Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12#ifndef _ASM_S390_PGTABLE_H
13#define _ASM_S390_PGTABLE_H
14
15#include <linux/sched.h>
16#include <linux/mm_types.h>
17#include <linux/page-flags.h>
18#include <linux/radix-tree.h>
19#include <linux/atomic.h>
20#include <asm/bug.h>
21#include <asm/page.h>
22
23extern pgd_t swapper_pg_dir[];
24extern void paging_init(void);
25
26enum {
27 PG_DIRECT_MAP_4K = 0,
28 PG_DIRECT_MAP_1M,
29 PG_DIRECT_MAP_2G,
30 PG_DIRECT_MAP_MAX
31};
32
33extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
34
35static inline void update_page_count(int level, long count)
36{
37 if (IS_ENABLED(CONFIG_PROC_FS))
38 atomic_long_add(count, &direct_pages_count[level]);
39}
40
41struct seq_file;
42void arch_report_meminfo(struct seq_file *m);
43
44/*
45 * The S390 doesn't have any external MMU info: the kernel page
46 * tables contain all the necessary information.
47 */
48#define update_mmu_cache(vma, address, ptep) do { } while (0)
49#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
50
51/*
52 * ZERO_PAGE is a global shared page that is always zero; used
53 * for zero-mapped memory areas etc..
54 */
55
56extern unsigned long empty_zero_page;
57extern unsigned long zero_page_mask;
58
59#define ZERO_PAGE(vaddr) \
60 (virt_to_page((void *)(empty_zero_page + \
61 (((unsigned long)(vaddr)) &zero_page_mask))))
62#define __HAVE_COLOR_ZERO_PAGE
63
64/* TODO: s390 cannot support io_remap_pfn_range... */
65
66#define FIRST_USER_ADDRESS 0UL
67
68#define pte_ERROR(e) \
69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
70#define pmd_ERROR(e) \
71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
72#define pud_ERROR(e) \
73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
74#define p4d_ERROR(e) \
75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
76#define pgd_ERROR(e) \
77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
78
79/*
80 * The vmalloc and module area will always be on the topmost area of the
81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
83 * modules will reside. That makes sure that inter module branches always
84 * happen without trampolines and in addition the placement within a 2GB frame
85 * is branch prediction unit friendly.
86 */
87extern unsigned long VMALLOC_START;
88extern unsigned long VMALLOC_END;
89extern struct page *vmemmap;
90
91#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
92
93extern unsigned long MODULES_VADDR;
94extern unsigned long MODULES_END;
95#define MODULES_VADDR MODULES_VADDR
96#define MODULES_END MODULES_END
97#define MODULES_LEN (1UL << 31)
98
99static inline int is_module_addr(void *addr)
100{
101 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
102 if (addr < (void *)MODULES_VADDR)
103 return 0;
104 if (addr > (void *)MODULES_END)
105 return 0;
106 return 1;
107}
108
109/*
110 * A 64 bit pagetable entry of S390 has following format:
111 * | PFRA |0IPC| OS |
112 * 0000000000111111111122222222223333333333444444444455555555556666
113 * 0123456789012345678901234567890123456789012345678901234567890123
114 *
115 * I Page-Invalid Bit: Page is not available for address-translation
116 * P Page-Protection Bit: Store access not possible for page
117 * C Change-bit override: HW is not required to set change bit
118 *
119 * A 64 bit segmenttable entry of S390 has following format:
120 * | P-table origin | TT
121 * 0000000000111111111122222222223333333333444444444455555555556666
122 * 0123456789012345678901234567890123456789012345678901234567890123
123 *
124 * I Segment-Invalid Bit: Segment is not available for address-translation
125 * C Common-Segment Bit: Segment is not private (PoP 3-30)
126 * P Page-Protection Bit: Store access not possible for page
127 * TT Type 00
128 *
129 * A 64 bit region table entry of S390 has following format:
130 * | S-table origin | TF TTTL
131 * 0000000000111111111122222222223333333333444444444455555555556666
132 * 0123456789012345678901234567890123456789012345678901234567890123
133 *
134 * I Segment-Invalid Bit: Segment is not available for address-translation
135 * TT Type 01
136 * TF
137 * TL Table length
138 *
139 * The 64 bit regiontable origin of S390 has following format:
140 * | region table origon | DTTL
141 * 0000000000111111111122222222223333333333444444444455555555556666
142 * 0123456789012345678901234567890123456789012345678901234567890123
143 *
144 * X Space-Switch event:
145 * G Segment-Invalid Bit:
146 * P Private-Space Bit:
147 * S Storage-Alteration:
148 * R Real space
149 * TL Table-Length:
150 *
151 * A storage key has the following format:
152 * | ACC |F|R|C|0|
153 * 0 3 4 5 6 7
154 * ACC: access key
155 * F : fetch protection bit
156 * R : referenced bit
157 * C : changed bit
158 */
159
160/* Hardware bits in the page table entry */
161#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
162#define _PAGE_PROTECT 0x200 /* HW read-only bit */
163#define _PAGE_INVALID 0x400 /* HW invalid bit */
164#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
165
166/* Software bits in the page table entry */
167#define _PAGE_PRESENT 0x001 /* SW pte present bit */
168#define _PAGE_YOUNG 0x004 /* SW pte young bit */
169#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
170#define _PAGE_READ 0x010 /* SW pte read bit */
171#define _PAGE_WRITE 0x020 /* SW pte write bit */
172#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
173#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
174#define __HAVE_ARCH_PTE_SPECIAL
175
176#ifdef CONFIG_MEM_SOFT_DIRTY
177#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
178#else
179#define _PAGE_SOFT_DIRTY 0x000
180#endif
181
182/* Set of bits not changed in pte_modify */
183#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
184 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
185
186/*
187 * handle_pte_fault uses pte_present and pte_none to find out the pte type
188 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
189 * distinguish present from not-present ptes. It is changed only with the page
190 * table lock held.
