_SIZE_LOW TASK_SIZE
845#define TASK_SIZE_MAX TASK_SIZE
846#define DEFAULT_MAP_WINDOW TASK_SIZE
847#define STACK_TOP TASK_SIZE
848#define STACK_TOP_MAX STACK_TOP
849
850#define INIT_THREAD { \
851 .sp0 = TOP_OF_INIT_STACK, \
852 .sysenter_cs = __KERNEL_CS, \
853 .io_bitmap_ptr = NULL, \
854 .addr_limit = KERNEL_DS, \
855}
856
857#define KSTK_ESP(task) (task_pt_regs(task)->sp)
858
859#else
860/*
861 * User space process size. This is the first address outside the user range.
862 * There are a few constraints that determine this:
863 *
864 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
865 * address, then that syscall will enter the kernel with a
866 * non-canonical return address, and SYSRET will explode dangerously.
867 * We avoid this particular problem by preventing anything executable
868 * from being mapped at the maximum canonical address.
869 *
870 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
871 * CPUs malfunction if they execute code from the highest canonical page.
872 * They'll speculate right off the end of the canonical space, and
873 * bad things happen. This is worked around in the same way as the
874 * Intel problem.
875 *
876 * With page table isolation enabled, we map the LDT in ... [stay tuned]
877 */
878#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
879
880#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
881
882/* This decides where the kernel will search for a free chunk of vm
883 * space during mmap's.
884 */
885#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
886 0xc0000000 : 0xFFFFe000)
887
888#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
889 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
890#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
891 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
892#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
893 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
894
895#define STACK_TOP TASK_SIZE_LOW
896#define STACK_TOP_MAX TASK_SIZE_MAX
897
898#define INIT_THREAD { \
899 .addr_limit = KERNEL_DS, \
900}
901
902extern unsigned long KSTK_ESP(struct task_struct *task);
903
904#endif /* CONFIG_X86_64 */
905
906extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
907 unsigned long new_sp);
908
909/*
910 * This decides where the kernel will search for a free chunk of vm
911 * space during mmap's.
912 */
913#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
914#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
915
916#define KSTK_EIP(task) (task_pt_regs(task)->ip)
917
918/* Get/set a process' ability to use the timestamp counter instruction */
919#define GET_TSC_CTL(adr) get_tsc_mode((adr))
920#define SET_TSC_CTL(val) set_tsc_mode((val))
921
922extern int get_tsc_mode(unsigned long adr);
923extern int set_tsc_mode(unsigned int val);
924
925DECLARE_PER_CPU(u64, msr_misc_features_shadow);
926
927/* Register/unregister a process' MPX related resource */
928#define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
929#define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
930
931#ifdef CONFIG_X86_INTEL_MPX
932extern int mpx_enable_management(void);
933extern int mpx_disable_management(void);
934#else
935static inline int mpx_enable_management(void)
936{
937 return -EINVAL;
938}
939static inline int mpx_disable_management(void)
940{
941 return -EINVAL;
942}
943#endif /* CONFIG_X86_INTEL_MPX */
944
945#ifdef CONFIG_CPU_SUP_AMD
946extern u16 amd_get_nb_id(int cpu);
947extern u32 amd_get_nodes_per_socket(void);
948#else
949static inline u16 amd_get_nb_id(int cpu) { return 0; }
950static inline u32 amd_get_nodes_per_socket(void) { return 0; }
951#endif
952
953static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
954{
955 uint32_t base, eax, signature[3];
956
957 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
958 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
959
960 if (!memcmp(sig, signature, 12) &&
961 (leaves == 0 || ((eax - base) >= leaves)))
962 return base;
963 }
964
965 return 0;
966}
967
968extern unsigned long arch_align_stack(unsigned long sp);
969extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
970
971void default_idle(void);
972#ifdef CONFIG_XEN
973bool xen_set_default_idle(void);
974#else
975#define xen_set_default_idle 0
976#endif
977
978void stop_this_cpu(void *dummy);
979void df_debug(struct pt_regs *regs, long error_code);
980void microcode_check(void);
981#endif /* _ASM_X86_PROCESSOR_H */