191 *
192 * The following table gives the different possible bit combinations for
193 * the pte hardware and software bits in the last 12 bits of a pte
194 * (. unassigned bit, x don't care, t swap type):
195 *
196 * 842100000000
197 * 000084210000
198 * 000000008421
199 * .IR.uswrdy.p
200 * empty .10.00000000
201 * swap .11..ttttt.0
202 * prot-none, clean, old .11.xx0000.1
203 * prot-none, clean, young .11.xx0001.1
204 * prot-none, dirty, old .11.xx0010.1
205 * prot-none, dirty, young .11.xx0011.1
206 * read-only, clean, old .11.xx0100.1
207 * read-only, clean, young .01.xx0101.1
208 * read-only, dirty, old .11.xx0110.1
209 * read-only, dirty, young .01.xx0111.1
210 * read-write, clean, old .11.xx1100.1
211 * read-write, clean, young .01.xx1101.1
212 * read-write, dirty, old .10.xx1110.1
213 * read-write, dirty, young .00.xx1111.1
214 * HW-bits: R read-only, I invalid
215 * SW-bits: p present, y young, d dirty, r read, w write, s special,
216 * u unused, l large
217 *
218 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
219 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
220 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
221 */
222
223/* Bits in the segment/region table address-space-control-element */
224#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
225#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
226#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
227#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
228#define _ASCE_REAL_SPACE 0x20 /* real space control */
229#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
230#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
231#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
232#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
233#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
234#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
235
236/* Bits in the region table entry */
237#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
238#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
239#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
240#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
241#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
242#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
243#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
244#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
245#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
246#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
247
248#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
249#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
250#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
251#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
252#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
253#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
254
255#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
256#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
257#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
258#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
259#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
260#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
261
262#ifdef CONFIG_MEM_SOFT_DIRTY
263#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
264#else
265#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
266#endif
267
268#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
269#define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
270
271/* Bits in the segment table entry */
272#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
273#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
274#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
275#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
276#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
277#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
278#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
279
280#define _SEGMENT_ENTRY (0)
281#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
282
283#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
284#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
285#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
286#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
287#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
288
289#ifdef CONFIG_MEM_SOFT_DIRTY
290#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
291#else
292#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
293#endif
294
295#define _CRST_ENTRIES 2048 /* number of region/segment table entries */
296#define _PAGE_ENTRIES 256 /* number of page table entries */
297
298#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
299#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
300
301#define _REGION1_SHIFT 53
302#define _REGION2_SHIFT 42
303#define _REGION3_SHIFT 31
304#define _SEGMENT_SHIFT 20
305
306#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
307#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
308#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
309#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
310#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
311
312#define _REGION1_SIZE (1UL << _REGION1_SHIFT)
313#define _REGION2_SIZE (1UL << _REGION2_SHIFT)
314#define _REGION3_SIZE (1UL << _REGION3_SHIFT)
315#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
316
317#define _REGION1_MASK (~(_REGION1_SIZE - 1))
318#define _REGION2_MASK (~(_REGION2_SIZE - 1))
319#define _REGION3_MASK (~(_REGION3_SIZE - 1))
320#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
321
322#define PMD_SHIFT _SEGMENT_SHIFT
323#define PUD_SHIFT _REGION3_SHIFT
324#define P4D_SHIFT _REGION2_SHIFT
325#define PGDIR_SHIFT _REGION1_SHIFT
326
327#define PMD_SIZE _SEGMENT_SIZE
328#define PUD_SIZE _REGION3_SIZE
329#define P4D_SIZE _REGION2_SIZE
330#define PGDIR_SIZE _REGION1_SIZE
331
332#define PMD_MASK _SEGMENT_MASK
333#define PUD_MASK _REGION3_MASK
334#define P4D_MASK _REGION2_MASK
335#define PGDIR_MASK _REGION1_MASK
336
337#define PTRS_PER_PTE _PAGE_ENTRIES
338#define PTRS_PER_PMD _CRST_ENTRIES
339#define PTRS_PER_PUD _CRST_ENTRIES
340#define PTRS_PER_P4D _CRST_ENTRIES
341#define PTRS_PER_PGD _CRST_ENTRIES
342
343/*
344 * Segment table and region3 table entry encoding
345 * (R = read-only, I = invalid, y = young bit):
346 * dy..R...I...wr
347 * prot-none, clean, old 00..1...1...00
348 * prot-none, clean, young 01..1...1...00
349 * prot-none, dirty, old 10..1...1...00
350 * prot-none, dirty, young 11..1...1...00
351 * read-only, clean, old 00..1...1...01
352 * read-only, clean, young 01..1...0...01
353 * read-only, dirty, old 10..1...1...01
354 * read-only, dirty, young 11..1...0...01
355 * read-write, clean, old 00..1...1...11
356 * read-write, clean, young 01..1...0...11
357 * read-write, dirty, old 10..0...1...11
358 * read-write, dirty, young 11..0...0...11
359 * The segment table origin is used to distinguish empty (origin==0) from
360 * read-write, old segment table entries (origin!=0)
361 * HW-bits: R read-only, I invalid
362 * SW-bits: y young, d dirty, r read, w write
363 */
364
365/* Page status table bits for virtualization */
366#define PGSTE_ACC_BITS 0xf000000000000000UL
367#define PGSTE_FP_BIT 0x0800000000000000UL
368#define PGSTE_PCL_BIT 0x0080000000000000UL
369#define PGSTE_HR_BIT 0x0040000000000000UL
370#define PGSTE_HC_BIT 0x0020000000000000UL
371#define PGSTE_GR_BIT 0x0004000000000000UL
372#define PGSTE_GC_BIT 0x0002000000000000UL
373#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
374#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
375#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
376
377/* Guest Page State used for virtualization */
378#define _PGSTE_GPS_ZERO 0x0000000080000000UL
379#define _PGSTE_GPS_NODAT 0x0000000040000000UL
380#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
381#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
382#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
383#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
384#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
385
386/*
387 * A user page table pointer has the space-switch-event bit, the
388 * private-space-control bit and the storage-alteration-event-control
389 * bit set. A kernel page table pointer doesn't need them.
390 */
391#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
392 _ASCE_ALT_EVENT)
393
394/*
395 * Page protection definitions.
396 */
397#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
398#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
399 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
400#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
401 _PAGE_INVALID | _PAGE_PROTECT)
402#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
403 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
404#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
405 _PAGE_INVALID | _PAGE_PROTECT)
406
407#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
409#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
411#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
412 _PAGE_PROTECT | _PAGE_NOEXEC)
413#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
414 _PAGE_YOUNG | _PAGE_DIRTY)
415
416/*
417 * On s390 the page table entry has an invalid bit and a read-only bit.
418 * Read permission implies execute permission and write permission
419 * implies read permission.
420 */
421 /*xwr*/
422#define __P000 PAGE_NONE
423#define __P001 PAGE_RO
424#define __P010 PAGE_RO
425#define __P011 PAGE_RO
426#define __P100 PAGE_RX
427#define __P101 PAGE_RX
428#define __P110 PAGE_RX
429#define __P111 PAGE_RX
430
431#define __S000 PAGE_NONE
432#define __S001 PAGE_RO
433#define __S010 PAGE_RW
434#define __S011 PAGE_RW
435#define __S100 PAGE_RX
436#define __S101 PAGE_RX
437#define __S110 PAGE_RWX
438#define __S111 PAGE_RWX
439
440/*
441 * Segment entry (large page) protection definitions.
442 */
443#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
444 _SEGMENT_ENTRY_PROTECT)
445#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
446 _SEGMENT_ENTRY_READ | \
447 _SEGMENT_ENTRY_NOEXEC)
448#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
449 _SEGMENT_ENTRY_READ)
450#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
451 _SEGMENT_ENTRY_WRITE | \
452 _SEGMENT_ENTRY_NOEXEC)
453#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
454 _SEGMENT_ENTRY_WRITE)
455#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
456 _SEGMENT_ENTRY_LARGE | \
457 _SEGMENT_ENTRY_READ | \
458 _SEGMENT_ENTRY_WRITE | \
459 _SEGMENT_ENTRY_YOUNG | \
460 _SEGMENT_ENTRY_DIRTY | \
461 _SEGMENT_ENTRY_NOEXEC)
462#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
463 _SEGMENT_ENTRY_LARGE | \
464 _SEGMENT_ENTRY_READ | \
465 _SEGMENT_ENTRY_YOUNG | \
466 _SEGMENT_ENTRY_PROTECT | \
467 _SEGMENT_ENTRY_NOEXEC)
468
469/*
470 * Region3 entry (large page) protection definitions.
471 */
472
473#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
474 _REGION3_ENTRY_LARGE | \
475 _REGION3_ENTRY_READ | \
476 _REGION3_ENTRY_WRITE | \
477 _REGION3_ENTRY_YOUNG | \
478 _REGION3_ENTRY_DIRTY | \
479 _REGION_ENTRY_NOEXEC)
480#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
481 _REGION3_ENTRY_LARGE | \
482 _REGION3_ENTRY_READ | \
483 _REGION3_ENTRY_YOUNG | \
484 _REGION_ENTRY_PROTECT | \
485 _REGION_ENTRY_NOEXEC)
486
487static inline int mm_has_pgste(struct mm_struct *mm)
488{
489#ifdef CONFIG_PGSTE
490 if (unlikely(mm->context.has_pgste))
491 return 1;
492#endif
493 return 0;
494}
495
496static inline int mm_alloc_pgste(struct mm_struct *mm)
497{
498#ifdef CONFIG_PGSTE
499 if (unlikely(mm->context.alloc_pgste))
500 return 1;
501#endif
502 return 0;
503}
504
505/*
506 * In the case that a guest uses storage keys
507 * faults should no longer be backed by zero pages
508 */
509#define mm_forbids_zeropage mm_has_pgste
510static inline int mm_use_skey(struct mm_struct *mm)
511{
512#ifdef CONFIG_PGSTE
513 if (mm->context.use_skey)
514 return 1;
515#endif
516 return 0;
517}
518
519static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
520{
521 register unsigned long reg2 asm("2") = old;
522 register unsigned long reg3 asm("3") = new;
523 unsigned long address = (unsigned long)ptr | 1;
524
525 asm volatile(
526 " csp %0,%3"
527 : "+d" (reg2), "+m" (*ptr)
528 : "d" (reg3), "d" (address)
529 : "cc");
530}
531
532static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
533{
534 register unsigned long reg2 asm("2") = old;
535 register unsigned long reg3 asm("3") = new;
536 unsigned long address = (unsigned long)ptr | 1;
537
538 asm volatile(
539 " .insn rre,0xb98a0000,%0,%3"
540 : "+d" (reg2), "+m" (*ptr)
541 : "d" (reg3), "d" (address)
542 : "cc");
543}
544
545#define CRDTE_DTT_PAGE 0x00UL
546#define CRDTE_DTT_SEGMENT 0x10UL
547#define CRDTE_DTT_REGION3 0x14UL
548#define CRDTE_DTT_REGION2 0x18UL
549#define CRDTE_DTT_REGION1 0x1cUL
550
551static inline void crdte(unsigned long old, unsigned long new,
552 unsigned long table, unsigned long dtt,
553 unsigned long address, unsigned long asce)
554{
555 register unsigned long reg2 asm("2") = old;
556 register unsigned long reg3 asm("3") = new;
557 register unsigned long reg4 asm("4") = table | dtt;
558 register unsigned long reg5 asm("5") = address;
559
560 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
561 : "+d" (reg2)
562 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
563 : "memory", "cc");
564}
565
566/*
567 * pgd/p4d/pud/pmd/pte query functions
568 */
569static inline int pgd_folded(pgd_t pgd)
570{
571 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
572}
573
574static inline int pgd_present(pgd_t pgd)
575{
576 if (pgd_folded(pgd))
577 return 1;
578 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
579}
580
581static inline int pgd_none(pgd_t pgd)
582{
583 if (pgd_folded(pgd))
584 return 0;
585 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
586}
587
588static inline int pgd_bad(pgd_t pgd)
589{
590 /*
591 * With dynamic page table levels the pgd can be a region table
592 * entry or a segment table entry. Check for the bit that are
593 * invalid for either table entry.
594 */
595 unsigned long mask =
596 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
597 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
598 return (pgd_val(pgd) & mask) != 0;
599}
600
601static inline int p4d_folded(p4d_t p4d)
602{
603 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
604}
605
606static inline int p4d_present(p4d_t p4d)
607{
608 if (p4d_folded(p4d))
609 return 1;
610 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
611}
612
613static inline int p4d_none(p4d_t p4d)
614{
615 if (p4d_folded(p4d))
616 return 0;
617 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
618}
619
620static inline unsigned long p4d_pfn(p4d_t p4d)
621{
622 unsigned long origin_mask;
623
624 origin_mask = _REGION_ENTRY_ORIGIN;
625 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
626}
627
628static inline int pud_folded(pud_t pud)
629{
630 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
631}
632
633static inline int pud_present(pud_t pud)
634{
635 if (pud_folded(pud))
636 return 1;
637 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
638}
639
640static inline int pud_none(pud_t pud)
641{
642 if (pud_folded(pud))
643 return 0;
644 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
645}
646
647static inline int pud_large(pud_t pud)
648{
649 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
650 return 0;
651 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
652}
653
654static inline unsigned long pud_pfn(pud_t pud)
655{
656 unsigned long origin_mask;
657
658 origin_mask = _REGION_ENTRY_ORIGIN;
659 if (pud_large(pud))
660 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
661 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
662}
663
664static inline int pmd_large(pmd_t pmd)
665{
666 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
667}
668
669static inline int pmd_bad(pmd_t pmd)
670{
671 if (pmd_large(pmd))
672 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
673 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
674}
675
676static inline int pud_bad(pud_t pud)
677{
678 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
679 return pmd_bad(__pmd(pud_val(pud)));
680 if (pud_large(pud))
681 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
682 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
683}
684
685static inline int p4d_bad(p4d_t p4d)
686{
687 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
688 return pud_bad(__pud(p4d_val(p4d)));
689 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
690}
691
692static inline int pmd_present(pmd_t pmd)
693{
694 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
695}
696
697static inline int pmd_none(pmd_t pmd)
698{
699 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
700}
701
702static inline unsigned long pmd_pfn(pmd_t pmd)
703{
704 unsigned long origin_mask;
705
706 origin_mask = _SEGMENT_ENTRY_ORIGIN;
707 if (pmd_large(pmd))
708 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
709 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
710}
711
712#define pmd_write pmd_write
713static inline int pmd_write(pmd_t pmd)
714{
715 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
716}
717
718static inline int pmd_dirty(pmd_t pmd)
719{
720 int dirty = 1;
721 if (pmd_large(pmd))
722 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
723 return dirty;
724}
725
726static inline int pmd_young(pmd_t pmd)
727{
728 int young = 1;
729 if (pmd_large(pmd))
730 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
731 return young;
732}
733
734static inline int pte_present(pte_t pte)
735{
736 /* Bit pattern: (pte & 0x001) == 0x001 */
737 return (pte_val(pte) & _PAGE_PRESENT) != 0;
738}
739
740static inline int pte_none(pte_t pte)
741{
742 /* Bit pattern: pte == 0x400 */
743 return pte_val(pte) == _PAGE_INVALID;
744}
745
746static inline int pte_swap(pte_t pte)
747{
748 /* Bit pattern: (pte & 0x201) == 0x200 */
749 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
750 == _PAGE_PROTECT;
751}
752
753static inline int pte_special(pte_t pte)
754{
755 return (pte_val(pte) & _PAGE_SPECIAL);
756}
757
758#define __HAVE_ARCH_PTE_SAME
759static inline int pte_same(pte_t a, pte_t b)
760{
761 return pte_val(a) == pte_val(b);
762}
763
764#ifdef CONFIG_NUMA_BALANCING
765static inline int pte_protnone(pte_t pte)
766{
767 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
768}
769
770static inline int pmd_protnone(pmd_t pmd)
771{
772 /* pmd_large(pmd) implies pmd_present(pmd) */
773 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
774}
775#endif
776
777static inline int pte_soft_dirty(pte_t pte)
778{
779 return pte_val(pte) & _PAGE_SOFT_DIRTY;
780}
781#define pte_swp_soft_dirty pte_soft_dirty
782
783static inline pte_t pte_mksoft_dirty(pte_t pte)
784{
785 pte_val(pte) |= _PAGE_SOFT_DIRTY;
786 return pte;
787}
788#define pte_swp_mksoft_dirty pte_mksoft_dirty
789
790static inline pte_t pte_clear_soft_dirty(pte_t pte)
791{
792 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
793 return pte;
794}
795#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
796
797static inline int pmd_soft_dirty(pmd_t pmd)
798{
799 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
800}
801
802static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
803{
804 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
805 return pmd;
806}
807
808static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
809{
810 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
811 return pmd;
812}
813
814/*
815 * query functions pte_write/pte_dirty/pte_young only work if
816 * pte_present() is true. Undefined behaviour if not..
817 */
818static inline int pte_write(pte_t pte)
819{
820 return (pte_val(pte) & _PAGE_WRITE) != 0;
821}
822
823static inline int pte_dirty(pte_t pte)
824{
825 return (pte_val(pte) & _PAGE_DIRTY) != 0;
826}
827
828static inline int pte_young(pte_t pte)
829{
830 return (pte_val(pte) & _PAGE_YOUNG) != 0;
831}
832
833#define __HAVE_ARCH_PTE_UNUSED
834static inline int pte_unused(pte_t pte)
835{
836 return pte_val(pte) & _PAGE_UNUSED;
837}
838
839/*
840 * pgd/pmd/pte modification functions
841 */
842
843static inline void pgd_clear(pgd_t *pgd)
844{
845 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
846 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
847}
848
849static inline void p4d_clear(p4d_t *p4d)
850{
851 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
852 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
853}
854
855static inline void pud_clear(pud_t *pud)
856{
857 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
858 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
859}
860
861static inline void pmd_clear(pmd_t *pmdp)
862{
863 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
864}
865
866static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
867{
868 pte_val(*ptep) = _PAGE_INVALID;
869}
870
871/*
872 * The following pte modification functions only work if
873 * pte_present() is true. Undefined behaviour if not..
874 */
875static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
876{
877 pte_val(pte) &= _PAGE_CHG_MASK;
878 pte_val(pte) |= pgprot_val(newprot);
879 /*
880 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
881 * has the invalid bit set, clear it again for readable, young pages
882 */
883 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
884 pte_val(pte) &= ~_PAGE_INVALID;
885 /*
886 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
887 * protection bit set, clear it again for writable, dirty pages
888 */
889 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
890 pte_val(pte) &= ~_PAGE_PROTECT;
891 return pte;
892}
893
894static inline pte_t pte_wrprotect(pte_t pte)
895{
896 pte_val(pte) &= ~_PAGE_WRITE;
897 pte_val(pte) |= _PAGE_PROTECT;
898 return pte;
899}
900
901static inline pte_t pte_mkwrite(pte_t pte)
902{
903 pte_val(pte) |= _PAGE_WRITE;
904 if (pte_val(pte) & _PAGE_DIRTY)
905 pte_val(pte) &= ~_PAGE_PROTECT;
906 return pte;
907}
908
909static inline pte_t pte_mkclean(pte_t pte)
910{
911 pte_val(pte) &= ~_PAGE_DIRTY;
912 pte_val(pte) |= _PAGE_PROTECT;
913 return pte;
914}
915
916static inline pte_t pte_mkdirty(pte_t pte)
917{
918 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
919 if (pte_val(pte) & _PAGE_WRITE)
920 pte_val(pte) &= ~_PAGE_PROTECT;
921 return pte;
922}
923
924static inline pte_t pte_mkold(pte_t pte)
925{
926 pte_val(pte) &= ~_PAGE_YOUNG;
927 pte_val(pte) |= _PAGE_INVALID;
928 return pte;
929}
930
931static inline pte_t pte_mkyoung(pte_t pte)
932{
933 pte_val(pte) |= _PAGE_YOUNG;
934 if (pte_val(pte) & _PAGE_READ)
935 pte_val(pte) &= ~_PAGE_INVALID;
936 return pte;
937}
938
939static inline pte_t pte_mkspecial(pte_t pte)
940{
941 pte_val(pte) |= _PAGE_SPECIAL;
942 return pte;
943}
944
945#ifdef CONFIG_HUGETLB_PAGE
946static inline pte_t pte_mkhuge(pte_t pte)
947{
948 pte_val(pte) |= _PAGE_LARGE;
949 return pte;
950}
951#endif
952
953#define IPTE_GLOBAL 0
954#define IPTE_LOCAL 1
955
956#define IPTE_NODAT 0x400
957#define IPTE_GUEST_ASCE 0x800
958
959static inline void __ptep_ipte(unsigned long address, pte_t *ptep,
960 unsigned long opt, unsigned long asce,
961 int local)
962{
963 unsigned long pto = (unsigned long) ptep;
964
965 if (__builtin_constant_p(opt) && opt == 0) {
966 /* Invalidation + TLB flush for the pte */
967 asm volatile(
968 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
969 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
970 [m4] "i" (local));
971 return;
972 }
973
974 /* Invalidate ptes with options + TLB flush of the ptes */
975 opt = opt | (asce & _ASCE_ORIGIN);
976 asm volatile(
977 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
978 : [r2] "+a" (address), [r3] "+a" (opt)
979 : [r1] "a" (pto), [m4] "i" (local) : "memory");
980}
981
982static inline void __ptep_ipte_range(unsigned long address, int nr,
983 pte_t *ptep, int local)
984{
985 unsigned long pto = (unsigned long) ptep;
986
987 /* Invalidate a range of ptes + TLB flush of the ptes */
988 do {
989 asm volatile(
990 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
991 : [r2] "+a" (address), [r3] "+a" (nr)
992 : [r1] "a" (pto), [m4] "i" (local) : "memory");
993 } while (nr != 255);
994}
995
996/*
997 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
998 * both clear the TLB for the unmapped pte. The reason is that
999 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1000 * to modify an active pte. The sequence is
1001 * 1) ptep_get_and_clear
1002 * 2) set_pte_at
1003 * 3) flush_tlb_range
1004 * On s390 the tlb needs to get flushed with the modification of the pte
1005 * if the pte is active. The only way how this can be implemented is to
1006 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1007 * is a nop.
1008 */
1009pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1010pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1011
1012#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1013static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1014 unsigned long addr, pte_t *ptep)
1015{
1016 pte_t pte = *ptep;
1017
1018 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1019 return pte_young(pte);
1020}
1021
1022#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1023static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1024 unsigned long address, pte_t *ptep)
1025{
1026 return ptep_test_and_clear_young(vma, address, ptep);
1027}
1028
1029#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1030static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1031 unsigned long addr, pte_t *ptep)
1032{
1033 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1034}
1035
1036#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1037pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
1038void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
1039
1040#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1041static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1042 unsigned long addr, pte_t *ptep)
1043{
1044 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1045}
1046
1047/*
1048 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1049 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1050 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1051 * cannot be accessed while the batched unmap is running. In this case
1052 * full==1 and a simple pte_clear is enough. See tlb.h.
1053 */
1054#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1055static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1056 unsigned long addr,
1057 pte_t *ptep, int full)
1058{
1059 if (full) {
1060 pte_t pte = *ptep;
1061 *ptep = __pte(_PAGE_INVALID);
1062 return pte;
1063 }
1064 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1065}
1066
1067#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1068static inline void ptep_set_wrprotect(struct mm_struct *mm,
1069 unsigned long addr, pte_t *ptep)
1070{
1071 pte_t pte = *ptep;
1072
1073 if (pte_write(pte))
1074 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1075}
1076
1077#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1078static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1079 unsigned long addr, pte_t *ptep,
1080 pte_t entry, int dirty)
1081{
1082 if (pte_same(*ptep, entry))
1083 return 0;
1084 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1085 return 1;
1086}
1087
1088/*
1089 * Additional functions to handle KVM guest page tables
1090 */
1091void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1092 pte_t *ptep, pte_t entry);
1093void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1094void ptep_notify(struct mm_struct *mm, unsigned long addr,
1095 pte_t *ptep, unsigned long bits);
1096int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1097 pte_t *ptep, int prot, unsigned long bit);
1098void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1099 pte_t *ptep , int reset);
1100void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1101int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1102 pte_t *sptep, pte_t *tptep, pte_t pte);
1103void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1104
1105bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
1106int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1107 unsigned char key, bool nq);
1108int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1109 unsigned char key, unsigned char *oldkey,
1110 bool nq, bool mr, bool mc);
1111int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1112int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1113 unsigned char *key);
1114
1115int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1116 unsigned long bits, unsigned long value);
1117int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1118int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1119 unsigned long *oldpte, unsigned long *oldpgste);
1120
1121/*
1122 * Certain architectures need to do special things when PTEs
1123 * within a page table are directly modified. Thus, the following
1124 * hook is made available.
1125 */
1126static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1127 pte_t *ptep, pte_t entry)
1128{
1129 if (!MACHINE_HAS_NX)
1130 pte_val(entry) &= ~_PAGE_NOEXEC;
1131 if (pte_present(entry))
1132 pte_val(entry) &= ~_PAGE_UNUSED;
1133 if (mm_has_pgste(mm))
1134 ptep_set_pte_at(mm, addr, ptep, entry);
1135 else
1136 *ptep = entry;
1137}
1138
1139/*
1140 * Conversion functions: convert a page and protection to a page entry,
1141 * and a page entry and page directory to the page they refer to.
1142 */
1143static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1144{
1145 pte_t __pte;
1146 pte_val(__pte) = physpage + pgprot_val(pgprot);
1147 return pte_mkyoung(__pte);
1148}
1149
1150static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1151{
1152 unsigned long physpage = page_to_phys(page);
1153 pte_t __pte = mk_pte_phys(physpage, pgprot);
1154
1155 if (pte_write(__pte) && PageDirty(page))
1156 __pte = pte_mkdirty(__pte);
1157 return __pte;
1158}
1159
1160#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1161#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1162#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1163#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1164#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1165
1166#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1167#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1168
1169#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1170#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1171#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1172#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1173
1174static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1175{
1176 p4d_t *p4d = (p4d_t *) pgd;
1177
1178 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
1179 p4d = (p4d_t *) pgd_deref(*pgd);
1180 return p4d + p4d_index(address);
1181}
1182
1183static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1184{
1185 pud_t *pud = (pud_t *) p4d;
1186
1187 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1188 pud = (pud_t *) p4d_deref(*p4d);
1189 return pud + pud_index(address);
1190}
1191
1192static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1193{
1194 pmd_t *pmd = (pmd_t *) pud;
1195
1196 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1197 pmd = (pmd_t *) pud_deref(*pud);
1198 return pmd + pmd_index(address);
1199}
1200
1201#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1202#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1203#define pte_page(x) pfn_to_page(pte_pfn(x))
1204
1205#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1206#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1207#define p4d_page(pud) pfn_to_page(p4d_pfn(p4d))
1208
1209/* Find an entry in the lowest level page table.. */
1210#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1211#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1212#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1213#define pte_unmap(pte) do { } while (0)
1214
1215static inline pmd_t pmd_wrprotect(pmd_t pmd)
1216{
1217 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1218 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1219 return pmd;
1220}
1221
1222static inline pmd_t pmd_mkwrite(pmd_t pmd)
1223{
1224 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1225 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1226 return pmd;
1227 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1228 return pmd;
1229}
1230
1231static inline pmd_t pmd_mkclean(pmd_t pmd)
1232{
1233 if (pmd_large(pmd)) {
1234 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1235 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1236 }
1237 return pmd;
1238}
1239
1240static inline pmd_t pmd_mkdirty(pmd_t pmd)
1241{
1242 if (pmd_large(pmd)) {
1243 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1244 _SEGMENT_ENTRY_SOFT_DIRTY;
1245 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1246 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1247 }
1248 return pmd;
1249}
1250
1251static inline pud_t pud_wrprotect(pud_t pud)
1252{
1253 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1254 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1255 return pud;
1256}
1257
1258static inline pud_t pud_mkwrite(pud_t pud)
1259{
1260 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1261 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1262 return pud;
1263 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1264 return pud;
1265}
1266
1267static inline pud_t pud_mkclean(pud_t pud)
1268{
1269 if (pud_large(pud)) {
1270 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1271 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1272 }
1273 return pud;
1274}
1275
1276static inline pud_t pud_mkdirty(pud_t pud)
1277{
1278 if (pud_large(pud)) {
1279 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1280 _REGION3_ENTRY_SOFT_DIRTY;
1281 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1282 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1283 }
1284 return pud;
1285}
1286
1287#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1288static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1289{
1290 /*
1291 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1292 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1293 */
1294 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1295 return pgprot_val(SEGMENT_NONE);
1296 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1297 return pgprot_val(SEGMENT_RO);
1298 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1299 return pgprot_val(SEGMENT_RX);
1300 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1301 return pgprot_val(SEGMENT_RW);
1302 return pgprot_val(SEGMENT_RWX);
1303}
1304
1305static inline pmd_t pmd_mkyoung(pmd_t pmd)
1306{
1307 if (pmd_large(pmd)) {
1308 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1309 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1310 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1311 }
1312 return pmd;
1313}
1314
1315static inline pmd_t pmd_mkold(pmd_t pmd)
1316{
1317 if (pmd_large(pmd)) {
1318 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1319 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1320 }
1321 return pmd;
1322}
1323
1324static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1325{
1326 if (pmd_large(pmd)) {
1327 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1328 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1329 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1330 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1331 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1332 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1333 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1334 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1335 return pmd;
1336 }
1337 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1338 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1339 return pmd;
1340}
1341
1342static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1343{
1344 pmd_t __pmd;
1345 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1346 return __pmd;
1347}
1348
1349#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1350
1351static inline void __pmdp_csp(pmd_t *pmdp)
1352{
1353 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1354 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1355}
1356
1357#define IDTE_GLOBAL 0
1358#define IDTE_LOCAL 1
1359
1360#define IDTE_PTOA 0x0800
1361#define IDTE_NODAT 0x1000
1362#define IDTE_GUEST_ASCE 0x2000
1363
1364static inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1365 unsigned long opt, unsigned long asce,
1366 int local)
1367{
1368 unsigned long sto;
1369
1370 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1371 if (__builtin_constant_p(opt) && opt == 0) {
1372 /* flush without guest asce */
1373 asm volatile(
1374 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1375 : "+m" (*pmdp)
1376 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1377 [m4] "i" (local)
1378 : "cc" );
1379 } else {
1380 /* flush with guest asce */
1381 asm volatile(
1382 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1383 : "+m" (*pmdp)
1384 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1385 [r3] "a" (asce), [m4] "i" (local)
1386 : "cc" );
1387 }
1388}
1389
1390static inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1391 unsigned long opt, unsigned long asce,
1392 int local)
1393{
1394 unsigned long r3o;
1395
1396 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1397 r3o |= _ASCE_TYPE_REGION3;
1398 if (__builtin_constant_p(opt) && opt == 0) {
1399 /* flush without guest asce */
1400 asm volatile(
1401 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1402 : "+m" (*pudp)
1403 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1404 [m4] "i" (local)
1405 : "cc");
1406 } else {
1407 /* flush with guest asce */
1408 asm volatile(
1409 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1410 : "+m" (*pudp)
1411 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1412 [r3] "a" (asce), [m4] "i" (local)
1413 : "cc" );
1414 }
1415}
1416
1417pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1418pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1419pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1420
1421#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1422
1423#define __HAVE_ARCH_PGTABLE_DEPOSIT
1424void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1425 pgtable_t pgtable);
1426
1427#define __HAVE_ARCH_PGTABLE_WITHDRAW
1428pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1429
1430#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1431static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1432 unsigned long addr, pmd_t *pmdp,
1433 pmd_t entry, int dirty)
1434{
1435 VM_BUG_ON(addr & ~HPAGE_MASK);
1436
1437 entry = pmd_mkyoung(entry);
1438 if (dirty)
1439 entry = pmd_mkdirty(entry);
1440 if (pmd_val(*pmdp) == pmd_val(entry))
1441 return 0;
1442 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1443 return 1;
1444}
1445
1446#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1447static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1448 unsigned long addr, pmd_t *pmdp)
1449{
1450 pmd_t pmd = *pmdp;
1451
1452 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1453 return pmd_young(pmd);
1454}
1455
1456#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1457static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1458 unsigned long addr, pmd_t *pmdp)
1459{
1460 VM_BUG_ON(addr & ~HPAGE_MASK);
1461 return pmdp_test_and_clear_young(vma, addr, pmdp);
1462}
1463
1464static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1465 pmd_t *pmdp, pmd_t entry)
1466{
1467 if (!MACHINE_HAS_NX)
1468 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1469 *pmdp = entry;
1470}
1471
1472static inline pmd_t pmd_mkhuge(pmd_t pmd)
1473{
1474 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1475 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1476 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1477 return pmd;
1478}
1479
1480#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1481static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1482 unsigned long addr, pmd_t *pmdp)
1483{
1484 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1485}
1486
1487#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1488static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1489 unsigned long addr,
1490 pmd_t *pmdp, int full)
1491{
1492 if (full) {
1493 pmd_t pmd = *pmdp;
1494 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1495 return pmd;
1496 }
1497 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1498}
1499
1500#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1501static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1502 unsigned long addr, pmd_t *pmdp)
1503{
1504 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1505}
1506
1507#define __HAVE_ARCH_PMDP_INVALIDATE
1508static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1509 unsigned long addr, pmd_t *pmdp)
1510{
1511 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1512
1513 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1514}
1515
1516#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1517static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1518 unsigned long addr, pmd_t *pmdp)
1519{
1520 pmd_t pmd = *pmdp;
1521
1522 if (pmd_write(pmd))
1523 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1524}
1525
1526static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1527 unsigned long address,
1528 pmd_t *pmdp)
1529{
1530 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1531}
1532#define pmdp_collapse_flush pmdp_collapse_flush
1533
1534#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1535#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1536
1537static inline int pmd_trans_huge(pmd_t pmd)
1538{
1539 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1540}
1541
1542#define has_transparent_hugepage has_transparent_hugepage
1543static inline int has_transparent_hugepage(void)
1544{
1545 return MACHINE_HAS_EDAT1 ? 1 : 0;
1546}
1547#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1548
1549/*
1550 * 64 bit swap entry format:
1551 * A page-table entry has some bits we have to treat in a special way.
1552 * Bits 52 and bit 55 have to be zero, otherwise a specification
1553 * exception will occur instead of a page translation exception. The
1554 * specification exception has the bad habit not to store necessary
1555 * information in the lowcore.
1556 * Bits 54 and 63 are used to indicate the page type.
1557 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1558 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1559 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1560 * for the offset.
1561 * | offset |01100|type |00|
1562 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1563 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1564 */
1565
1566#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1567#define __SWP_OFFSET_SHIFT 12
1568#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1569#define __SWP_TYPE_SHIFT 2
1570
1571static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1572{
1573 pte_t pte;
1574
1575 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1576 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1577 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1578 return pte;
1579}
1580
1581static inline unsigned long __swp_type(swp_entry_t entry)
1582{
1583 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1584}
1585
1586static inline unsigned long __swp_offset(swp_entry_t entry)
1587{
1588 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1589}
1590
1591static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1592{
1593 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1594}
1595
1596#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1597#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1598
1599#define kern_addr_valid(addr) (1)
1600
1601extern int vmem_add_mapping(unsigned long start, unsigned long size);
1602extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1603extern int s390_enable_sie(void);
1604extern int s390_enable_skey(void);
1605extern void s390_reset_cmma(struct mm_struct *mm);
1606
1607/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1608#define HAVE_ARCH_UNMAPPED_AREA
1609#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1610
1611/*
1612 * No page table caches to initialise
1613 */
1614static inline void pgtable_cache_init(void) { }
1615static inline void check_pgt_cache(void) { }
1616
1617#include <asm-generic/pgtable.h>
1618
1619#endif /* _S390_PAGE_H */